
Policy Gradient Bayesian Robust Optimization for Imitation Learning

Zaynah Javed * 1 Daniel S. Brown * 1 Satvik Sharma 1 Jerry Zhu 1 Ashwin Balakrishna 1 Marek Petrik 2

Anca D. Dragan 1 Ken Goldberg 1

Abstract

The difficulty in specifying rewards for many real-

world problems has led to an increased focus on

learning rewards from human feedback, such as

demonstrations. However, there are often many

different reward functions that explain the human

feedback, leaving agents with uncertainty over

what the true reward function is. While most

policy optimization approaches handle this uncer-

tainty by optimizing for expected performance,

many applications demand risk-averse behavior.

We derive a novel policy gradient-style robust op-

timization approach, PG-BROIL, that optimizes a

soft-robust objective that balances expected per-

formance and risk. To the best of our knowl-

edge, PG-BROIL is the first policy optimization

algorithm robust to a distribution of reward hy-

potheses which can scale to continuous MDPs.

Results suggest that PG-BROIL can produce a

family of behaviors ranging from risk-neutral to

risk-averse and outperforms state-of-the-art im-

itation learning algorithms when learning from

ambiguous demonstrations by hedging against un-

certainty, rather than seeking to uniquely identify

the demonstrator’s reward function.

1. Introduction

We consider the following question: How should an in-

telligent agent act if it has epistemic uncertainty over its

objective function? In the fields of reinforcement learning

(RL) and optimal control, researchers and practitioners typ-

ically assume a known reward or cost function, which is

then optimized to obtain a policy. However, even in set-

tings where the reward function is specified, it is usually

only a best approximation of the objective function that a

human thinks will lead to desirable behavior. Furthermore,

1EECS Department, University of California, Berkeley 2CS
Department, University of New Hampshire. Correspondence
to: Zaynah Javed <zjaved@berkeley.edu>, Daniel Brown <ds-
brown@berkeley.edu>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

human-designed reward functions are also often augmented

with human feedback. This may also result in reward un-

certainty since human feedback, be it in the form of policy

shaping (Griffith et al., 2013), reward shaping (Knox &

Stone, 2012), or a hand-designed reward function (Hadfield-

Menell et al., 2017; Ratner et al., 2018), can fail to perfectly

disambiguate the human’s intent true (Amodei et al., 2016).

Reward function ambiguity is also a key problem in imi-

tation learning (Hussein et al., 2017; Osa et al., 2018), in

which an agent seeks to learn a policy from demonstrations

without access to the reward function that motivated the

demonstrations. While many imitation learning approaches

either sidestep learning a reward function and directly seek

to imitate demonstrations (Pomerleau, 1991; Torabi et al.,

2018) or take a maximum likelihood (Choi & Kim, 2011;

Brown et al., 2019) or maximum entropy approach to learn-

ing a reward function (Ziebart et al., 2008; Fu et al., 2017),

we believe that an imitation learning agent should explic-

itly reason about uncertainty over the true reward func-

tion to avoid misalignment with the demonstrator’s objec-

tives (Hadfield-Menell et al., 2017; Brown et al., 2020a).

Bayesian inverse reinforcement learning (IRL) methods (Ra-

machandran & Amir, 2007) seek a posterior distribution

over likely reward functions given demonstrations, but often

perform policy optimization using the expected reward func-

tion or MAP reward function (Ramachandran & Amir, 2007;

Choi & Kim, 2011; Ratner et al., 2018; Brown et al., 2020a).

However, in many real world settings such as robotics, fi-

nance, and healthcare, we desire a policy which is robust to

uncertainty over the true reward function.

Prior work on risk-averse and robust policy optimization in

reinforcement learning has mainly focused on robustness

to uncertainty over the true dynamics of the environment,

but assumes a known reward function (Garcıa & Fernández,

2015; Tamar et al., 2015; Tang et al., 2020; Derman et al.,

2018; Lobo et al., 2020; Thananjeyan et al., 2021). Some

work addresses robust policy optimization under reward

function uncertainty by taking a maxmin approach and op-

timizing a policy that is robust under the worst-case re-

ward function (Syed et al., 2008; Regan & Boutilier, 2009;

Hadfield-Menell et al., 2017; Huang et al., 2018). How-

ever, these approaches are limited to tabular domains, and

maxmin approaches have been shown to sometimes lead to

a
rX

iv
:2

1
0
6
.0

6
4
9
9
v
2

[c

s.
L

G
]

 2
1
 J

u
n
 2

0
2
1

Policy Gradient Bayesian Robust Optimization for Imitation Learning

incorrect and overly pessimistic policy evaluations (Brown

& Niekum, 2018). As an alternative to maxmin approaches,

recent work (Brown et al., 2020b) proposed a linear pro-

gramming approach, BROIL: Bayesian Robust Optimiza-

tion for Imitation Learning, that balances risk-aversion (in

terms of Conditional Value at Risk (Rockafellar et al., 2000))

and expected performance. This approach supports a family

of solutions depending on the risk-sensitivity of the applica-

tion domain. However, as their approach is built on linear

programming, it cannot be applied in MDPs with continuous

state and action spaces and unknown dynamics.

In this work, we introduce a novel policy optimization ap-

proach that enables varying degrees of risk-sensitivity by

reasoning about reward uncertainity while scaling to con-

tinuous MDPs with unknown dynamics. As in Brown et al.

(2020b), we present an approach which reasons simultane-

ously about risk-aversion (in terms of Conditional Value at

Risk (Rockafellar et al., 2000)) and expected performance

and balances the two. However, to enable such reasoning in

continuous spaces, we make a key observation: the Condi-

tional Value at Risk objective supports efficient computation

of an approximate subgradient, which can then be used in a

policy gradient method. This makes it possible to use any

policy gradient algorithm, such as TRPO (Schulman et al.,

2017a) or PPO (Schulman et al., 2017b) to learn policies

which are robust to reward uncertainity, resulting in an effi-

cient and scalable algorithm. To the best of our knowledge,

our proposed algorithm, Policy Gradient Bayesian Robust

Optimization for Imitation Learning (PG-BROIL), is the

first policy optimization algorithm robust to a distribution

of reward hypotheses that can scale to complex MDPs with

continuous state and action spaces.

To evaluate PG-BROIL, we consider settings where there

is uncertainty over the true reward function. We first exam-

ine the setting where we have an a priori distribution over

reward functions and find that PG-BROIL is able to opti-

mize policies that effectively trade-off between expected and

worst-case performance. Then, we leverage recent advances

in efficient Bayesian reward inference (Brown et al., 2020a)

to infer a posterior over reward functions from preferences

over demonstrated trajectories. While other approaches

which do not reason about reward uncertainty overfit to a

single reward function hypothesis, PG-BROIL optimizes

a policy that hedges against multiple reward function hy-

potheses. When there is high reward function ambiguity

due to limited demonstrations, we find that PG-BROIL re-

sults in significant performance improvements over other

state-of-the-art imitation learning methods.

2. Related Work

Reinforcement Learning: There has been significant

recent interest in safe and robust reinforcement learn-

ing (Garcıa & Fernández, 2015); however, most approaches

are only robust with respect to noise in transition dynamics

and only consider optimizing a policy with respect to a sin-

gle reward function. Existing approaches reason about risk

measures with respect to a single task rewards (Heger, 1994;

Shen et al., 2014; Tamar et al., 2014; Tang et al., 2019),

establish convergence to safe regions of the MDP (Thanan-

jeyan et al., 2020b;a), or optimize a policy to avoid con-

straint violations (Achiam et al., 2017; Fisac et al., 2018;

Thananjeyan et al., 2021).

