arxX1v:2106.06499v2 [cs.LG] 21 Jun 2021

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Zaynah Javed*! Daniel S. Brown"' Satvik Sharma'! Jerry Zhu'! Ashwin Balakrishna' Marek Petrik >
Anca D. Dragan' Ken Goldberg !

Abstract

The difficulty in specifying rewards for many real-
world problems has led to an increased focus on
learning rewards from human feedback, such as
demonstrations. However, there are often many
different reward functions that explain the human
feedback, leaving agents with uncertainty over
what the true reward function is. While most
policy optimization approaches handle this uncer-
tainty by optimizing for expected performance,
many applications demand risk-averse behavior.
We derive a novel policy gradient-style robust op-
timization approach, PG-BROIL, that optimizes a
soft-robust objective that balances expected per-
formance and risk. To the best of our knowl-
edge, PG-BROIL is the first policy optimization
algorithm robust to a distribution of reward hy-
potheses which can scale to continuous MDPs.
Results suggest that PG-BROIL can produce a
family of behaviors ranging from risk-neutral to
risk-averse and outperforms state-of-the-art im-
itation learning algorithms when learning from
ambiguous demonstrations by hedging against un-
certainty, rather than seeking to uniquely identify
the demonstrator’s reward function.

1. Introduction

We consider the following question: How should an in-
telligent agent act if it has epistemic uncertainty over its
objective function? In the fields of reinforcement learning
(RL) and optimal control, researchers and practitioners typ-
ically assume a known reward or cost function, which is
then optimized to obtain a policy. However, even in set-
tings where the reward function is specified, it is usually
only a best approximation of the objective function that a
human thinks will lead to desirable behavior. Furthermore,

'EECS Department, University of California, Berkeley 2CS
Department, University of New Hampshire. Correspondence
to: Zaynah Javed <zjaved @berkeley.edu>, Daniel Brown <ds-
brown @berkeley.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

human-designed reward functions are also often augmented
with human feedback. This may also result in reward un-
certainty since human feedback, be it in the form of policy
shaping (Griffith et al., 2013), reward shaping (Knox &
Stone, 2012), or a hand-designed reward function (Hadfield-
Menell et al., 2017; Ratner et al., 2018), can fail to perfectly
disambiguate the human’s intent true (Amodei et al., 2016).

Reward function ambiguity is also a key problem in imi-
tation learning (Hussein et al., 2017; Osa et al., 2018), in
which an agent seeks to learn a policy from demonstrations
without access to the reward function that motivated the
demonstrations. While many imitation learning approaches
either sidestep learning a reward function and directly seek
to imitate demonstrations (Pomerleau, 1991; Torabi et al.,
2018) or take a maximum likelihood (Choi & Kim, 2011;
Brown et al., 2019) or maximum entropy approach to learn-
ing a reward function (Ziebart et al., 2008; Fu et al., 2017),
we believe that an imitation learning agent should explic-
itly reason about uncertainty over the true reward func-
tion to avoid misalignment with the demonstrator’s objec-
tives (Hadfield-Menell et al., 2017; Brown et al., 2020a).
Bayesian inverse reinforcement learning (IRL) methods (Ra-
machandran & Amir, 2007) seek a posterior distribution
over likely reward functions given demonstrations, but often
perform policy optimization using the expected reward func-
tion or MAP reward function (Ramachandran & Amir, 2007;
Choi & Kim, 2011; Ratner et al., 2018; Brown et al., 2020a).
However, in many real world settings such as robotics, fi-
nance, and healthcare, we desire a policy which is robust to
uncertainty over the true reward function.

Prior work on risk-averse and robust policy optimization in
reinforcement learning has mainly focused on robustness
to uncertainty over the true dynamics of the environment,
but assumes a known reward function (Garcia & Fernandez,
2015; Tamar et al., 2015; Tang et al., 2020; Derman et al.,
2018; Lobo et al., 2020; Thananjeyan et al., 2021). Some
work addresses robust policy optimization under reward
function uncertainty by taking a maxmin approach and op-
timizing a policy that is robust under the worst-case re-
ward function (Syed et al., 2008; Regan & Boutilier, 2009;
Hadfield-Menell et al., 2017; Huang et al., 2018). How-
ever, these approaches are limited to tabular domains, and
maxmin approaches have been shown to sometimes lead to

Policy Gradient Bayesian Robust Optimization for Imitation Learning

incorrect and overly pessimistic policy evaluations (Brown
& Niekum, 2018). As an alternative to maxmin approaches,
recent work (Brown et al., 2020b) proposed a linear pro-
gramming approach, BROIL: Bayesian Robust Optimiza-
tion for Imitation Learning, that balances risk-aversion (in
terms of Conditional Value at Risk (Rockafellar et al., 2000))
and expected performance. This approach supports a family
of solutions depending on the risk-sensitivity of the applica-
tion domain. However, as their approach is built on linear
programming, it cannot be applied in MDPs with continuous
state and action spaces and unknown dynamics.

In this work, we introduce a novel policy optimization ap-
proach that enables varying degrees of risk-sensitivity by
reasoning about reward uncertainity while scaling to con-
tinuous MDPs with unknown dynamics. As in Brown et al.
(2020b), we present an approach which reasons simultane-
ously about risk-aversion (in terms of Conditional Value at
Risk (Rockafellar et al., 2000)) and expected performance
and balances the two. However, to enable such reasoning in
continuous spaces, we make a key observation: the Condi-
tional Value at Risk objective supports efficient computation
of an approximate subgradient, which can then be used in a
policy gradient method. This makes it possible to use any
policy gradient algorithm, such as TRPO (Schulman et al.,
2017a) or PPO (Schulman et al., 2017b) to learn policies
which are robust to reward uncertainity, resulting in an effi-
cient and scalable algorithm. To the best of our knowledge,
our proposed algorithm, Policy Gradient Bayesian Robust
Optimization for Imitation Learning (PG-BROIL), is the
first policy optimization algorithm robust to a distribution
of reward hypotheses that can scale to complex MDPs with
continuous state and action spaces.

To evaluate PG-BROIL, we consider settings where there
is uncertainty over the true reward function. We first exam-
ine the setting where we have an a priori distribution over
reward functions and find that PG-BROIL is able to opti-
mize policies that effectively trade-off between expected and
worst-case performance. Then, we leverage recent advances
in efficient Bayesian reward inference (Brown et al., 2020a)
to infer a posterior over reward functions from preferences
over demonstrated trajectories. While other approaches
which do not reason about reward uncertainty overfit to a
single reward function hypothesis, PG-BROIL optimizes
a policy that hedges against multiple reward function hy-
potheses. When there is high reward function ambiguity
due to limited demonstrations, we find that PG-BROIL re-
sults in significant performance improvements over other
state-of-the-art imitation learning methods.

2. Related Work

Reinforcement Learning: There has been significant
recent interest in safe and robust reinforcement learn-

ing (Garcia & Ferndndez, 2015); however, most approaches
are only robust with respect to noise in transition dynamics
and only consider optimizing a policy with respect to a sin-
gle reward function. Existing approaches reason about risk
measures with respect to a single task rewards (Heger, 1994;
Shen et al., 2014; Tamar et al., 2014; Tang et al., 2019),
establish convergence to safe regions of the MDP (Thanan-
jeyan et al., 2020b;a), or optimize a policy to avoid con-
straint violations (Achiam et al., 2017; Fisac et al., 2018;
Thananjeyan et al., 2021).

In this paper, we develop a reinforcement learning algorithm
which reasons about risk with respect to a belief distribution
over the task reward function. We focus on being robust to
tail risk by optimizing for conditional value at risk (Rock-
afellar et al., 2000). However, unlike prior work (Heger,
1994; Shen et al., 2014; Tamar et al., 2014; 2015; Tang et al.,
2019; Zhang et al., 2021), which focuses on risk with re-
spect to a known reward function and stochastic transitions,
we consider policy optimization when there is epistemic
uncertainty over the reward function itself. We formulate
a soft-robustness approach that blends optimizing for ex-
pected performance and optimizing for the conditional value
at risk. Recent work also considers soft-robust objectives
when there is uncertainty over the correct transition model
of the MDP (Lobo et al., 2020; Russel et al., 2020), rather
than uncertainty over the true reward function.

Imitation Learning: Imitation learning approaches vary
widely in reasoning about reward uncertainty. Behavioral
cloning approaches simply learn to imitate the actions of
the demonstrator, resulting in quadratic regret (Ross & Bag-
nell, 2010). DAgger (Ross et al., 2011) achieves sublinear
regret by repeatedly soliciting human action labels in an
online fashion. While there has been work on safe variants
of DAgger (Zhang & Cho, 2016; Hoque et al., 2021), these
methods only enable robust policy learning by asymptot-
ically converging to the policy of the demonstrator, and
always assume access to an expert human supervisor.

Inverse reinforcement learning (IRL) methods are another
way of performing imitation learning (Arora & Doshi, 2018),
where the learning agent seeks to achieve better sample ef-
ficiency and generalization by learning a reward function
which is then optimized to obtain a policy. However, most in-
verse reinforcement learning methods only result in a point-
estimate of the demonstrator’s reward function (Abbeel &
Ng, 2004; Ziebart et al., 2008; Fu et al., 2017; Brown et al.,
2019). Risk-sensitive IRL methods (Lacotte et al., 2018; Ma-
jumdar et al., 2017; Santara et al., 2018) assume risk-averse
experts and focus on optimizing policies that match the
risk-aversion of the demonstrator; however, these methods
focus on the aleatoric risk induced by transition probabilities
and there is no clear way to adapt risk-averse IRL to the
Bayesian robust setting, where the objective is to be robust

Policy Gradient Bayesian Robust Optimization for Imitation Learning

to epistemic risk over reward hypotheses rather than risk
with respect to stochasticity in the dynamics. Bayesian IRL
approaches explicitly learn a distribution over reward func-
tions conditioned on the demonstrations, but usually only
optimize a policy for the expected reward function or MAP
reward function under this distribution (Ramachandran &
Amir, 2007; Choi & Kim, 2011; Brown et al., 2020a).

