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Abstract

Glasses have been an integral part of human life for more than 2000 years. Despite
several years of research and analysis, some fundamental and practical questions on
glasses still remain unanswered. While most of the earlier approaches were based on
(i) expert knowledge and intuition, (ii) Edisonian trial and error, or (iii) physics-driven
modeling and analysis, recent studies suggest that data-driven techniques, such as ar-
tificial intelligence (AI) and machine learning (ML), can provide fresh perspectives
to tackle some of these questions. In this article, we identify 21 grand challenges in
glass science, the solutions of which are either enabling AI and ML or enabled by Al
and ML to accelerate the field of glass science. The challenges presented here range
from fundamental questions related to glass formation and composition—processing—
property relationships to industrial problems such as automated flaw detection in
glass manufacturing. We believe that the present article will instill enthusiasm among
the readers to explore some of the grand challenges outlined here and to discover
many more challenges that can advance the field of glass science, engineering, and

technology.

1 | INTRODUCTION

The progress of human civilization has always been closely
associated with the discovery of new materials. This is
probably why the tripartite classification of historical peri-
ods is also based on materials—stone, bronze, and iron age.

© 2021 American Ceramics Society (ACERS) and Wiley Periodicals LLC.

Beyond these materials, there are several others which have
significantly improved the quality of human life, namely,
steel, aluminum, glass, plastics, the latest in the list being
nanomaterials. Among these materials, glasses hold a
unique place in human lives, considering their applications
ranging from everyday glass utensils and kitchen-wares to
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more exotic ones such as bioactive implants and energy
materials.'™

Although being extensively used for more than two mil-
lennia, very few glasses among the total possible glass com-
positions have been discovered, and even fewer have been
well-studied.®” This could be attributed to the composi-
tional flexibility associated with glasses, wherein any liquid
melt—a concoction of any number of elements and com-
pounds in any proportional—when cooled fast enough, can
form a glass. As such, the traditional design of glasses, thus
far, has primarily been based on an Edisonian trial-and-error
methodology. Although this approach has yielded some suc-
cess in the past, it is highly time-consuming, inefficient, and
risky (for example, it may not produce the desired result) for
industrial applications. Accelerating the knowledge in glass
science and the discovery of glasses in an economical fashion
with a reduced to design-to-deploy period are two key areas
where much work is needed.

Recent advances in computer hardware and algorithms
have created a new surge of interest toward artificial intel-
ligence (Al) and machine learning (ML) approaches for ma-
terials discovery, design, and synthesis. This has resulted in
an integrated computational materials engineering (ICME)
framework, which employs a combination of physics- and
data-based modeling approaches to accelerate materials
science.

Glasses are ideal candidates for data-driven modeling as
(i) virtually any element from the periodic table, or the com-
bination thereof, can form a glass when cooled fast enough,
(i1) the properties of glasses are mainly driven by compo-
sition due to their disordered structure, and (iii) unlike
crystals, the compositions of glasses can be continuously
tuned, (iv) large experimental database of glass properties
is available.*!! Due to these reasons, the glass community
has also started adopting the AI/ML approaches to tackle
a variety of problems such as property-prediction, tailored
design, understanding the physics, accelerating the model-
ing, to name a few. Among these, some of the specific ap-
plications include the prediction of Young's modulus,'* !
liquidus tempelrature,15 s.olubility,16 glass-transition tem-
perature,”’18 dissolution kinetics,lg‘20 viscosity.g’21 Other
recent works have developed composition—property mod-
els for several important thermal, optical, and mechanical
properties of glasses based on the available experimental
dataset.”>>> A recent work has bundled these models,zz’23
along with a database and an optimization module, in a
first-of-its-kind software package for accelerating glass
discovery, namely Python for Glass Genomics (PyGGi, see
http://pyggi.iitd.ac.in).23 PyGaGi is a copyrighted software-
as-a-service (SaaS) package, which is available both online
and offline for use. At present, while the online version
is free to use, the offline package has both free and paid
versions.

It may be observed that most of the ML-related work in
the glass literature focus mainly on property prediction and a
few on compositional optimization using ML models as sur-
rogates.”> However, there are multitudes of opportunities in
the area of Al and ML that can accelerate the field of glass
science. In this article, we try to identify the main challenges
that need to be addressed to accelerate innovation and de-
velopment in the field of glass science and technology. The
challenges are placed in such a manner that they address one
of the following outstanding problems in the field of glasses,
namely, (i) development of novel glasses for targeted applica-
tions, (ii) accelerating the design-to-deploy period of glasses,
(iii) improving the synthesis process of glasses, (iv) funda-
mental understanding on the nature and response of glasses,
(iv) knowledge dissemination in the area of glass science. In
what follows, we briefly give an introduction to Al and ML
and some of the commonly used methods. Then, we present
21 grand challenges in the field of glass science that can be
addressed with the technological developments exploiting Al
and ML in the 21* century.