In this paper, we develop a reinforcement learning algorithm

which reasons about risk with respect to a belief distribution

over the task reward function. We focus on being robust to

tail risk by optimizing for conditional value at risk (Rock-

afellar et al., 2000). However, unlike prior work (Heger,

1994; Shen et al., 2014; Tamar et al., 2014; 2015; Tang et al.,

2019; Zhang et al., 2021), which focuses on risk with re-

spect to a known reward function and stochastic transitions,

we consider policy optimization when there is epistemic

uncertainty over the reward function itself. We formulate

a soft-robustness approach that blends optimizing for ex-

pected performance and optimizing for the conditional value

at risk. Recent work also considers soft-robust objectives

when there is uncertainty over the correct transition model

of the MDP (Lobo et al., 2020; Russel et al., 2020), rather

than uncertainty over the true reward function.

Imitation Learning: Imitation learning approaches vary

widely in reasoning about reward uncertainty. Behavioral

cloning approaches simply learn to imitate the actions of

the demonstrator, resulting in quadratic regret (Ross & Bag-

nell, 2010). DAgger (Ross et al., 2011) achieves sublinear

regret by repeatedly soliciting human action labels in an

online fashion. While there has been work on safe variants

of DAgger (Zhang & Cho, 2016; Hoque et al., 2021), these

methods only enable robust policy learning by asymptot-

ically converging to the policy of the demonstrator, and

always assume access to an expert human supervisor.

Inverse reinforcement learning (IRL) methods are another

way of performing imitation learning (Arora & Doshi, 2018),

where the learning agent seeks to achieve better sample ef-

ficiency and generalization by learning a reward function

which is then optimized to obtain a policy. However, most in-

verse reinforcement learning methods only result in a point-

estimate of the demonstrator’s reward function (Abbeel &

Ng, 2004; Ziebart et al., 2008; Fu et al., 2017; Brown et al.,

2019). Risk-sensitive IRL methods (Lacotte et al., 2018; Ma-

jumdar et al., 2017; Santara et al., 2018) assume risk-averse

experts and focus on optimizing policies that match the

risk-aversion of the demonstrator; however, these methods

focus on the aleatoric risk induced by transition probabilities

and there is no clear way to adapt risk-averse IRL to the

Bayesian robust setting, where the objective is to be robust

Policy Gradient Bayesian Robust Optimization for Imitation Learning

(2) VaR ignores risk in the tail that occurs with probability

less than (1− α) which is problematic for domains where

there are rare but potentially catastrophic outcomes, and (3)

VaR is not a coherent risk measure (Artzner et al., 1999).

3.3.2. CONDITIONAL VALUE AT RISK

CVaR is a coherent risk measure (Delbaen, 2002), also

known as average value at risk, expected tail risk, or ex-

pected shortfall. For continuous distributions

CVaRα[X] = Ef(X) [X | X ≤ VaRα[X]] . (2)

In addition to being coherent, CVaR can be maximized via

convex optimization, does not ignore the tail of the distri-

bution, and is a lower bound on VaR. Because of these

desirable properties, we would like to use CVaR as our

risk measure. However, because posterior distributions ob-

tained via Bayesian IRL are often discrete (Ramachandran

& Amir, 2007; Sadigh et al., 2017; Hadfield-Menell et al.,

2017; Brown & Niekum, 2018), we cannot directly optimize

for CVaR using the definition in Equation (2) since this def-

inition only works for atomless distributions. Instead, we

make use of the following definition of CVaR, proposed by

Rockafellar et al. (2000), that works for any distribution:

CVaRα[X] = max
σ

(

σ −
1

1− α
E[(σ −X)+]

)

, (3)

where (x)+ = max(0, x) and σ roughly corresponds to the

VaRα. To gain intuition for this formula, note that if we

define σ = VaRα[X] we can rewrite CVaRα as

CVaRα[X] = Ef(X)[X | X ≤ σ] (4)

= σ − Ef(X)[σ −X | X ≤ σ] (5)

= σ −
Ef(X)[1X≤σ · (σ −X)]

P (X ≤ σ)
(6)

= σ −
1

1− α
Ef(X)[(σ −X)+] (7)

where 1x = 1 is the indicator function that evaluates to 1 if

x is True and 0 otherwise, and where we used the linearity

of expectation, the definition of conditional expectation, and

the definitions of VaRα[X], and (x)+. Taking the maxi-

mum over σ ∈ R, gives us the definition in Equation (3).

4. Bayesian Robust Optimization for

Imitation Learning

In Section 4.1 we describe the Bayesian robust optimiza-

tion for imitation learning (BROIL) objective, previously

proposed by (Brown et al., 2020b). Then, in sections 4.2

and 4.3, we derive a novel policy gradient update for BROIL

and provide an intuitive explanation for the result.

4.1. Soft-Robust BROIL Objective

Rather than seeking a purely risk-sensitive or purely risk-

neutral approach, we seek to optimize a soft-robust objec-

tive that balances the expected and probabilistic worst-case

performance of a policy. Given some performance metric

ψ(πθ, R) where R ∼ P(R), Brown et al. (2020b) recently

proposed Bayesian Robust Optimization for Imitation Learn-

ing (BROIL) which seeks to optimize the following:

max
πθ

λ·EP(R)[ψ(πθ, R)]+(1−λ)·CVaRα
[

ψ(πθ, R)
]

(8)

For MDPs with discrete states and actions and known dy-

namics, Brown et al. (2020b) showed that this problem can

be formulated as a linear program which can be solved in

polynomial time. However, many MDPs of interest involve

continuous states and actions and unknown dynamics.

4.2. BROIL Policy Gradient

We now derive a policy gradient objective for BROIL

that allows us to extend BROIL to continuous states and

actions and unknown transition dynamics, enabling ro-

bust policy learning in a wide variety of practical set-

tings. Given a parameterized policy πθ and N possible

reward hypotheses, there are many possible choices for

the performance metric ψ(πθ, R). Brown et al. (2020a)

considered two common metrics: (1) expected value, i.e.,

ψ(πθ, R) = v(π,R) = Eτ∼πθ
[R(τ)] and (2) baseline re-

gret, i.e., ψ(πθ, R) = v(πθ, R) − v(πE , R) where πE de-

notes an expert policy (usually estimated from demonstra-

tions). In Appendix A we derive a more general form for any

performance metric ψ(πθ, R) and also give the derivation

for the baseline regret performance metric. For simplicity,

we let ψ(πθ, R) = v(π,R) (expected return) hereafter.

To find the policy that maximizes Equation (8) we need the

gradient with respect to the policy parameters θ. For the

first term in Equation (8), we have

∇θEP(R)[v(πθ, R)] ≈
N
∑

i=1

P(ri)∇θEτ∼πθ
[ri(τ)]. (9)

Next, we consider the gradient of the CVaR term. CVaR is

not differentiable everywhere so we derive a sub-gradient.

Given a finite number of samples from the reward function

posterior, we can write this sub-gradient as

∇θmax
σ

(

σ −
1

1− α

N
∑

i=1

P(ri)
(

σ − Eτ∼πθ
[ri(τ)]

)

+

)

(10)

where (x)+ = max(0, x). To solve for the sub-gradient of

this term, note that given a fixed policy πθ, we can solve

for σ via a line search: since the objective is piece-wise

Policy Gradient Bayesian Robust Optimization for Imitation Learning

linear we only need to check the value at each point v(π, ri),
for each reward function sample from the posterior since

these are the endpoints of each linear segment. If we let

vi = v(π, ri) then we can quickly iterate over all reward

function hypotheses and solve for σ as

σ∗ = argmax
σ∈{v1,...,vN}

(

σ−
1

1− α

N
∑

i=1

P(ri)
[

σ−vi
]

+

)

. (11)

Solving for σ∗ requires estimating vi by collecting a

set T of on-policy trajectories τ ∼ πθ where τ =
(s0, a0, s1, a1, . . . , sT , aT):

vi ≈
1

|T |

∑

τ∈T

T
∑

t=0

ri(st, at). (12)

Solving for σ∗ does not require additional data collection

beyond what is required for standard policy gradient ap-

proaches. We simply evaluate the set of rollouts T from πθ
under each reward function hypothesis, ri and then solve

the optimization problem above to find σ∗. While this re-

quires more computation than a standard policy gradient

approach—we have to evaluate each rollout underN reward

functions—this does not increase the online data collection,

which is often the bottleneck in RL algorithms.