We seek to optimize a policy that is robust to epistemic
uncertainty in the true reward function of an MDP. Prior
work on robust imitation learning has primarily focused on
maxmin approaches which seek to optimize a policy for an
adversarial worst-case reward function (Syed et al., 2008;
Ho & Ermon, 2016; Regan & Boutilier, 2009; Hadfield-
Menell et al., 2017; Huang et al., 2018). However, these
approaches can learn overly pessimistic behaviors (Brown
& Niekum, 2018) and existing approaches assume discrete
MDPs with known transition dynamics (Syed et al., 2008;
Regan & Boutilier, 2009; Hadfield-Menell et al., 2017) or
require fully solving an MDP hundreds of times (Huang
et al., 2018), effectively limiting these approaches to dis-
crete domains. Recently, (Brown et al., 2020b) proposed
a method for robust Bayesian optimization for imitation
learning (BROIL), which optimizes a soft-robust objective
that balances expected performance with conditional value
at risk (Rockafellar et al., 2000). However, their approach
is limited to discrete state and action spaces and known
transition dynamics. By contrast, we derive a novel policy
gradient approach which enables robust policy optimization
with respect to reward function uncertainty for domains with
continuous states and action and unknown dynamics.

3. Preliminaries and Notation
3.1. Markov Decision Processes

We model the environment as a Markov Decision Pro-
cess (MDP) (Puterman, 2005). An MDP is a tuple
(S, A,r, P,v,py), with state space S, action space A ,
reward function r : § X A — R, transition dynamics
P:S8xAxS — [0,1], discount factor v € [0, 1), and
initial state distribution pg. We consider stochastic policies
7 : SxA — [0, 1] which output a distribution over .A condi-
tioned on a state s € S. We denote the expected return of a
policy 7 under reward function r as v(m,7) = E r, [r(7)]-

3.2. Distributions over Reward Functions

We are interested in solving MDPs when there is epistemic
uncertainty over the true reward function. When we refer to
the reward function as a random variable we will use R, and
will use r to denote a specific model of the reward function.
Reward functions are often parameterized as a linear com-
bination of known features (Abbeel & Ng, 2004; Ziebart
et al., 2008; Sadigh et al., 2017) or as a deep neural network

f(X)

17

CVaR, VaR,

Figure 1. The pdf f(X) of a random variable X. VaR, measures
the (1 — a)-quantile outcome. CVaR,, measures the expectation
given that we only consider values less than the VaR..

(Ho & Ermon, 2016; Fu et al., 2017). Thus, we can model
uncertainty in the reward function as a distribution over R,
or, equivalently, as a distribution over the reward function
parameters. This distribution could be a prior distribution
P(R) that the agent learns from previous tasks (Xu et al.,
2019). Alternatively, the distribution could be the posterior
distribution P(R | D) learned via Bayesian inverse rein-
forcement learning (Ramachandran & Amir, 2007) given
demonstrations D, the posterior distribution P(R | P, D)
given preferences P over demonstrations (Sadigh et al.,
2017; Brown et al., 2020a), or the posterior distribution
P(R | r') learned via inverse reward design given a human-
specified proxy reward r’ (Hadfield-Menell et al., 2017,
Ratner et al., 2018). This distribution is typically only avail-
able via sampling techniques such as Markov chain Monte
Carlo (MCMC) sampling (Ramachandran & Amir, 2007;
Hadfield-Menell et al., 2017; Brown et al., 2020a).

3.3. Risk Measures

We are interested in robust policy optimization with respect
to a distribution over the performance of the policy induced
by a distribution over possible reward functions. Consider
a policy 7 and a reward distribution P(R). Together, 7 and
P(R) induce a distribution over the expected return of the
policy, v(7, R), R ~ P(R). We seek a robust policy that
minimizes tail risk, given some risk measure, under the
induced distribution v. Figure 1 visualizes two common
risk measures: value at risk (VaR) and conditional value
at risk (CVaR), for a general random variable X. In our
setting, X corresponds to the expected return, v(r, R), of a
policy 7 under the reward function random variable R, and
the objective is to minimize the tail risk (visualized in red).

3.3.1. VALUE AT RISK

Given a risk-aversion parameter « € [0, 1], the VaR,, of a
random variable X is the (1 — «)-quantile outcome:

VaRy[X] = sup{z : P(X > z) > a}, (D)
where it is common to have a € [0.9, 1].

Despite the popularity of VaR, optimizing a policy for VaR
has several problems: (1) optimizing for VaR results in an
NP hard optimization problem (Delage & Mannor, 2010),

Policy Gradient Bayesian Robust Optimization for Imitation Learning

(2) VaR ignores risk in the tail that occurs with probability
less than (1 — «) which is problematic for domains where
there are rare but potentially catastrophic outcomes, and (3)
VaR is not a coherent risk measure (Artzner et al., 1999).

3.3.2. CONDITIONAL VALUE AT RISK

CVaR is a coherent risk measure (Delbaen, 2002), also
known as average value at risk, expected tail risk, or ex-
pected shortfall. For continuous distributions

CVaR,[X] =]Ef(X) [X | X <VaR,[X]]. (@)

In addition to being coherent, CVaR can be maximized via
convex optimization, does not ignore the tail of the distri-
bution, and is a lower bound on VaR. Because of these
desirable properties, we would like to use CVaR as our
risk measure. However, because posterior distributions ob-
tained via Bayesian IRL are often discrete (Ramachandran
& Amir, 2007; Sadigh et al., 2017; Hadfield-Menell et al.,
2017; Brown & Niekum, 2018), we cannot directly optimize
for CVaR using the definition in Equation (2) since this def-
inition only works for atomless distributions. Instead, we
make use of the following definition of CVaR, proposed by
Rockafellar et al. (2000), that works for any distribution:

o —

CVaRa[X] = max (a _ %E[(a - X)+]) 3

where (z);+ = max(0,) and o roughly corresponds to the
VaR,,. To gain intuition for this formula, note that if we
define o = VaR,[X] we can rewrite CVaR,, as

CVaR,[X] = Ef(x)[X | X < o] 4)

O'—Ef(X)[O'—X|X§0'} (5)

_ Ef(x)[lxgg . (0’ - X)]
P(X <o)

(6)

1
=0 —Ejpllo-X)] D

11—«

where 1, = 1 is the indicator function that evaluates to 1 if
z is True and O otherwise, and where we used the linearity
of expectation, the definition of conditional expectation, and
the definitions of VaR,[X], and (x). Taking the maxi-
mum over o € R, gives us the definition in Equation (3).

4. Bayesian Robust Optimization for
Imitation Learning

In Section 4.1 we describe the Bayesian robust optimiza-
tion for imitation learning (BROIL) objective, previously
proposed by (Brown et al., 2020b). Then, in sections 4.2
and 4.3, we derive a novel policy gradient update for BROIL
and provide an intuitive explanation for the result.

4.1. Soft-Robust BROIL Objective

Rather than seeking a purely risk-sensitive or purely risk-
neutral approach, we seek to optimize a soft-robust objec-
tive that balances the expected and probabilistic worst-case
performance of a policy. Given some performance metric
¥ (mg, R) where R ~ IP(R), Brown et al. (2020b) recently
proposed Bayesian Robust Optimization for Imitation Learn-
ing (BROIL) which seeks to optimize the following:

max A Ep(p) [¢ (76, R)]+(1-X)-CVaR,, [¢(ma, R)] (8)
For MDPs with discrete states and actions and known dy-
namics, Brown et al. (2020b) showed that this problem can
be formulated as a linear program which can be solved in
polynomial time. However, many MDPs of interest involve
continuous states and actions and unknown dynamics.

4.2. BROIL Policy Gradient

We now derive a policy gradient objective for BROIL
that allows us to extend BROIL to continuous states and
actions and unknown transition dynamics, enabling ro-
bust policy learning in a wide variety of practical set-
tings. Given a parameterized policy my and N possible
reward hypotheses, there are many possible choices for
the performance metric 1(mg, R). Brown et al. (2020a)
considered two common metrics: (1) expected value, i.e.,
Y(mg, R) = v(m,R) = Eron,[R(7)] and (2) baseline re-
gret, i.e., Y(mg, R) = v(mp, R) — v(wg, R) where g de-
notes an expert policy (usually estimated from demonstra-
tions). In Appendix A we derive a more general form for any
performance metric ¢ (7, R) and also give the derivation
for the baseline regret performance metric. For simplicity,
we let ip(mg, R) = v(m, R) (expected return) hereafter.

To find the policy that maximizes Equation (8) we need the
gradient with respect to the policy parameters 6. For the
first term in Equation (8), we have

N
VoEs([v(mo, R)] = 3 B(r) VoErnn, [ri(7)]. (9)

i=1

Next, we consider the gradient of the CVaR term. CVaR is
not differentiable everywhere so we derive a sub-gradient.
Given a finite number of samples from the reward function
posterior, we can write this sub-gradient as

ngax(a—
o 1—a4

1 N
> B (0~ Ernr, (7)),)
i=1 (10)

where (x)4+ = max(0, z). To solve for the sub-gradient of
this term, note that given a fixed policy 7y, we can solve
for o via a line search: since the objective is piece-wise

Policy Gradient Bayesian Robust Optimization for Imitation Learning

linear we only need to check the value at each point v(m, r;),
for each reward function sample from the posterior since
these are the endpoints of each linear segment. If we let
v; = v(m,r;) then we can quickly iterate over all reward
function hypotheses and solve for o as

N
ZP(W) [a—vih). (11)

1
o® = argmax (a—
oe{vi,...,un} -«

Solving for o* requires estimating v; by collecting a
set 7 of on-policy trajectories 7 ~ mg where 7 =

(807a07 S1,Q1,--.,S8T, G/T):
1 T
v; & m Z Zri(st7at). (12)
T7€T t=0

Solving for o* does not require additional data collection
beyond what is required for standard policy gradient ap-
proaches. We simply evaluate the set of rollouts 7 from 7y
under each reward function hypothesis, r; and then solve
the optimization problem above to find ¢*. While this re-
quires more computation than a standard policy gradient
approach—we have to evaluate each rollout under NV reward
functions—this does not increase the online data collection,
which is often the bottleneck in RL algorithms.

