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Enterprises are, thus, increasingly moving towards a geo-dis-
tributed edge-cloud infrastructure [25, 26, 38, 69] for perform-
ing such analytics as close to the user devices as possible. Each edge
server partially aggregates data streams from multiple user devices
and sends the partially aggregated data streams to the destination
DC for final aggregation leading to a reduction in the WAN traffic
from the edge to the destination DC. It is also possible to utilize
intermediate transit DCs [69] between the edge and destination
DCs to assist in aggregation, further reducing the traffic over WAN
links. As a concrete use-case, Akamai has a quarter-million CDN
edge servers deployed across the globe. Enterprises such as video
content providers use Akamai for streaming their video content
to their end-users. Akamai’s analytics services [2] allow content
providers to monitor Quality of Service (QoS) metrics such as video
quality and rebuffer rates in real-time to ensure the best quality of
experience for their end-users. This real-time monitoring can be
done by aggregating the QoS metrics arriving at the edge servers
and forwarding the aggregated information to the destination DCs.
The content provider often has a latency constraint (or delay bud-

get) within which any degradation in QoS should be fixed. This
latency constraint is taken into account while deciding the amount
of aggregation to be performed at the edge servers. Twitter offers a
similar service [64].

In this work, we focus on performing continuous aggregation
over data streams. Aggregation forms a prominent part of any data
analytics system [10, 30, 71]. Some popular examples are the Reduce
operation inMapReduce [16], GroupBy clause in SQL and LINQ [40]
etc. These operations are building blocks in many typical analytical
queries, used to gain insights from mounds of data as well as to
reduce the data volumes involved in analytics [19, 20, 25, 38, 52, 53].

We propose aggregation networks to efficiently perform con-
tinuous aggregation on the distributed edge-cloud infrastructure.
An aggregation network can perform aggregation at edges, transits,
and destination DCs (see Figure 1). The goal would be to reduce the
WAN traffic between the edges and destination DCs, while meeting
the delay requirements of streaming analytics applications.

Aggregation networks have heterogeneity acrossmultiple dimen-
sions which leads us to a rich set of novel research questions. There
is heterogeneity in bandwidth availability and compute resources
across these networks. A less-studied aspect is the heterogeneity in
the traffic cost from one region to another. For example, on AWS, it
is 4.5 times costlier to transfer data out of Singapore than Virginia
[5]. This cost heterogeneity leads to a tradeoff between traffic cost
and traffic wherein the traffic cost could be reduced even at the
expense of higher traffic. Further, different queries have different
QoS requirements in terms of acceptable delay. This variation in
QoS requirements leads to a tradeoff between delay and traffic
wherein aggregation for a longer period of time at the edge (higher
delay) can lead to lower WAN traffic and traffic cost. Additionally,
these networks are highly dynamic, where node failures, bandwidth
congestion, and WAN outages are common.

These dimensions lead to a number of interesting questions. How
do we construct efficient and cost-effective aggregation networks? How

to orchestrate data movement and routing on these networks while

ensuring that the resource constraints and QoS requirements are sat-

isfied? How to handle network and workload dynamism and failures?

Most importantly, while doing all this, how do we keep the traffic

cost low in these aggregation networks? In essence, aggregation
networks enable a rich tradeoff between delay, WAN traffic, and
cost, that we explore.
Our approach and key insights.We formulate an optimization
problem to explore these tradeoffs in a principled manner, and
derive several insights that can result in significant cost reduction
in aggregation networks. For instance, it is common to focus on
minimizing traffic ignoring the associated cost. But we find that
cost-agnostic traffic reduction can significantly inflate the traffic
cost. Additionally, although it is common in practice to route data
streams from the edges to their nearest DCs, we find that routing
the data streams to a common transit DC which may be further
away from the edges, can result in greater reduction of traffic and its
associated cost. At the same time, we show that simply selecting the
cheapest common transit for all the edges also does not necessarily
lead to minimum traffic cost. The optimal solution to the path

provisioning problem (i.e. which transit to select for each edge)
is non-trivial and depends on a variety of factors such as input
arrival rates at the edges, cost difference across various network
links, bandwidth availability, etc. The optimal solution may select
a combination of cheapest common transit for some edges and
nearest transits for the remaining edges. The other dimension of
an aggregation network is delay budgeting: how much aggregation
to perform at the edges vs. the transits. We show that performing
the entire aggregation at the first stage of aggregation, i.e. at the
edges, can be sub-optimal in comparison to splitting the amount
of aggregation between the edges and transit DCs. We use these
insights to design a practical, efficient and scalable heuristic that
can be deployed in a real-world network.

Systems Workload

Type

Cost

Aware

WANalytics [67], Iridium [54], Pixida [34],
Clarinet [66], Tetrium [29], Yugong [28]

Batch No

Kimchi [50] Batch Yes
JetStream [55], AWStream [73], ApproxIoT
[69], Sana [32]

Streaming No

AggNet (our contribution) Streaming Yes

Table 1: Geo-distributed Data Analytics Systems

Relation to Prior Work. Table 1 compares our proposed work
with the existing geo-distributed data analytics systems. To the best
of our knowledge, no existing work has looked at minimizing the
traffic cost in aggregation networks for real-time geo-distributed
streaming workloads. Much of the existing work in geo-distributed
analytics [28, 29, 34, 54, 66, 67] has focused on batch processing
workloads, with the main goal of reducing WAN traffic1. Existing
work on geo-distributed streaming analytics [25, 26, 32, 55, 69, 73]
has also primarily looked at reducing traffic from edge to the cloud
butwe argue in this work thatminimizing traffic does not always lead

to minimization of traffic cost. Kimchi [50] is a recent cost-aware geo-
distributed analytics system that only considers batch workloads,
and assumes that later stages do not contribute significantly to the
overall cost. This assumption may not work well for streaming
workloads, as we will show.
1Works such as Iridium [54] and Tetrium [29] discuss reducing the traffic cost but
assume a uniform cost across all network links, thus, essentially reducing the traffic.
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Research contributions. We study the problem of minimizing
the traffic cost across an aggregation network while satisfying the
resource constraints in the network as well as the delay sensitivity
of the aggregation queries. Our main contributions are:

• We identify the tradeoffs and opportunities for cost reduction
using an aggregation network comprising edge, transit and des-
tination DCs.
• We formulate a mixed-integer non-linear optimization problem
(MINLP) to minimize the traffic cost subject to a delay budget
and resource constraints.
• We propose a fast, near-optimal and scalable heuristic, based
on the insights from the optimization. This heuristic can be em-
ployed in a real system and can be used to minimize the traffic
cost at a fine-grained level in a dynamic environment where both
the resource availability and workloads are dynamic.
• We implement the proposed heuristic in AggNet, a prototype we
built on top of Apache Flink, a popular stream analytics system.
• We extensively evaluate our approach using a real geo-distributed
deployment on Amazon EC2 data centers as well as a WAN-
emulated local testbed. Our evaluation uses both synthetic and
real world traces from Akamai and Twitter. The proposed tech-
nique shows 47% to 83% reduction in traffic cost over existing
baselines without any compromise in timeliness.

2 BACKGROUND AND PRELIMINARIES

System Model. We consider a multi-tiered edge-cloud topology
[69] (as in Figure 1) consisting of:

• Edges. Edge servers are located nearest to the user devices. Each
user device sends its data to the nearest edge server. Each edge
server aggregates the data coming from multiple user devices
and forwards the aggregated data stream to one or more transits.
• Transits. Transit DCs aggregate data streams coming from the
edge servers and forward it to the destination DCs. Transit DCs
could either be full-fledged regional cloud DCs or micro-clouds.
• Destinations. These are full-fledged cloud DCs which are the
final destinations where all the data originating from the user
devices is aggregated, analyzed and consumed by the analyt-
ics end-users (e.g., for identifying trends or for taking business
critical decisions).