Given the solution σ∗ found by solving the optimization

problem in (11), we perform a step of policy gradient op-

timization by following the sub-gradient of CVaR with re-

spect to the policy parameters θ:

∇θ CVaRα =
1

1− α

N
∑

i=1

P(ri)1σ∗≥v(πθ,ri)∇θv(πθ, ri)

(13)

where 1x is the indicator function that evaluates to 1 if x is

True and 0 otherwise. Given the sub-gradient of the BROIL

objective (13), the only thing remaining to compute is the

standard policy gradient. Note that in standard RL, we write

the policy gradient as (Sutton & Barto, 2018):

∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[

T
∑

t=0

∇θ log πθ(at | st)Φt(τ)

]

(14)

where Φt is a measure of the performance of trajectory τ
starting at time t. One of the most common forms of Φt(τ)
is the on-policy advantage function (Schulman et al., 2015)

with respect to some single reward function:

Φt(τ) = Aπθ (st, at) = Qπθ (st, at)− V πθ (st). (15)

If we define Φrit in terms of a particular reward function

ri, then, as we show in Appendix A, we can rearrange

terms in the standard policy gradient formula to obtain the

following form for the BROIL policy gradient which we

estimate using a set T of on-policy trajectories τ ∼ πθ
where τ = (s0, a0, s1, a1, . . . , sT , aT) as follows:

∇θBROIL ≈
1

|T |

∑

τ∈T

[T
∑

t=0

∇θ log πθ(at | st)wt(τ)

]

(16)

where

wt(τ) =

N
∑

i=1

P(ri)Φ
ri
t (τ)

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(17)

is the weight associated with each state-action pair (st, at)
in the set of trajectory rollouts T . The resulting vanilla

policy gradient algorithm is summarized in Algorithm 1. In

Appendix C we show how to apply a trust-region update

based on Proximal Policy Optimization (Schulman et al.,

2017b) for more stable policy gradient optimization.

4.3. Intuitive Interpretation of the Policy Gradient

Consider the policy gradient weight wt given in Equa-

tion (17). If λ = 1, then

wt(τ) =
N
∑

i=1

P(Ri)Φ
Ri

t (τ) = ΦR̄t (τ) (18)

where R̄ is the expected reward under the posterior. Thus,

λ = 1 is equivalent to standard policy gradient optimization

under the mean reward function and gradient ascent will

focus on increasing the likelihood of actions that look good

in expectation over the reward function distribution P(R).
Alternatively, if λ = 0, then

wt(τ) =
1

1− α

N
∑

i=1

1σ∗≥v(π,Ri)P(Ri)Φ
Ri

t (τ) (19)

and gradient ascent will increase the likelihood of actions

that look good under reward functions that the current pol-

icy πθ performs poorly under, i.e., policy gradient updates

will focus on improving performance under all Ri such that

v(π,Ri) ≤ σ∗, weighting the gradient according to the like-

lihood of these worst-case reward functions. The update

rule also multiplies by 1/(1− α) which acts to normalize

the magnitude of the gradient: as α → 1 we update on

reward functions further into the tail, which have smaller

probability mass. Thus, λ ∈ [0, 1] allows us to blend be-

tween maximizing policy performance in expectation versus

worst-case and α ∈ [0, 1) determines how far into the tail

of the distribution to focus the worst-case updates.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Algorithm 1 Policy Gradient BROIL

1: Input: initial policy parameters θ0, samples from re-

ward function posterior r1, . . . , rN and associated prob-

abilities, P(r1), . . . ,P(rN).
2: for k = 0, 1, 2, . . . do

3: Collect set of trajectories Tk = {τi} by running pol-

icy πθk in the environment.

4: Estimate expected return of πθk under each reward

function hypothesis rj using Eq. (12).

5: Solve for σ∗ using Eq. (11)

6: Estimate policy gradient using Eq. (16) and Eq. (17).

7: Update θ using gradient ascent.

8: end for

5. Experiments

In experiments, we consider the following questions: (1)

Can PG-BROIL learn control policies in MDPs with contin-

uous states and actions and unknown transition dynamics?

(2) Does optimizing PG-BROIL with different values of λ
effectively trade-off between maximizing for expected re-

turn and maximizing robustness? (3) When demonstrations

are ambiguous, can PG-BROIL outperform other imitation

learning baselines by hedging against uncertainty?

Code and videos are available at https://sites.

google.com/view/pg-broil.

5.1. Prior over Reward Functions

We first consider an RL agent with a priori uncertainty over

the true reward function. This setting allows us to initially

avoid the difficulties of inferring a posterior distribution

over reward functions and carefully examine whether PG-

BROIL can trade-off expected performance and robustness

(CVaR) under epistemic uncertainty over the true reward

function. We study 3 domains: the classical CartPole bench-

mark (Brockman et al., 2016), a pointmass navigation task

inspired by (Thananjeyan et al., 2020b) and a robotic reach-

ing task from the from the DM Control Suite (Tassa et al.,

2020). All domains are characterized by a robot navigating

in an environment where some states have uncertain costs.

All domains have unknown transition dynamics and contin-

uous states and actions (except CartPole which has discrete

actions). We implement PG- BROIL on top of OpenAI

Spinning Up (Achiam, 2018). For cartpole we implement

PG-BROIL on top of REINFORCE (Peters & Schaal, 2008)

and for remaining domains we implement PG-BROIL on

top of PPO (Schulman et al., 2017b) (see Appendix C).

5.1.1. EXPERIMENTAL DOMAINS

CartPole: We consider a risk-sensitive version of the classic

CartPole benchmark (Brockman et al., 2016). The reward

function isR(s) = b ·sx, where sx is the position of the cart

on the track, and there is uncertainty over b. Our prior over b
is distributed uniformly in the range [-1, 0.2]. The center of

the track is sx = 0. We sample values of b between -1 and

0.2 across even intervals of 0.2 width to form a discrete pos-

terior distribution for PG-BROIL. The reward distribution

is visualized in Figure 2a. Based on our prior distribution

over reward functions, the left side of the track (sx < 0) is

associated with a higher expected reward but a worse worst

case scenario (the potential for negative rewards). By con-

trast, the robust solution is to stay in the middle of the track

in order to perform well across all possible reward functions

since the center of the track has less risk of a significantly

negative reward than the left or right sides of the track.

Pointmass Navigation: We next consider a risk-sensitive

continuous 2-D navigation task inspired by Thananjeyan

et al. (2020b). Here the objective is to control a pointmass

robot towards a known goal location with forces in cardinal

directions in a system with linear Gaussian dynamics and

drag. There are gray regions of uncertain cost that can

either be traversed or avoided as illustrated in Figure 2b. For

example, these regions could represent grassy areas which

are likely easy to navigate, but where the grass may occlude

mud or holes which would impede progress and potentially

cause damage or undue wear and tear on the robot. The

robot has prior knowledge that it needs to reach the goal

location g = (0, 0) on the map, depicted by the red star. We

represent this prior with a nominal cost for each step that is

the distance to the goal from the robot’s position. We add

a penalty term of uncertain cost for going through the gray

region giving the following reward function posterior:

R(s) = −
(

‖sx,y − g‖22 + b · 1gray

)

, b ∼ P(b), (20)

where 1gray is an indicator for entering a gray region, and

where the distribution P(b) over the penalty b is given as

b -500 -40 0 40 50

P(b) 0.05 0.05 0.2 0.3 0.4

On average it is favorable to go through the gray region

(E[b] = +5), but there is some probability that going

through the gray region is highly unfavorable:

Reacher: We design a modified version of the Reacher

environment from the DeepMind Control Suite (Tassa et al.,

2020) (Figure 2c), which is a 2 link planar arm where the

robot can apply joint torques to each of the 2 joints to guide

the end effector of the arm to a goal position on the plane.

