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Abstract

We address the problem of computing reli-
able policies in reinforcement learning prob-
lems with limited data. In particular,
we compute policies that achieve good re-
turns with high confidence when deployed.
This objective, known as the percentile
criterion, can be optimized using Robust
MDPs (RMDPs). RMDPs generalize MDPs
to allow for uncertain transition probabili-
ties chosen adversarially from given ambi-
guity sets. We show that the RMDP solu-
tion’s sub-optimality depends on the spans
of the ambiguity sets along the value func-
tion. We then propose new algorithms that
minimize the span of ambiguity sets defined
by weighted Ly and Lo norms. Our primary
focus is on Bayesian guarantees, but we also
describe how our methods apply to frequen-
tist guarantees and derive new concentration
inequalities for weighted L; and L., norms.
Experimental results indicate that our opti-
mized ambiguity sets improve significantly on
prior construction methods.

1 Introduction

Applying reinforcement learning to problem domains
that involve high-stakes decisions, such as medicine or
robotics, demands that we have high confidence in the
quality of a policy before deploying it. Markov De-
cision Processes (MDPs) represent a well-established
model in reinforcement learning (Puterman, 2005; Sut-
ton and Barto, 2018), but their sequential nature
makes them particularly sensitive to parameter errors,
which can quickly accumulate (Mannor et al., 2007;
Tirinzoni et al., 2018; Xu and Mannor, 2009). Parame-
ter errors are unavoidable when estimating MDPs from
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data (Laroche et al., 2019). We focus on computing
policies that maximize high-confidence return guaran-
tees in the batch settings. Such guarantees reduce the
chance of disappointing the stakeholders after deploy-
ing the policy and give them a choice to gather more
data or switch to an alternative strategy (Petrik et al.,
2016).

We propose a new method for computing reliable poli-
cies that achieve, with high confidence, good returns
once deployed. This objective is also known as the
percentile criterion (Delage and Mannor, 2010) and
can be modeled as risk-aversion to epistemic uncer-
tainty (Petrik and Russel, 2019). Because optimiz-
ing the percentile criterion is NP-hard (Delage and
Mannor, 2010), we use Robust MDPs (RMDPs) (Iyen-
gar, 2005) to optimize it approximately. We estab-
lish new error bounds on the performance loss of the
RMDPs’ policy compared to the optimal percentile so-
lution. Using these new bounds when constructing the
RMDPs leads to policies with significantly better re-
turn guarantees than reported in prior work (Delage
and Mannor, 2010; Petrik and Russel, 2019).

RMDPs generalize MDPs to allow for uncertain, or un-
known, transition probabilities (Iyengar, 2005; Nilim
and Ghaoui, 2005; Wiesemann et al., 2013). Transi-
tion probabilities are hard to estimate from data, and
even small errors significantly impact the returns and
policies. RMDPs consider transition probabilities to
be chosen adversarially from a so-called ambiguity set
(or an uncertainty set). The optimal policy is com-
puted by solving a specific zero-sum game in which
the agent chooses the best policy, and an adversarial
nature chooses the worst transition probabilities from
the ambiguity sets. RMDPs are tractable when their
ambiguity sets satisfy so-called rectangularity assump-
tions (Goyal and Grand-Clement, 2018; Mannor et al.,
2016; Wiesemann et al., 2013).

Given the goal is to optimize the percentile criterion,
the critical question is how to construct the ambiguity
sets from state transition samples to optimize the per-
centile criterion. Prior work constructs ambiguity sets
as confidence regions bounded by a distance from a
nominal (expected) transition probability (Auer et al.,
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2009; Gupta, 2019; Iyengar, 2005; Petrik et al., 2016;
Petrik and Russel, 2019; Strehl and Littman, 2004). In
most cases, the ambiguity sets are represented as L1-
norm (also referred to as total variation) balls around
the nominal probability. In comparison with other
probability distance measures, like KL-divergence, the
polyhedral nature of the Li-norm allows more efficient
computation (Ho et al., 2018).

The main contribution of this paper is a new tech-
nique for optimizing the shape of ambiguity sets in
RMDPs. Prior work simply constructs ambiguity sets
with the smallest size, or volume, that is sufficient to
provide the desired high-confidence guarantees. Our
new bounds show that the span of the ambiguity set
along a specific direction is much more important than
its volume. To minimize their span, we consider asym-
metric ambiguity sets defined in terms of weighted L
and L., balls. Recent results shows that RMDPs with
such ambiguity sets can be solved very efficiently (Ho
et al., 2018, 2020). Although our primary focus is
on the Bayesian setup, we also discuss the frequen-
tist setup and derive new high-confidence concentra-
tion inequalities for the weighted L; and L., norms.