Given the solution ¢* found by solving the optimization
problem in (11), we perform a step of policy gradient op-
timization by following the sub-gradient of CVaR with re-
spect to the policy parameters 6:

N
1
V@ CV&Ra = m ; P(ri)lg*z'u(ﬂev'r‘i)vev(ﬂ—eﬂ ri)

13)

where 1, is the indicator function that evaluates to 1 if x is
True and 0 otherwise. Given the sub-gradient of the BROIL
objective (13), the only thing remaining to compute is the
standard policy gradient. Note that in standard RL, we write
the policy gradient as (Sutton & Barto, 2018):

T

VQETN‘NQ [R(T)} = ETN‘n'g Z v9 log 7T9(at ‘ St)q)t (T)
t=0
(14)

where @, is a measure of the performance of trajectory 7
starting at time ¢. One of the most common forms of ®;(7)
is the on-policy advantage function (Schulman et al., 2015)
with respect to some single reward function:

Dy(7) = AT (s1,a0) = Q™ (51, a0) = V™ (s¢). (15)

If we define ®;° in terms of a particular reward function
ri, then, as we show in Appendix A, we can rearrange

terms in the standard policy gradient formula to obtain the
following form for the BROIL policy gradient which we
estimate using a set 7 of on-policy trajectories 7 ~
where 7 = (s, ag, $1,a1, . .., ST, ar) as follows:

T
V¢BROIL z‘—;' Z {Z Vo logmg(ay | St)wt(T)}

TET ~t=0
(16)

where

al N 1- A
wt(T) = ZP(ri)(I)t‘(T) A+ mla*Zv(mri)

=1 (17)
is the weight associated with each state-action pair (s¢, a;)
in the set of trajectory rollouts 7. The resulting vanilla
policy gradient algorithm is summarized in Algorithm 1. In
Appendix C we show how to apply a trust-region update
based on Proximal Policy Optimization (Schulman et al.,
2017b) for more stable policy gradient optimization.

4.3. Intuitive Interpretation of the Policy Gradient

Consider the policy gradient weight w; given in Equa-
tion (17). If A = 1, then

wi(r) =Y P(R)®(r) = ®fi(r) (18)

i=1

where R is the expected reward under the posterior. Thus,
A = 11is equivalent to standard policy gradient optimization
under the mean reward function and gradient ascent will
focus on increasing the likelihood of actions that look good
in expectation over the reward function distribution P(R).
Alternatively, if A = 0, then

wt(T):l—a_

N
L S 1 B(ROOE () (19)
i=1
and gradient ascent will increase the likelihood of actions
that look good under reward functions that the current pol-
icy mp performs poorly under, i.e., policy gradient updates
will focus on improving performance under all R; such that
v(m, R;) < o*, weighting the gradient according to the like-
lihood of these worst-case reward functions. The update
rule also multiplies by 1/(1 — «) which acts to normalize
the magnitude of the gradient: as @« — 1 we update on
reward functions further into the tail, which have smaller
probability mass. Thus, A € [0, 1] allows us to blend be-
tween maximizing policy performance in expectation versus
worst-case and « € [0, 1) determines how far into the tail
of the distribution to focus the worst-case updates.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Algorithm 1 Policy Gradient BROIL

1: Input: initial policy parameters 6y, samples from re-
ward function posterior 71, . .., 7y and associated prob-
abilities, P(r1),...,P(ryx).

2: fork=0,1,2,...do

3: Collect set of trajectories 7, = {7;} by running pol-

icy mg, in the environment.

4: Estimate expected return of mg, under each reward
function hypothesis r; using Eq. (12).

Solve for o* using Eq. (11)
Estimate policy gradient using Eq. (16) and Eq. (17).
Update 6 using gradient ascent.

end for

5. Experiments

In experiments, we consider the following questions: (1)
Can PG-BROIL learn control policies in MDPs with contin-
uous states and actions and unknown transition dynamics?
(2) Does optimizing PG-BROIL with different values of A
effectively trade-off between maximizing for expected re-
turn and maximizing robustness? (3) When demonstrations
are ambiguous, can PG-BROIL outperform other imitation
learning baselines by hedging against uncertainty?

Code and videos are available at https://sites.

google.com/view/pg-broil.

5.1. Prior over Reward Functions

We first consider an RL agent with a priori uncertainty over
the true reward function. This setting allows us to initially
avoid the difficulties of inferring a posterior distribution
over reward functions and carefully examine whether PG-
BROIL can trade-off expected performance and robustness
(CVaR) under epistemic uncertainty over the true reward
function. We study 3 domains: the classical CartPole bench-
mark (Brockman et al., 2016), a pointmass navigation task
inspired by (Thananjeyan et al., 2020b) and a robotic reach-
ing task from the from the DM Control Suite (Tassa et al.,
2020). All domains are characterized by a robot navigating
in an environment where some states have uncertain costs.
All domains have unknown transition dynamics and contin-
uous states and actions (except CartPole which has discrete
actions). We implement PG- BROIL on top of OpenAl
Spinning Up (Achiam, 2018). For cartpole we implement
PG-BROIL on top of REINFORCE (Peters & Schaal, 2008)
and for remaining domains we implement PG-BROIL on
top of PPO (Schulman et al., 2017b) (see Appendix C).

5.1.1. EXPERIMENTAL DOMAINS

CartPole: We consider a risk-sensitive version of the classic
CartPole benchmark (Brockman et al., 2016). The reward

function is R(s) = b- s,, where s, is the position of the cart
on the track, and there is uncertainty over b. Our prior over b
is distributed uniformly in the range [-1, 0.2]. The center of
the track is s, = 0. We sample values of b between -1 and
0.2 across even intervals of 0.2 width to form a discrete pos-
terior distribution for PG-BROIL. The reward distribution
is visualized in Figure 2a. Based on our prior distribution
over reward functions, the left side of the track (s, < 0) is
associated with a higher expected reward but a worse worst
case scenario (the potential for negative rewards). By con-
trast, the robust solution is to stay in the middle of the track
in order to perform well across all possible reward functions
since the center of the track has less risk of a significantly
negative reward than the left or right sides of the track.

Pointmass Navigation: We next consider a risk-sensitive
continuous 2-D navigation task inspired by Thananjeyan
et al. (2020b). Here the objective is to control a pointmass
robot towards a known goal location with forces in cardinal
directions in a system with linear Gaussian dynamics and
drag. There are gray regions of uncertain cost that can
either be traversed or avoided as illustrated in Figure 2b. For
example, these regions could represent grassy areas which
are likely easy to navigate, but where the grass may occlude
mud or holes which would impede progress and potentially
cause damage or undue wear and tear on the robot. The
robot has prior knowledge that it needs to reach the goal
location g = (0, 0) on the map, depicted by the red star. We
represent this prior with a nominal cost for each step that is
the distance to the goal from the robot’s position. We add
a penalty term of uncertain cost for going through the gray
region giving the following reward function posterior:

R(s) = — (st,y - gHg +b- 1gray) b~ P(b), (20)

where 1,y is an indicator for entering a gray region, and
where the distribution P(b) over the penalty b is given as

b -500 40 0 40 50
P() | 005 005 02 03 04

On average it is favorable to go through the gray region
(E[b] = +5), but there is some probability that going
through the gray region is highly unfavorable:

Reacher: We design a modified version of the Reacher
environment from the DeepMind Control Suite (Tassa et al.,
2020) (Figure 2c¢), which is a 2 link planar arm where the
robot can apply joint torques to each of the 2 joints to guide
the end effector of the arm to a goal position on the plane.
We modify the original environment by including an area of
uncertainty (large red circle). When outside the uncertain
region, the robot receives a reward which penalizes the
distance between the end effector and the goal (small yellow
circle). Thus, the robot is normally incentivized to guide the
end effector to the goal as quickly as possible. When the end

Policy Gradient Bayesian Robust Optimization for Imitation Learning

CartPole Pointmass Navigation Reacher
o
-
«
E
Q
=
B Cart Position >
- 4
« A=1.0
A=0.8
(c)
14 —45001{ 4 A=1.0,0.8,0.6 5%
12 ¢ —5000 Zsol
= S o
g10 g -5500 £70)
< 8 « 2
36 B 6000 i 60
g @ S 50]
g 4 8 6500 8
e * _7000 g
o R
-5 -13000 —11000 —9000 —7000 00 0z 04 06 08 10
Robustness (CVaR) Robustness (CVaR) A
(d) (e) (£)

Figure 2. Prior over Reward Functions: Domains and Results. We study (a) CartPole in which the reward is an unknown linear
function of the cart’s position, (b) Pointmass Navigation with gray regions of uncertain costs, and (c) Reacher with a red region of
uncertain cost. For the CartPole and Pointmass Navigation domains, we find that as X is decreased, the learned policy optimizes more for
being robust to tail risk and thus achieves more robust performance (in terms of CVaR) at the expense of expected return in panels (d) and
(e). In panel (), we find that the reacher arm enters the riskier red region less often with decreasing A as expected.

effector is inside the uncertain region, the robot has an 80%
chance of receiving a +2 bonus, a 10% chance of receiving a
-2 penalty, and a 10% chance of neither happening (receiving
rewards as if it were outside the uncertain region). The large
red circle can be interpreted as a region on the table that
has a small chance of causing harm to the robot or breaking
an object on the table. However, in expectation the robot
believes it is good to enter the red region (e.g., assuming
that objects in this region are not fragile).

5.1.2. RESULTS

PG-BROIL consistently exhibits more risk-averse behav-
iors with decreasing A across all domains. For CartPole
and Pointmass Navigation, we see that as A is decreased,
the learned policy becomes more robust to tail risk at the
expense of lower expected return in Figures 2d and 2e re-
spectively. Figure 2e indicates that values of A close to O
can lead to unstable policy optimization due to excessive
focus on tail risk—the policy for A = 0 is Pareto dominated
by the policy for A = 0.2. We visualize the learned behav-
iors for different values of A for the Pointmass Navigation
environment in Figure 2b. For high values of A, the robot
cuts straight through the uncertain terrain, for intermedi-
ate values (eg. A = 0.45), the robot somewhat avoids the
uncertain terrain, while for low values of)\, the robot al-
most entirely avoids the uncertain terrain at the expense of
a longer path. Finally, for the Reacher environment, we find

that the percentage of episodes where the arm enters the red
region decreases as A decreases as expected (Figure 2f).