We modify the original environment by including an area of

uncertainty (large red circle). When outside the uncertain

region, the robot receives a reward which penalizes the

distance between the end effector and the goal (small yellow

circle). Thus, the robot is normally incentivized to guide the

end effector to the goal as quickly as possible. When the end

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Table 1. TrashBot: We evaluate PG-BROIL against 5 other im-

itation learning algorithms when learning from ambiguous pref-

erences over demonstrations (Figure 3). Results are averages (±

one st. dev.) over 10 random seeds and 100 test episodes each

with a horizon of 100 steps per episode. For PG-BROIL, we set

α = 0.95 and report results for the best λ (λ = 0.8).

ALGORITHM
AVG. TRASH

COLLECTED

AVG. STEPS IN

GRAY REGION

BC 3.4 ± 1.8 2.7 ± 6.2
GAIL 2.2 ± 1.5 3.7 ± 9.9
RAIL 1.1 ± 1.2 2.2 ± 6.9
PBRL 2.6 ± 1.5 1.2 ± 2.7
BAYESIAN REX 1.6 ± 1.3 1.2 ± 1.7
PG-BROIL 8.4 ± 0.5 0.1 ± 0.1

performance by producing policies that do well in expecta-

tion, but also avoid low reward under any of the sufficiently

probable reward functions in the learned posterior.

5.2.1. TRASHBOT FROM DEMOS

We first consider a continuous control TrashBot domain

(Figure 3), where aim to teach a robot to pick up pieces of

trash (black dots) while avoiding the gray boundary regions.

The state-space, dynamics and actions are the same as for

the Pointmass Navigation environment and we provide hu-

man demonstrations via a simple teleoperation interface.

The robot constructs its reward function hypotheses as lin-

ear combinations of three binary features which correspond

to: (1) being in the gray region (GRAY), (2) being in the

white region (WHITE), and (3) picking up a piece of trash

(TRASH). We give three pairwise preferences over human

teleoperated trajectories (generated by one of the authors)

as shown in Figure 3. However, the small number of pref-

erences makes it challenging for the robot to ascertain the

true reward function parameters as there are many reward

function weights that would lead to the same human pref-

erences. Furthermore, the most salient feature is WHITE

and this feature is highly correlated, but not causal, with the

preferences. Thus, this domain can easily lead to reward

hacking/gaming behaviors (Krakovna et al., 2020). We hy-

pothesize that PG-BROIL will hedge against uncertainty

and learn to pick up trash while avoiding the gray region.

We compare against behavioral cloning (BC), GAIL (Ho

& Ermon, 2016), and Risk-Averse Imitation Learning

(RAIL) (Santara et al., 2018), which estimates CVaR over

trajectories to create a risk-averse version of the GAIL algo-

rithm. To facilitate a fairer comparison, we only give BC,

GAIL, and RAIL the better ranked demonstration from each

preference pair. We also compare with Preference-based RL

(PBRL) (Christiano et al., 2017) in the offline demonstra-

tion setting (Brown et al., 2019) which optimizes an MLE

estimate of the reward weights and Bayesian REX (Brown

et al., 2020a), which optimizes the mean reward function

under the posterior distribution given the preferences. PG-

BROIL also uses Bayesian REX (Brown et al., 2020a) to

infer a reward function posterior distribution given the pref-

erences over demonstrations (see Appendix E for details),

but optimizes the BROIL objective.

Table 1 compares the performance of each baseline imitation

learning algorithm when given the 3 pairs of demonstrations

shown in Figure 3. We find that PG-BROIL outperforms

BC and GAIL (Ho & Ermon, 2016) by not directly seek-

ing to imitate the states and actions in the demonstrations,

but by explicitly reasoning about uncertainty in the true re-

ward function. We also find that PG-BROIL significantly

outperforms RAIL. This is because RAIL only focuses on

minimizing aleatoric uncertainty under stochastic transition

dynamics for a single reward function (the discriminator),

not epistemic uncertainty over the true reward function. We

find that PG-BROIL outperforms PBRL and Bayesian REX.

We inspected the learned reward functions and found that

the PBRL reward places heavy emphasis on collecting trash

but has a small positive weight on the WHITE feature. We

hypothesize that this results in policy optimization falling

into a local maxima in which it mostly mines rewards by

staying in the white region. By contrast, PG-BROIL con-

siders a number of reward hypotheses, many of which have

negative weights on the WHITE feature. Thus, a risk-averse

agent cannot mine rewards by simply staying in the white

region, and is incentivized to maximally pick up trash while

keeping visits to the gray region low. The mean reward

function optimized by Bayesian REX penalizes visiting the

gray region but learns roughly equal weights for the WHITE

and TRASH features. Thus, Bayesian REX is not strongly

incentivized to pick up trash. Because of this the learned

policy sometimes visits the borders of the white region and

occasionally enters the gray region when it accumulates

too high of a velocity. By contrast, PG-BROIL effectively

optimizes a policy that is robust to multiple hypotheses that

explain the rankings: picking up trash more than any other

policy, while avoiding the gray region. See Appendix F.

5.2.2. REACHER FROM DEMOS WITH DOMAIN SHIFT

For this experiment, we use the same Reacher environment

described above. We give the agent five pairwise prefer-

ences over demonstrations of varying quality in a training

domain where the uncertain reward region is never close

to the goal and where none of the demonstrations show the

reacher arm entering the uncertain region. We then intro-

duce domain shift by both optimizing and testing policies in

reacher environments unseen in the demonstrations, where

the goal location is randomized and sometimes the uncertain

reward region is in between the the reacher arm and the goal.

The inferred reward function is a linear combination of 2

Policy Gradient Bayesian Robust Optimization for Imitation Learning

contrastive learning (Laskin et al., 2020) and deep Bayesian

reward function inference (Brown et al., 2020a) to enable

robust policy learning from raw pixels.

Acknowledgements

The authors would like to thank the anonymous review-

ers for their helpful suggestions for improving the paper.

This work has taken place in the AUTOLAB and InterACT

Lab at the University of California, Berkeley and the Rein-

forcement Learning and Robustness Lab (RLsquared) at the

University of New Hampshire. AUTOLAB research is sup-

ported in part by the Scalable Collaborative Human-Robot

Learning (SCHooL) Project, the NSF National Robotics

Initiative Award 1734633, and in part by donations from

Google, Siemens, Amazon Robotics, Toyota Research In-

stitute, and by equipment grants from NVidia. InterACT

Lab research is supported in part by AFOSR, NSF NRI

SCHOOL, and ONR YIP. RLsquared research is supported

in part by NSF Grants IIS-1717368 and IIS-1815275. Ash-

win Balakrishna is supported by an NSF GRFP. This article

solely reflects the opinions and conclusions of its authors

and not the views of the sponsors or their associated entities.

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first

international conference on Machine learning, pp. 1,

2004.

Achiam, J. Spinning Up in Deep Reinforcement Learn-

ing. 2018. URL https://spinningup.openai.

com/.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International Conference on Ma-

chine Learning, pp. 22–31. PMLR, 2017.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-

man, J., and Mané, D. Concrete problems in ai safety.

arXiv preprint arXiv:1606.06565, 2016.

Arora, S. and Doshi, P. A survey of inverse reinforce-

ment learning: Challenges, methods and progress. arXiv

preprint arXiv:1806.06877, 2018.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. Coherent

measures of risk. Mathematical finance, 9(3):203–228,

1999.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. Openai gym,

2016.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrap-

olating beyond suboptimal demonstrations via inverse

reinforcement learning from observations. In Interna-

tional Conference on Machine Learning, pp. 783–792.

PMLR, 2019.

Brown, D., Niekum, S., Coleman, R., and Srinivasan, R.

Safe imitation learning via fast bayesian reward infer-

ence from preferences. In International Conference on

Machine Learning, 2020a.

Brown, D., Niekum, S., and Marek, P. Bayesian robust

optimization for imitation learning. In Neural Information

Processing Systems (NeurIPS), 2020b.

Brown, D. S. and Niekum, S. Efficient probabilistic per-

formance bounds for inverse reinforcement learning. In

Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

Choi, J. and Kim, K.-E. Map inference for bayesian inverse

reinforcement learning. In Advances in Neural Informa-

tion Processing Systems, pp. 1989–1997, 2011.