The remainder of the paper is organized as follows. We
first describe the necessary background in Section 2
and bound the performance loss of RMDPs as a func-
tion of the ambiguity sets’ span in Section 3. Section 4
describes algorithms that minimize the span of ambi-
guity sets by optimizing the weights of the norms used
in their definition. Then, Section 5 describes meth-
ods for choosing the size of the weighted-norm ambi-
guity sets. In Section 6, we outline the approach in
the frequentist setup and present new concentration
inequalities for weighted L; and L., ambiguity sets.
Finally, the experimental results in Section 7 show that
minimizing ambiguity sets’ span greatly improves the
RMDPs’ solution quality.

Notation: Bold letters, like x4, indicate an s-th vector,
while y, would indicate the s-th element of a vector y.
The symbol AN denotes the N-dimensional probabil-
ity simplex (non-negative vectors that sum to 1). We
also use AP to denote the set of all functions A — B.

2 Framework and Related Work

We consider the standard infinite-horizon MDP set-
ting with finite states S = {1,...,S} and actions
A = {1,...,A}. The agent can take any action
a € A in every state s € S and transitions to the
next state s’ according to the true transition function
P* : S x A — A®, where A® is a probability sim-
plex. For any transition function P : S x A — A,
we use the shorthand p, , = P(s,a) to denote the vec-
tor of transition probabilities from a state s € S and

an action a € A. The agent also receives a reward
Tsas € R; we use 754 = (Tsa.s)ses € RY to de-
note the vector of rewards. The goal is to compute
a deterministic policy 7 : § — A that maximizes the
~-discounted return (Puterman, 2005):
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where Sy ~ py, Siy1 ~ P*(S;,7(S:)), py € A% is
the initial probability distribution, and II is the set
of all deterministic policies. The return function p is
parameterized by P, because we assume them to be
uncertain or unknown.

We consider the batch RL setting in which the transi-
tion function must be estimated from a fixed dataset
D = (s¢,a¢,5;),_; _r generated by a behavior policy.
We describe the Ba’yesian setup first and outline the
frequentist extension in Section 6. Bayesian techniques
start with a prior distribution over the transition func-
tion P* and then derive a posterior distribution f over
P* (Delage and Mannor, 2010; Gelman et al., 2014;
Xu and Mannor, 2009). We use the concise notation
P = P*| D to represent the posterior over the tran-
sition function conditioned on the data D. In other

words, E[P] = E[P* | D].

Percentile citerion The Bayesian percentile crite-
rion optimization simultaneously optimizes for the
policy 7 and a high-confidence lower bound on its per-
formance y:

max max {y | Ppoy [p(w,]s) > y} >1 —5} (D)

well yeR

The confidence parameter § € [0,1/2) bounds the prob-
ability that the optimized policy 7 fails to achieve a
return of at least y when deployed. For example, § =0
maximizes the worst-case return, and é = 0.5 max-
imizes the median return. It is common in practice
to choose a small positive value, such as 6 = 0.05, in
order to achieve meaningful guarantees without being
overly conservative. Also, the constraint § < 1/2 is im-
portant as our results (Theorem 3.2) do not hold for
the risk-seeking setting with § > 1/2.

There are several important practical advantages to
optimizing the percentile criterion instead of the aver-
age return (Delage and Mannor, 2010). First, the out-
put policy is more robust and less likely to fail catas-
trophically due to model errors. Second, the objective
value y in (1) provides a high-confidence lower bound
on the true return. Having such a guarantee on its
return helps to avoid an unpleasant surprise when the
policy 7 is deployed. If the guarantee y is insufficiently
low, the stakeholder may decide to collect more data
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or choose a different methodology for guiding their de-
cisions.

We emphasize that we develop algorithms that are
independent of how the posterior distribution f is
computed. Bayesian priors can be as simple as in-
dependent Dirichlet distributions over pj , for each
state s and action a. However, hierarchical Bayesian
models are more practical since they can generalize
among states even when |D| <« S (Delage and Man-
nor, 2010; Petrik and Russel, 2019). Many tools, such
as Stan (Stan Development Team, 2017) or JAGS, now
exist that allow for convenient and efficient computa-
tion of the posterior distribution f using MCMC.