In this work, we consider a general setting where the results of a
query may be needed at multiple destination DCs and where each
destination DC may request data from all or a subset of edges based
on the requirements of the analytics consumers. This redundancy
may be needed to provide better reliability as well as lower latency
of access to consumers distributed across the globe.
Stream Processing Model. Stream processing systems can be
broadly classified into two categories based on their computational
model: the dataflow model [4, 12, 45] and the bulk-synchronous
parallel (BSP) model [13, 31, 72]. In this paper, we focus on the
dataflow model where data streams flow continuously from one or
more data sources into the system. Each record in the data stream is
processed and transformed by a set of stream operators. However,
our proposed techniques are not limited to the dataflow model, and
can be applied to the BSP model also without any change.
Data Aggregation. Aggregation is a widely-employed operation
within any analytics system [10, 30, 71]. Some prominent examples

include the Reduce operation in MapReduce [16], GroupBy in SQL
and LINQ [40] etc. Each record in the data stream is of the type (k,v):
key k and value v . For performing aggregation over a key-value
stream, all the records (k,vi ), 1 ≤ i ≤ m belonging to the same
key k are grouped into an aggregate record (k,v1 ⊕v2 ⊕ · · · ⊕vm ),
where v1,v2, · · · ,vm are the values received for key k up to timeT
and ⊕ is an application-defined associative binary operator. These
operators can range from simple operators such as sum ormax to
more sophisticated operators like transforms and sketches (such as
HyperLogLog), and user-defined functions. In this work, we focus
on continuous aggregation at the destination DCs where the newly
arrived data record (k,v) is immediately aggregated into its key k’s
aggregated value to provide the most updated aggregated result for
the key k2.

As an example, in the context of Akamai Download Analytics
service, the analyst may be interested in the number of bytes suc-
cessfully downloaded for each content provider in every location
(e.g. USA, Europe and Asia). In this case, the key would be a com-
bination of content provider id and geographic location and the
value would be the number of bytes successfully downloaded for
the content provider from that location. The SQL statement for
such an aggregation query would look like:

SELECT LOCATION, CP_ID, SUM(BYTES_SUCCESS)

FROM Host.US, Host.EU, Host.Asia

GROUP BY LOCATION, CP_ID

TTL-based Aggregation. In this work, we employ Time-to-Live
(TTL)-based aggregation [38]: a recently proposed aggregation
model that provides a theoretical basis for modeling data aggrega-
tion in streaming analytics. This model employs a TTL aggregator
(inspired by TTL caches) that assigns a TTL value to each key in
the data stream. It holds and aggregates records belonging to each
key for a time period equal to the key’s TTL, as follows. Whenever
a record (k,v) arrives at the TTL aggregator, if an aggregate for
the key k currently does not exist in the aggregator (cache miss),
the key k is inserted into the aggregator along with its value v
and a timer equal to the key’s TTL is set. Until the timer counts
down to zero, all the records arriving at the TTL aggregator for
key k are aggregated into the existing record (cache hit). Once the
timer expires, the aggregated record is flushed out and the key k is
removed from the aggregator.
Aggregation Network. An aggregation network comprises the
multi-tiered edge-cloud topology as mentioned above (See an ex-
ample network in Figure 1). Each edge, transit and destination in
the network has compute capacity which is utilized to deploy a
TTL-aggregator for aggregating the incoming data streams. This
network spans across a WAN environment and hence, there is mas-
sive heterogeneity in resource availability in WAN environments
such as WAN bandwidth. For instance, we measured the available
bandwidth between different AWS EC2 sites and found it to vary
between 20Mbps and 400Mbps. This variation is in line with the
findings from prior work [29, 32, 39]. More interestingly, the dol-
lar cost for WAN traffic also varies from one region to another. A
portion of this cost variation taken from AWS [5] and Azure [7] is

2This encompasses windowed grouped aggregation which aggregates records within
pre-defined time windows (window length could vary from minutes to hours to days).
In such a case, the current window will be continuously updated to reflect the most
updated aggregated result for any key.
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is to construct a network that minimizes the total traffic cost for

sending the data from the edges to all the destinations via transits

with a delay budget of K seconds9.

Item Notation

Set of edges E

Set of transits T

Set of destination D

Set of keys N

Indicator function I

Cost for sending a record from edge i to transit j csi j
Cost for sending a record from transit j to destination k c t

jk

Delay budget K

Fraction of delay budget allocated to each edge for key n βn
Arrival rate (in records/sec) of key n arriving at edge i λni
Available bandwidth (in records/sec) from edge i to transit j bsi j
Available bandwidth (in records/sec) from transit j to desti-
nation k

bt
jk

Binary variable for selecting transit j for sending key n from
edge i to destination k

pn
i jk

Outgoing data rate for key n from edge i to transit j µni j
Outgoing data rate for key n from transit j to destination k yn

jk

Table 5: Notation used in the optimization formulation.

min

∑

n

COST (βn ) (3)

s.t., COST (βn ) =
∑

j

∑

i

csi j µ
n
i j +

∑

k

∑

j

ct
jk
yn
jk

∀n ∈ N (4)

∑

j

pn
i jk
= 1 ∀i ∈ E,k ∈ D,n ∈ N (5)

µni j = I(
∑
k p

n
i jk

>0)

λni
1 + λni βnK

∀i ∈ E, j ∈ T ,n ∈ N (6)

yn
jk
=

∑
i p

n
i jk

µni j

1 +
∑
i p

n
i jk

µni j (1 − βn )K
∀j ∈ T ,k ∈ D,n ∈ N (7)

∑

n

µni j ≤ bsi j ∀i ∈ E, j ∈ T (8)

∑

n

yn
jk
≤ bt

jk
∀j ∈ T ,k ∈ D (9)

pn
i jk
∈ {0, 1} ∀i ∈ E, j ∈ T ,k ∈ D,n ∈ N (10)

0 ≤ βn ≤ 1 ∀n ∈ N (11)

We formulate our optimization in the following manner. The
notation used in the formulation is described in Table 5. csi j , c

t
jk
,K ,

and λni are inputs to the problem. pn
i jk

is a binary variable that

indicates the path taken by key n from the edges to destinations
via the transits, solving the path provisioning sub-problem, while
βn decides how to split the delay budget for key n among the edges
and transits, solving the delay budgeting sub-problem.

9For simplicity, we assume end-results to be replicated across all the destinations,
though in practice, replication would be done across a subset, and the ideas explored
here will still apply.

The optimization formulation above is amixed integer non-linear
program (MINLP) with a linear objective function and non-linear
constraints. The objective function (Equation 3) sums over the
traffic cost (COST (βn )) of each key n. As shown in Equation 4,
COST (βn ) has two components: the first term denotes the edge-
transit traffic cost for key n over all the edge-transit links (i, j) while
the second term denotes the transit-destination traffic cost of key
n over all the transit-destination links (j,k). Constraint 5 ensures
that there is only one transit selected for each edge-destination
pair for each key. Constraint 6 computes the outgoing data rate for
each key on each edge-transit link. It uses an indicator function I

to decide whether a key should be sent from an edge to a transit.
Constraint 7 computes the outgoing data rate for each key on
each transit-destination link. Constraints 6 and 7 are derived using
Equation 2. Both these constraints are non-linear because of the
non-linear relationship between the amount of data reduction, the
incoming data rate and the aggregation delay (TTL). Constraints
8 and 9 ensure satisfying the bandwidth constraint on every edge-
transit and transit-destination link respectively.

Figure 5: Growth of solution time for the optimization

model with network size. The optimization model is imprac-

tical and unscalable for a real system deployment.

4.1.1 Computational Efficiency of Optimization. The optimization
model can be understood to jointly solve for two sets of variables:
the path provisioning variables pn

i jk
and the delay budgeting vari-

able βn . Note that the path provisioning and delay budgeting vari-
ables are affected by each other and cannot be solved independently.
The resulting joint optimization involves solving an MINLP and is
hence inefficient. Figure 5 shows how the time required to solve
the optimization grows with the network size. For a realistic aggre-
gation network of 8 edges, 5 transits, and 3 destinations, it takes
more than 45 minutes to find the optimal solution for one key. For
another aggregation network of 19 edges, 11 transits and 3 desti-
nations, the optimization did not find the optimal solution even
after running for 10 hours. A real streaming workload may have
hundreds and thousands of keys with different arrival rates and
different origins (i.e. different keys will have different arrival rates
at different edges). Furthermore, the arrival rates may vary with
time [21, 59] as well as the resource availability such as network
bandwidth may vary significantly across time (every few mins) in
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a WAN environment [55, 68, 73]. Hence, it is desirable to solve the
path provisioning and delay budgeting problem frequently (every
few mins) on a per-key level rather than on the aggregate level, in
order to find accurate optimal solution. Therefore, to be able to do
this in practice, we turn to more efficient heuristics based on the
insights provided by the optimization results.