5.2. Learning from Demonstrations

Our previous results demonstrated that PG-BROIL is able
to learn policies that effectively balance expected perfor-
mance and robustness in continuous MDPs under a given
prior over reward functions. In this section, we consider
the imitation learning setting where a robot infers a reward
function from demonstrated examples. Given such input,
there are typically many reward functions that are consistent
with it; however, many reward inference algorithms (Fu
et al., 2017; Finn et al., 2016; Brown et al., 2019) will
output only one of them—not necessarily the true reward.
There has been some work on Bayesian algorithms such
as Bayesian IRL (Ramachandran & Amir, 2007) which es-
timates a posterior distribution instead of a single reward
and Bayesian REX (Brown et al., 2020a) which makes it
possible to efficiently learn this posterior from preferences
over high dimensional demonstrated examples of varying
qualities. However, prior work on Bayesian reward learning
often only optimizes policies for the expected or MAP re-
ward estimate over the learned posterior (Ramachandran &
Amir, 2007; Choi & Kim, 2011; Brown et al., 2020a). Our
hypothesis is that for imitation learning problems with high
uncertainty about the true reward function, taking a robust
optimization approach via PG-BROIL will lead to better

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Table 1. TrashBot: We evaluate PG-BROIL against 5 other im-
itation learning algorithms when learning from ambiguous pref-
erences over demonstrations (Figure 3). Results are averages (£
one st. dev.) over 10 random seeds and 100 test episodes each
with a horizon of 100 steps per episode. For PG-BROIL, we set
a = 0.95 and report results for the best A (A = 0.8).

ALGORITHM AVG. TRASH AVG. STEPS IN

COLLECTED GRAY REGION
BC 344+1.8 2.7+6.2
GAIL 224+1.5 3.74+9.9
RAIL 1.1£+1.2 2.2+6.9
PBRL 26+1.5 1.24+2.7
BAYESIAN REX 1.6+1.3 1.24+1.7
PG-BROIL 8.4 + 0.5 0.1 +0.1

performance by producing policies that do well in expecta-
tion, but also avoid low reward under any of the sufficiently
probable reward functions in the learned posterior.

5.2.1. TRASHBOT FROM DEMOS

We first consider a continuous control TrashBot domain
(Figure 3), where aim to teach a robot to pick up pieces of
trash (black dots) while avoiding the gray boundary regions.
The state-space, dynamics and actions are the same as for
the Pointmass Navigation environment and we provide hu-
man demonstrations via a simple teleoperation interface.
The robot constructs its reward function hypotheses as lin-
ear combinations of three binary features which correspond
to: (1) being in the gray region (GRAY), (2) being in the
white region (WHITE), and (3) picking up a piece of trash
(TRASH). We give three pairwise preferences over human
teleoperated trajectories (generated by one of the authors)
as shown in Figure 3. However, the small number of pref-
erences makes it challenging for the robot to ascertain the
true reward function parameters as there are many reward
function weights that would lead to the same human pref-
erences. Furthermore, the most salient feature is WHITE
and this feature is highly correlated, but not causal, with the
preferences. Thus, this domain can easily lead to reward
hacking/gaming behaviors (Krakovna et al., 2020). We hy-
pothesize that PG-BROIL will hedge against uncertainty
and learn to pick up trash while avoiding the gray region.

We compare against behavioral cloning (BC), GAIL (Ho
& Ermon, 2016), and Risk-Averse Imitation Learning
(RAIL) (Santara et al., 2018), which estimates CVaR over
trajectories to create a risk-averse version of the GAIL algo-
rithm. To facilitate a fairer comparison, we only give BC,
GAIL, and RAIL the better ranked demonstration from each
preference pair. We also compare with Preference-based RL
(PBRL) (Christiano et al., 2017) in the offline demonstra-
tion setting (Brown et al., 2019) which optimizes an MLE
estimate of the reward weights and Bayesian REX (Brown

et al., 2020a), which optimizes the mean reward function
under the posterior distribution given the preferences. PG-
BROIL also uses Bayesian REX (Brown et al., 2020a) to
infer a reward function posterior distribution given the pref-
erences over demonstrations (see Appendix E for details),
but optimizes the BROIL objective.

Table 1 compares the performance of each baseline imitation
learning algorithm when given the 3 pairs of demonstrations
shown in Figure 3. We find that PG-BROIL outperforms
BC and GAIL (Ho & Ermon, 2016) by not directly seek-
ing to imitate the states and actions in the demonstrations,
but by explicitly reasoning about uncertainty in the true re-
ward function. We also find that PG-BROIL significantly
outperforms RAIL. This is because RAIL only focuses on
minimizing aleatoric uncertainty under stochastic transition
dynamics for a single reward function (the discriminator),
not epistemic uncertainty over the true reward function. We
find that PG-BROIL outperforms PBRL and Bayesian REX.

We inspected the learned reward functions and found that
the PBRL reward places heavy emphasis on collecting trash
but has a small positive weight on the WHITE feature. We
hypothesize that this results in policy optimization falling
into a local maxima in which it mostly mines rewards by
staying in the white region. By contrast, PG-BROIL con-
siders a number of reward hypotheses, many of which have
negative weights on the WHITE feature. Thus, a risk-averse
agent cannot mine rewards by simply staying in the white
region, and is incentivized to maximally pick up trash while
keeping visits to the gray region low. The mean reward
function optimized by Bayesian REX penalizes visiting the
gray region but learns roughly equal weights for the WHITE
and TRASH features. Thus, Bayesian REX is not strongly
incentivized to pick up trash. Because of this the learned
policy sometimes visits the borders of the white region and
occasionally enters the gray region when it accumulates
too high of a velocity. By contrast, PG-BROIL effectively
optimizes a policy that is robust to multiple hypotheses that
explain the rankings: picking up trash more than any other
policy, while avoiding the gray region. See Appendix F.

5.2.2. REACHER FROM DEMOS WITH DOMAIN SHIFT

For this experiment, we use the same Reacher environment
described above. We give the agent five pairwise prefer-
ences over demonstrations of varying quality in a training
domain where the uncertain reward region is never close
to the goal and where none of the demonstrations show the
reacher arm entering the uncertain region. We then intro-
duce domain shift by both optimizing and testing policies in
reacher environments unseen in the demonstrations, where
the goal location is randomized and sometimes the uncertain
reward region is in between the the reacher arm and the goal.
The inferred reward function is a linear combination of 2

Policy Gradient Bayesian Robust Optimization for Imitation Learning

& ol e

®>/ kﬁk\@g>&©

Figure 3. TrashBot environment: Each time the robot picks up a piece of trash (by moving close to a black dot), a new one appears at a
randomly in the white region. We give pairwise preferences over human demos that aim to teach the robot that picking up trash is good
(left), going into the gray region is undesirable (center), and less time in the gray region and picking up more trash is preferred (right).

Table 2. Reacher from Demos: We evaluate PG-BROIL and base-
line imitation learning algorithms when learning from preferences
over demonstrations. Results are averages (4 one st. dev.) over 3
seeds and 100 test episodes with a horizon of 200 steps per episode.
For PG-BROIL, we set a = 0.9 and report results for A = 0.15.

AVG. STEPS IN AVG. STEPS IN

ALGORITHM UNCERTAIN REGION TARGET REGION
BC 11.34+27.4 39.9+62.3
GAIL 234+1.7 5.1+13.0
RAIL 21+1.2 4.6 +27.0
PBRL 28.4 +37.7 16.8 +=30.4
BAYESIAN REX 13.54+35.0 94.5 £ 70.1
PG-BROIL 1.7+7.2 102.0 £ 60.5

features: TARGET and UNCERTAIN REGION which are
simply binary indicators which identify whether the agent is
in the target location or in the uncertain region respectively.
In the posterior generated using Bayesian REX, we find
that the weight learned for the TARGET feature is strongly
positive over all reward functions. UNCERTAIN REGION,
having no information from any of the demonstrations, has
a wide variety of possible values from -1 to +1 (reward
weights are normalized to have unit L2-norm). Both the
mean and MLE reward functions assign a positive weight
to both the TARGET and UNCERTAIN REGION features,
resulting in Bayesian REX and PBRL frequently entering
the uncertain region as shown in Table 2. By contrast, PG-
BROIL hedges against its uncertainty over the quality of the
uncertain region and avoids it. See Appendix D.3.

5.2.3. ATARI BOXING FROM DEMOS

For this experiment, we give the agent 3 preferences over
suboptimal demos of the Atari Boxing game (Bellemare
etal., 2013). We use Bayesian REX to infer a reward func-
tion posterior where each inferred reward functions is a lin-
ear combinations of 3 binary indicator features identifying
whether the agent hit its opponent, got hit, or stayed away
from the opponent. The mean and MLE reward functions
both assign a high weight to hitting the opponent, ignoring
the risk of getting hit by the opponent due to always staying
close to the opponent in order to score hits on it. PG-BROIL
tries to satisfy multiple reward functions by both trying to
avoid getting hit and scoring hits, resulting in better per-

ALGORITHM GAME SCORE
BC 1.7+53
GAIL -0.2+5.8
RAIL 0.5+4.9
PBRL -15.0 £8.2
BAYESIAN REX 1.6 4.7
PG-BROIL 23.9 £ 13.5
(@ ()

Figure 4. Atari Boxing: We evaluate PG-BROIL against baseline
imitation learning algorithms when learning from preferences over
demonstrations. Results are averages (4 one st. dev.) over 3
random seeds and 100 test episodes. For PG-BROIL, we set
a = 0.9 and report results for the best A (A = 0.3). The game
score is the number of hits the trained agent (white) scored minus
the number of times the agent gets hit by the opponent (black).

formance under the true reward as shown in Table 4. See
Appendix D.5 for more details.

6. Discussion and Future Work

Summary: We derive a novel algorithm, PG-BROIL, for
safe policy optimization in continuous MDPs that is ro-
bust to epistemic uncertainty over the true reward function.
Experiments evaluating PG-BROIL with different prior dis-
tributions over reward hypotheses suggest that solving PG-
BROIL with different values of A can produce a family of
solutions that span the Pareto frontier of policies which
trade-off expected performance and robustness. Finally, we
show that PG-BROIL improves upon state-of-the-art imita-
tion learning methods when learning from small numbers
of demonstrations by not just optimizing for the most likely
reward function, but by also hedging against poor perfor-
mance under other likely reward functions.