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg,

S., and Amodei, D. Deep reinforcement learning from

human preferences. arXiv preprint arXiv:1706.03741,

2017.

Delage, E. and Mannor, S. Percentile optimization for

markov decision processes with parameter uncertainty.

Operations research, 58(1):203–213, 2010.

Delbaen, F. Coherent risk measures on general probability

spaces. In Advances in finance and stochastics, pp. 1–37.

Springer, 2002.

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor,

S. Soft-robust actor-critic policy-gradient. arXiv preprint

arXiv:1803.04848, 2018.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:

Deep inverse optimal control via policy optimization. In

International conference on machine learning, pp. 49–58.

PMLR, 2016.

Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama,

S., Gillula, J., and Tomlin, C. J. A general safety frame-

work for learning-based control in uncertain robotic sys-

tems. In IEEE Transactions on Automatic Control, 2018.

Föllmer, H. and Knispel, T. Entropic risk measures: Co-

herence vs. convexity, model ambiguity and robust large

deviations. Stochastics and Dynamics, 11(02n03):333–

351, 2011.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Fu, J., Luo, K., and Levine, S. Learning robust rewards

with adversarial inverse reinforcement learning. arXiv

preprint arXiv:1710.11248, 2017.

Garcıa, J. and Fernández, F. A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning

Research, 16(1):1437–1480, 2015.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and

Thomaz, A. Policy shaping: integrating human feedback

with reinforcement learning. In Proceedings of the 26th

International Conference on Neural Information Process-

ing Systems-Volume 2, pp. 2625–2633, 2013.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-

critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and

Dragan, A. Inverse reward design. In Advances in neural

information processing systems, pp. 6765–6774, 2017.

Heger, M. Consideration of risk in reinforcement learning.

In Machine Learning Proceedings, 1994.

Ho, J. and Ermon, S. Generative Adversarial Imitation

Learning. In Advances in Neural Information Processing

Systems, pp. 7461–7472, 2016.

Hoque, R., Balakrishna, A., Putterman, C., Luo, M., Brown,

D. S., Seita, D., Thananjeyan, B., Novoseller, E., and

Goldberg, K. Lazydagger: Reducing context switch-

ing in interactive imitation learning. arXiv preprint

arXiv:2104.00053, 2021.

Huang, J., Wu, F., Precup, D., and Cai, Y. Learning safe

policies with expert guidance. In Advances in Neural

Information Processing Systems, pp. 9105–9114, 2018.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-

itation learning: A survey of learning methods. ACM

Computing Surveys (CSUR), 50(2):1–35, 2017.

Knox, W. B. and Stone, P. Reinforcement learning from

simultaneous human and mdp reward. In AAMAS, pp.

475–482, 2012.

Krakovna, V., Uesato, J., Mikulik, V., Rahtz, M., Everitt, T.,

Kumar, R., Kenton, Z., Leike, J., and Legg, S. Specifica-

tion gaming examples in ai. DeepMind Blog, 2020.

Lacotte, J., Ghavamzadeh, M., Chow, Y., and Pavone, M.

Risk-sensitive generative adversarial imitation learning.

arXiv preprint arXiv:1808.04468, 2018.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive

unsupervised representations for reinforcement learning.

In International Conference on Machine Learning, pp.

5639–5650. PMLR, 2020.

Lobo, E. A., Ghavamzadeh, M., and Petrik, M. Soft-robust

algorithms for handling model misspecification. arXiv

preprint arXiv:2011.14495, 2020.

Majumdar, A., Singh, S., Mandlekar, A., and Pavone, M.

Risk-sensitive inverse reinforcement learning via coher-

ent risk models. In Robotics: Science and Systems, 2017.

Nass, D., Belousov, B., and Peters, J. Entropic risk measure

in policy search. arXiv preprint arXiv:1906.09090, 2019.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel,

P., and Peters, J. An algorithmic perspective on imitation

learning. arXiv preprint arXiv:1811.06711, 2018.

Peters, J. and Schaal, S. Reinforcement Learning of Motor

Skills with Policy Gradients. Neural Networks, 21(4):

682–697, 2008.

Pomerleau, D. A. Efficient training of artificial neural net-

works for autonomous navigation. Neural computation,

3(1):88–97, 1991.

Puterman, M. L. Markov decision processes: Discrete

stochastic dynamic programming. Wiley-Interscience,

2005.

Ramachandran, D. and Amir, E. Bayesian inverse rein-

forcement learning. In IJCAI, volume 7, pp. 2586–2591,

2007.

Ratner, E., Hadfield-Mennell, D., and Dragan, A. Sim-

plifying reward design through divide-and-conquer. In

Robotics: Science and Systems, 2018.

Regan, K. and Boutilier, C. Regret-based reward elicitation

for Markov decision processes. In Conference on Uncer-

tainty in Artificial Intelligence (UAI), pp. 444–451, 2009.

ISBN 978-0-9749039-5-8.

Rockafellar, R. T., Uryasev, S., et al. Optimization of condi-

tional value-at-risk. Journal of risk, 2:21–42, 2000.

Ross, S. and Bagnell, D. Efficient reductions for imitation

learning. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pp.

661–668. JMLR Workshop and Conference Proceedings,

2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-

tion learning and structured prediction to no-regret online

learning. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pp.

627–635. JMLR Workshop and Conference Proceedings,

2011.

Russel, R. H., Behzadian, B., and Petrik, M. Entropic

risk constrained soft-robust policy optimization. arXiv

preprint arXiv:2006.11679, 2020.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.

Active preference-based learning of reward functions. In

Robotics: Science and Systems, 2017.

Santara, A., Naik, A., Ravindran, B., Das, D., Mudigere, D.,

Avancha, S., and Kaul, B. RAIL : Risk-Averse Imitation

Learning Extended Abstract. arXiv:1707.06658, 2018.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,

P. High-dimensional continuous control using generalized

advantage estimation. arXiv preprint arXiv:1506.02438,

2015.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and

Abbeel, P. Trust region policy optimization. arXiv

preprint arXiv:1707.06347, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017b.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K. Risk-

sensitive reinforcement learning. In Neural Computation,

volume 26, 2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An

introduction. MIT press, 2018.

Syed, U., Bowling, M., and Schapire, R. E. Apprenticeship

learning using linear programming. In Proceedings of the

25th international conference on Machine learning, pp.

1032–1039, 2008.

Tamar, A., Glassner, Y., and Mannor, S. Policy gradients

beyond expectations: Conditional value-at-risk. In CoRR,

2014.

Tamar, A., Glassner, Y., and Mannor, S. Optimizing the

cvar via sampling. In Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015.

Tang, Y. C., Zhang, J., and Salakhutdinov, R. Worst cases

policy gradients. Conf. on Robot Learning (CoRL), 2019.

Tang, Y. C., Zhang, J., and Salakhutdinov, R. Worst cases

policy gradients. In Kaelbling, L. P., Kragic, D., and Sug-

iura, K. (eds.), Proceedings of the Conference on Robot

Learning, volume 100 of Proceedings of Machine Learn-

ing Research, pp. 1078–1093. PMLR, 30 Oct–01 Nov

2020. URL http://proceedings.mlr.press/

v100/tang20a.html.

Tassa, Y., Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu,

S., Bohez, S., Merel, J., Erez, T., Lillicrap, T., and Heess,

N. dm control: Software and tasks for continuous control,

2020.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Gonzalez,

J. E., Ames, A., and Goldberg, K. Abc-lmpc: Safe sample-

based learning mpc for stochastic nonlinear dynamical

systems with adjustable boundary conditions. In Work-

shop on the Algorithmic Foundations of Robotics, 2020a.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAl-

lister, R., Gonzalez, J. E., Levine, S., Borrelli, F., and

Goldberg, K. Safety augmented value estimation from

demonstrations (saved): Safe deep model-based rl for

sparse cost robotic tasks. Robotics and Automation Let-

ters (RAL), 2020b.