Robust MDPs Because the optimization in (1) is
NP-hard (Delage and Mannor, 2010), we seek new
algorithms that can approximate it efficiently. Ro-
bust MDPs (RMDPs), which extend regular MDPs,
are a convenient and powerful framework that can
be used to optimize the percentile criterion. In par-
ticular, RMDPs allow for a generic ambiguity set
P - {P SxA— AS} of possible transition func-
tions instead of a single known value P. The solution
to an RMDP is the best policy for the worst-case plau-
sible transition function:

max min p(m, P) . 2
ma min p(r. P) @

The optimization problem in (2) is NP-hard (Nilim
and Ghaoui, 2005; Wiesemann et al., 2013) but is
tractable for rectangular ambiguity sets which are de-
fined independently for each state and action (Iyengar,
2005; Le Tallec, 2007). We, therefore, restrict our at-
tention to SA-rectangular ambiguity sets defined as
p-norm balls around nominal probability distributions
for some w: S x A > RY, and 9 : S x A — Ry

P(w,w) = {P e F | P(&fl) € Ps,a(w(87a)7¢(8ﬂa))}a

where F = (A%)S*A. In the remainder of the paper,
we resort to the shorter notation w,, = w(s,a) and
¥s.a = ¥(s,a) when the meaning is obvious from the
context. Note that P refers to a generic ambiguity
set, while P(w, ) refers to the specific norm-based
one. The ambiguity set P o(w, ) for s € S, a € A,
positive weights w € Rir, and budget v € Ry is
defined as:

Paalw, ) = {p €A i lp—p,,, < z/)}7 (3)

where p, , = Ep []5(3, a)] is the mean posterior tran-
sition probability. The weighted polynomial norms
are defined as [yl ,, = S0 w; - [yi] and [yll..,, =
max {w;-|y;| | € S}. We use the generic notation |||,
in statements that hold for both [-||; ,, and [|*[| ,,-

The weights w in (3) determine the shape of the am-
biguity set, and the budget ) determines its size.

Note that the parameter v in the definition of
Pso(w, ) is redundant. It can be set to 1 without
loss of generality: Psq(w, ) = Pso(Y/v - w,1) when
1 > 0. In other words, it is possible to change the size
of the ambiguity set solely by scaling the weights w.
To eliminate this redundancy, we assume without loss
of generality that the weights of the set are normalized
such that ||w]|, = 1.

In rectangular RMDPs, a unique optimal value func-
tion ¥ € RS exists and is a fixed point of the robust
Bellman operator £ : RS — R defined for each s € S
and v € RY as (Iyengar, 2005)

(£v)s = max min (rs,a +y ~pTv) . (4)
€A pePs .0

The optimal robust value function can be computed
using value iteration, policy iteration, and other meth-
ods (Ho et al., 2020; Iyengar, 2005; Kaufman and
Schaefer, 2013). The optimal robust policy 7 : § — A
is greedy with respect to the optimal robust value func-
tion 9, and the robust return can be computed from
the value function as (Ho et al., 2020):

00

p = maxmin p(m, P) =
m€ll pep ( )
We will find it convenient to use 2, , € R s€S,a¢c
A to denote the vector of values associated with the

transitions from the state s and action a:
Zsa = Tsa+7-0. (5)

In the remainder of the paper, we use P to denote
a generic RMDP ambiguity set and use P(w, ) to
denote an ambiguity set defined in terms of a weighted
norm ball.

3 RMDPs for Percentile Optimization

This section describes the general algorithm for con-
structing RMDP ambiguity sets for optimizing the per-
centile criterion. We derive new bounds on the safety
and optimality of the RMDP solution and propose a
new algorithm that optimizes them. The bounds and
algorithms in this section are general and are not re-
stricted to norm-based ambiguity sets.

An important assumption, which is used throughout
this paper, is that the ambiguity set in the RMDP is
constructed to guarantee that it contains the unknown
transition probabilities P with a high probability as
formalized next.

Assumption 1. The RMDP ambiguity set P C
{P:8x A— A®} satisfies that:

Pﬁ[ﬁéﬁ] >1-96.
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Assumption 1 is common when constructing RMDPs
for optimizing the percentile criterion (Delage and
Mannor, 2010; Petrik and Russel, 2019). The follow-
ing theorem shows that Assumption 1 is a sufficient
condition for p to be a lower bound on the true return
of the robust policy 7. We state the result in terms of
a generic ambiguity set P.

Theorem 3.1. If Assumption 1 holds, then the fol-
lowing inequality is satisfied with probability 1 —§:

p < pli. D).

Please see Appendix A.1 for the proof.