Future Work and Limitations: We found that PG-BROIL
can sometimes become unstable for values of lambda close
to zero—likely due to the indicator function in the CVaR
policy gradient. We experimented with entropic risk mea-
sure (Follmer & Knispel, 2011), a continuously differen-
tiable alternative to CVaR, but obtained similar results to
CVaR (see Appendix B). Future work also includes using

Policy Gradient Bayesian Robust Optimization for Imitation Learning

contrastive learning (Laskin et al., 2020) and deep Bayesian
reward function inference (Brown et al., 2020a) to enable
robust policy learning from raw pixels.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their helpful suggestions for improving the paper.
This work has taken place in the AUTOLAB and InterACT
Lab at the University of California, Berkeley and the Rein-
forcement Learning and Robustness Lab (RLsquared) at the
University of New Hampshire. AUTOLAB research is sup-
ported in part by the Scalable Collaborative Human-Robot
Learning (SCHooL) Project, the NSF National Robotics
Initiative Award 1734633, and in part by donations from
Google, Siemens, Amazon Robotics, Toyota Research In-
stitute, and by equipment grants from NVidia. InterACT
Lab research is supported in part by AFOSR, NSF NRI
SCHOOL, and ONR YIP. RLsquared research is supported
in part by NSF Grants IIS-1717368 and IIS-1815275. Ash-
win Balakrishna is supported by an NSF GRFP. This article
solely reflects the opinions and conclusions of its authors
and not the views of the sponsors or their associated entities.

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Achiam, J. Spinning Up in Deep Reinforcement Learn-

ing. 2018. URL https://spinningup.openai.

com/.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International Conference on Ma-
chine Learning, pp. 22-31. PMLR, 2017.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Arora, S. and Doshi, P. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. arXiv
preprint arXiv:1806.06877, 2018.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. Coherent
measures of risk. Mathematical finance, 9(3):203-228,
1999.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrap-
olating beyond suboptimal demonstrations via inverse
reinforcement learning from observations. In Interna-
tional Conference on Machine Learning, pp. 783-792.
PMLR, 2019.

Brown, D., Niekum, S., Coleman, R., and Srinivasan, R.
Safe imitation learning via fast bayesian reward infer-
ence from preferences. In International Conference on
Machine Learning, 2020a.

Brown, D., Niekum, S., and Marek, P. Bayesian robust
optimization for imitation learning. In Neural Information
Processing Systems (NeurIPS), 2020b.

Brown, D. S. and Niekum, S. Efficient probabilistic per-
formance bounds for inverse reinforcement learning. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Choi, J. and Kim, K.-E. Map inference for bayesian inverse
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pp. 1989-1997, 2011.

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. arXiv preprint arXiv:1706.03741,
2017.

Delage, E. and Mannor, S. Percentile optimization for
markov decision processes with parameter uncertainty.
Operations research, 58(1):203-213, 2010.

Delbaen, F. Coherent risk measures on general probability
spaces. In Advances in finance and stochastics, pp. 1-37.
Springer, 2002.

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor,
S. Soft-robust actor-critic policy-gradient. arXiv preprint
arXiv:1803.04848, 2018.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International conference on machine learning, pp. 49-58.

PMLR, 2016.

Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama,
S., Gillula, J., and Tomlin, C. J. A general safety frame-
work for learning-based control in uncertain robotic sys-
tems. In IEEE Transactions on Automatic Control, 2018.

Follmer, H. and Knispel, T. Entropic risk measures: Co-
herence vs. convexity, model ambiguity and robust large
deviations. Stochastics and Dynamics, 11(02n03):333—
351, 2011.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248, 2017.

Garcia, J. and Ferndndez, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437-1480, 2015.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and
Thomaz, A. Policy shaping: integrating human feedback
with reinforcement learning. In Proceedings of the 26th

International Conference on Neural Information Process-
ing Systems-Volume 2, pp. 2625-2633, 2013.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and
Dragan, A. Inverse reward design. In Advances in neural
information processing systems, pp. 6765—6774, 2017.

Heger, M. Consideration of risk in reinforcement learning.
In Machine Learning Proceedings, 1994.

Ho, J. and Ermon, S. Generative Adversarial Imitation
Learning. In Advances in Neural Information Processing
Systems, pp. 7461-7472, 2016.

Hoque, R., Balakrishna, A., Putterman, C., Luo, M., Brown,
D. S., Seita, D., Thananjeyan, B., Novoseller, E., and
Goldberg, K. Lazydagger: Reducing context switch-
ing in interactive imitation learning. arXiv preprint
arXiv:2104.00053, 2021.

Huang, J., Wu, F,, Precup, D., and Cai, Y. Learning safe
policies with expert guidance. In Advances in Neural
Information Processing Systems, pp. 9105-9114, 2018.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):1-35, 2017.

Knox, W. B. and Stone, P. Reinforcement learning from
simultaneous human and mdp reward. In AAMAS, pp.
475-482, 2012.

Krakovna, V., Uesato, J., Mikulik, V., Rahtz, M., Everitt, T.,
Kumar, R., Kenton, Z., Leike, J., and Legg, S. Specifica-
tion gaming examples in ai. DeepMind Blog, 2020.

Lacotte, J., Ghavamzadeh, M., Chow, Y., and Pavone, M.
Risk-sensitive generative adversarial imitation learning.
arXiv preprint arXiv:1808.04468, 2018.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639-5650. PMLR, 2020.

Lobo, E. A., Ghavamzadeh, M., and Petrik, M. Soft-robust
algorithms for handling model misspecification. arXiv
preprint arXiv:2011.14495, 2020.

Majumdar, A., Singh, S., Mandlekar, A., and Pavone, M.
Risk-sensitive inverse reinforcement learning via coher-
ent risk models. In Robotics: Science and Systems, 2017.

Nass, D., Belousov, B., and Peters, J. Entropic risk measure
in policy search. arXiv preprint arXiv:1906.09090, 2019.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel,
P, and Peters, J. An algorithmic perspective on imitation
learning. arXiv preprint arXiv:1811.06711, 2018.

Peters, J. and Schaal, S. Reinforcement Learning of Motor
Skills with Policy Gradients. Neural Networks, 21(4):
682-697, 2008.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural computation,
3(1):88-97, 1991.

Puterman, M. L. Markov decision processes: Discrete
stochastic dynamic programming. Wiley-Interscience,
2005.

Ramachandran, D. and Amir, E. Bayesian inverse rein-
forcement learning. In IJCAI, volume 7, pp. 2586-2591,
2007.

Ratner, E., Hadfield-Mennell, D., and Dragan, A. Sim-
plifying reward design through divide-and-conquer. In
Robotics: Science and Systems, 2018.

Regan, K. and Boutilier, C. Regret-based reward elicitation
for Markov decision processes. In Conference on Uncer-
tainty in Artificial Intelligence (UAI), pp. 444-451, 2009.
ISBN 978-0-9749039-5-8.

Rockafellar, R. T., Uryasev, S., et al. Optimization of condi-
tional value-at-risk. Journal of risk, 2:21-42, 2000.

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
661-668. JMLR Workshop and Conference Proceedings,
2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627-635. JMLR Workshop and Conference Proceedings,
2011.

Russel, R. H., Behzadian, B., and Petrik, M. Entropic
risk constrained soft-robust policy optimization. arXiv
preprint arXiv:2006.11679, 2020.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.
Active preference-based learning of reward functions. In
Robotics: Science and Systems, 2017.

Santara, A., Naik, A., Ravindran, B., Das, D., Mudigere, D.,
Avancha, S., and Kaul, B. RAIL : Risk-Averse Imitation
Learning Extended Abstract. arXiv:1707.06658, 2018.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. arXiv
preprint arXiv:1707.06347, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017b.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K. Risk-
sensitive reinforcement learning. In Neural Computation,
volume 26, 2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Syed, U., Bowling, M., and Schapire, R. E. Apprenticeship
learning using linear programming. In Proceedings of the
25th international conference on Machine learning, pp.

1032-1039, 2008.

Tamar, A., Glassner, Y., and Mannor, S. Policy gradients
beyond expectations: Conditional value-at-risk. In CoRR,
2014.

Tamar, A., Glassner, Y., and Mannor, S. Optimizing the
cvar via sampling. In Tienty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

Tang, Y. C., Zhang, J., and Salakhutdinov, R. Worst cases
policy gradients. Conf. on Robot Learning (CoRL), 2019.

Tang, Y. C., Zhang, J., and Salakhutdinov, R. Worst cases
policy gradients. In Kaelbling, L. P., Kragic, D., and Sug-
iura, K. (eds.), Proceedings of the Conference on Robot
Learning, volume 100 of Proceedings of Machine Learn-
ing Research, pp. 1078-1093. PMLR, 30 Oct-01 Nov
2020. URL http://proceedings.mlr.press/
v100/tang20a.html.

Tassa, Y., Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu,
S., Bohez, S., Merel, J., Erez, T., Lillicrap, T., and Heess,
N. dm_control: Software and tasks for continuous control,
2020.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Gonzalez,
J.E., Ames, A., and Goldberg, K. Abc-lmpc: Safe sample-
based learning mpc for stochastic nonlinear dynamical
systems with adjustable boundary conditions. In Work-
shop on the Algorithmic Foundations of Robotics, 2020a.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAl-
lister, R., Gonzalez, J. E., Levine, S., Borrelli, F., and
Goldberg, K. Safety augmented value estimation from
demonstrations (saved): Safe deep model-based rl for
sparse cost robotic tasks. Robotics and Automation Let-
ters (RAL), 2020Db.

Thananjeyan, B., Balakrishna, A., Nair, S., Luo, M., Srini-
vasan, K., Hwang, M., Gonzalez, J. E., Ibarz, J., Finn,
C., and Goldberg, K. Recovery rl: Safe reinforcement
learning with learned recovery zones. In Robotics and
Automation Letters (RA-L). IEEE, 2021.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning
from observation. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, pp.
49504957, 2018.

Xu, K., Ratner, E., Dragan, A., Levine, S., and Finn, C.
Learning a prior over intent via meta-inverse reinforce-
ment learning. International Conference on Machine
Learning, 2019.

Yuan, Y. Pytorch implementation of reinforcement learn-
ing algorithms. https://github.com/Khrylx/
PyTorch-RL, 2019.

Zhang, J. and Cho, K. Query-efficient imitation learn-
ing for end-to-end autonomous driving. arXiv preprint
arXiv:1605.06450, 2016.

Zhang, S., Liu, B., and Whiteson, S. Mean-variance pol-
icy iteration for risk-averse reinforcement learning. In
Conference on Artificial Intelligence (AAAI), 2021.

Ziebart, B. D., Maas, A. L., Bagnell, J. A, and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433-1438. Chicago, IL, USA, 2008.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

A. Full Derivation of CVaR BROIL Policy Gradient

In this section we derive the complete derivation of the policy gradient objective for BROIL.