2 | ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

Al refers to a broad field that focuses on enabling machines
to perform actions as humans would, based on situations or
stimuli.?®?’ In this process, the machines learn the implemen-
tation of a function that maps sequences to actions in differ-
ent ways possible. This approach represents a paradigm shift
from the traditional physics-driven modeling, wherein, rather
than instructing the computers what to do, we are allowing
the system to “learn” to perform actions based on the avail-
able data. ML is thus a subset of Al, which focuses on devel-
oping algorithms or machines that can be used to detect and
understand patterns in the data and extrapolate it to hitherto
unexplored domains and circumstances.”®?’ It should be em-
phasized that, in ML, machines learn to do this task without
being explicitly programmed on how to achieve it. Some of
the application areas of Al include natural language process-
ing (NLP), robotics,30 computer vision, automated reasoning,
automated programming, to name a few.?’ Similarly, some
of the ML applications include classification, regression, and
clustering. It should be noted that the applications of Al com-
monly employ the ML algorithms to achieve the objectives.
For example, the NLP uses a variety of ML algorithms such
as neural networks, support vectors, and random forest to ex-
tract knowledge from the text data.®'?

Learning algorithms in ML can be broadly classified into
supervised, unsupervised, and reinforcement. > Figure 1 shows
the hierarchy and list of algorithms commonly used in the field
of ML. This list by no means is complete or exhaustive—it is
representative of the broad fields in the area of machine learning.
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Supervised learning, which is one of the most common and
useful learning approaches, involves learning a function that
maps the input features to an output. To “learn” this function,
available data are used to “train” the model. This model is then
tested on an unseen dataset sampled from the same distribution
to assess the performance. Supervised learning can be used for
classification—that is, to classify the data into different classes,
for example, bioactive or not bioactive, glass forming or not
glass forming—or regression—that is, predicting the output as
a function of features, for example, predicting Young's modulus
or glass-transition temperature as a function of the glass com-
position. Commonly used algorithms for classification include
logistic, decision trees, random forest, support vector, and neu-
ral network.

Similarly, regression is performed using algorithms such
as linear, polynomial, support vector, decision trees, random
forest, neural network, and Gaussian process. Unsupervised
learning is used to understand the hidden patterns in data
without any labels. Thus, in unsupervised learning, there is
no output to “supervise” or train the model, and the model
learns from the patterns in the features of the data. Some ex-
amples of unsupervised learning involve clustering, that is,
to group data having similar trends or behavior, for exam-
ple, grouping window glass, sealing glass, bioactive glasses,
or optical glasses based on the input glass composition.
Another practical application of unsupervised learning in-
cludes detecting outliers in the dataset or identifying glass
samples with defects from a production pipeline. Some of
the commonly used algorithms for clustering include T-SNE,
DBSCAN, k-means, and k-NN. There is a third class of algo-
rithms, namely reinforcement learning. In this approach, an
agent interacts with the environment and learns the actions

that maximize the reward. This approach is commonly used
in many areas, including game theory, multi-agent systems,
and optimization, to develop optimal solutions and algo-
rithms. Reinforcement learning has found little application in
glass science, in particular, and materials science in general.
Some of the areas where reinforcement learning can have
applications include the design of smart robots (robotics),
which allow automated high-throughput synthesis, character-
ization, selection, and design of novel materials.>® A review
of some of the algorithms used in materials science and glass

science can be found elsewhere. >33

3 | GRAND CHALLENGES IN
GLASS SCIENCE, ENGINEERING,
AND TECHNOLOGY

Here, we aim to present some of the open challenges that are
impeding the progress in the area of glass science, engineer-
ing, and technology. These challenges broadly belong to two
categories: (i) ones that can be addressed using Al and ML
techniques and (ii) ones that enable the application of Al and
ML techniques for accelerated glass design, discovery, and
manufacturing. Thus, each challenge in itself presents an op-
portunity to advance the area of glass science.

3.1 | Challenge 1: development of high-
fidelity experimental datasets

The performance of ML algorithms is highly contingent
upon the availability of high-quality, reliable, and consistent
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datasets. Specifically, the dataset should consist of glasses
prepared with the same experimental protocols, including
the usage of the same cooling rates, heating rates, charging,
stirring, crucibles, furnace, annealing time, to name a few.
Similarly, testing protocols used for obtaining properties
such as density, elastic moduli, hardness, glass-transition
temperature, liquidus temperature, to name a few, should
also be consistent. This is especially important in some of
the properties such as (i) hardness—which is not a mate-
rial property and depends on the testing protocol such as
loading rate, indenter tip geometry, and environmental
conditions; (ii) liquidus temperature—the exact determina-
tion of the lower point of which is quite challenging; (iii)
glass-transition temperature—which is dependent on the
cooling rate, measurement technique, and the fitting range
used; (iv) viscosity—which depends on the precision of the
measurement technique, furnace, and other environmental
conditions.