Theorem 3.1 generalizes Theorem 4.2 in (Petrik and
Russel, 2019) by relaxing its assumptions. In partic-
ular, Assumption 1 allows for non-rectangular ambi-
guity sets P and does not require the use of a union
bound in its construction.

Next, we bound the performance loss of the RMDP
policy 7 with respect to the optimal percentile crite-
rion guarantee in (1). As we show, the quality of the
RMDP policy depends not simply on the absolute size
of the ambiguity set i, but on its span along a spe-
cific direction. The span 87 “(w,1) of an ambiguity
set Ps.q(w, 1)) along a vector z € R for s € S and
a € A is defined as:

By (w, ) = max {(P1 —po)'z|pi.ps € PS»a(w’d))}'
P1:P2

The following theorem bounds the performance loss of
the RMDP solution when using norm-bounded ambi-
guity sets. Note that Theorem 3.1 implies that, under
Assumption 1, the RMDP return p bounds the true
return with high confidence and therefore must be a
lower bound on the optimal y* in (1).

Theorem 3.2. When Assumption 1 holds for P =
Plw, ), w:Sx A—RY ,9:SxA— Ry, then the
performance loss with respect to y* optimal in (1) is:

0 <y—p < -maxmax 3;% (w,v) ,

1—7 s€S acA Zs.a

where p is a function of w and .

The proof can be found in Appendix A.1.

The following illustrates how the span along 2z impacts
the performance loss of the RMDP policy.

Example 3.3. Consider an MDP with states
{0,1,2,3} and a single action {1}. The state 0 is ini-
tial, and the states 1,2,3 are terminal with P(i,1,1) =
1,7 = 1,2,3 with zero rewards. To keep the notation
simple, we assume that it is only possible to tran-
sition from state 0 to states 1,2,3. The transition
probability p, ; is uncertain and distributed as py ~

$3
YRS
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Figure 1: Posterior samples of p (blue) and ambiguity
sets P54 (green) and P°P! (red) from Example 3.3.

Dirichlet(10,10,1) with E[p,;] = [0.48,0.48,0.04].
The rewards are ro1 = [0.25,0.25,—1]. The goal is
to maximize the percentile criterion with § = 0.2.

Take the MDP from Example 3.3 and construct
RMDPs with the following two ambiguity sets depicted
in Figure 1. Let P%Y = P;1(1/v3-1,0.1) be the
standard ambiguity set with uniform weights, and let
PoPt = Py 4 (1/vT12:[0.25,0.25,1],0.1) be an ambiguity
set with optimized weights w = 1/v112 - [0.25,0.25, 1].
The budgets for both ambiguity sets are minimally
sufficient to satisfy Assumption 1. Intuitively, this
means that at least 80% of the posterior samples of
Do, (blue dots in Figure 1) must be contained inside
of each ambiguity set. Now, with 80% confidence,
the RMDP with P°P' guarantees return p°Pt = 0.16,
while the RMDP with P4 guarantees only p*td =
—0.06. Although the volumes of P** and PP' are
approximately equal, the span along the dimension
z = [0.25,0.25, —1] of P°P! is half of the span of Pstd.

Armed with the safety and performance loss guaran-
tees in Theorems 3.1 and 3.2, we propose a new heuris-
tic algorithm in Algorithm 1 which iteratively opti-
mizes the shape of the ambiguity set in order to im-
prove the guaranteed percentile. It constructs ambi-
guity sets that minimize the span of the ambiguity set.
The algorithm may not construct the optimal ambigu-
ity set because it first uses the nominal value function
v’. However, the algorithm provides guarantees on the
quality of the policy that it computes from Assump-
tion 1 and Theorems 3.1 and 3.2.

4 Minimizing Ambiguity Spans

This section describes tractable algorithms that opti-
mize the weights w to minimize that span 33 for some
fixed state s € S, action a € A, a vector z € R, and
a budget ¥ € R;. We describe an analytical solution
and a conic formulation that minimize an upper bound
on the span for weighted Ly and L., sets. The budget
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Algorithm 1: Ambiguity shape optimization scheme.

Input: Confidence 1 — §, posterior distribution f over P

Output: Ambiguity set P(w, 1))

1 Compute v’ € R® by solving max, p(7r7 ]E[P]) and let 2, , < Tsa+7 V', s€S,a€ A4

2 Compute minimal ¢’ : § x A — R such that Assumption 1 holds for P(1/v5-1,');
s Compute ws,q < ming,cps {8, (w,¢") | ||lw]|y =1} for each s € S, a € A,

4 Compute minimal ¢ : S x A — R, such that Assumption 1 holds for P(w, 1);

5 return Ambiguity set P(w, )

// Algorithm 3
// Algorithm 2

// Algorithm 3

1) is fixed throughout this section; Section 5 describes
how to optimize it.