4.2 iCAPP: A Practical Heuristic Approach

We generated the optimization results for real traces using a real
testbed (the traces and testbed are described in more detail in §6)
and the results confirm the tradeoffs discussed in §3. We use the
results of the optimization to extract the following insights that we
use in formulating our heuristic.

• Cheaper transits are preferred over costlier transits for cost re-
duction.
• A common transit for multiple edges helps in reducing the transit-
destination cost while a co-located transit for an edge helps in
reducing the edge-transit cost. The optimal solution may select a
combination of common transit for some edges and co-located
transits for the remaining edges to minimize the total traffic cost.
• Allocating the entire delay budget to (performing full aggrega-
tion at) either the edge or transit may be sub-optimal, and the
minimum cost is achieved at some value 0 ≤ βn ≤ 1 of the delay
budget distribution between edge and transit for a given key n.

In summary, the exact set of transits selected by the optimization
model along with the exact delay budget split between edge and
transit is dependent on a variety of factors such as input arrival
rates, presence of co-located transits, cost difference across various
edge-transit and transit-destination links, and available resources
such as bandwidth availability.

In addition to the insights provided by the optimization results,
we also observe that the traffic costs used in practice by major cloud
providers such as AWS [5], Azure[7] and Google Cloud [23] are
origin-based. That is, the cost of sending the data from an origin to
any destination is the same. This can also be seen in Table 2. We use
this observation along with the insights given by the optimization
results to propose a heuristic that we call Iterative Cost-Aware

Path Provisioning (iCAPP).
Instead of jointly finding the optimal solution to delay budgeting

(βn ) and path provisioning (pn
i jk

), our proposed heuristic takes an

iterative approach to reduce the solution space (See Heuristic 1 for
the pseudocode). For a given value of βn , the heuristic solves the
path provisioning problem in the following manner:

(1) For each transit, compute the sum of the unit traffic costs from
this transit to all the destinations.

(2) Sort the transits in the increasing order of the sum computed in
Step 1. If there is a tie between two ormore transits, then sort the
tied transits in the decreasing order of the total incoming arrival
rate at each transit’s co-located edges. Repeat the following until
no edge is left unassigned to any transit.

(a) Select the next transit (i.e. the cheapest) from the sorted list of
transits. Assign this transit as the common transit for as many
unassigned edges as feasible given the transit’s bandwidth
constraints.

(3) For each edge with a co-located(local) transit, check if assigning
the co-located transit will reduce the total cost compared to

using the common transit for that edge. If yes, then assign the
edge to its co-located transit.

Using the above path provisioning process, the heuristic determines
the traffic cost COST (βn ), for a given fixed value of βn . Now it
iteratively finds the best value of βn using a hill-climbing algorithm
[57]. Specifically, it starts by initializing βn = β0, where β0 can
be any value between 0 and 1. In each iteration, it increments (or
decrements) the value of βn by step size γ , if doing so decreases the
cost. At any iteration, if the cost cannot be decreased any further by
moving to βn +γ or βn −γ , a minimum is reached and the heuristic
stops.

Heuristic 1: Iterative Cost-Aware Path Provisioning
(iCAPP)

Result: Path variables pn
i jk

and delay budget split βn
∀i ∈ E, j ∈ T , k ∈ D, n ∈ N

foreach key n ∈ N do
βn ← β0
∆COST = ∞

while ∆COST > 0 do
Tsor ted ← sor t_by_cost (T )
Eunallocated ← E

while Eunallocated , ϕ do
e ← Eunallocated [0]

t ← Tsor ted [0]

if t has available bandwidth then
Route e through t
Eunallocated ← Eunallocated − e

else
Tsor ted ← Tsor ted − t

for e ∈ E do
if e has local transit tlocal & tlocal reduces

COST (βn ) then
Route e through tlocal

βprev = βn

if COST (βn + γ ) < COST (βn − γ ) then
βn = βn + γ

else
βn = βn − γ

∆COST = COST (βprev ) −COST (βn )

Note that we compute this heuristic on a per-key level i.e. for
each key, we select the βn and set of transits. This heuristic is very
efficient and can be practically employed in dynamic environments
where the transit selection and βn may need to be re-computed
based on changes in workloads and resource availability (§6.7).
Convergence of iCAPP. The hill-climbing algorithm in iCAPP
can theoretically get stuck in a local minimum which may not be a
global minimum.We use hill-climbing with random restarts (restart-
ing R times randomly selecting an initial βn ) which is considered to
give a reasonably good solution after a small number of iterations
[57](§6.7).

5 IMPLEMENTATION

We implement the proposed heuristic in a system we call AggNet,
on top of Apache Flink [12], a popular stream processing engine.
Apache Flink uses dataflow model [4] for its computations (§2). Ag-
gNet (See Figure 6) has a global manager which runs in one site and
interacts with the site managers running at each aggregation site for
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fetching the most up-to-date arrival rates and resource availability.
A Flink cluster runs at each edge, transit and destination. Each edge

Figure 6: AggNet Architecture

and transit perform aggregation using the TTLAggregation oper-
ator [38]. The global manager also comprises an optimizer module
for computing the path provisioning matrix and delay budget split
(β) for each key.
Arrival Rate Tracking. Each edge has an arrival rate tracker
which continuously tracks the arrival rates of incoming keys. This
information is shared with the global arrival rate tracker running

at the global manager (❶).
Bandwidth Monitoring. Each edge and transit has a bandwidth
monitor for measuring the available bandwidth at its site, period-
ically (every few minutes) as in [54] and shares this information
with the global bandwidth monitor running at the global manager

(❷).
Optimizer. The global manager has an optimizer module which
periodically receives the arrival rate and bandwidth availability in-
formation from the global arrival rate tracker and global bandwidth
monitor. It then computes the path provisioning matrix and delay
budget split β for each key and shares them with each site manager

for performing aggregation in the desired manner (❸). We use
the mlrose [24] library to implement the hill-climbing algorithm in
iCAPP.
Adaptation to dynamic workloads. Since the arrival rates for
each key will vary depending on various factors such as time of the
day, occurrence of any special event etc., AggNet recomputes the
path provisioning matrix and delay budget split for a key if its ar-
rival rate changes beyond a threshold (△λ ). Sometimes, the changes
in arrival rates can be transient and hence, AggNet adapts at two
different time scales: first, it only recomputes the delay budget split
for a key since changes in delay budget split does not require any
changes to the path of the aggregated data streams and can be
easily done at each site. Second, if the changes in arrival rates are

Edges Virginia, Oregon, Ireland, Tokyo, Seoul, Mumbai, Syd-
ney, Sao Paulo

Transits Virginia, Ireland, Tokyo, Sydney, Sao Paulo
Destinations California, Frankfurt, Singapore

Table 6: Aggregation network used for evaluation.

Origin Virginia,

Oregon,

Ireland

Tokyo Seoul Mumbai Sydney Sao

Paulo

Cost (in

$ per

GB)

0.02 0.09 0.08 0.086 0.14 0.16

Table 7: Cost of data transfer in AWS (origin-based).

persistent (for a period △p ), it recomputes the path provisioning
matrix for each key. If the estimated traffic cost using new path pro-
visioning matrix is lower than that of the current path provisioning
matrix by a threshold (△c ), the new path provisioning matrix are
communicated to each site manager.
Adaption to variability in bandwidth availability. In scenar-
ios where the available bandwidth to and from a transit changes
beyond a certain threshold (△b ), the optimizer recomputes the path
provisioning matrix and delay budget splits for all the keys and
communicates them to each site manager.
Fault tolerance. Each aggregation site uses the default fault toler-
ance mechanism provided by Flink wherein it periodically check-
points its processing state. This allows it to restore its execution
from the last checkpointed state upon recovering from failures.
Flink provides exactly-once consistency guarantees for stateful
computations [11].