The available glass databases include Interglad and
SciGlass, both of which are compiled based on data from
the literature.''”"*® These datasets have a large number of
outliers and are highly inconsistent for many properties.
Furthermore, while Interglad data are not freely available,
SciGlass data are not being updated and are not available
in an easily accessible and human-/machine-readable for-
mat.'” A recent effort has made many of the properties
from this database publicly available through a growing
glass database, namely, PyGGi bank, a part of the Python
for Glass Genomics (PyGGi) initiative.*® There are other
similar efforts such as the GlassPy, which is a free and
open-source package,40 thus following the FAIR data
principle.‘“ On the other hand, specialized glass compa-
nies with a track record of experimental research, such
as Corning Inc., houses high-quality data, which can be
used for developing high-quality data-driven models.®!*
However, these models and data are restricted to internal
use as the models give them a unique position for develop-
ing novel glass compositions.g’14 An international collabo-
rative initiative for the development of a publicly available
experimental glass property database following a univer-
sal protocol agreed upon by the glass community—similar
to the international simple glass (ISG) for studying the
dissolution of nuclear waste glass42—will go along way in
obtaining high-quality data that can be used for develop-
ing high-fidelity composition—property ML models that
are publicly available. An effort toward this direction has
been attempted by Citrine Informatics® for metals com-
munity, where users can deposit computational and exper-
imental data. Similarly, PyGGi bank also has an option
to deposit data that allow researchers to contribute and
share data available with them along with the appropriate
details or references, which are then made accessible to
the users.

3.2 | Challenge 2: automated extraction of
datasets from the literature

Most glass datasets, such as SciGlass and Interglad, relies
on manual extraction of data from the literature. However,
the number of unique data points in each repository is far
lower than the total number of glasses that have been studied
or could be studied in the future. Manual curation of online
databases through the extraction of annotated composition—
property pairs from literature is inherently inefficient and
unsuitable for the 21* century. On the other hand, recent
developments in Al can be exploited to automate the data
extraction process from journal publications and patents.
For example, ChemDataExtractor***’
tify chemical species through their symbols in literature.
With specific data parsing algorithms such as Snowball,
Chemdataextractor has been used to automatically extract
large datasets of magnetic materials and their Neel's tempera-
tures*® and as well as a database of battery material with five
leading properties.45 Several such approaches have already
been used in zeolites*’ and inorganic materials.*® In glass
science, this presents a unique challenge as glass composi-
tions have complex representations without any uniformity.
For example, a binary sodium silicate glass with a 50 mol%
soda may be written as Na,0.SiO, or 50(Na,0).50(Si0,)
or (Na,0)s,.(Si0,)s5y or (Na,0),5.(Si0,)g5 or 50(Na,0)-
50(Si0,), all of them referencing the same glass composi-
tion. The recent development of a Named Entity Recognition
(NER) system for the subject of inorganic literature suggests
that NLP algorithms can be made “material science aware,”
allowing nuanced extraction through microlevel parsing.
Figure 2 shows how NER can be used to label different parts
of a text into relevant categories such as material, application,
property, synthesis methods, characterization techniques, to
name a few. However, a glass-specific NER system is cur-
rently unavailable and presents itself as a major challenge
that needs to be addressed to enable to automated extraction
of datasets from the literature.

is a tool that can iden-

3.3 | Challenge 3: outlier detection

Despite the importance of the quality of data for develop-
ing robust models, sufficient attention has not been given
to data cleansing and outlier detection in machine learning
in glass science. It could be argued that the availability of
high-quality data is presently the bottleneck to develop-
ing reliable ML models for property prediction much more
than the reliability and efficiency of learning algorithms.
Note that outliers may arise in the data due to various fac-
tors such as instrument errors, human error, measurement
conditions, system behavior, or even natural variation in the
data. Detection of outliers is important not only to develop
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FIGURE 2 Named Entity Recognition systems, as given by Matscholar®, can be used to label parts of a text into relevant categories such as
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block using standard routines

high-fidelity models but also to identify several anomalous
behaviors—for example, some selected glass compositions
exhibiting a sudden increase/decrease in the property—or
system faults—for example, while doing measurement or
glass manufacturing, an outlier may be due to instrument
failure or system error. Several outlier detection meth-
odologies are available in the literature depending on the
nature of data and training algorithms used,”" including
several open-source packages such Pyod54 and XGBOD.”
Glass datasets in itself present unique challenges due to
their inherent nonlinearities and anomalies. Therefore, the
development of specialized and appropriate outlier detec-
tion algorithms for glass datasets can enable improved data
cleansing and go a long way in reliable model development.

3.4 | Challenge 4: development of consistent
synthetic datasets

While the development of an experimental dataset is ideal for
the development of realistic composition—property dataset,
experiments can be expensive, time-consuming, and mostly
inconsistent due to different synthesis, sample preparation,
and measurement protocol. Besides, many properties at the
atomic scale may not be easily obtainable from experiments.
An alternate approach is to use high-throughput atomistic
and first principle simulations to generate simulation data,
referred to as synthetic data. Note that such a system has
been successfully implemented by The Materials Project56
for inorganic materials, wherein a “self-healing” workflow
has been implemented for the development of consistent

synthesis,” etc. Composition-property-processing tuples can be then be extracted from this annotated text

high-throughput simulation data. The approach in glasses
would be slightly more challenging as glasses being a non-
equilibrium system, the simulation protocol such as the num-
ber of atoms, ensembles used, cooling rate used, cooling
protocol implemented (step-wise vs. continuous), timestep,
and equilibration steps can all affect the final glass structure.
Several efforts have already independently used large-scale
glass simulation data to develop ML models."**” An inter-
national collaborative effort to establish a consistent simu-
lation dataset, including the interatomic potentials used for
glass simulation, glass structures developed through simula-
tion, properties computed, will accelerate the development
of a consistent simulation dataset that can be used for ML
applications.