A.1l. General Performance Metric

We will first derive a policy gradient algorithm for any performance metric. Then, we will derive special cases corresponding
to particular choices of the performance metric.

We start with the same objective, which we note is a weighted combination of two terms, one of which measures expected
performance (E[¢) (g, R)]) and the other of which measures tail risk (CVaR,, {7,/} (7o, R)]):
o

maximize - E[¢(mg, R)] + (1 —) - CVaR,, [1/)(779, R)] 21

We want to solve this via a policy gradient algorithm so we need to find the gradient with respect to 6. For the first term we
have

VoEp(r) [t (70, R)] =Ep(r) [V (me, R)] (22)
= "P(ri)Vorp(mo,). (23)
Now consider the gradient of the CVaR term. We have
1
Vo CVaRq [¢)(mg, R)] = Vg maax(a 1 a ZP(M) [0 — (m, Ti)]+) (24)

Here we need to take the gradient with respect to an inner maximization over the auxiliary variable o. To solve for the
gradient of this term, first note that given a fixed policy 7y, the objective is piecewise linear in ¢ with switch points at each
sample from the posterior (¢)(mg, ;) Vr;). Thus, we can solve for ¢ via linear programming or just via a line search. If we
let v; = 1(mp, r;) then we can quickly iterate over all reward function hypotheses and solve for o as

oc*= argmax (o0— —— P(r;)|o — (25)
oe{t,..., ¢N}< o= ()[}+)

Given the solution to the above optimization problem, we can now fix 0 = ¢* and then perform a step of policy gradient
optimization by following the sub-gradient of CVaR with respect to the policy parameters 6:

v (0_* _ L P(”) [U* _ 1/)(7797 Ti)H+> — L . [P’(ri)ve [U* _ ,(/)(770’ Ti)]+ (26)

1— a4 11—«

7 7

1
11—«

> P(ri) 1o (o) Vorb(mo, i) 27)
i
where we use the notation 1, to denote the indicator function:

(28)

1 — 1 if xis True
“)10 otherwise

We now can formulate the full BROIL policy gradient update step by blending the policy gradient over the expectation with
the policy gradient over the CVaR:

1-A
VeBROIL =\ " P(r;) Vi) (mp, 1) + 1o > P(ri) 1wz g(ngr) Vorb (o, 1) (29)

1-A
= ZP(TT‘,)VN//(W% T;) <)\ + 1_a10*2w(7r97ri)> (30)

Policy Gradient Bayesian Robust Optimization for Imitation Learning

A.2. Policy Gradient for Expected Return

We now consider the case where our performance metric is expected value, i.e., ¥(mg, R) = v(mg, R) = Eror, [R(7)].
Plugging expected value for our performance metric into Equation (29) gives the following:

1—A
VeBROIL = Z P(r;)Vov(m,r;) ()\ + 1_a10*2v(7r.,m)> , 31

where solving for ¢* requires estimating v; by collecting a set 7 of on-policy trajectories 7 ~ mwy where 7 =
(s0,@0,81,a1,...,87,ar):

T
1
(T m Z Zm(st,at). (32)
T7€T t=0

Given the expected return under each reward function hypothesis we solve for o* as

N
1
o* = argmax (0 — E P(r;) o — v;) (33)
O'E{’Ul,...,UN} 1-a i=1 []+

Solving for o* does not require additional data collection beyond what is required for standard policy gradient approaches.
We simply evaluate the set of rollouts 7 from 7y under each reward function hypothesis, ; and then solve the optimization
problem above to find ¢*. While this requires more computation than a standard policy gradient approach—we have
to evaluate each rollout under /V reward functions—this does not increase the online data collection, which is often the
bottleneck in RL algorithms.

Note that, in general, we can write the policy gradient of the expected return as

T
Vou(m,1i) = Ve, [1i(7)] = Errom, | > Vologmg(as | 50)07 (34)

t=0

where ®}° is some measure of the quality of the policy under reward function ;. Common choices include the return of a
trajectory: ®}* = r;(7), the reward-to-go from time ¢: ZtT/:t r;(sy, ay), the reward-to-go with a state-dependent baseline:
Zg:t ri(sp,ap) — b(st), the on-policy action-value function Q™ (s, at), or the on-policy advantage function (the most
popular choice) (Schulman et al., 2015):

O = A" (s4,a0) = Q" (54, a0) — V7™ (54). (35)

Any of these formulations of the policy gradient can be used for the above BROIL policy gradient as follows where we
approximate the expectation using a set 7 of on-policy trajectories 7 ~ my:

Policy Gradient Bayesian Robust Optimization for Imitation Learning

where

1-—
V@BROIL = Z P(T‘i)VQETNﬂ—e [7’%(7)] ()\ + *>v(7r Tz)

1-—
—gmm(o,

ZT:VQ logmg(as | s¢)®] ><
mzi:P(ri)<,1r|TE§:T ivelogﬂe (a¢ | s¢)®])
(s

T
1
:m ZP(TI) < Z Z Vo IOg 779 at | St] 1,- >'u(7r,ri)>
i TeT
d — A
|T| Z Z P(r;) ZVG log g (a | s¢)®y < — alg*zv(mn)>
i TET
1—A
|7_| ZZP 7’7 ZVQIOgﬂ'g ay |St))\+1710 >u(m,ri)
T€ET 1

1—A
|T| Z ZZP Tz v@ 1Og7r0(at | St) < + 1710' >v(m, r1)>

T€T 1 t=0

1—-A
|T| Z z ZP Tl Vg log ﬂe(at | St) < 1-— alU*ZU(w,n))

T€T t=0 1

Z ZV@ log 7 (as | st (Z]P’ r)@V (1) (A + . _210.*>U(ﬂ-’ri)))

TGT t=0

|7_| ZZVglogm; ag | s¢)ws

T7€T t=0

N 1— A
Wy = Z]P(Ti)q)tl (’7’) ()\ + 1_@10*2”(#7”)>

(36)

(37

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(40)

is the weight associated with each state-action pair. Intuitively, if A = 1, then we just focus on increasing the likelihood of
actions that look good in expectation. If A = 0, then we focus on increasing the likelihood of actions that look good under
reward functions that the current policy 7y performs poorly under, i.e., we focus on improving our performance under all r;

such that o* > v(m, r;)), weighting the gradient according to the likelihood of these worst-case reward functions.

A.3. Policy Gradient for Baseline Regret

‘We now consider the case where our performance metric is baseline regret (Brown et al., 2020b), which measures performance
with respect to some expert demonstrator. The intuition is that this formulation may be able to reduce variance in the policy
gradient estimator by grounding updates in the expected return of the demonstrator. We define baseline regret as follows:

Z/}(W97 R) = ’U(ﬂ'97 R) - U(ﬂ'Ev R)7

47

Policy Gradient Bayesian Robust Optimization for Imitation Learning

where 7 denotes an expert policy and v(7w g, R) is usually estimated from demonstrations. Plugging baseline regret for our
performance metric into Equation (29) gives the following:

A
VBROIL = Z P(r;)Vy (’U(Tre, r;) —v(rg, T2)> <>\ + 171[, >v(me,rs)— ’U(TFE,’I“i)) (48)
1-—A
= Z P(Ti)vev(ﬂ-% Ti) A+ Ela*ZU(wQ,m)fv(wE,n) (49)
1—A
= Z]P(ri)VQETN"W [r’()] A+ 1— a]‘ *>u(mg,ri)—v(TE,T:i) (50)
i

In practice, we typically only have samples of expert behavior rather than a full policy. In this case, we can estimate the
return of the demonstrator under reward function hypothesis r; using a set of demonstrated trajectories D = {71,...,T;n } as
v(mE, i) = ZZn St, ar), (51)

TED t=0

where T’ is the horizon of the demonstrations.

If r; is a linear function, i.e.,(s,a) = w! ¢(s,a), then we can compute the empirical expected feature counts using the
demonstrated trajectories D = {71,..., 7} to get

|Z > (s a), (52)

TED (s¢,at)ET
where ¢ : S x A — RF denotes the reward features. We can then estimate v(7 g, ;) as
— a7
’U(T('E,'f'i) =w,; Ug, (53)

where w; is the feature weight vector corresponding to linear reward function r; sampled from the posterior. The advantage
is that we only have to evaluate the expected feature counts once and then we can use this vector to estimate the expected
return under any number of reward function hypotheses via dot products.

Given the estimate baseline regret under each reward function hypothesis we solve for ¢* as

0" = argmax (O’ - ZIP’(n—) [0 — vbr]+), 54

oef{vbr,. R} i—1

br

where v,* = v(mg, ;) — v(7TE,Ti).

As in the previous section, if we approximate the baseline regret using a set 7 of on-policy trajectories 7. ~ my and a set D
of demonstrations we have:

1-—
d 1— A
:Zi]P’(ri < oy Lz(: Vologmg(as | s¢)® 1) ()\ + Mlg*Zv})r> (56)
zZ]P’(ri) <1 Z
- T

T 1- A
> Vo logmo(ay | s1)®;] ><)\+ -l *21;;“) (57)
TET

t=0

1-
V4BROIL =Y P(r;)VoE,r, [ri(7)] ()\ +al *>vibr) (55)

m > Z Vo logmo(ar | s)we (58)

T€T t=0

Policy Gradient Bayesian Robust Optimization for Imitation Learning

where 1
— . Tq 7_ .
wy = ZP(n)@t (r) (A + - a10*2¢,) (59)
3
is the weight associated with each state-action pair. The baseline regret adjusts risk such that it is riskier to explore areas of
the state-space that were not visited by the demonstrator, thereby encouraging pessimism in the face of uncertainty. To see
this note that

k
vl')r =v(mg, i) — v(TE,Ti) & sz(ﬂﬂs — pE) = sz[]](ﬂm;] — feld])s (60)
j=1

where [i, are the estimated expected feature counts of 7y and /iy are the estimated expected feature counts of 7y and
we assume all vectors lie in R*. Thus, if the expert and policy both encounter reward feature j at the same frequency
(fixy[j] = f1E[j]), the distribution over w;[j] will not contribute to vP*. Thus, the tail risk will be determined by other
reward weight distributions. Conversely, when there is disagreement, there will be the potential for risk: if the policy visits
new states that are estimated to have negative reward weight or if the policy does not visit states visited by the demonstrator
that are estimated to have positive reward weight, then either will lower vP and result in more tail risk.