6 EVALUATION

6.1 Experimental Setup

We evaluate AggNet using a network (Table 6) consisting of 8
edges, 5 transits, and 3 destinations, based on AWS site locations. As
mentioned in §5, a Flink cluster runs on each of the edge, transit and
destination sites. We run a data streamer locally on each edge site
to generate raw input data streams which are sent to the respective
edge clusters.

Each edge site continuously ingests the incoming data stream
from its local data streamer, performs aggregation using the TTLAg-
gregation operator and then forwards the (partially) aggregated
data to the transits as decided by the optimizer. Each transit receives
the individual streams from the edges, performs aggregation using
the TTLAggregation operator and then forwards the aggregated
data to the destinations as decided by the optimizer. Each destina-
tion receives individual streams from the transits, performs a final
aggregation and then saves the final results into a database.

We demonstrate the effectiveness and practicality of the pro-
posed approach through a real deployment of AggNet on two
testbeds.
AWSEC2 Testbed.We use 11AWS EC2 geographically distributed
sites [5] for our experiments. At each site, we use one t2.xlarge
instance type. The edge, transit and destination sites are chosen
based on the aggregation network mentioned above. The available
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WAN bandwidth data between any two EC2 sites follows similar
trend as in [39].
Emulated Testbed. We also run our experiments on a local 11-
node testbed which emulates the WAN bandwidth characteristics
measured across the AWS EC2 sites. Each site is allocated one node
for running the Flink job. Each node is a 6-core Intel(R) Xeon CPU
E5-2620 v3@ 2.40GHz. All nodes are connected by a 1Gbps ethernet.
We emulate WAN characteristics using Linux tc utility [41].
Experiments in §6.3 use AWS testbed while other experiments use
the emulated testbed.
Cost Structure. We consider the dollar costs for traffic from AWS
[5] as shown in Table 7.
Evaluation Metrics. As explained in §2, we measure and compare
the traffic and traffic cost for different approaches. We ensure that
delay budget is satisfied in all the experiments.

6.2 Datasets and Queries

We use real as well as synthetic datasets to evaluate our proposed
approach. For real datasets, we use a trace consisting of anonymized
beacon logs from Akamai’s download analytics service, and the
real tweet data from Twitter. For synthetic datasets, we generate
records for a group of keys where the arrivals for each key follow
Poisson distribution.

Twitter Trace.Weuse the Twitter StreamingAPIs [65] to collect
real tweet data from Twitter for three days during the month of
December 2015. It consists of approximately 12 million tweets.
Each tweet in the trace contains information such as name, gender,
age, location of the user along with actual tweet contents. We
show results for the popular word count query which computes the
frequency of each word appearing in tweets. Similar conclusions
hold for other queries such as the trending topics query which
computes the frequency of tweets grouped by topic but omitted
due to space constraints.

Akamai Trace. We use a month-long trace from Akamai’s
download analytics service [1]. Content providers consume this ser-
vice for collecting information such as the popularity of a particular
content, the download performance experienced by the end users,
the type of devices used for downloading, the number of successful
complete downloads, and so on. The trace contains anonymized
information about the content provider, user’s geography and IP
address, download start time, url, content size, number of bytes
downloaded, server’s geography. Traffic sizes, time durations etc,

are normalized for ensuring confidentiality in our experiments.We
consider the query which computes the total number of bytes down-
loaded grouped by content provider id and last mile bandwidth.

Synthetic Traces.We also generate synthetic traces assuming
Poisson arrivals for each key. We vary the arrival rates for keys
from 0.05 to 10 records per second. Relevant details are provided
with the experiments where these traces are used.

Wherever applicable, we distribute the data records across the
edge sites based on their geographic location associated with the
record (or tweet).

6.3 Baseline System Comparison

We consider one set of baseline heuristics for path provisioning
and another set for delay budgeting. We then combine each path

provisioning baseline with each delay budgeting baseline for com-
parison with our proposed heuristic iCAPP. For path provisioning,
we consider the following baselines:

• Nearest transit selection (NTS) selects the nearest transit for
each edge based on edge-transit latency. If the nearest transit
is unable to serve its edge due to resource constraints, the next
nearest transit is selected for that edge.
• Common Transit Selection (CTS) selects a common transit
(at random) for all the edges. If no transit is able to serve all the
edges due to resource constraints, then we allocate as many edges
to it as feasible based on its resource constraints, and iteratively
pick another common transit for the remaining edges.
• CheapestCommonTransit Selection (CCTS) selects the cheap-
est common transit for all the edges. Resource constraints are
met as in CTS, except transits are picked in increasing order of
their cost.

For delay budgeting, we consider:

• Entire Aggregation at Edge (EAE) allocates the entire delay
budget to each edge, resulting in no aggregation at the transits
(β = 1).
• Entire Aggregation at Transit (EAT) allocates the entire delay
budget to each transit, resulting in no aggregation at the edges
(β = 0).
• Partial Aggregation at Edge (PAE) allocates β portion of delay
budget to each edge and the remaining (1 − β) to each transit.
We set β = 0.5 for this baseline.

Relation to existing state-of-the-art. In the above set of heuris-
tics, NTS-EAE and CTS-EAE represent state-of-the-art on geo-
distributed streaming analytics which includes JetStream [55], AW-
Stream [73] and ApproxIoT [69]. These works are cost-agnostic
and send the data stream from the edge to its nearby transit or to a
common DC from where the results are sent to other DCs wherever
they are needed. Moreover, they try to do maximum aggregation
at the first level i.e. the edges. Note that the CCTS-PAE heuristic is

not derived from prior work but is based on our insights presented in

ğ3 that cheap, common transits and distribution of the delay budget

between edge and transit may assist in reducing the traffic cost in an

aggregation network.

Parameter settings for iCAPP. iCAPP always utilizes the optimal
β computed using Heuristic 1 discussed in §4.2. We set number of
random restarts R = 0 and step size γ = 0.05 for the hill-climbing
algorithm in iCAPP (See §6.7 for details).
Wherever applicable, we show results as an average of 5 runs,
plotted with 95% confidence intervals.
Twitter Trace. We use delay budget equal to 30 seconds for this
trace. Figures 7 (a) and 7 (b) shows the overall comparison of various
aggregation approaches for the Twitter trace. We can see that iCAPP
results in 72% to 83% reduction in traffic cost as compared to CTS
while 47% - 53% reduction in traffic cost as compared to NTS. This
is because both CTS and NTS are cost-agnostic and hence, end up
selecting costlier transits such as Sao Paulo, resulting in higher
traffic cost. On the other hand, we note that iCAPP results in 23%
to 42% reduction in traffic cost as compared to CCTS. This is due
to the fact that while CCTS and iCAPP both select the cheapest
common transit (Virginia), iCAPP further optimizes the traffic cost
by selecting a more accurate delay budget split β . In terms of traffic
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also, iCAPP results in 13% to 48% reduction as compared to other
approaches. Across all approaches, iCAPP simultaneously results in

the minimum traffic cost as well as the minimum traffic since it

attempts to jointly perform transit provisioning as well as finding the

best β for distributing the delay budget between edge and transit.

(a) Twitter - Traffic Cost (b) Twitter - Traffic

(c) Akamai - Traffic Cost (d) Akamai - Traffic

Figure 7: Baseline comparison for Twitter and Akamai Traces.

Lower is better. Normalized by NTS-EAE for respective traces.

Across all aggregation approaches, iCAPP simultaneously leads

to least traffic cost and least traffic.

Akamai Trace.We use delay budget equal to 10 seconds for this
trace. Figures 7 (c) and 7 (d) shows the overall comparison of various
aggregation approaches for the Akamai trace. Similar to the results
for Twitter trace, we can see that iCAPP results in 50% to 81%
reduction in traffic cost as compared to CTS andNTS. In comparison
to CCTS, iCAPP results in 20% to 69% reduction in traffic cost. iCAPP
also results in 10% to 56% reduction in traffic as compared to other
approaches. Across all approaches, iCAPP simultaneously leads to

least traffic cost and least traffic. The reasons for reduction in traffic
cost and traffic are same as in Twitter trace.
Comparison with Optimization Model. Since the optimization
model proposed in §4 is impractical and not scalable for use in a
real system, we use the optimization model to solve path provi-
sioning and delay budgeting problems on an aggregate level, i.e.,
considering the entire data stream as one key (using the average
arrival rate of the stream).