3.5 | Challenge 5: feature discovery and
selection—atomic fingerprinting

Once a dataset on glass with the relevant composition and
properties is obtained, selecting the appropriate input fea-
ture is a major challenge. Feature selection is an impor-
tant aspect as the predictive capability of the model will
be contingent upon the ability of input features to cover
the domain appropriately. Thus, the selection of the input
features should be made in such a way that all the param-
eters controlling a certain property are included, whereas
all irrelevant features are removed. So far, there have been
two broad classes of features that have been used for prop-
erty prediction: (i) features based on the glass composition
and (ii) features based on physics or other fundamental
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properties. In the first approach, the percentage of the com-
ponents or elements present in the glass composition itself
is used as an input. For example, the mole percentage of
Na,O and SiO, in a binary (Na,0),.(Si0,)_, or directly the
amount of Na, Si, and O present in the glass may be used as
the input for the ML algorithm, and the output would be the
glass property. While this approach may yield satisfactory
results for a select glass composition, the models trained on
one glass composition will not be transferable to another
set of compositions with different components. A more ge-
neric approach would be to develop novel physics-based
features—some examples of this include topology—,20
interatomic potential parameter—,57 and periodic table-
based descriptors.&21 The advantage of such descriptors is
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that the models developed have the potential to be univer-
sal and transferable. Furthermore, these models might be
able to provide deeper insights into the factors controlling
the respective properties. However, physics-based descrip-
tors developed so far have been limited to a few select glass
compositions or properties. Furthermore, most existing ML
models for glasses presently are not informed by the glass
structure, which may also play a crucial role in addition to
the glass composition. This is an important problem if the
models need further extended to include materials such as
glass-ceramics. As such, it still remains as an open chal-
lenge to discover universal physics-based features, also
known as the atomic fingerprints of glass, that can predict
glass properties.
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FIGURE 3 Predicted Young's modulus with respect to measured value for (A) linear regression, (B) XGBoost, (C) deep neural network, (D)

KISS-GP. Inset shows the distribution of error (), that is, measured value minus predicted value for the test dataset
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3.6 | Challenge 6: composition—property
models—selection of training algorithms

As mentioned earlier (see Figure 1), the choice of an appropriate
algorithm (or the development of a new one) is a crucial issue
while developing composition—property models. Algorithms
may range from simple linear regression to complex deep neu-
ral networks, ensemble-based methods, or Gaussian process
regressions. These algorithms try to learn the input—output
relationship from the available data. The preferred algorithm
may be chosen depending on the size and nature of data and
the desired output. Figure 3 shows the prediction of Young's
modulus using four different methods, namely, linear regres-
sion, XGBoost, deep neural networks, and Gaussian process
regression (GPR). We observe that the predictions for each of
these models are different, with the GPR exhibiting superior
performance. Although certain thumb rules exist for the choice
of algorithm and approach, thus far, there are no “intelligent”
systems that suggest the best approach for a particular dataset.
These models also present some deficiencies or superiorities
when they are used for glass discovery using surrogate model-
based optimization. As a surrogate model, neural networks may
perform better in contrast to decision tree-based methods such
as random forest or XGBoost. It should be noted that choosing
the best model is a general problem in the area of ML. However,
this problem will have additional constraints in glass science
in terms of the underlying physics. For example, glasses are
unique in the sense that a given property changes continuously
as a function of composition. Thus, the composition—property
relationship should be continuous and differentiable. Similarly,
the complexity and interpretability of ML models are inversely
proportional. It is well understood based on the glass physics
that some properties are “fairly linear,” whereas some others
are highly nonlinear. This prior knowledge may go into the ML
model instead of a brute force approach. As such, the devel-
opment of an automated “intelligent” system that can suggest
the best learning algorithm for a given dataset, respecting the
physics of glasses, can significantly reduce the efforts associ-
ated with a trial-and-error approach in choosing a particular ML
model. In addition, ensuring the reproducibility of ML models
is also a major issue that has received lesser attention. Making
the final ML models available (free and open-source), along
with the complete code and data could be the solution to ad-
dress this challenge. Some recent works®!?
examples in this regard.

can be taken as

3.7 | Challenge 7: composition—property
models—hyperparametric optimization

The performance of a model upon training is highly contin-
gent on the use of appropriate hyperparameters during the
training process. Note that hyperparameters are different

SCIENCE

from the parameters of an equation. For example, for a
straight line y = mx + ¢, m, and ¢ correspond to the param-
eters. On the other hand, the parameters that are employed
while fitting the straight line such as the order of equation
(e.g., linear or quadratic), step-size for error minimization,
the algorithm used for error minimization (e.g., gradient
descent), error measure (e.g., mean squared error) are the
hyperparameters. Thus, parameters are learned and updated
during training, whereas hyperparameters are fixed before
the training. Poor or no hyperparametric optimization will
lead to poor training of the model leading to overfitting or
underfitting. There are several approaches that can be em-
ployed for hyperparametric optimization ranging from the
traditional grid search or random search to more sophisti-
cated approaches such as Bayesian optimization. While
there are several packages to perform hyperparametric
optimization such as hyperopt58 or optuna,59 an intelligent
system that can suggest the optimal hyperparameters asso-
ciated with a given training algorithm for a glass specific
dataset, such as Young's modulus, can significantly reduce
the training time associated with developing composition—
property models while avoiding underfitting or overfitting.
Furthermore, making these models publicly accessible
will enable direct access to the high-fidelity composition—
property models for scientists and nonscientists alike.
Already such an effort is undertaken by the project PyGGi
through PyGGi Seer, wherein neural network for nine glass
properties with up to 34 components have been developed
(see: https://pyggi.iitd.ac.in).