Thananjeyan, B., Balakrishna, A., Nair, S., Luo, M., Srini-

vasan, K., Hwang, M., Gonzalez, J. E., Ibarz, J., Finn,

C., and Goldberg, K. Recovery rl: Safe reinforcement

learning with learned recovery zones. In Robotics and

Automation Letters (RA-L). IEEE, 2021.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning

from observation. In Proceedings of the 27th Interna-

tional Joint Conference on Artificial Intelligence, pp.

4950–4957, 2018.

Xu, K., Ratner, E., Dragan, A., Levine, S., and Finn, C.

Learning a prior over intent via meta-inverse reinforce-

ment learning. International Conference on Machine

Learning, 2019.

Yuan, Y. Pytorch implementation of reinforcement learn-

ing algorithms. https://github.com/Khrylx/

PyTorch-RL, 2019.

Zhang, J. and Cho, K. Query-efficient imitation learn-

ing for end-to-end autonomous driving. arXiv preprint

arXiv:1605.06450, 2016.

Zhang, S., Liu, B., and Whiteson, S. Mean-variance pol-

icy iteration for risk-averse reinforcement learning. In

Conference on Artificial Intelligence (AAAI), 2021.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.

Maximum entropy inverse reinforcement learning. In

Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

A. Full Derivation of CVaR BROIL Policy Gradient

In this section we derive the complete derivation of the policy gradient objective for BROIL.

A.1. General Performance Metric

We will first derive a policy gradient algorithm for any performance metric. Then, we will derive special cases corresponding

to particular choices of the performance metric.

We start with the same objective, which we note is a weighted combination of two terms, one of which measures expected

performance (E[ψ(πθ, R)]) and the other of which measures tail risk (CVaRα

[

ψ(πθ, R)

]

):

maximize
πθ

λ · E[ψ(πθ, R)] + (1− λ) · CVaRα

[

ψ(πθ, R)

]

(21)

We want to solve this via a policy gradient algorithm so we need to find the gradient with respect to θ. For the first term we

have

∇θEP(R)[ψ(πθ, R)] =EP(R)[∇θψ(πθ, R)] (22)

=
∑

i

P(ri)∇θψ(πθ, ri). (23)

Now consider the gradient of the CVaR term. We have

∇θ CVaRα[ψ(πθ, R)] = ∇θmax
σ

(

σ −
1

1− α

∑

i

P(ri)
[

σ − ψ(πθ, ri)
]

+

)

(24)

Here we need to take the gradient with respect to an inner maximization over the auxiliary variable σ. To solve for the

gradient of this term, first note that given a fixed policy πθ, the objective is piecewise linear in σ with switch points at each

sample from the posterior (ψ(πθ, ri) ∀ri). Thus, we can solve for σ via linear programming or just via a line search. If we

let ψi = ψ(πθ, ri) then we can quickly iterate over all reward function hypotheses and solve for σ as

σ∗ = argmax
σ∈{ψ1,...,ψN}

(

σ −
1

1− α

∑

i

P(ri)
[

σ − ψi
]

+

)

(25)

Given the solution to the above optimization problem, we can now fix σ = σ∗ and then perform a step of policy gradient

optimization by following the sub-gradient of CVaR with respect to the policy parameters θ:

∇θ

(

σ∗ −
1

1− α

∑

i

P(ri)
[

σ∗ − ψ(πθ, ri)]
]

+

)

=−
1

1− α

∑

i

P(ri)∇θ

[

σ∗ − ψ(πθ, ri)
]

+
(26)

=
1

1− α

∑

i

P(ri)1σ∗≥ψ(πθ,ri)∇θψ(πθ, ri) (27)

where we use the notation 1x to denote the indicator function:

1x =

{

1 if x is True

0 otherwise
(28)

We now can formulate the full BROIL policy gradient update step by blending the policy gradient over the expectation with

the policy gradient over the CVaR:

∇θBROIL =λ
∑

i

P(ri)∇θψ(πθ, ri) +
1− λ

1− α

∑

i

P(ri)1σ∗≥ψ(πθ,ri)∇θψ(πθ, ri) (29)

=
∑

i

P(ri)∇θψ(πθ, ri)

(

λ+
1− λ

1− α
1σ∗≥ψ(πθ,ri)

)

(30)

Policy Gradient Bayesian Robust Optimization for Imitation Learning

A.2. Policy Gradient for Expected Return

We now consider the case where our performance metric is expected value, i.e., ψ(πθ, R) = v(πθ, R) = Eτ∼πθ
[R(τ)].

Plugging expected value for our performance metric into Equation (29) gives the following:

∇θBROIL =
∑

i

P(ri)∇θv(π, ri)

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

, (31)

where solving for σ∗ requires estimating vi by collecting a set T of on-policy trajectories τ ∼ πθ where τ =
(s0, a0, s1, a1, . . . , sT , aT):

vi ≈
1

|T |

∑

τ∈T

T
∑

t=0

ri(st, at). (32)

Given the expected return under each reward function hypothesis we solve for σ∗ as

σ∗ = argmax
σ∈{v1,...,vN}

(

σ −
1

1− α

N
∑

i=1

P(ri)
[

σ − vi
]

+

)

. (33)

Solving for σ∗ does not require additional data collection beyond what is required for standard policy gradient approaches.

We simply evaluate the set of rollouts T from πθ under each reward function hypothesis, ri and then solve the optimization

problem above to find σ∗. While this requires more computation than a standard policy gradient approach—we have

to evaluate each rollout under N reward functions—this does not increase the online data collection, which is often the

bottleneck in RL algorithms.

Note that, in general, we can write the policy gradient of the expected return as

∇θv(π, ri) = ∇θEτ∼πθ
[ri(τ)] = Eτ∼πθ

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

(34)

where Φrit is some measure of the quality of the policy under reward function ri. Common choices include the return of a

trajectory: Φrit = ri(τ), the reward-to-go from time t:
∑T

t′=t ri(st′ , at′), the reward-to-go with a state-dependent baseline:
∑T

t′=t ri(st′ , at′)− b(st), the on-policy action-value function Qπθ (st, at), or the on-policy advantage function (the most

popular choice) (Schulman et al., 2015):

Φrit = Aπθ (st, at) = Qπθ (st, at)− V πθ (st). (35)

Any of these formulations of the policy gradient can be used for the above BROIL policy gradient as follows where we

approximate the expectation using a set T of on-policy trajectories τ ∼ πθ:

Policy Gradient Bayesian Robust Optimization for Imitation Learning

∇θBROIL =
∑

i

P(ri)∇θEτ∼πθ
[ri(τ)]

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(36)

=
∑

i

P(ri)

(

Eτ∼πθ

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

)(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(37)

≈
∑

i

P(ri)

(

1

|T |

∑

τ∈T

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

)(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(38)

=
1

|T |

∑

i

P(ri)

(

∑

τ∈T

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

)(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(39)

=
1

|T |

∑

i

∑

τ∈T

P(ri)

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(40)

=
1

|T |

∑

τ∈T

∑

i

P(ri)

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(41)

=
1

|T |

∑

τ∈T

∑

i

T
∑

t=0

P(ri)∇θ log πθ(at | st)Φ
ri
t

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(42)

=
1

|T |

∑

τ∈T

T
∑

t=0

∑

i

P(ri)∇θ log πθ(at | st)Φ
ri
t

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(43)

=
1

|T |

∑

τ∈T

T
∑

t=0

∇θ log πθ(at | st)

(

∑

i

P(ri)Φ
ri
t (τ)

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

)

(44)

=
1

|T |

∑

τ∈T

T
∑

t=0

∇θ log πθ(at | st)wt (45)

where

wt =
∑

i

P(ri)Φ
ri
t (τ)

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(46)

is the weight associated with each state-action pair. Intuitively, if λ = 1, then we just focus on increasing the likelihood of

actions that look good in expectation. If λ = 0, then we focus on increasing the likelihood of actions that look good under

reward functions that the current policy πθ performs poorly under, i.e., we focus on improving our performance under all ri
such that σ∗ > v(π, ri)), weighting the gradient according to the likelihood of these worst-case reward functions.