For appropriate comparison, we do the same for the iCAPP heuris-
tic. Figure 8 show the traffic cost and traffic incurred by the iCAPP
heuristic (normalized with respect to the corresponding metric for
optimization model) for both Akamai and Twitter trace for three
aggregation networks. It can be seen that the iCAPP heuristic incurs
traffic cost and traffic within 1% of that incurred by the optimization
model across all networks for both traces. This shows that the iCAPP
heuristic can achieve near-optimal performance.

(a) Traffic Cost (b) Traffic

Figure 8: Traffic cost and traffic incurred by iCAPP (normalized

by the corresponding metric incurred by optimization model)

for Akamai and Twitter traces for different aggregation net-

works. iCAPP is able to achieve near-optimal performance in all

scenarios.

6.4 Impact of β and Transit Selection

Taking the same aggregation network as in §6.3 and using Twitter
trace, we analyze the following:

(a) Traffic Cost (b) Traffic

Figure 9: Variation of Traffic cost and Traffic with β .

Impact of delay budget distribution β on traffic cost. In this
experiment, we analyze the variation in traffic cost for one of the
keys for different values of β between 0 and 1 as shown in Figure
9. For each β , we compute the best solution for path provisioning
using iCAPP. The minima for the traffic cost and traffic are achieved
at β = 0.75 and β = 0.5 respectively. This again reinforces the fact
that minimizing traffic does not necessarily lead to minimization of

traffic cost. Moreover, the traffic cost at β = 0.75 is 14% and 40%
lower than that at β = 1 and β = 0 respectively. Similarly, the
traffic at β = 0.5 is 38% and 25% lower than that at β = 1 and
β = 0 respectively. This shows that the minima for both traffic and
traffic cost are achieved by distributing the delay budget between
edge and transit rather than always allocating it entirely to edge or
transit. Similar conclusions hold true for other keys in the Twitter
trace but omitted due to space constraints.
Impact of transit selection on traffic cost. In this experiment,
we analyze the variation in traffic cost for one of the keys for
different transit selection scenarios as shown in Figure 10. For
each transit selection scenario, we use the optimal β computed
using iCAPP. It can be seen that the scenario where the cheapest
common transit (Virginia (VA) or Ireland (IR)) is selected gives the
lowest traffic cost as compared to other scenarios which include
selecting any of the costlier transits as the common transit, selecting
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Figure 10: Traffic cost variation with transit selection. Low-

est traffic cost is achieved by selecting the cheapest common

transit (VA or IR).

a common transit for a few edges and co-located transits for the
other edges, or selecting the nearest/co-located transit for every
edge. Similar conclusions hold true for other keys in the Twitter
trace but omitted due to space constraints.

6.5 Variation of optimal β

Using the synthetic trace (§6.2) and iCAPP for computing the opti-
mal β , we analyze the following:
Variation of optimal β with the number of edges. In this ex-
periment, we consider an aggregation network consisting of one
transit and 3 destinations. The number of edges are varied from
1 to 30. Figure 11a analyzes the variation of optimal β with the
number of edges for different arrival rates. When there is just one
edge, optimal β = 1 (full aggregation at the edge) since there is
no gain achieved by aggregating the data stream at the transit. As
we increase the number of edges, initially, the optimal β decreases
because the reduction in transit-destination cost due to partial ag-
gregation at the transit outweighs the increase in edge-transit cost.
After a certain number of edges, the optimal β goes on increasing
because now even though it is beneficial to partially aggregate the
data streams at the transit, the increase in edge-transit cost becomes
dominant. Also, note that the optimal β is never equal to 1 except
when the number of edges is just 1.

(a) Varying #edges (b) Varying #destinations

Figure 11: Variation of Optimal β with the number of edges

and destinations. Optimal β first decreases and then increases

with the increase in the number of edges while it continuously

decreases with the increase in the number of destinations.

Variation of optimal β with the number of destinations. In
this experiment, we consider an aggregation network consisting
of one transit and 10 edges. The number of destinations are varied
from 1 to 30. Figure 11b shows the variation of optimal β with the
number of destinations for different arrival rates. As the number
of destinations increases, the optimal value of β decreases. This is
because the transit-destination cost becomes dominant with the
increasing number of destinations. Thus, pushing more aggregation
at the transit helps reduce the total cost. Note that the optimal β is
never equal to 1.

(a) Varying input arrival rate. (b) Varying delay budget.

Figure 12: Optimal β versus arrival rate and delay budget. Opti-

mal β increases with increase in arrival rate and delay budget.

Variation of optimal β with the input arrival rate. Figure 12a
shows the variation of optimal β with increase in arrival rate for
an aggregation network comprising 8 edges, 1 transit and 3 des-
tinations. The optimal β is low for low arrival rates because the
edge-transit cost is going to be low for such data streams and hence,
it is beneficial to perform more aggregation at the transit. As the
arrival rate increases, the optimal β goes on increasing so as to
reduce the edge-transit cost, thereby, reducing the total traffic cost.
Variation of optimal β with the delay budget. Figure 12b shows
the variation of optimal β with increase in delay budget for an ag-
gregation network comprising 8 edges, 1 transit and 3 destinations.
For a fixed arrival rate at the edge, as the delay budget increases,
optimal β also increases. This is because a higher delay budget gives
more opportunity for aggregation at the edge (incurring higher
delay), but this opportunity has diminishing returns beyond a point.

6.6 Adaptation to dynamism

Since dynamics in both workload and resource availability are
common in WAN environments, we now analyze how well AggNet
performs in the face of such dynamics by emulating variable stream
arrival rates and a link failure. We consider an AggNet deployed
over 8 edges, 2 transits and 3 destinations. All the edge-transit
and transit-destination links have equal unit cost except the links
from Transit-2 to all destinations which are 4 times costlier than
other links, so that all edges are assigned to Transit-1 by the iCAPP
heuristic. We set the adaptation parameters mentioned in §5 as:
△λ= 10%, △p= 10 mins, △c= 1%, △b= 10%.

Figure 13 shows the performance of AggNet in a dynamic envi-
ronment for a synthetic trace which has varying arrival rates. As
shown in the top subfigure, the arrival rate is initially low but as
time progresses, the arrival rate increases until a point after which
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Figure 13: AggNet in a dynamic environment.The adaptive

iCAPP heuristic is fast enough to adapt with the changes in

arrival rates and resource availability.

it again starts decreasing. The duration of continuously changing
arrival rates are marked by region R1 in the figure. In region R2,
we emulate a link failure (the link between Edge-7 and Transit-1).
We consider two strategies using the iCAPP heuristic: (1) adaptive,
which periodically recomputes the transit selection and optimal β
by considering the recent arrival rate information gathered from
all the edges and the bandwidth availability on all the links, and (2)
static which computes the transit selection and optimal β only once
at the beginning assuming the arrival rate and bandwidth avail-
ability remains constant. The second, third, and fourth subfigures
in Figure 13 show the optimal β values, the normalized cost, and
the fraction of records aggregated by each strategy in the presence
of these variations. It can be seen that in region R1, the static ap-
proach continuously sets a lower β as compared to the adaptive
approach and thus, incurs up to 40% higher traffic cost as compared
to the adaptive approach. We note that the adaptive heuristic is fast
enough to adapt quickly with the changing arrival rates. Further, in
region R2, when Edge-7 is not able to send traffic to Transit-1, the
adaptive strategy identifies such a bottleneck and shifts the Edge-7
to the second option, Transit-2. This results in a higher traffic cost
due to the loss of the cheapest transit for Edge-7, but there is only a
short period of data loss/backup. The static approach, on the other
hand, is not able to shift Edge-7 to Transit-2 since it is not aware

Figure 14: Average solution time (per key) for iCAPP de-

creases with increasing γ and increases with increasing R.

For γ = 0.05 and R = 0, iCAPP’s computational overhead is

modest (below 100 ms) while its solution is within 1% of the

optimal solution.

of the changes in the bandwidth availability. As a result, the static
approach leads to loss of data from Edge-7 during the period R2.

