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Abstract

We propose a two-stage attack framework that leverages the power of distribution
matching and deep reinforcement learning to learn attack policies against federated
learning. Our two-stage attack effectively learns an attack policy that minimizes
the robustness levels of distributionally robust federated models, and substantially
jeopardizes the performance of the federated learning systems even when the server
imposes defense mechanisms. Our work brings new insights into how to attack
federated learning systems with model-based reinforcement learning.

1 Introduction

Federated learning is a powerful paradigm that has the potential to train machine learning models
among different devices in a distributed fashion without diminishing user experiences or jeopardizing
users’ privacy. However, federated learning models have also been shown to be vulnerable to
threats [11] such as model poisoning attacks [5][2][3], data poisoning attacks [3][6][7], and inference
attacks [12][8][18]. Even though various defense mechanisms (e.g., coordinate-wise median [17],
trimmed mean [17], Krum [4], and Bulyan[13]) have been proposed to defend federated learning
systems, delicate attack still can break the defending systems. For instance, the local model poisoning
attacks [5] and the inner product manipulation attack [16] can compromise federated learning systems
even when the server is equipped with robust aggregation rules such as coordinate-wise median or
Krum.

The local model poisoning attack (LMPA) method crafts a myopic attack by poisoning local models on
compromised workers such that the aggregated global model deviates the most towards the inverse of
the global model when there is no attacks [5]. When the server imposes the Krum defense mechanism
and the aggregation rule is known to the attacker, the LMPA method performs reasonably well for
both cases when the attacker has full information about other normal workers’ local models, and when
it only has partial knowledge. However, when the server uses the coordinate-wise median defense,
the LMPA method with partial knowledge performs substantially worse than the full knowledge case.
Further, the LMPA method performs significantly worse when the aggregation rule is unknown to
the attacker. The inner product manipulation (IPM) method implements an attack by manipulating
the distance between the robust estimator and the correct mean to be negative [16] . In order to
compute the attack policy, the IPM method requires that the attackers know the average of the normal
workers’ gradients. Instead of crafting a myopic attack policy as in the previous studies, we propose
a two-stage attack framework that first learns the distribution of aggregated data using distribution
matching and then learns a non-myopic attack policy using the data samples generated from the
distribution. The proposed attack framework does not assume that the attacker knows benign workers’
local models. It performs consistently well even if the aggregation rule is unknown to the attacker.

Previous attacks on federated learning models typically aim at compromising the performance
of the trained models under normal testing data that follow the same distribution as the training
data, but not its robustness against data shift. In particular, it is unclear if and to what extent the
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training-stage attacks can diminish the performance of federated learning models that are designed
for providing certified robustness in the inference stage. To this end, we extend the distributionally
robust optimization (DRO) with adversarial training framework of [15] to federated learning setting.
The DRO method provides certified loss guarantees for data perturbations that are within a distance-
bounded Wasserstein ball. To attack the federated training of a DRO model, we apply our two-stage
attack framework that initially learns the distribution of the aggregated data using the attacker’s
local data and the parameters it receives from the server. Using the data generated from the learned
distribution, the attacker performs model-based reinforcement learning [1] to train an attack policy
that minimizes the robustness levels.

Our work advances the state-of-the-art in adversarial attacks against federated learning in the following
aspects. First, we propose a two-stage attack framework that first learns the distribution of the
aggregated data using local data and the parameters received from the server and then uses the
distribution to learn a non-myopic attack policy with deep reinforcement learning. Second, we
show how the proposed framework can attack distributionally robust federated learning models
effectively in both a white-box (when the aggregation rule is known to the attacker) and a black-box
(when the aggregation rule is unknown to the attacker) manner. Our experiments on both synthetic
and real-world datasets demonstrate the advantages of the two-stage attack method compared with
baseline attack methods such as random attacks and inner product manipulation attacks.

2 Distributionally Robust Federated Learning

We consider a distributed computing model with one server and m worker machines. Without loss
of generality, we assume that each worker holds n data samples, and all the mn data samples are
i.i.d. drawn from a distribution Py supported on a space Z C R%. Let z;(j) denote the i-th training

sample on worker j, and P = L > i1 2 iz 02,(j) the empirical distribution generated by the

i

data samples, where 4, ;) denotes the Dirac point mass at z;(j).

The distributionally robust optimization (DRO) with adversarial training framework in [15] provides
a training procedure that aims to choose the model parameter § € © to minimize the worst-case ex-
pected loss defined as sup pep Ez~ p[I(0; Z)] where the loss function I(6; z) is generally non-convex
in §, and P is a class of distributions. We will consider P := {P : W (P, Py) < p}, where W,(-,-) is
the Wasserstein metric. The worst-case formulation yields models with guaranteed performance under
adversary Wasserstein perturbations up to level p. Following [15], we consider minimizing the relaxed
dual objective F'(0) := supp{Ez~p[l(0; Z)] —YWe(P, P)} =E, _psup.cz[l(0;2) —ve(z, Zo)],
where v is a fixed dual variable and ¢(+, -) is the transportation cost that defines the Wasserstein metric.
When the loss function {(6; z) is smooth in z and + is relatively large, the minimax problem becomes
a nonconvex-strongly-concave optimization problem, and can be solved by stochastic gradient de-
scent [15]. We observe that by setting v = oo, the DRO objective reduces to the standard objective
of empirical risk minimization.