Note, however, that baseline regret does not only provide an incentive to directly imitate the demonstrator. If demonstrations
are suboptimal, but we have preferences over them, (Brown et al., 2020a) demonstrated that fast Bayesian reward inference is
possible. If under the posterior distribution of reward functions we have high confidence that certain states are good (positive
weight) or bad (negative weight), then lower risk policies will seek to visit the bad states less often than the demonstrator
and visit the good states more often. Thus, it is still possible to outperform the demonstrator while being robust to reward
weights with high uncertainty by imitating to hedge against high uncertainty, but exploiting our posterior to perform better
than the demonstrator when we have low uncertainty over the desirability of certain states.

B. Entropic Risk Measure Policy Gradient

Here we show that another common risk metric, Entropic Risk Measure (ERM) (Follmer & Knispel, 2011), also is amenable
to policy gradient optimization within the BROIL framework. One benefit of ERM is that it is differentiable everywhere
unlike CVaR. ERM has been considered recently under the settings of risk-averse policy search under a known reward
function (Nass et al., 2019) and soft-robust optimization with respect to model uncertainty (Russel et al., 2020).

B.1. Entropic Risk Measure

The entropic risk measure (Follmer & Knispel, 2011) is another form of tail risk that has the benefit of being everywhere
differentiable. The entropic risk measure (ERM) of a random variable X is defined as:

1
ERM = —alogE[e_o‘X] (61)

where a € (0, o) represents the risk sensitivity (higher is more risk-sensitive) and where larger values of ERM indicate
lower risk.

Similar to the CVaR BROIL objective we can formulate at BROIL objective using ERM. As we show in Section B.2, the
policy gradient of ERM-BROIL is given by Equation 16 with

—av(me,ri)
wERM _ ZP(M)‘I’? (r) <)\ .)\)e) (62)

Er [e—av(wg,R)]

If A = 1, then we just focus on increasing the likelihood of actions that look good in expectation. If A = 0, then we focus on
increasing the likelihood of actions that look good under reward functions that the current policy 7y performs poorly under.
In particular, the policy gradient for the ERM term is given by a weighted sum of policy gradients for each reward function
in the posterior. The weights are softmax probabilities which will concentrate the probability around the reward function
r; for which v(mg, ;) is lowest. Intuitively, this will encourage policy updates that improve the performance under the
reward functions for which my performs the worst. As o — oo, the softmax probabilities will concentrate on the absolute
worst-case reward in the distribution, but for o — 0, this probability will be distributed according to the reward function
probabilities P(r;) resulting in a policy gradient that seeks to maximize return under the expected reward function.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

B.2. Deriviation

In this section we derive a similar policy gradient objective for BROIL that uses entropic risk measure:

1
ERM, = —— log(Eg[e~*¥(me: 7)) (63)
(0%

We start with the objective:

maximize A -E[(mg, R)] 4+ (1 —) - ERM, [w(ﬁg, R)] (64)

o

We assume that our performance metric is expected value, i.e., ¥ (mq, R) = v(7, R) = Err, [R(7)].

We need to find the gradient wrt 6. The first term is the same as in the previous section:

Vo - Ep(r) [Erm, [R(T)]] = Z P(ri)VoEr o, [ri(T)]- (65)

Now consider the gradient of the entropic risk term. We have

1
VoERM, [v(7, R)] = — Vea log (Z P(Ti)e—av(ﬂe7m)> (66)
__! L 3 B(ri)Vgemovmono 67)
@ 5, PR, ety 2 FIVe
1 1 —Qv(mTe,T;
- EZ]P)(R')e—ow(‘rreyRa‘) Z]P)(ri)e (mo, 1)V9(7ow(7r9,7’i)) (68)
J J T

—av(m,ri)

B P(r;)e
B Z > P(Rj)e=ov(mo.Ry) Vou(mo,) ©9)

As before we will be estimating the on-policy expected return for each reward hypothesis which can be done by collecting a
set T of trajectories T ~ 7y:

0(79, By) = Erromy [rij (7)] ~ % S R(r) = % SO Rj(se). (70)

TET TET t=0

Now we can formulate the full BROIL policy gradient update step by blending the policy gradient over the expectation with
the policy gradient over the ERM:

P i e*Q’U(Tfa,T’i)

VeBROIL =\ > " P(r;)Vov(mg, 7i) + (1 = X)) >]I(D(];)e_m(mm) Vou(mg,1;) (71)
i i J J ’

P(r:)V M (1)y 7

—zi: (ri) ev(WeaTi)< +(1-)EP(R)[QM(M,R)O (72)

As before we can write the policy gradient as

T

Z Vo logmg(as | s¢) @4
t=0

VGU(7T97 Ti) = VQETNW(; [ri (T)] = ETNWH (73)

Defining ®}* in terms of a particular reward function hypothesis r; and approximating expectations with a set 7 of on-policy

Policy Gradient Bayesian Robust Optimization for Imitation Learning

trajectories 7 ~ Ty gives:

T
1
VsBROIL NZIP’ (ri) <|7_ Z ZV@ logmg(as | s¢)®

e*(l’l)(ﬂ'g,’!‘i)
> (,\ + (1= N) (74)

ER[efau(Trg,R)]

TET
efav(mg,ri)
P(r; 1 1 - 75
- T; zz r)Vologmo(ay |)% (T >ER[6_QU<W6,R)]) (75)
1sxg P(r)87 (7) [A+ (1 — A ™) 76
:T Z Zve log g (ar | se)we (77)
T7€T t=0
where
. e*OlU(ng,Ti)

= Zi:P(Ti)q)t (T) <)\+ (1 —)\)W> (78)

is the weight associated with each state-action pair. Intuitively, if A = 1, then we just focus on increasing the likelihood of
actions that look good in expectation. If A = 0, then we focus on increasing the likelihood of actions that look good under
reward functions that the current policy 7y performs poorly under.

B.3. Experiments

CartPole Using the same posterior and same hyperparameters as the original experiment, we redo the experiment except
using ERM as the risk metric. Figure 5 shows the tradeoff between robustness and expected return for various A. We find
that results with the ERM risk metric are relatively similar to those with the CVaR risk metric in the main text.

12

10

Expected Return

-40 -35 -30 -25 -20 -15 -10 -05
Robustness (ERM)

Figure 5. Efficient frontier curve for CartPole with the ERM risk metric. We set « equal to 0.001 and test over multiple values of .
PG-BROIL with ERM acheives similar stability to CVaR.

Pointmass Navigation Figure 6 shows the Pointmass Navigation task with the ERM risk measure. Overall, the behavior
is very similar. One distinction is that for lower values of lambda (ie 0, 0.2) the pointmass goes through the edge of the gray
region while for CVaR the pointmass avoided the gray region entirely.

TrashBot Figure 7 shows the same TrashBot experiment with the ERM risk metric and o = 1. We find that results are
similar when ERM is used instead of CVaR. With CVaR we saw A = 0.8 gave the best results while for ERM A = (0.7 was
best.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

—4500

—5000

—5500

—6000

—6500 -

Expected Return

—7000

—7500

—8000 1
e A=1.0 A=0.6 e A=0.2 —~13000 -11500 —10000 —8500 —7000
« A=0.8 ¢ A=0.45 e A=0.0 Robustness (ERM)

Figure 6. We show qualitative performance (left) and an efficient frontier curve (right) for the same environment and parameters as
Figure 2b, but use ERM as the risk measure instead of CVaR for different values of lambda.

Average Number of Trash Collected Average Number of Timesteps in Gray Region
10 4 e 251
S
3 g g
= 1 = 201
o g
= (&
= £
5 61 w15
=
=] | E
B 4 £ 10
E s
o
= 2 205
=}
=
0 7 ; ¥ 0.0
0 0.2 04 0.6 07 04 06 07
Lambda Value Lambda Value

Figure 7. We run the TrashBot environment with the ERM risk metric and ow = 1 over various values of A. We take the 95% confidence
interval and plot them as the error bars. We find that the TrashBot collects the most trash when A = 0.7 while minimizing the amount of
time in the grey region.

C. Trust Region PG-BROIL

We now derive a version of the Proximal Policy Optimization (PPO) (Schulman et al., 2017b) algorithm for optimizing
the BROIL objective. We specifically consider the PPO-clip objective, which adjusts the advantage function to encourage
controlled updates of the policy at each epoch. Precisely, let the policy parameters at epoch k be given by 6. Then PPO-clip
implements the following update:

Opr1 = argl(;naxE(s,a)Nﬂgk [L(a, s, 0k, 0)] (79)
where
[me(als))
L(a,s,0k,0) = min | ———= A" (s,a), g(e, A™ (s,a 80
(0:5,00.0) = min (220 4 (5.0, gle, A7 (5.0) (50)
and

g(e, A" (s,a)) = { 1 _ (81)

To implement a PPO-style gradient clipping for PG-BROIL, we replace A™ (s, a) with the BROIL Policy Gradient weights:

Policy Gradient Bayesian Robust Optimization for Imitation Learning

1-A
ZIP’n)27 (A + T 1owzumr) (82)

where wy is the weight associated with each state-action pair.

The full PPO-clip objective for BROIL is shown in Algorithm 2.

Algorithm 2 PPO-clip BROIL

1: Input: initial policy parameters 6y, samples from reward function posterior R, ..., Ry and associated probabilities,
P(R,),...,P(Rx), and any form for policy gradient weights ¥,

2: fork=0,1,2,...do

3: Collect set of trajectories T, = {7;} by running policy 7y in the environment.

4: Estimate expected return of mg under each reward function hypothesis r; using Eq. (12).

5

6

Solve for o* using Eq. (11)
Update 6 with stochastic gradient ascent by maximizing the PPO-clip objective:

O = argmax Z[Zm (gkaall)) w“g(e’wt)ﬂ

using Eq. (82) for wy.
7: end for

D. Experiment Hyperparameters and Details

The hyperparameters used for PPO are in Table 3, unless otherwise specified in the experiment’s individual section.

D.1. Cart Pole

We modify the Open AI Gym Cartpole environment (Brockman et al., 2016) but modify the reward function to be a linear
function of the cart’s position by taking the cart position and multiplying it by -1, -0.8, -0.6, -0.4, -0.2, 0, and 0.2 to get our
multiple reward hypotheses. For policy optimization, we implement PG-BROIL on top of the REINFORCE implementation
from (Achiam, 2018) with all parameters set to their default settings except for e = 0.95 and epochs set to 100.