These results show that adaptive iCAPP can efficiently adapt to

changes in workload and resource availability.

6.7 Convergence and Computational Overhead
of iCAPP

The hill-climbing algorithm in iCAPP has two important parame-
ters: step size γ and number of random restarts R. In order to select
the γ and R for our experiments, we take the following approach.
We vary R from 0 to 5 and for each R, we vary γ from 0.0025 to 0.05.
Then, for each pair of (R,γ ), we use iCAPP to solve the path provi-
sioning and delay budgeting problem for both Twitter and Akamai
traces on an aggregate level (as we did in §6.3 for comparison with
the optimization model). We find that the traffic costs computed by
iCAPP for all the (R,γ ) pairs are within 1% of the optimal traffic
cost computed by the optimization model10 (similar to our finding
in §6.3). We conclude that although the hill climbing algorithm used

by iCAPP can theoretically get stuck in a local minimum and does not

guarantee a global minimum, it is able to converge to a near-optimal

solution in our experiments over real datasets. We demonstrate the
tradeoff between the solution time and the choice of parameters in
Figure 14, using the Twitter dataset as an example. We find that as
we increaseγ from 0.0025 to 0.05 while keeping R fixed, the solution
time continuously decreases. We do the same for each R from 0 to 5,
and we find that the solution time increases as R is increased, while
keeping γ constant. For R = 0 and γ = 0.05, iCAPP computes the
final solution for every key in less than 100 milliseconds on average
and hence, iCAPP’s computational overhead is modest. This makes

iCAPP practical for real system deployments.

7 RELATED WORK

StreamProcessing Systems.Due to increasing demand for stream
processing systems, a number of distributed stream processing sys-
tems [3, 12, 36, 37, 48, 72] have been developed in the last few years,
providing low latency and high throughput. They are primarily
meant for intra-data center environment where the bandwidth is
not constrained. Our work focuses on geo-distributed environment
where the WAN bandwidth is both scarce and expensive. We utilize

10For very large step sizes (γ > 0.05), iCAPP’s deviation from the optimal solution
starts increasing and hence, we restrict the γ to 0.05.
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Apache Flink, one of these stream processing systems, for efficiently
processing the data streams at each edge, transit and destination.
Geo-distributed Data Analytics (GDA). A major portion of the
prior work on GDA has proposed techniques for efficiently process-
ing batch workloads in geo-distributed environments. Yugong [28],
Pixida [34], Iridium [54], Tetrium [29], Clarinet [66], WANalytics
[67] focus on reducing WAN bandwidth consumption while also
minimizing query execution time in the context of batch analytics.
Kimchi [50] is a recent cost-aware GDA system which explores the
traffic cost-performance trade off but is only applicable for batch
workloads. Kimchi proposes a stage-by-stage optimization and as-
sumes that later stages do not contribute significantly to the total
cost. But as we show in this work, this assumption does not hold
true in case of streaming workloads.

For wide-area streaming workloads, JetStream [55], AWStream
[73], and ApproxIoT [69] trade off accuracy with bandwidth con-
sumption. These works are cost-agnostic and hence, can signifi-
cantly inflate the bandwidth usage cost as we show in this work.
Furthermore, these works assume that it is generally beneficial
to route the data streams from the edges to its nearest DC or a
common DC but we show in this work that this may not be the
best choice. Finally, these works assume that it is always benefi-
cial to perform maximum aggregation at the first stage i.e. at the
edges. Our work shows that performing a portion of the aggrega-
tion at the later stage (i.e. transit) can be more beneficial. Sana [32]
focuses on multi-query optimization for streaming analytics in a
wide-area environment so as to minimize WAN consumption and
is also cost-agnostic. Moreover, techniques such as quality degrada-
tion, sampling and multi-query optimization proposed by some of
the above mentioned works compliment our proposed techniques.
Aggregation. Aggregation forms a prominent component of data
analytics. Existing work has looked at aggregation from diverse
perspectives. CoopStore [19] propose techniques for minimizing
error in approximate aggregation queries subject to memory con-
straints, while Gan et al. [20] uses statistical moments to speed up
approximate aggregation queries. GRETA [52] and COGRA [53] pro-
pose algorithmic improvements to optimize real-time event trend
aggregation. FiBA [61] proposes usage of finger trees for sliding
window aggregation over out-of-order data streams. LIGHTSABER
[62] presents a streaming engine for exploiting both parallelism
and incremental processing for efficient window aggregation on
multi-core processors. All of the above mentioned works optimize
different metrics such as error, memory usage, query execution
time etc. within a single centralized data center environment where
WAN bandwidth is not a constraint. On the contrary, our work
focuses on minimizing traffic cost in a geo-distributed environment
with constrained and expensive WAN bandwidth.

Kumar et al. [38] propose a TTL-based aggregation mechanism
for geo-distributed streaming analytics. It provides a theoretical
basis for relating delay with WAN traffic which we use a foun-
dational building block in our problem formulation. Heintz et al.
[25, 26] study tradeoffs between delay, traffic and accuracy in the
context of windowed grouped aggregation for geo-distributed envi-
ronment. These works consider a simple hub-and-spoke model for
aggregation and are cost-agnostic whereas we propose aggregation
networks which perform aggregation over a general multi-tiered
edge-cloud topology in a cost-aware manner. Aggregation has also

been studied in sensor networks [56] which focuses on energy effi-
cient data aggregation to enhance network lifetime while we focus
on a different delay-traffic cost tradeoff in a WAN environment.
QueryOptimization.Query optimization is a widely studied topic
in relational databases [8, 9, 14, 43, 44, 58]. The relevant literature
covers techniques for optimizing general relational queries with
the main goal of minimizing the query execution time for databases
in intra-data center environments where network bandwidth is
homogeneous and sufficient. On the contrary, our work specifically
focuses on optimizing the aggregation-based operators with the
goal of minimizing the traffic cost in a geo-distributed streaming
environment where WAN bandwidth is scarce and expensive.
Relationship to Network Flow. While on the surface our prob-
lem may appear similar to network flow [18, 22, 33], transshipment
[27], and other related problems [15, 74], our problem is very differ-
ent from these problems. The main reason is that flow conservation
does not hold in our problem, while flow conservation holds and
is key to solving network flow and other related problems. In our
problem, the amount of outgoing traffic flow is smaller than the
incoming traffic flow due to data aggregation. Further, the reduction
in flow is non-linear and is a function of several variables like the
arrival rate of keys, duration of aggregation, etc. This makes our
problem very different from the prior work.
Relationship toContentDeliveryNetworks (CDNs).Ourwork
on aggregation networks is different from the existing work on
CDNs [17, 42, 49]. CDNs route data (i.e., web and video content)
from the cloud where the data originates to user devices via edges
and transits. Aggregation networks have exactly the opposite flow
of data: from user devices to the cloud via edges and transits. Further,
unlike CDNs, aggregation networks provide a non-linear reduction
in the traffic flow from edge to the cloud. However, the real-time
live video streaming architecture of a CDN is often also a multi-
tiered network [6, 35, 42, 60] of "entry pointsž where stream enters
the network and "reflectorsž that play the role of transit nodes to
relay the stream to the edges that in turn serve user devices.

8 CONCLUSION

We studied aggregation networks for streaming workloads in the
context of traffic cost minimization. We identify the various oppor-
tunities for reducing the traffic cost such as selecting cheaper and
common transits for as many edges as possible and also distribut-
ing the delay budget between edge and transit in an intelligent
manner. We provide optimization-based and heuristic algorithms to
minimize the traffic cost of aggregation, while obeying resource con-
straints and the delay budget. Our extensive evaluation shows a 47%
to 83% reduction in traffic cost compared to existing approaches.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for many constructive
comments and suggestions that greatly improved the quality of
this paper. This work was sponsored in part by NSF under Grants
CNS-1717834 and CNS-1717179, as well as by DARPA contract
HR001117C0049.