A.3. Policy Gradient for Baseline Regret

We now consider the case where our performance metric is baseline regret (Brown et al., 2020b), which measures performance

with respect to some expert demonstrator. The intuition is that this formulation may be able to reduce variance in the policy

gradient estimator by grounding updates in the expected return of the demonstrator. We define baseline regret as follows:

ψ(πθ, R) = v(πθ, R)− v(πE , R), (47)

Policy Gradient Bayesian Robust Optimization for Imitation Learning

where πE denotes an expert policy and v(πE , R) is usually estimated from demonstrations. Plugging baseline regret for our

performance metric into Equation (29) gives the following:

∇θBROIL =
∑

i

P(ri)∇θ

(

v(πθ, ri)− v(πE , ri)
)

(

λ+
1− λ

1− α
1σ∗≥v(πθ,ri)−v(πE ,ri)

)

(48)

=
∑

i

P(ri)∇θv(πθ, ri)

(

λ+
1− λ

1− α
1σ∗≥v(πθ,ri)−v(πE ,ri)

)

(49)

=
∑

i

P(ri)∇θEτ∼πθ
[ri(τ)]

(

λ+
1− λ

1− α
1σ∗≥v(πθ,ri)−v(πE ,ri)

)

(50)

In practice, we typically only have samples of expert behavior rather than a full policy. In this case, we can estimate the

return of the demonstrator under reward function hypothesis ri using a set of demonstrated trajectories D = {τ1, . . . , τm} as

v(πE , ri) ≈
1

|D|

∑

τ∈D

T
∑

t=0

ri(st, at), (51)

where T is the horizon of the demonstrations.

If ri is a linear function, i.e.,(s, a) = wT
i φ(s, a), then we can compute the empirical expected feature counts using the

demonstrated trajectories D = {τ1, . . . , τm} to get

µ̂E =
1

|D|

∑

τ∈D

∑

(st,at)∈τ

φ(st, at), (52)

where φ : S ×A → R
k denotes the reward features. We can then estimate v(πE , ri) as

v(πE , ri) = w
T
i µ̂E , (53)

where wi is the feature weight vector corresponding to linear reward function ri sampled from the posterior. The advantage

is that we only have to evaluate the expected feature counts once and then we can use this vector to estimate the expected

return under any number of reward function hypotheses via dot products.

Given the estimate baseline regret under each reward function hypothesis we solve for σ∗ as

σ∗ = argmax
σ∈{vbr

1
,...,vbr

N
}

(

σ −
1

1− α

N
∑

i=1

P(ri)
[

σ − vbri
]

+

)

, (54)

where vbri = v(πθ, ri)− v(πE , ri).

As in the previous section, if we approximate the baseline regret using a set T of on-policy trajectories τ. ∼ πθ and a set D
of demonstrations we have:

∇θBROIL =
∑

i

P(ri)∇θEτ∼πθ
[ri(τ)]

(

λ+
1− λ

1− α
1σ∗≥vbr

i

)

(55)

=
∑

i

P(ri)

(

Eτ∼πθ

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

)(

λ+
1− λ

1− α
1σ∗≥vbr

i

)

(56)

≈
∑

i

P(ri)

(

1

|T |

∑

τ∈T

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

)(

λ+
1− λ

1− α
1σ∗≥vbr

i

)

(57)

=
1

|T |

∑

τ∈T

T
∑

t=0

∇θ log πθ(at | st)wt (58)

Policy Gradient Bayesian Robust Optimization for Imitation Learning

where

wt =
∑

i

P(ri)Φ
ri
t (τ)

(

λ+
1− λ

1− α
1σ∗≥vbr

i

)

(59)

is the weight associated with each state-action pair. The baseline regret adjusts risk such that it is riskier to explore areas of

the state-space that were not visited by the demonstrator, thereby encouraging pessimism in the face of uncertainty. To see

this note that

vbri = v(πθ, ri)− v(πE , ri) ≈ w
T
i (µ̂πθ

− µ̂E) =

k
∑

j=1

wi[j](µ̂πθ
[j]− µ̂E [j]), (60)

where µ̂πθ
are the estimated expected feature counts of πθ and µ̂E are the estimated expected feature counts of πE and

we assume all vectors lie in R
k. Thus, if the expert and policy both encounter reward feature j at the same frequency

(µ̂πθ
[j] = µ̂E [j]), the distribution over wi[j] will not contribute to vbri . Thus, the tail risk will be determined by other

reward weight distributions. Conversely, when there is disagreement, there will be the potential for risk: if the policy visits

new states that are estimated to have negative reward weight or if the policy does not visit states visited by the demonstrator

that are estimated to have positive reward weight, then either will lower vbri and result in more tail risk.

Note, however, that baseline regret does not only provide an incentive to directly imitate the demonstrator. If demonstrations

are suboptimal, but we have preferences over them, (Brown et al., 2020a) demonstrated that fast Bayesian reward inference is

possible. If under the posterior distribution of reward functions we have high confidence that certain states are good (positive

weight) or bad (negative weight), then lower risk policies will seek to visit the bad states less often than the demonstrator

and visit the good states more often. Thus, it is still possible to outperform the demonstrator while being robust to reward

weights with high uncertainty by imitating to hedge against high uncertainty, but exploiting our posterior to perform better

than the demonstrator when we have low uncertainty over the desirability of certain states.

B. Entropic Risk Measure Policy Gradient

Here we show that another common risk metric, Entropic Risk Measure (ERM) (Föllmer & Knispel, 2011), also is amenable

to policy gradient optimization within the BROIL framework. One benefit of ERM is that it is differentiable everywhere

unlike CVaR. ERM has been considered recently under the settings of risk-averse policy search under a known reward

function (Nass et al., 2019) and soft-robust optimization with respect to model uncertainty (Russel et al., 2020).

B.1. Entropic Risk Measure

The entropic risk measure (Föllmer & Knispel, 2011) is another form of tail risk that has the benefit of being everywhere

differentiable. The entropic risk measure (ERM) of a random variable X is defined as:

ERM = −
1

α
logE[e−αX] (61)

where α ∈ (0,∞) represents the risk sensitivity (higher is more risk-sensitive) and where larger values of ERM indicate

lower risk.

Similar to the CVaR BROIL objective we can formulate at BROIL objective using ERM. As we show in Section B.2, the

policy gradient of ERM-BROIL is given by Equation 16 with

wERMt =
∑

i

P(ri)Φ
ri
t (τ)

(

λ+ (1− λ)
e−αv(πθ,ri)

ER[e−αv(πθ,R)]

)

(62)

If λ = 1, then we just focus on increasing the likelihood of actions that look good in expectation. If λ = 0, then we focus on

increasing the likelihood of actions that look good under reward functions that the current policy πθ performs poorly under.

In particular, the policy gradient for the ERM term is given by a weighted sum of policy gradients for each reward function

in the posterior. The weights are softmax probabilities which will concentrate the probability around the reward function

ri for which v(πθ, ri) is lowest. Intuitively, this will encourage policy updates that improve the performance under the

reward functions for which πθ performs the worst. As α→ ∞, the softmax probabilities will concentrate on the absolute

worst-case reward in the distribution, but for α→ 0, this probability will be distributed according to the reward function

probabilities P(ri) resulting in a policy gradient that seeks to maximize return under the expected reward function.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

B.2. Deriviation

In this section we derive a similar policy gradient objective for BROIL that uses entropic risk measure:

ERMα = −
1

α
log(ER[e

−αψ(πθ,R)]) (63)

We start with the objective:

maximize
πθ

λ · E[ψ(πθ, R)] + (1− λ) · ERMα

[

ψ(πθ, R)

]

(64)

We assume that our performance metric is expected value, i.e., ψ(πu, R) = v(π,R) = Eτ∼πθ
[R(τ)].