3.8 | Challenge 8: physics-informed
machine learning

While most machine learning approaches simply use data as
an input and train the model, this might result in absurd predic-
tions, especially for regions where data are sparse. To infuse
“common-sense” into the model, which allows reasonable ex-
trapolation using the basic physical laws available. This alter-
nate approach, known as the gray-box neural network, learns
the parameters associated with a functional relationship be-
tween the input-output,&21 instead of directly learning the input
and output. For example, a recent work used the neural network
to learn the parameters associated with the MYEGA equation,
which was then used to predict the Viscosity.8 Another ap-
proach in this direction is to redefine the loss function in terms
of some physics-based differential equations. For example,
Hamiltonian and lagrangian neural networks® is an attempt in
which the neural learns the lagrangian of the function, thus ex-
hibiting superior performance in terms of physical laws such as
energy conservation. The development of such physics-based
neural networks may aid the development of models that are
interpretable and robust against extrapolation.
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3.9 | Challenge 9: uncertainty quantification
in predictions

Most of the ML algorithms discussed thus far are deter-
ministic in nature—for a given output, we always obtain
the same output. While these algorithms exhibit excellent
predictive capabilities for interpolation, the ability of the
models to extrapolate beyond the training domain is ques-
tionable. In such cases, it is important to quantify the uncer-
tainty associated with the predictions. To this extent, GPR
presents as an ideal candidate as the prediction in GPR is
done in a probabilistic framework—associated with every
predicted value, the standard deviation in the prediction can
also be obtained from GPR, thereby giving insights into
the reliability of the model. However, GPR is extremely
computationally intensive, and training is limited to a small
dataset (due to the matrix inversion operation associated
with the covariance matrix of GP). Another recent approach
to address this challenge is the Monte Carlo dropout61 to es-
timate model uncertainty. The advantage of this approach
is that it can be applied to already trained models as well.
Alternate approaches under the structured kernel interpo-
lation (SKI) framework, such as kernel interpolation for
scalable structured GP or KISS-GP®? have been developed
to address this challenge. Figure 4 shows the predicted val-
ues of density using the KISS-GP approach.22 We observe
that the prediction provides reasonable agreement with the
experimental values along with the uncertainty in predic-
tions. Development and applications of algorithms that pro-
vide tighter bounds on uncertainty while having reduced
computational cost is an open challenge that needs to be
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FIGURE 4 The predicted density of B,O5 using KISS-GP
for a binary (Na,0),.(B,03) glass

addressed for novel glass discovery. Furthermore, devel-
oping such models a large number of glass properties and
making this publicly available will accelerate the design of
glasses for targeted applications. Already such an effort is
undertaken by the project PyGGi39 through PyGGi Seer,
wherein KISS-GP models for nine glass properties with up
to 34 components have been developed (see: https://pyggi.
iitd.ac.in).

3.10 | Challenge 10: optimized predictions of
glass compositions

While the ML model allows us to predict the properties of
given glass composition, surrogate model-based optimiza-
tion can be used to solve the reverse problem—that is, pre-
dict the composition of glass with desired properties. To
this extent, various optimization algorithms such as gradi-
ent descent, ant colony, particle swarm, and genetic algo-
rithm can be used to predict the possible compositions for
a given target property. It should be noted obtaining the
global minima is challenging in many cases, and thus, the
optimization algorithms provide a family of glass compo-
sitions. A similar approach has been used in recent work
to design optical glasses using genetic algorithm with ML
models for refractive index (n,) and glass-transition tem-
perature (7,) as surrogateszs. In this work, two criteria,
namely n, >1.7 and T, <500°C, was applied to discover
glasses. Additional criteria can also be applied in terms
of compositional constraints. Such an approach can sig-
nificantly accelerate the design and discovery of glasses.
However, at present, this approach is limited to those who
are already having ML models for the properties of interest.
In order for this approach to be accessible to a larger public,
the surrogate models for a large number of properties and
components need to be developed and shared along with
various optimization algorithms publicly. Already such an
effort is undertaken by the project PyGGi through PyGGi
Zen, wherein optimization models with four different algo-
rithms are shared along with the ML models for nine glass
properties with up to 34 components for optimized design
of glasses (see: http://pyggi.iitd.ac.in).

3.11 | Challenge 11: interpreting the
machine learning models for composition—
property relationships

ML methods are notoriously known as black-box meth-
ods, as it is extremely challenging to interpret the nature
of input—output relationships for them. However, to de-
velop reliable models and to interpret the input relation-
ship meaningfully, the interpretability of ML models is an
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important aspect that needs to be explored. Recent devel-
opments in the ML field have resulted in a variety of “in-
terpreting” tools for ML models. Some of these algorithms
are Shapley additive explanations63 (SHAP), Locally
Interpretable Models and Effects (LIME), partial depend-
ency plots (PDP), to name a few.%* Applications of these
approaches to the ML models will allow one to infer the
role of each of the components in controlling the respective
property. For example, interpreting the ML model for hard-
ness can provide insights into the role of network former
and modifier in controlling the overall response to indenta-
tion. As such, this area of interpretable ML can have a huge
impact on glass science and technology in understanding
the composition—property relationships.