REFERENCES
[1] Akamai Download Analytics solution. Accessed: 2020-08-30. https:

//www.akamai.com/us/en/multimedia/documents/product-brief/akamai-

13



SEC ’21, November-December, 2021, San Jose, CA Dhruv Kumar, Sohaib Ahmad, Abhishek Chandra, and Ramesh K. Sitaraman

download-delivery-product-brief.pdf.
[2] Akamai Media Analytics. Accessed: 2020-08-30. https://www.akamai.com/us/

en/multimedia/documents/product-brief/media-analytics-product-brief.pdf.
[3] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-Tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (Aug. 2013), 1033ś1044. https://doi.org/10.14778/2536222.2536229

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, out-
of-Order Data Processing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792ś1803.
https://doi.org/10.14778/2824032.2824076

[5] Amazon EC2 Pricing. Accessed: 2020-03-22. https://aws.amazon.com/ec2/pricing/
on-demand/.

[6] Konstantin Andreev, Bruce M Maggs, Adam Meyerson, and Ramesh K Sitaraman.
2003. Designing overlay multicast networks for streaming. In ACM SPAA. 149ś
158.

[7] Azure Pricing. Accessed: 2020-03-22. https://azure.microsoft.com/en-
us/pricing/details/bandwidth/.

[8] Brian Babcock and Surajit Chaudhuri. 2005. Towards a Robust Query Optimizer:
A Principled and Practical Approach. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (Baltimore, Maryland) (SIGMOD
’05). Association for Computing Machinery, New York, NY, USA, 119ś130. https:
//doi.org/10.1145/1066157.1066172

[9] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve
Relational Queries. J. ACM 28, 1 (Jan. 1981), 25ś40. https://doi.org/10.1145/
322234.322238

[10] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. 2014. Summingbird:
A Framework for Integrating Batch and Online MapReduce Computations. Proc.
VLDB Endow. 7, 13 (Aug. 2014), 1441ś1451. https://doi.org/10.14778/2733004.
2733016

[11] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State Management in Apache Flink®: Consistent Stateful Dis-
tributed Stream Processing. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1718ś1729.
https://doi.org/10.14778/3137765.3137777

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28ś38. http://sites.computer.
org/debull/A15dec/p28.pdf

[13] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: Easy, Effi-
cient Data-Parallel Pipelines. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation (Toronto, Ontario, Canada)
(PLDI ’10). Association for Computing Machinery, New York, NY, USA, 363ś375.
https://doi.org/10.1145/1806596.1806638

[14] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (Seattle, Washington, USA) (PODS
’98). Association for Computing Machinery, New York, NY, USA, 34ś43. https:
//doi.org/10.1145/275487.275492

[15] Brian Cho and Indranil Gupta. 2011. Budget-Constrained Bulk Data Transfer
via Internet and Shipping Networks. In Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing (Karlsruhe, Germany) (ICAC ’11).
Association for Computing Machinery, New York, NY, USA, 71ś80. https:
//doi.org/10.1145/1998582.1998595

[16] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107ś113. https://doi.org/10.
1145/1327452.1327492

[17] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and
Bill Weihl. 2002. Globally distributed content delivery. IEEE Internet Computing
6, 5 (2002), 50ś58.

[18] Lisa Fleischer and Martin Skutella. 2007. Quickest Flows Over Time. SIAM J.
Comput. 36, 6 (2007), 1600ś1630. https://doi.org/10.1137/S0097539703427215
arXiv:https://doi.org/10.1137/S0097539703427215

[19] Edward Gan, Peter Bailis, and Moses Charikar. 2020. CoopStore: Optimizing
Precomputed Summaries for Aggregation. Proc. VLDB Endow. 13, 11 (2020),
2174ś2187. http://www.vldb.org/pvldb/vol13/p2174-gan.pdf

[20] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-Based Quantile Sketches for Efficient High Cardinality Aggregation
Queries. Proc. VLDB Endow. 11, 11 (July 2018), 1647ś1660. https://doi.org/10.
14778/3236187.3236212

[21] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. 2007. Workload Analysis and
Demand Prediction of Enterprise Data Center Applications. In 2007 IEEE 10th
International Symposium on Workload Characterization. 171ś180.

[22] Andrew V Goldberg, Éva Tardos, and Robert E Tarjan. 1989. Network flow
algorithms. Technical Report. PRINCETON UNIV NJ DEPT OF COMPUTER
SCIENCE.

[23] Google Cloud Pricing. Accessed: 2020-03-22. https://cloud.google.com/network-
tiers/pricing.

[24] G Hayes. Accessed: 2020-03-22. mlrose: Machine Learning, Randomized Opti-
mization and SEarch package for Python. https://github.com/gkhayes/mlrose.

[25] Benjamin Heintz, Abhishek Chandra, and Ramesh K. Sitaraman. 2016. Trading
Timeliness and Accuracy in Geo-Distributed Streaming Analytics. In Proceedings
of the Seventh ACM Symposium on Cloud Computing (Santa Clara, CA, USA)
(SoCC ’16). Association for Computing Machinery, New York, NY, USA, 361ś373.
https://doi.org/10.1145/2987550.2987580

[26] Benjamin Heintz, Abhishek Chandra, and Ramesh K. Sitaraman. 2020. Optimizing
Timeliness and Cost in Geo-Distributed Streaming Analytics. IEEE Trans. Cloud
Comput. 8, 1 (2020), 232ś245. https://doi.org/10.1109/TCC.2017.2750678

[27] Bruce Hoppe and Éva Tardos. 2000. The Quickest Transshipment Problem.
Mathematics of Operations Research 25, 1 (2000), 36ś62. http://www.jstor.org/
stable/3690422

[28] Yuzhen Huang, Yingjie Shi, Zheng Zhong, Yihui Feng, James Cheng, Jiwei Li,
Haochuan Fan, Chao Li, Tao Guan, and Jingren Zhou. 2019. Yugong: Geo-
Distributed Data and Job Placement at Scale. Proc. VLDB Endow. 12, 12 (Aug.
2019), 2155ś2169. https://doi.org/10.14778/3352063.3352132

[29] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu,
and Mingyang Zhang. 2018. Wide-Area Analytics with Multiple Resources. In
Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18).
Association for Computing Machinery, New York, NY, USA, Article 12, 16 pages.
https://doi.org/10.1145/3190508.3190528

[30] Jean-François Im, Kishore Gopalakrishna, Subbu Subramaniam, Mayank Shrivas-
tava, Adwait Tumbde, Xiaotian Jiang, Jennifer Dai, Seunghyun Lee, Neha Pawar,
Jialiang Li, and Ravi Aringunram. 2018. Pinot: Realtime OLAP for 530 Million
Users. In Proceedings of the 2018 International Conference on Management of Data
(Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 583ś594. https://doi.org/10.1145/3183713.3190661

[31] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (Lisbon, Portugal) (EuroSys ’07). Association for Computing Ma-
chinery, New York, NY, USA, 59ś72. https://doi.org/10.1145/1272996.1273005

[32] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2018. Multi-Query
Optimization in Wide-Area Streaming Analytics. In Proceedings of the ACM
Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for
Computing Machinery, New York, NY, USA, 412ś425. https://doi.org/10.1145/
3267809.3267842

[33] Bettina Klinz and Gerhard J. Woeginger. 2004. Minimum-cost dynamic flows:
The series-parallel case. Networks 43, 3 (2004), 153ś162. https://doi.org/10.1002/
net.10112 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.10112

[34] Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Ro-
drigues. 2015. Pixida: Optimizing Data Parallel Jobs in Wide-Area Data Analytics.
Proc. VLDB Endow. 9, 2 (Oct. 2015), 72ś83. https://doi.org/10.14778/2850578.
2850582

[35] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg, B. Mancuso, D.
Shaw, and D. Stodolsky. 2004. A transport layer for live streaming in a content
delivery network. Proc. IEEE 92, 9 (2004), 1408ś1419.

[36] KSQL: Streaming SQL for Kafka. Accessed: 2018-10-29. https://www.confluent.
io/product/ksql/.