The goal of computing the weights w that minimize
the span of the ambiguity set for a fixed budget ¥ can
be formalized as the following optimization problem:

min {63 (w,v) | |w], = 1}. (6)

S
weR?

The optimization in (6) is not obviously convex, but
we propose methods that minimize an wupper bound
on 3;“(w, ). Note that minimizing this upper bound

also minimizes an upper bound on Theorem 3.2.

We first describe two analytical solutions and then de-
scribe a more precise but also more computationally
intensive method based on second order conic approx-
imation. The following lemma provides a bound that
enables efficient optimization.

Lemma 4.1. The span B3% of the ambiguity set
Ps.o(w, 1) is bounded for any A € R as:

Pei(w, ) <2-4-flz = A1, (7)
where |-, is the norm dual to |||,

The proof is deferred to Appendix A.2. Re-
call that the dual norm is defined as |||, =
maxgeps {c'x | |lz|| < 1}.

In order to use the bound in Lemma 4.1, we need to
derive the dual norms to the weighted L, and weighted
Lo norms. For unweighted p-norms, it is well known
that L; and L., norms are dual of each other, but we
are not aware of a similar result for their weighted vari-
ants. The following lemma establishes that weighted
L1 and L, norms are dual as long as their weights are
inverse elementwise.

Lemma 4.2. Suppose that w € RS and w' € R are
positive w; > 0,w} > 0 and satisfy that w; = Yw,; for
alli € S. Then:

.
el = max {="e |12l =1}

The proof of the lemma can be found in Appendix A.2.

Algorithm 2: Weight optimization.

Input: Norm ¢ € {1, 00}, parameter A € R
Output: Weights w* € RY that minimize (7)
1 if ¢ =1 then

NSNIVE
W 20— Al

V5 |z a2’

else if ¢ = co then
w} =i A

b
\/ Zf:1|z.7'_>‘|2
end

return w* ;

N

VieS;

w

VieS;

[< B

Based on the results above, Algorithm 2 summarizes
our algorithms for computing weights w that minimize
the upper bound on the performance loss in Theo-
rem 3.2. The algorithm runs in linear time. Note
that the algorithm assumes that a value of A is given.
Although it would be possible to optimize for the best
value of A, our preliminary experimental results sug-
gest that this is not worthwhile because it does not
lead to a significant improvement. Instead, we use
A = (max; z; + min; z;)/2 and A = median(z) for Lo,
and L1 norms respectively. These are the optimal val-
ues (values for which the upper bound is smallest)
for the uniform weight version of (7). The following
proposition states the correctness of this algorithm.

Proposition 4.3. Fix an arbitrary A € R and let
w* € Ri the return from Algorithm 2. Then w* is an
optimal solution to (7) weighted Ly and Lo norms.

Please see Appendix A.2 for the proof.

It is important to recognize that even though Algo-
rithm 2 effectively minimizes the value 3;'%, it may,
in the process, violate Assumption 1. This is because
scaling weights may reduce the probability that PeP.
We are not aware of a tractable algorithm that can
optimize the weights w directly while enforcing the
constraint of Assumption 1. Instead, the constraint
|w|, = v serves as a proxy to prevent the ambigu-
ity from shrinking. This is why it is necessary to re-
optimize the budget ¢ in Algorithm 1 after the weights
are optimized.



Optimizing Percentile Criterion Using Robust MDPs

As an alternative to the analytical algorithms in Al-
gorithm 2, we also examine a Second-Order Conic
Program (SOCP) formulation. This formulation op-
timizes a tighter upper bound on 3;'* but is more
computationally intensive. For any fixed state s and
action a, the following SOCP minimizes the bound (7)
on 37%(w, ) for the Ly norm:
minimize

V-c
g,c,A
subjectto g > max{z—A-1,—z+X-1} (8)
g'g < g=0.

The SOCP formulation follows from Lemma 4.2 and
variable substitution g = w - c.

Remark 4.4 (Unreachable states). We assume that the
prior can specify some transitions as impossible, or un-
reachable: that is P(s,a,s’) = 0. This information is
used as an additional pre-processing step in optimiz-
ing the weights. In particular, if the transition from
state s after taking action a to state s’ is not possible,
then we set (ws,)sr = 0o. Or, in other words, each
P € Ps o(w, ) satisfies pyr = 0.