3.12 | Challenge 12: development of
machine-learned interatomic potentials

Glass simulation is an area where there is a lot of interest as
the simulations can provide insights into the structure and
properties of glasses. Most of the glass simulations are con-
ducted at the atomic scale as it provides a balance between
accuracy (better than mesoscale simulations) and computa-
tional cost (lower than first principle simulations). Since the
atomistic simulations are only as accurate as the interatomic
potentials used, the development of realistic interatomic po-
tentials for glass is an active field of research. In contrast
to crystalline systems, potential development and refine-
ment for glasses are more challenging due to their disor-
dered structure. The development of high accuracy (similar
to the first principle) potentials for glasses remains an open
challenge, which can be addressed through ML. Potential
parametrization using machine learning has mainly been of
two broad categories: (i) use machine learning to learn and
optimize the parameters of a known functional form,®% for
example, BKS, (ii) develop a machine-learned potential,67
where the functional itself is approximated using a machine
learning model such as neural network, random forest, or
gaussian approximation potential.68 While the former has
been applied to some simple glasses, the latter has barely
been attempted for glasses. The challenge can be addressed
by developing a collaborative cloud-based service, which
provides an interatomic potential for any system given
enough training data. Thus, the service should be able to
take user-given input trajectories of first principle simula-
tion, use this training data to develop a machine-learned
potential, and share it with the public. These potentials can
keep improving with more and more training data with an
increasing user base. Such a trainable machine learning in-
teratomic potential can accelerate the glass simulations al-
lowing deeper insights into the structure and response of
glassy materials.

SCIENCE

3.13 | Challenge 13:
deciphering the relationship between
structure and dynamics of glasses

A comment by Anderson' emphasizes the “theory of the nature
of glass and glass transition to be the deepest and most interest-
ing unsolved problem in solid-state theory”. Recent studies sug-
gest that ML may provide a new angle to attack this unsolved
problem.(’g'72 These works suggested a machine-learned param-
eter, namely, softness,69’72 which connects the local structure to
the dynamics during the glass transition. The softness parameter
addresses the long-standing question regarding whether there is
a structural signature associated with the dynamics during the
glass transition. Although the physical meaning of “softness”
itself and its direct role in solving the mystery of the glass tran-
sition remains unclear, the work suggests how ML can be used
to decipher the hidden relationship between the structure and
dynamics of the glass transition. A fresh data-driven approach
using ML may thus provide insights into one of the greatest un-
solved problems of the 21* century—the glass transition.

3.14 | Challenge 14: transfer learning—
applying knowledge learned in one area
to another

In materials science, obtaining large-scale data associated with
asystem are always a challenge. However, it is well-understood
many of the physical, chemical, mechanical, thermodynamic,
and electronic properties are interrelated. Similarly, the na-
ture of the relationship between the input features and output
may also be interrelated in many different materials. Thus, the
knowledge learned from one system or property can be used
to develop models for a similar system or property. This ap-
proach, known as transfer learning, has recently found some
applications in the area of materials science.”™ The advan-
tage in this approach is that a model pretrained on a large data-
base can then be used to learn the function on a much smaller
database. Thus, for glasses or properties in which only sparse
data are available, transfer learning can be used to develop
reliable models. However, confounding effects that different
input components may have could be different for each of the
properties. Such an effect may, thus, make the transfer learning
approach inferior as well. To this extent, the development of a
reliable transfer learning module for the development of mod-
els for glasses with a sparse dataset remains an open challenge.

3.15 | Challenge 15: semantic search and
analysis from literature

The number of publications relevant to the keyword “glass”
is over 1.8 million in Science Direct and 1.6 million in



INTERNATIONAL JOURNAL OF

» | Applied Glass

RAVINDER ET AL.

SCIENCE

Semantic Scholar. Yet, at the same time, our ability to query
and navigate these databases are rudimentary. For example,
we are unable to rapidly answer questions such as: (i) What
glass compositions have been studied for a property P? (ii)
What experimental results are available in the literature for
a given glass composition G? (iii) Which synthesis steps S
are available for a composition G to obtain a property P,>e,;
& P,<e,?, etc. Generically, this comes down to the identi-
fication and extraction of composition-property-processing
tuples from textual databases. NLP is increasingly being
recognized as a means to meaningfully engage with scien-
tific literature and to extract user-specific information from
a large corpus of texts.>! Select demonstrations of this ap-
proach range from regular expression and syntax-based iden-
tification of structure-property-values pairs from literature
(battery materials,* phase diagrams,75 inorganic oxides*),
variational autoencoder-driven prediction of synthesis pa-
rameters (inorganic oxides),”® the discovery of new thermo-
electrics using word embeddings,31 and the identification of
broad synthesis recipes using neural networks.””