We need to find the gradient wrt θ. The first term is the same as in the previous section:

∇θ · EP(R)[Eτ∼πθ
[R(τ)]] =

∑

i

P(ri)∇θEτ∼πθ
[ri(τ)]. (65)

Now consider the gradient of the entropic risk term. We have

∇θERMα[v(π,R)] =−∇θ

1

α
log

(

∑

i

P(ri)e
−αv(πθ,ri)

)

(66)

=−
1

α

1
∑

j P(Rj)e
−αv(πθ,Rj)

∑

i

P(ri)∇θe
−αv(πθ,ri) (67)

=−
1

α

1
∑

j P(Rj)e
−αv(πθ,Rj)

∑

i

P(ri)e
−αv(πθ,ri)∇θ(−αv(πθ, ri)) (68)

=
∑

i

P(ri)e
−αv(πθ,ri)

∑

j P(Rj)e
−αv(πθ,Rj)

∇θv(πθ, ri) (69)

As before we will be estimating the on-policy expected return for each reward hypothesis which can be done by collecting a

set T of trajectories τ ∼ πθ:

v(πθ, Rj) = Eτ∼πθ
[rij(τ)] ≈

1

|T |

∑

τ∈T

Rj(τ) =
1

|T |

∑

τ∈T

T
∑

t=0

Rj(st, at). (70)

Now we can formulate the full BROIL policy gradient update step by blending the policy gradient over the expectation with

the policy gradient over the ERM:

∇θBROIL =λ
∑

i

P(ri)∇θv(πθ, ri) + (1− λ)
∑

i

P(ri)e
−αv(πθ,ri)

∑

j P(Rj)e
−αv(πθ,Rj)

∇θv(πθ, ri) (71)

=
∑

i

P(ri)∇θv(πθ, ri)

(

λ+ (1− λ)
e−αv(πθ,ri)

EP(R)[e−αv(πθ,R)]

)

(72)

As before we can write the policy gradient as

∇θv(πθ, ri) = ∇θEτ∼πθ
[ri(τ)] = Eτ∼πθ

[

T
∑

t=0

∇θ log πθ(at | st)Φ
ri
t

]

. (73)

Defining Φrit in terms of a particular reward function hypothesis ri and approximating expectations with a set T of on-policy

Policy Gradient Bayesian Robust Optimization for Imitation Learning

wt =
∑

i

P(ri)Φ
ri
t (τ)

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(82)

where wt is the weight associated with each state-action pair.

The full PPO-clip objective for BROIL is shown in Algorithm 2.

Algorithm 2 PPO-clip BROIL

1: Input: initial policy parameters θ0, samples from reward function posterior R1, . . . , RN and associated probabilities,

P(R1), . . . ,P(RN), and any form for policy gradient weights Φt
2: for k = 0, 1, 2, . . . do

3: Collect set of trajectories Tk = {τi} by running policy πθ in the environment.

4: Estimate expected return of πθ under each reward function hypothesis rj using Eq. (12).

5: Solve for σ∗ using Eq. (11)

6: Update θ with stochastic gradient ascent by maximizing the PPO-clip objective:

θk+1 = argmax
θ

1

|T |

∑

τ∈T

[

1

T

T
∑

t=0

min

(

πθ(a|s)

πθk(a|s)
wt, g(ǫ, wt)

)]

using Eq. (82) for wt.
7: end for

D. Experiment Hyperparameters and Details

The hyperparameters used for PPO are in Table 3, unless otherwise specified in the experiment’s individual section.

D.1. Cart Pole

We modify the Open AI Gym Cartpole environment (Brockman et al., 2016) but modify the reward function to be a linear

function of the cart’s position by taking the cart position and multiplying it by -1, -0.8, -0.6, -0.4, -0.2, 0, and 0.2 to get our

multiple reward hypotheses. For policy optimization, we implement PG-BROIL on top of the REINFORCE implementation

from (Achiam, 2018) with all parameters set to their default settings except for α = 0.95 and epochs set to 100.

D.2. Pointmass Navigation

We build on the pointmass navigation environment from (Thananjeyan et al., 2020b) and construct a system in which a

pointmass agent navigates from a fixed start state to a fixed goal state with linear Gaussian dynamics. The agent can exert

force in cardinal directions and experiences drag coefficient ψ and Gaussian process noise zt ∼ N (0, σ2I) in the dynamics.

We utilize ψ = 0.2 and σ = 0.05 for all experiments. We include gray regions of uncertain cost as specified in the main

text. For policy optimization, we implement PG-BROIL on top of the PPO implementation from (Achiam, 2018) with all

Table 3. PG-BROIL hyperparameters when built on PPO.

HYPERPARAMETER VALUE

CLIP RATIO 0.2
ENVIRONMENT STEPS PER EPOCH 4000
GAE LAMBDA 0.95
GAMMA 0.99
HIDDEN UNITS 64
NETWORK LAYERS 2
OPTIMIZER ADAM

POLICY LEARNING RATE 2E-4
TARGET KL 0.01
VALUE LEARNING RATE 1E-3

Policy Gradient Bayesian Robust Optimization for Imitation Learning

(a) (b)

Figure 8. Reacher environment during demonstration time (a) and policy training time (b). During demonstrations, the uncertain region

(red) is far from the robot arm and the goal (yellow), but during policy optimization the goal position is randomized and sometimes the

uncertain cost region is in the way forcing the agent to either go around or through it.

parameters set to their default settings except for α = 0.96, policy learning rate set to 3e-4, and epochs set to 50.

D.3. Reacher

We build on the Reacher implementation from the DeepMind Control Suite (Tassa et al., 2020) by adding a region with

uncertain cost as specified in the main text. For policy optimization, we implement PG-BROIL on top of the PPO

implementation from (Achiam, 2018) with all parameters set to their default settings except for α = 0.9, policy learning rate

set to 1e-4, hidden units set to 128, and epochs set to 800. To obtain preferences over the demonstrations, we rank each

demonstration by the ground truth reward and assign pairwise preferences between each adjacent pair. Demonstrations were

obtained by training a Soft Actor-Critic agent (Haarnoja et al., 2018) for 100 episodes and check-pointing the policy at each

episode during training. This gives 100 demonstrations, and of these six with sufficiently different rewards were sampled.

D.4. TrashBot

The TrashBot dynamics and actions are the same as in the Pointmass Navigation environment except that the system dynamics

are deterministic. For policy optimization, we implement PG-BROIL on top of the PPO implementation from (Achiam,

2018) with all parameters set to their default settings except for α = 0.95, policy learning rate set to 3e-4, and epochs set to

50.

D.5. Atari Boxing

The Atari Boxing hyperparameters are the same as described in 3 with α = 0.9 and λ = 0.3 for PG-BROIL. We use a

PG-BROIL implementation on top of the PPO implementation from (Achiam, 2018) with the default hyperparameters and

epochs set to 800. To obtain preferences over the demonstrations, we rank each demonstration by its game score and assign

pairwise preferences between each adjacent pair. Demonstrations were obtained by training a PPO agent with the standard

hyperparameters in Table 3 for 5 epochs and then taking four rollouts of episodes from the model.

E. Baseline Algorithm Details

PBRL We implement PBRL by using the pairwise preference learning loss considered in (Christiano et al., 2017). We

consider learning from offline preferences and build on the implementation from (Brown et al., 2019). MCMC was

performed for 20,000 steps with a proposal step size of 0.5. Weights are normalized so that ‖w‖1 = 1.

Bayesian REX We utilize the Bayesian REX implementation from (Brown et al., 2020b) to learn a Bayesian posterior

over reward functions from offline preferences. MCMC was also performed for 20,000 sample steps with a proposal step

size of 0.5. Weights are normalized so that ‖w‖1 = 1. We utilize a burn-in of 500 sample steps and down-sample to 20

samples.

GAIL We utilize the GAIL implementation from (Yuan, 2019). We utilize PPO for policy optimization and use most of

the default parameters from the provided implementation in (Yuan, 2019). The only default parameters we changed were the

L2 regularization coefficient for the weights of the discriminator network (set to 1e− 2), log std for the policy (set to −0.5),

the hidden units of the policy network (set to 64), and the total number of environment steps which we varied through a