D.2. Pointmass Navigation

We build on the pointmass navigation environment from (Thananjeyan et al., 2020b) and construct a system in which a
pointmass agent navigates from a fixed start state to a fixed goal state with linear Gaussian dynamics. The agent can exert
force in cardinal directions and experiences drag coefficient ¢ and Gaussian process noise z; ~ N(0, o21) in the dynamics.
We utilize 1 = 0.2 and ¢ = 0.05 for all experiments. We include gray regions of uncertain cost as specified in the main
text. For policy optimization, we implement PG-BROIL on top of the PPO implementation from (Achiam, 2018) with all

Table 3. PG-BROIL hyperparameters when built on PPO.

HYPERPARAMETER VALUE
CLIP RATIO 0.2
ENVIRONMENT STEPS PER EPOCH 4000
GAE LAMBDA 0.95
GAMMA 0.99
HIDDEN UNITS 64
NETWORK LAYERS 2
OPTIMIZER ADAM
POLICY LEARNING RATE 2E-4
TARGET KL 0.01

VALUE LEARNING RATE

1E-3

Policy Gradient Bayesian Robust Optimization for Imitation Learning

o

i3
®

(@) (b)

Figure 8. Reacher environment during demonstration time (a) and policy training time (b). During demonstrations, the uncertain region
(red) is far from the robot arm and the goal (yellow), but during policy optimization the goal position is randomized and sometimes the
uncertain cost region is in the way forcing the agent to either go around or through it.

parameters set to their default settings except for o = 0.96, policy learning rate set to 3e-4, and epochs set to 50.

D.3. Reacher

We build on the Reacher implementation from the DeepMind Control Suite (Tassa et al., 2020) by adding a region with
uncertain cost as specified in the main text. For policy optimization, we implement PG-BROIL on top of the PPO
implementation from (Achiam, 2018) with all parameters set to their default settings except for o = 0.9, policy learning rate
set to le-4, hidden units set to 128, and epochs set to 800. To obtain preferences over the demonstrations, we rank each
demonstration by the ground truth reward and assign pairwise preferences between each adjacent pair. Demonstrations were
obtained by training a Soft Actor-Critic agent (Haarnoja et al., 2018) for 100 episodes and check-pointing the policy at each
episode during training. This gives 100 demonstrations, and of these six with sufficiently different rewards were sampled.

D.4. TrashBot

The TrashBot dynamics and actions are the same as in the Pointmass Navigation environment except that the system dynamics
are deterministic. For policy optimization, we implement PG-BROIL on top of the PPO implementation from (Achiam,
2018) with all parameters set to their default settings except for o = 0.95, policy learning rate set to 3e-4, and epochs set to
50.

D.5. Atari Boxing

The Atari Boxing hyperparameters are the same as described in 3 with & = 0.9 and A = 0.3 for PG-BROIL. We use a
PG-BROIL implementation on top of the PPO implementation from (Achiam, 2018) with the default hyperparameters and
epochs set to 800. To obtain preferences over the demonstrations, we rank each demonstration by its game score and assign
pairwise preferences between each adjacent pair. Demonstrations were obtained by training a PPO agent with the standard
hyperparameters in Table 3 for 5 epochs and then taking four rollouts of episodes from the model.

E. Baseline Algorithm Details

PBRL We implement PBRL by using the pairwise preference learning loss considered in (Christiano et al., 2017). We
consider learning from offline preferences and build on the implementation from (Brown et al., 2019). MCMC was
performed for 20,000 steps with a proposal step size of 0.5. Weights are normalized so that |Jw||; = 1.

Bayesian REX We utilize the Bayesian REX implementation from (Brown et al., 2020b) to learn a Bayesian posterior
over reward functions from offline preferences. MCMC was also performed for 20,000 sample steps with a proposal step
size of 0.5. Weights are normalized so that ||wl|[; = 1. We utilize a burn-in of 500 sample steps and down-sample to 20
samples.

GAIL We utilize the GAIL implementation from (Yuan, 2019). We utilize PPO for policy optimization and use most of
the default parameters from the provided implementation in (Yuan, 2019). The only default parameters we changed were the
L2 regularization coefficient for the weights of the discriminator network (set to 1e — 2), log std for the policy (set to —0.5),
the hidden units of the policy network (set to 64), and the total number of environment steps which we varied through a

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Table 4. We run GAIL with differing number of environment steps and then compare PG-BROIL with GAIL with the same number of
steps. Table 1 contains both GAIL and PG-BROIL with 2 x 10° steps. Results are averages (= one st. dev.) over 100 test episodes each
with a horizon of 100 steps per episode.

NUMBER OF ENVIRONMENT AVG. TRASH AVG. STEPS IN

ALGORITHM qppg (x10°) COLLECTED GRAY REGION
GAIL 164 3.32 +1.66 0.35+1.79
GAIL 41 2.88 +1.66 3.73+£7.98
GAIL 2 2.27 + 1.66 5.08 + 13.01
PG-BROIL 2 9.20+2.19 2.04 +5.94

combination of changing the number of steps between each discriminator/policy update and the number of total iterations.
We varied the number of environment steps and noted the behavior in Table 4. We found that on TrashBot with orders of
magnitude more environmental steps we could not get consistently better performance across both trash collected and steps
in the gray region so we report the performance with an equivalent number of environmental steps to PG-BROIL for all
experiments.

BC We utilize the same stochastic policy and learning rate scheduler as for PPO but simply maximize the log-likelihood of
actions in each of the states in the demonstrations. The learning rate for the policy is 1e — 2 and the number of BC iterations
is 1000.

F. TrashBot Further Analysis and Visualization
F.0.1. EXAMPLE ROLLOUTS

In Figures 9-13 we show both successful and unsuccessful rollouts from fully trained policies for PG-BROIL and all
baselines to gain intuition for their quantitative performance. In all rollouts below, on the left we show a successful case
while the middle and right images are failure cases. As noted in the experiments section in the main text, PBRL places
a small positive weight on staying in the white region, resulting in it falling in a local minima where it mostly optimizes
for staying in the white region rather than collecting trash. This leads to low visitation of the gray region as desired, but
relatively inconsistent performance in picking up pieces of trash. Bayesian REX on the other hand weights picking up trash
and staying in the white region roughly equally. Thus, Bayesian REX explores the entire white region, not just the central
portion where the trash is located, resulting in frequent forays into the gray region. PG-BROIL is able to successfully pick
up trash and avoid excessive steps in the gray region by hedging against all reward hypotheses with sufficient probability,
allowing it to recognize that it is more important to collect trash than simply stay in the white region.

:':_ﬁ{} *

Figure 9. PG-BROIL: The left and middle images show trajectories for PG-BROIL with lambda value of 0.8 while the right image shows
a failure case for lambda value of 0.7. PG-BROIL is able to successfully pick up trash and avoid excessive steps in the gray region by
hedging against all reward hypotheses with sufficient probability, allowing it to recognize that it is more important to collect trash than
simply stay in the white region.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Figure 10. PBRL: PBRL places a small positive weight on staying in the white region, resulting in it falling in a local minima where it
mostly optimizes for staying in the white region rather than collecting trash. This leads to low visitation of the gray region as desired, but
relatively inconsistent performance in picking up pieces of trash.

f "-!.9': .': .:',o. ’

Ri.." -

Figure 11. Bayesian REX: Bayesian REX weights picking up trash and staying in the white region roughly equally. Thus, Bayesian REX
explores the entire white region, not just the central portion where the trash is located, resulting in frequent forays into the gray region.

S Gageeeset® e
Sea R s e R
RV L A S 3
Ll

Figure 12. GAIL: The left, middle and right images show an example trajectory from GAIL running with 2 x 10°, 4.1 x 105, and
1.64 x 107 environment steps respectively. Due to the lack of environment steps, the bot in the left and middle images take more steps in
the gray region before turning around and going back to the white region. However, the bot in right image immediately turns around as
soon as it contacts the gray region. The bot in the middle and right images also collect more trash in their episodes than the left image.
This behavior is consistent with the averages in Table 4.

F.0.2. POSTERIOR ANALYSIS

Figure 14 shows the distribution of the weights for each feature for PG-BROIL. PG-BROIL exploits the fact that some
reward functions have a negative weight for the WHITE feature to recognize that simply staying in the white region without
going for trash is a highly suboptimal strategy. This allows PG-BROIL to outperform PBRL, which falls into a local maxima
by simply mining rewards by staying in the white region.

Additionally, amongst the 20 reward functions generated on seed 0, the WHITE and TRASH features have a Pearson
correlation coefficient of -0.46. This implies that if a reward function places high weight on the WHITE feature, it is likely
to place a smaller or more negative weight on the TRASH feature and vice-versa. This helps create the causal confusion we

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Figure 13. BC: The failure cases come from one of the demonstrations having the same behavior of circling the trash without picking it
up. Since BC is only incentivized to exactly mimic the actions in demonstration states, it is unable to navigate ambiguities in the demos.

Distribution of GRAY Reward Weight Distribution of TRASH Reward Weight Distribution of WHITE Reward Weight
5 41 M 3.01

4 251
2.01

H £

32 317

104

0.51

0.0
-1.0 -0.5 0.0 0.5 0.0 0.2 0.4 0.6 0.8 1.0 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Value Value Value

Figure 14. Distribution of each feature weight in posterior for seed 0.

see in this experiment since it is unclear whether the agent should be rewarded more for the WHITE feature or the TRASH
feature.

F.0.3. SENSITIVITY TO A

Figure 15 shows the TrashBot experiment results over various values of \. We found A = 0.8 to give the best performance
in terms of trash collection and gray space avoidance.

G. Sensitivity to Alpha

Most applications of CVaR use « € [0.9, 1) since as & — 0 CVaR is equivalent to expected value. Empirically, we found
that o > 0.8 is required to get behaviors different from those that simply maximize expected reward, i.e., A has little to no
effect on the resulting policy behavior for oo < 0.8.

Policy Gradient Bayesian Robust Optimization for Imitation Learning

Average Number of Trash Collected Average Number of Timesteps in Grey Region

10 A

Number of Trash Collected
Number of Timesteps in Grey Region

04 i

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Lambda Value Lambda Value

Figure 15. We run the TrashBot environment with CVaR risk metric and o = 0.95 over various A. We take the 95% confidence interval
and plot them as the error bars. We find that the TrashBot collects the most trash with the minimum amount of timesteps spent in the grey
region when A = 0.8.