The caption-cluster plotSI’82 is a graphical summary of
an entire field of knowledge, providing insights into the
availability and distribution of research interests within
the community and their interrelationships. The example
in Figure 5 is built using standard NLP techniques such as
vectorization and clustering on over 10 000 figure captions
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selected from 3000 papers selected randomly from glass lit-
erature. The pixelated figure captions are found to cluster
based on the information contained in the images, such as
different types of spectra, polarization measurements, X-ray
diffraction images, thermal measurements, etc. Combined
with composition and processing markers, this changes into
a tool that helps answer some of the questions raised at the
beginning. Each point in the image represents a figure cap-
tion that has been vectorized and clustered. The color of the
point represents the label assigned to the caption based on
the type of information it represents. Thus, in Figure 5, blue
point corresponds to IR spectra, whereas green corresponds
to DSC images.

However, for the most part, the overwhelming textual,
graphic, and ontological information on glass literature is
grossly underutilized and poorly assimilated, even by sub-
ject experts—a condition that is endemic in the physical sci-
ences. Moreover, the absence of a standard subject ontology
for the physical sciences, variations in terminology, syntax,
and representation, along with poor writing practices, have
resulted in disjoint and often indecipherable dependency re-
lations in text, which complicate routine NLP methods. The
automation of information extraction in the physical sciences
has, therefore, lagged behind fields such as bioinformatics,
where standard representation and presentation systems have
existed for years. The development of automated routines to

FIGURE 5 The caption cluster plot of
10 000 figure captions selected from 3000
papers on the keyword “glass.” The captions
are vectorized and clustered using standard
NLP techniques



RAVINDER ET AL.

INTERNATIONAL JOURNAL OF

Applied Glass |

extract meaningful data from glass literature is one of the big-
gest challenges in the field for the 21* century.

3.16 | Challenge 16: extracting the synthesis
protocols from the literature

It is well known that processing conditions and synthesis
recipes influence the final microstructure and properties of
glasses. Therefore, any predictive ML/AI model—as outlined
in Challenges 5 and 6, for example—would benefit enor-
mously from the inclusion of synthesis parameters as a fea-
ture. In addition, the extracting of synthesis protocols‘w’%’84
can provide deeper insights into the literature by answering
some questions such as: (i) what are the methods commonly
used to prepare a glass?, (ii) what method should be used for
a specific glass, (iii) what is the effect of a method on a prop-
erty, (iv) what method should be adopted to obtain a target
property, to name a few. One way to address this issue is to
develop a consistent dataset with the same protocol followed
throughout, as mentioned in Challenge 1. An alternate ap-
proach would be to extract the synthesis plrotocol48‘80 directly
from the published scientific literature. This dataset will iden-
tify a glass composition and relate the synthesis and process-
ing parameters associated with it. These parameters, in turn,
can range from high-level synthesis routines (sol—gel, hydro-
thermal, solid-state), middle-level synthesis steps (annealing,
quenching, rolling) to low-level synthesis parameters (an-
nealing temperature, quenching rate, indentation stress, etc.).
Similar approaches have been demonstrated for inorganic ox-
ides where specific synthesis parameters for a given reaction
have been calculated using variational auto encoders.”® Figure
6 shows the synthesis steps for hydrothermal, sol-gel, and
solid-state reactions that have been automatically generated
from published literature.”” A random forest model trained on

______________
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synthesis routines of oxide inorganics, in combination with a
Markov chain model, has been shown to “learn” the synthe-
sis steps directly from text without any human input.”” This
routine was able to identify differences between necessary
and optional subroutines and to correctly order the steps of
a reaction chronologically. It has also been shown that Long
Short Term Neural Network (LSTM) trained on synthesis lit-
erature could currently identify the most appropriate chemical
precursor for a synthesis routine.*® The development of an
automated pipeline to extract synthesis protocols for glasses
will be extremely useful for scientists and industry alike, and
thus, remains an open challenge.

3.17 | Challenge 17: image
repository of glasses

In addition to text, the majority of the knowledge in the lit-
erature is presented in the form of images. These images
may include graphs, microscopic images, XRDs, spectros-
copies, to name a few. The total number of images in lit-
erature databases on glasses number in the millions. Despite
the abundance of data, the glass community, as well as the
broader material science community, suffer from the ab-
sence of a curated image library. This has prevented the
development of robust computer vision applications to ac-
celerate the development and discovery of new glass com-
positions. For example, convolutional neural networks have
been shown to perform as well as human agents in correctly
identify the composition and phase from an XRD image.85
They have similarly been used to automate the identifica-
tion of vacancies and point defects in TEM imagf:s.86 Such
approaches can vastly improve the quality of glass research
by automating tedious and labor-intensive characterization
methods. However, both deep learning and machine learning
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algorithms require a sufficiently large training dataset of an-
notated images with positive and negative labels. Not only as
these image sets required for training the models, but they also
set the benchmark for future models—which is necessary for
the standardization of the field. However, we currently lack
a large image repository similar to the MNIST handwritten
images dataset or the IMAGENET—which has played a piv-
otal role in the development of CV models. Tools such as the
caption-cluster plot mentioned in Challenge 15 is very useful
in extracting and identifying the labels of an image. We need
packages such as the ImageDaLtaExtractor87 to extract and
quantify images from the literature. However, the currently
available tools are limited to optical microscopy or electron
microscopy images and do not extend to other characteriza-
tions and spectra. Building a searchable repository of labeled
images will allow easy access to the knowledge hidden in
images and buried deep in the literature.