5 Minimizing Ambiguity Budgets

This section describes how to determine the size of
the ambiguity set in the Bayesian setting in order to
minimize the performance loss in Theorem 3.2 of the
RMDP policy while satisfying Assumption 1. We as-
sume that the weights ws 4,5 € S,a € A are arbitrary
but fixed and aim to construct ¢s,,s € S,a € A to
minimize the performance loss.

Before describing the algorithm, we state a simple ob-
servation that motivates its construction. The follow-
ing lemma implies that the smaller the ambiguity bud-
get is, the better p approximates the percentile crite-
rion. Of course, this is only true as long as the budget
is sufficiently large for Assumption 1 to hold. The fol-
lowing proposition follows from the definition of 35“
by algebraic manipulation.

Lemma 5.1. The function ¢ — B3 (ws,q, 1) is non-
decreasing.

We are now ready to describe our method as out-
lined in Algorithm 3. The algorithm follows the well-
known sample average approximation (SAA) approach
common in stochastic programming (Shapiro et al.,
2014). Tt constructs ambiguity sets as credible regions
for the posterior distribution over P similarly to prior
work (Petrik and Russel, 2019). The next proposition
states the correctness of Algorithm 3.

Proposition 5.2. Suppose that s , are computed by
Algorithm 3 for some w, o for each s € S and a € A.

Algorithm 3: Budget optimization.

Input: Posterior samples P, ..., P, from P,
weights w, o, norm ¢ € {1,000}
Output: Nominal p, , and budget 5 ,
1 Compute nominal p, , < (1/n) 31" | Pi(s,a) ;
2 Compute distance d; < || Pi(s, a) 7p87qu,ws s
3 Ascending sort: d(;) < dgq1), j=1,...,m
4 Compute the quantile ¥ o < d([(1-5/(5.4))n]) 3
s return p, , and Y5,

Also let w : (s,a) = Wy q and P : (s,a) — s,q. Then
P(w, 1) satisfies Assumption 1 with high probability
when a sufficient number of samples from P are used.

Please see Appendix A.3 for the proof.

Algorithm 3 constructs credible regions for each state
and action separately (Murphy, 2012). A notable lim-
itation of Algorithm 3 is that it constructs the cred-
ible regions independently for each state and action.
Although this is convenient computationally, it also
means that the confidence region needs to rely on the
union bound which makes it the impractical when the
number of states and actions is large. Although, As-
sumption 1 allows for a construction that avoids the
union-bound-based construction.

While Proposition 5.2 provides asymptotic conver-
gence guarantees, it is possible to obtain finite sample
guarantee by using more careful analysis (Luedtke and
Ahmed, 2008) or by adapting Algorithm 3 as suggested
in (Hong et al., 2020). We leave this finite-sample anal-
ysis for future work.

6 Frequentist Guarantees

In this section, we extend the analysis above to outline
how our results apply to frequentist guarantees. The
advantage of the frequentist setup is that it provides
guarantees even without needing access to a prior dis-
tribution. The disadvantage is that, without good pri-
ors, frequentist settings may need an excessive amount
of data to provide reasonable guarantees. The main
contribution in this section are new sampling bounds
for weighted Lq and L., ambiguity sets.

The frequentist perspective on the percentile crite-
rion (Delage and Mannor, 2010) represents a viable
alternative to the Bayesian perspective when it is dif-
ficult to construct a good prior distribution. The
frequentist view assumes that the true model P* is
known. The analysis considers the uncertainty over
datasets. To define the criterion, let D represent the
set of all possible datasets D. Then the pair of algo-
rithms F' : D — II, which computes the policy for a
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dataset, and G : D — R, which estimates the return
of the policy, solves the percentile criterion if:

Ppeps [p(F(D), P*) > G(D)] = 1=46.  (9)

A frequentist modeler assumes that Py, is fixed and
the probability statements are qualified over sampled
data sets (s, ay,S})i=1,..,r generated from the true
transition probabilities s; ~ p3, ,, -

To construct an RMDP that solves the frequentist per-
centile criterion, we make very similar assumptions
to the Bayesian setting. The next assumption re-
states Assumption 1 in the frequentist setting; note
the change in random variables.

Assumption 2. The data-dependent ambiguity set P
satisfies: .
Ppps[P*€P] > 1-6,

where P is a function of D.

Recall that Theorem 3.1 establishes that an RMDP
that satisfies Assumption 1 computes a high-
confidence lower bound on the return. The proof
of Theorem 3.1 easily extends to the frequen-
tist setup. Therefore, Assumption 2 implies that
Pp [p < p(7, P)] > 1 — 6 where p and # are the return
and policy to the RMDP. In other words, the RMDP
algorithm (joint policy and return estimate computa-
tion) solves the frequentist percentile criterion in (9)
when Assumption 2 holds.