[37] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 239ś250. https://doi.org/10.1145/2723372.2742788

[38] Dhruv Kumar, Jian Li, Abhishek Chandra, and Ramesh Sitaraman. 2019. A TTL-
Based Approach for Data Aggregation in Geo-Distributed Streaming Analytics.
In ACM SIGMETRICS. New York, NY, USA, Article 29, 27 pages. https://doi.org/
10.1145/3341617.3326144

[39] Fan Lai, Mosharaf Chowdhury, and Harsha Madhyastha. 2018. To Relay or Not
to Relay for Inter-Cloud Transfers?. In 10th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 18). USENIX Association, Boston, MA. https:
//www.usenix.org/conference/hotcloud18/presentation/lai

[40] LINQ (Language Integrated Query). Accessed: 2020-03-22. https://docs.microsoft.
com/en-us/dotnet/standard/using-linq.

[41] Linux traffic control. Accessed: 2020-08-30. https://man7.org/linux/man-pages/
man8/tc.8.html.

[42] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content
delivery. ACM SIGCOMM CCR 45 (2015), 52ś66.

[43] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705ś1718. https:
//doi.org/10.14778/3342263.3342644

[44] J. K. Mullin. 1990. Optimal Semijoins for Distributed Database Systems. IEEE
Trans. Softw. Eng. 16, 5 (May 1990), 558ś560. https://doi.org/10.1109/32.52778

14



AggNet: Cost-Aware Aggregation Networks for Geo-distributed Streaming Analytics SEC ’21, November-December, 2021, San Jose, CA

[45] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 439ś455. https://doi.org/10.1145/2517349.2522738

[46] Netflix. Accessed: 2020-03-19. https://www.netflix.com.
[47] Netflix Keystone Real-time Stream Processing Platform. Published: 2018-09-

10. https://netflixtechblog.com/keystone-real-time-stream-processing-platform-
a3ee651812a.

[48] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H. Campbell. 2017. Samza: Stateful Scalable Stream
Processing at LinkedIn. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1634ś1645. https:
//doi.org/10.14778/3137765.3137770

[49] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai Network:
A Platform for High-performance Internet Applications. SIGOPS Oper. Syst. Rev.
44, 3 (2010), 2ś19.

[50] Kwangsung Oh, Abhishek Chandra, and Jon B. Weissman. 2020. A Network Cost-
aware Geo-distributed Data Analytics System. In 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, CCGRID 2020, Melbourne,
Australia, May 11-14, 2020. IEEE, 649ś658. https://doi.org/10.1109/CCGrid49817.
2020.00-28

[51] Meikel Poess, Raghunath Nambiar, Karthik Kulkarni, Chinmayi Narasimhadevara,
Tilmann Rabl, and Hans-Arno Jacobsen. 2018. Analysis of TPCx-IoT: The First
Industry Standard Benchmark for IoT Gateway Systems. In 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE
Computer Society, 1519ś1530. https://doi.org/10.1109/ICDE.2018.00170

[52] Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier. 2017. GRETA:
Graph-Based Real-Time Event Trend Aggregation. Proc. VLDB Endow. 11, 1 (Sept.
2017), 80ś92. https://doi.org/10.14778/3151113.3151120

[53] Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier. 2019. Event
Trend Aggregation Under Rich Event Matching Semantics. In Proceedings of
the 2019 International Conference on Management of Data (Amsterdam, Nether-
lands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
555ś572. https://doi.org/10.1145/3299869.3319862

[54] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency Geo-Distributed Data
Analytics (SIGCOMM ’15). Association for Computing Machinery, New York, NY,
USA, 421ś434. https://doi.org/10.1145/2785956.2787505

[55] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, and Michael J. Freed-
man. 2014. Aggregation and Degradation in JetStream: Streaming Analytics in
the Wide Area. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). USENIX Association, Seattle, WA, 275ś288. https:
//www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin

[56] Ramesh Rajagopalan and Pramod K. Varshney. 2006. Data-aggregation techniques
in sensor networks: A survey. IEEE Commun. Surv. Tutorials 8, 1-4 (2006), 48ś63.
https://doi.org/10.1109/COMST.2006.283821

[57] Stuart J. Russell and Peter Norvig. 2010. Artificial Intelligence - AModern Approach,
Third International Edition. Pearson Education. http://vig.pearsoned.com/store/
product/1,1207,store-12521_isbn-0136042597,00.html

[58] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Manage-
ment of Data (Boston, Massachusetts) (SIGMOD ’79). Association for Computing
Machinery, New York, NY, USA, 23ś34. https://doi.org/10.1145/582095.582099

[59] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robbert van
Renesse, and Hakim Weatherspoon. 2016. Follow the Sun through the Clouds:
Application Migration for Geographically Shifting Workloads. In Proceedings

of the Seventh ACM Symposium on Cloud Computing (Santa Clara, CA, USA)
(SoCC ’16). Association for Computing Machinery, New York, NY, USA, 141ś154.
https://doi.org/10.1145/2987550.2987561

[60] Ramesh K Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and Manish Jain.
2014. Overlay networks: An akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services (2014), 305ś328.

[61] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2019. Optimal and
General Out-of-Order Sliding-Window Aggregation. Proc. VLDB Endow. 12, 10
(June 2019), 1167ś1180. https://doi.org/10.14778/3339490.3339499

[62] Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk.
2020. LightSaber: Efficient Window Aggregation on Multi-Core Processors. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 2505ś2521. https://doi.org/10.1145/3318464.3389753

[63] Twitter. Accessed: 2020-03-19. https://www.twitter.com.
[64] Twitter Analytics. Accessed: 2020-08-30. https://business.twitter.com/en/

analytics.html.
[65] Twitter Developer APIs. Accessed: 2020-08-30. https://developer.twitter.com/en/

docs.
[66] Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016. CLAR-

INET: WAN-Aware Optimization for Analytics Queries (OSDI’16). USENIX Asso-
ciation, USA, 435ś450.

[67] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Kon-
stantinos Karanasos, Jitendra Padhye, and George Varghese. 2015. WANalytics:
Geo-Distributed Analytics for a Data Intensive World. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data (Melbourne, Vic-
toria, Australia) (SIGMOD ’15). Association for Computing Machinery, New York,
NY, USA, 1087ś1092. https://doi.org/10.1145/2723372.2735365

[68] Hao Wang, Di Niu, and Baochun Li. 2018. Dynamic and Decentralized Global
Analytics via Machine Learning. In Proceedings of the ACM Symposium on Cloud
Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing Machin-
ery, New York, NY, USA, 14ś25. https://doi.org/10.1145/3267809.3267812

[69] Zhenyu Wen, Do Le Quoc, Pramod Bhatotia, Ruichuan Chen, and Myungjin
Lee. 2018. ApproxIoT: Approximate Analytics for Edge Computing. In 38th IEEE
International Conference on Distributed Computing Systems, ICDCS 2018, Vienna,
Austria, July 2-6, 2018. IEEE Computer Society, 411ś421. https://doi.org/10.1109/
ICDCS.2018.00048

[70] Windows API in Apache Flink. Accessed: 2020-10-23. https://ci.apache.org/
projects/flink/flink-docs-stable/dev/stream/operators/windows.html.

[71] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. 2014. Druid: A Real-Time Analytical Data Store. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,
USA, 157ś168. https://doi.org/10.1145/2588555.2595631

[72] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at
Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Computing Ma-
chinery, New York, NY, USA, 423ś438. https://doi.org/10.1145/2517349.2522737

[73] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A. Lee.
2018. AWStream: Adaptive Wide-Area Streaming Analytics (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 236ś252. https:
//doi.org/10.1145/3230543.3230554

[74] Linquan Zhang, Chuan Wu, Zongpeng Li, Chuanxiong Guo, Minghua Chen,
and Francis C. M. Lau. 2013. Moving Big Data to The Cloud: An Online Cost-
Minimizing Approach. IEEE J. Sel. Areas Commun. 31, 12 (2013), 2710ś2721.
https://doi.org/10.1109/JSAC.2013.131211

15


	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Opportunities and Tradeoffs
	4 Algorithms for Constructing Aggregation Networks
	4.1 Optimization Formulation and Solution
	4.2 iCAPP: A Practical Heuristic Approach

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Datasets and Queries
	6.3 Baseline System Comparison
	6.4 Impact of  and Transit Selection
	6.5 Variation of optimal 
	6.6 Adaptation to dynamism
	6.7 Convergence and Computational Overhead of iCAPP

	7 Related Work
	8 Conclusion
	References