Furthermore, images tell a detailed story of material for
those who know how to read it, and for those who do not
know how to read it, there is Al. Recent studies have shown
that the material properties such as ionic conductivity can
be directly predicted from the microstructure.®® Similar ap-
proaches have been used in other materials such as compos-
ites and polycrystalsgg’90 to extract the structure-property
correlations. Interestingly, a recent study has employed graph
neural networks to study the structure and dynamics of glass71
from the 3D images obtained from atomistic simulations.
These studies suggest that learning the information hidden
in images using computer vision and Al can provide deeper
insights into the structure—property relationship in materials.

3.18 | Challenge 18: automated high-
throughput glass synthesis

High-throughput glass synthesis is time-consuming and in-
volves a lot of manual labor. In addition, there might be human
errors (or rather, habits) associated with the synthesis that
makes it less consistent—that is, two different experimentalists
performing the same protocol might do it slightly differently.
Automating the glass synthesis process using robotics can sig-
nificantly reduce the design to discovery period for a new prod-
uct through high-throughput experiments at a much faster rate
and in a more economical fashion. These approaches are ex-
tremely complex involving robots, which can sense the physi-
cal environment based on partial visual, auditory and other
sensory cues, and make decisions instantaneously. It involves
the implementation of several concepts in tandem such as state
estimation, perception, unsupervised and reinforcement learn-
ing, optimization, and schf:duling.27’30 Such approaches have
already been implemented in a modular robotic platform to dis-
cover thin-film materials with optimized optical and electronic
properties’' and to synthesize and sinter ceramics in seconds’.

Such “self-driving laboratories” developed for glass synthesis
and characterization can be a disruptive change allowing for the
accelerated discovery of optimized glasses.

3.19 | Challenge 19: scheduling
problems and optimization during glass
manufacturing

In addition to being able to tackle the scientific questions, Al
can also be used to simplify the problems faced in glass in-
dustries. Glass factories always face the issue of scheduling
the tasks and optimizing the workflow of interdependent tasks
composed in a job. This scheduling is subject to a large num-
ber of constraints in terms of time, money, resources, and envi-
ronmental impact. A minor misjudgment in the scheduling can
lead to major financial losses for the company. To this extent,
Al can be used for automated scheduling of tasks in the indus-
try, which can take into account the dynamic changes in the
situations and respond intelligently using an on-the-fly optimi-
zation approach.”®?’ Furthermore, Al could be further used to
monitor and tune the manufacturing process parameters such
as furnace temperature, charging rate, etc. Dynamically opti-
mizing the temperature of furnaces in real-time could lead to
an enormous reduction in the cost and energy associated with
glass manufacturing. Such an approach can significantly re-
duce the human efforts associated with the scheduling and pro-
cess optimization while ensuring a reliable and faster solution.

3.20 | Challenge 20: automated detection of
flaws in a large-scale glass synthesis

It is important for glass industries, producing glasses on a large
scale, to detect flaws in their products. These flaws may range
from inhomogeneities and localized crystallization to microc-
racks and surface scratches. Visual identification of such flaws
are extremely challenging and relies on the ability of an ex-
pert. To address this challenge, smart computer vision-based Al
systems can be developed, allowing for automated detection of
flaws during the glass manufacturing process. Such Al-based
flaw detections have been used widely for engineering materi-
als.”® Once the Al system is sufficiently trained to detect the
flaws, they can potentially be used to optimize the processing
parameters so as to minimize the flaws. Overall, Al may be
used to optimize and improve the glass manufacturing process.

3.21 | Challenge 21: automated warning and
safety systems for glass industries

Maintenance and replacement of machinery and equipment
form one of the major expenses in industrial applications.
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While most of the industries focus on the diagnosis of dam-
age through nondestructive methods, damage prognosis is
disruptive as it can avoid disasters due to material or ma-
chinery failure. Furthermore, the prognosis allows the au-
thority to plan the maintenance or replacement schedule,
thereby leading to significant savings in terms of energy,
cost, and human resources. It is well known that workplace
accidents can have a significant impact on productivity
when measured in terms of the number of days lost. While
these accidents seem to be erratic with no structure or pat-
tern, it has been shown that ML approaches can indeed
predict these accidents reasonably. As part of Industry 4.0,
great emphasis has been placed on the Industrial Internet of
Things (IIoT) to provide intelligent solutions based on ma-
chine monitoring to improve workplace safety.”® Thus, the
development of automated warning and safety systems for
glass industries as part of IIoT can thus enhance workplace
safety while ensuring reduced expenses associated with the
maintenance of the machinery.

4 | CONCLUSIONS

Altogether, in this article, we discuss various avenues in
glass science, where Al and ML can bring about a disruptive
change. Specifically, we discuss 21 grand challenges related
to glass science, technology, and engineering that can bring
about drastic changes in the status quo. This list by no means
is complete or exhaustive—there are many more avenues for
the application of Al and ML in the field of glasses. We hope
that this article will instill enough enthusiasm in the readers
to explore those avenues. Finally, we believe that this article
will provide the impetus for beginners to explore the exciting
field of Al and ML for glass science and experts to provide
novel and innovative ideas to accelerate the field of glass sci-
ence through Al and ML.
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