Because the optimization methods described in Sec-
tion 4 make no probabilistic assumptions, they can be
applied to the frequentist setup with no change. The
optimization of ¥ described in Section 5 assumes that
samples from the posterior over transition functions
are available and cannot be readily used to satisfy As-
sumption 2. Instead, we present two new finite-sample
bounds that can be used to construct frequentist am-
biguity sets. Since prior work has been limited to the
ambiguity sets defined in terms L, ambiguity sets with
uniform weights (Auer et al., 2010; Dietterich et al.,
2013; Petrik and Russel, 2019; Weissman et al., 2003),
we derive new high-confidence bounds for ambiguity
sets defined using weighted L1 and L., norms. To
state our new results, let the nominal point p, , € AS
in (3) be the empirical estimate of the transition prob-
ability computed from n, , € N transition samples for
each state s € S and action a € A.

Theorem 6.1 (L., norm). Suppose that P(w, ) is
defined in terms of the ws o-weighted Lo, norm. Then
Assumption 2 is satisfied if Vs, € Ry for each s € S
and a € A satisfies the following inequality:

S 2 .
§ < 2-SA-) exp (—2“”2“> . (10)

im1 (wsa)i

Theorem 6.2 (L; norm). Suppose that P(w,) is
defined in terms of the w, ,-weighted Ly norm. Then
Assumption 2 is satisfied if 1, € Ry for each s € S
and a € A satisfies the following inequality:

S—1 , ¢2 ‘n
§<2-84-3 25 exp <— 2> . (1)

=1 2 (wsa);

where positive weights w,, € Rir, s € S,a e A
are assumed to be sorted in a mon-increasing order
(ww)i > (wm)iﬂ fori = 1, ey S—1.

The proofs of the theorems are in Appendix A.4. They
follow by standard techniques combining the Hoeffding
and union bounds.

A natural question is how to construct 5 o that satis-
fies Theorems 6.1 and 6.2. Although the theorems do
not provide us with an analytical solution, the value of
s,q can be computed efficiently using the standard bi-
section method (Boyd and Vandenberghe, 2004). This
is because right-hand side functions in (10) and (11)
are monotonically decreasing in 9, ,,5 € S,a € A
Theorem A.3 further tightens the error bounds using
Bernstein’s inequality.

Theorems 6.1 and 6.2 also provide new insights into
which ambiguity set may be a better fit for a particular
problem. Simple algebraic manipulation and (7) show
that the L1 norm is preferable to the L., norm when
lv—o-1]; > VS |jv—o-1|. Here, v € R is the
optimal value function, ¥ = 17v/S is the mean value,
and 0 is the median value of v.

In terms of their tightness, Theorems 6.1 and 6.2
are similar to the most well-known bounds on the
uniformly-weighted norms. Theorem 6.2 recovers the
equivalent best-known (Hoeffding-based) result for
uniformly-weighted norm within a factor of 2. We are
not aware of comparable prior results for ambiguity
sets defined in terms of Lo, norms. Unfortunately, fre-
quentist bounds on probability distributions are gen-
erally useful only when the number of samples n; , is
quite large. We also investigated Bernstein-based ver-
sions of the bounds, but they show little difference in
our experimental results.

Finally, it is important to note that Theorems 6.1
and 6.2 require that the weights w are independent
of data. Therefore, the weights w should be optimized
using a dataset different from the one used to estimate
1. However, in our experiment, we found that reusing
the same dataset to optimize both w and 1 empirically
does compromise the percentile guarantees.

7 Empirical Evaluation

In this section, we evaluate Algorithm 1 empirically
using five standard reinforcement domains that have
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been previously used to evaluate robustness.

Tables 1 and 2 summarize the results for the Bayesian
and frequentist setups respectively. The results com-
pare our algorithms (rows) against baselines (rows)
for fixed datasets D for all domains (column). The
method names indicate how the weights are computed
and which norm is used to defined the ambiguity
set. Methods denoted as “Uniform” represent w = 1
and “Optimized” represent w computed using Algo-
rithms 1 and 2. Please see Appendix B for a com-
plete report of the statistics and methods (including
the SOCP formulation).

As the main metric, we compare the computed return
guarantees p (the return of the RMDP). Because all
methods use ambiguity sets that satisfy Assumptions 1
and 2, p lower bounds p(7, 15) with probability 1 — 4.
In order to enable the comparison of the results among
different domains, we normalize the guarantee by the
maximal nominal return g = max,er p(7, E[P]). We
use p instead of the unknown y*.

As a baseline, we compare our results with the
standard RMDPs construction (Delage and Mannor,
2010; Petrik and Russel, 2019), which uses uniformly-
weighted L; and Lo, norms. We do not compare to
policy-gradient-style methods in (Delage and Mannor,
2010) because they cannot be used with general pos-
terior distributions over P in our domains. We note
that various modifications to probability norms have
been proposed in the RL context (e.g., (Maillard et al.,
2014; Taleghan et al., 2015)), but it is unclear how to
use them in the context of the percentile criterion.

The results in Tables 1 and 2 show that optimizing the
weights in RMDP ambiguity sets decreases the guar-
anteed performance loss dramatically in Bayesian set-
tings (geometric mean 2.8x) and reliably in frequen-
tist settings (geometric mean 1.6x). The guarantees
improve because the RMDPs with optimized sets si-
multaneously compute a better policy and a tighter
bound on its return. Note that zero losses in the ta-
bles may be unachievable (p > y*), and losses greater
than one are possible (when g < 0). The total com-
putational complexity of Algorithms 1 and 2 is small
and reported in Appendix B.

We now briefly summarize the domains used; please
consult Appendix B for more details.

RiverSwim (RS) is a simple and standard bench-
mark (Strehl and Littman, 2008), which is an MDP
consisting of six states and two actions. The process
follows by sampling synthetic datasets from the true
model and then computing the guaranteed robust re-
turns for different methods. The prior is a uniform
Dirichlet distribution over reachable states.

RS MR PG IM CP

Uniform L, 0.60 1.56 5.24 097 0.77
Uniform L, 0.60 1.56 5.50 0.98 0.76
Optimized L;  0.25 0.41 1.84 0.90 0.12
Optimized Lo, 0.31 0.39 3.10 0.87 0.19

Table 1: Normalized Bayesian performance loss (p —
p)/|p| for 6 = 0.05. (Smaller value is better).

RS MR PG IM CP

Uniform L, 0.80 5.83 5.66 1.05 0.78
Uniform Le 0.76 3.45 5.66 1.05 0.78
Optimized L; 0.53 1.05 5.55 0.99 0.77
Optimized Lo, 043 094 556 0.96 0.69

Table 2: Normalized frequentist performance loss (p—
p)/|p| for 6 = 0.05. (Smaller value is better).

Machine Replacement (MR) is a small benchmark
MDP problem with S = 10 states that models progres-
sive deterioration of a mechanical device (Delage and
Mannor, 2010). Two repair actions A = 2 are avail-
able and restore the machine’s state. Uses a Dirichlet
prior.

Population Growth Model (PG) is an exponential pop-
ulation growth model (Kéry and Schaub, 2011), which
constitutes a simple state-space 0, ...,.S = 50 with ex-
ponential dynamics. At each time step, the land man-
ager has to decide whether to apply a control measure
to reduce the species’ growth rate. We refer to (Tirin-
zoni et al., 2018) for more details of the model.

Inventory Management (IM) is a classic inventory
management problem (Zipkin, 2000), with discrete in-
ventory levels 0,...,S = 30. The purchase cost, sale
price, and holding cost are 2.49, 3.99, and 0.03, respec-
tively. The demand is sampled from a normal distri-
bution with a mean S/4 and a standard deviation of
S/6. Tt also uses a Dirichlet prior.

Cart-Pole (CP) is the standard RL benchmark prob-
lem (Brockman et al., 2016; Sutton and Barto, 2018).
We collect samples of 100 episodes from the true dy-
namics. We fit a linear model with that dataset to
generate synthetic samples and aggregate close states
to a 200-cell grid (S = 200) using the k-nearest neigh-
bor strategy and assume a uniform Dirichlet prior.

8 Conclusion

We proposed a new approach for optimizing the per-
centile criterion using RMDPs that goes beyond the
conventional ambiguity sets. At the heart of our
method are new bounds on the performance loss of
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the RMDPs with respect to the optimal percentile cri-
terion. These bounds show that the quality of the
RMDP is driven by the span of its ambiguity sets along
a specific direction. We proposed a linear-time algo-
rithm that minimizes the span of the ambiguity sets
and also derived new sampling guarantees. Our ex-
perimental results show that this simple RMDP im-
provement can lead to much better return guarantees.
Future work needs to focus on scaling the method to
a large state-space using value function approximation
or other techniques.
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