We extend the DRO framework to a federated learning setting similar to [14], where the server and
workers work together to solve the minimax problem (see Algorithm 1). We call it Distributionally
Robust Federated Learning (DRFL). In each time step ¢, each normal worker samples a minibatch
from its local data and solves an optimization problem separately using the current model 6% 1.
This involves finding a (nearly) optimal Z(z) to the inner problem for each data sample 2, in the
minibatch, and then computing the gradient of loss with respect to 6. The workers then forward the
gradients to the server. The server applies projected gradient descent to the aggregated gradients to
update the global model. The server may apply a simple aggregation rule such as average or a more
robust rule such as Krum or coordinate-wise median. Note that rather than sending correct gradient
information as a normal worker does, an adversary can send arbitrary information to the server.

Given a model 6 (such as the one computed by Algorithm 1 within 7' epochs), let P*(6) de-
note the distribution that maximizes the dual objective and p(6) its Wasserstein distance from P:
P*(0) = argmaxp{Ezp[l(0; 2)] — YWe(P, P)} = L Y07 S 07 (612,(7))» and 5(0) :=
W.(P*(8), P) = E, 5lc(T(0; Z), Z)], where T, (0; z0) := argmax.cz{l(0;2z) — vc(z, 20)} is
the transportation map or Monge map, and J, is the point mass at data z. It is observed in [15] that

(Ez~p+[l(8; Z)], p(0)) provides a data-driven robust certificate in the sense that the worst-case loss
is upper bounded by E . p«[I(8; Z)] for Wasserstein perturbations up to level p(6).



Algorithm 1: Distributionally Robust Federated Learning (DRFL)

Initialization: #°, m workers each with n data samples , step size 7;

Output: 67
fort =1toT do
Each Worker j: Server:
Sample a minibatch B*(j) gt = Aggr(gt,gs...,gt)
for 2o € B!(j) do 0t = proje (61 — ngt)
2(20) = argmax,ez [(0'71; 2) —yc(z, 20) Broadcast 6 to the workers
end for end for

g5 = Wl(j” 0B (j) Vol(0°*; 2(20))
Send g to the server

3 Two-Stage Attack Framework for Federated Learning

Threat Model We consider a single active attacker (as a worker) in the DRFL system. We make
the weakest information assumption about the attacker (same as a normal worker): it only knows the
global model parameters received from the server, in particular, {Qt}, ~, m, loss function I(-, -), the
local training algorithm and its local data. In addition, we assume that the attacker obtains information
about the number of workers in the system and the size of data samples for each worker. We observe
from our experiment that the attack method is still effective even if the attacker only knows a lower
bound of the number of workers. We consider both the cases when the attacker knows the aggregation
rule (white-box attack), and when this information is unavailable (black-box attack).

We consider a realistic attacker that sends crafted gradients to the server with the objective of maxi-
mizing the worst-case surrogate loss, i.e., sup p{Ezp[l(6; Z)] — YW (P, P)} = Ezp-[1(6; Z)] —
~p(0). It is convenient to maximize the expected loss or minimize the robust level. In our work, we
consider minimizing the robust level p as the attacker’s objective.

The Reinforcement Learning Problem We formulate the attacker’s optimization problem as a
reinforcement learning problem. We represent it as a tuple (S, A, g, r, ), where

e S = {s;} is a continuous set of states. Here, s; := 0* € ©.

e A = {a;} denotes the action space of the attacker where a; := g € R is the gradient that
attacker ¢ sends to the server at time step ¢ in Algorithm 1. Note that the action space is
continuous. Our framework naturally supports multiple attackers. However, our experiments
show that a single attacker is sufficient.

e ¢(s,a,s’) is the transition function that represents the probability of reaching a state s’ € S
from the state s € .S when the attacker chooses action a € A. The probability is jointly
determined by the distribution P of the aggregated data, the number of workers m, the
number of data samples n used by each worker, the algorithm used by each worker, the
aggregation rule used by the server, and the attack action a used by the attacker. The original
distribution P is fixed but unknown to the attacker. We assume that m and n are known to
the attacker. Since the attacker is a worker in the federated learning system, it has knowledge
of the algorithm used by each worker. We consider both the scenarios when the aggregation
rule is known and when it is unknown to the attacker.

o7 :SxAxS — Ris the reward function, where R C R>¢ is a continuous set of
rewards. We define the reward at time step ¢ as r; := p(6'~1) — p(6?). To compute 7y, the
attacker again needs the information on P, m, n, the algorithm used by each worker, and
the aggregation rule used by the server.

e [ is the discount factor for future rewards.

The attacker’s objective is to find a stationary policy p that maximizes the expected discounted total
rewards over T time steps, where 1 : S — A denotes a stationary policy that maps the current model
6*~! to the next attack action a;. By setting the discount factor 3 = 1 and using the definition of 7,
this objective is equivalent to finding a policy 4 that minimizes E[p(67)]. A key step to compute the



probability function ¢(s, a, s’) and the reward function is to compute P. To this end, we propose to

first learn the distribution P. After that, the attacker is ready to compute the transition probability for
triple (s, a, s’) and the associated rewards. It then applies dynamic programming to find the optimal
policy. However, this dynamic programming approach is inefficient in practice due to the large state
and action spaces. We propose to use deep reinforcement learning to learn an attack policy instead.

The proposed attack method (See Fig. 1) consists of two stages: distribution learning and policy
learning, both of which happen during the training phase of the DRFL process. In stage one, the

attacker learns P as an approximation of the true aggregated data distribution P from epoch 1 to
epoch k (determlned by a threshold value that will be described later) using the attacker’s local data

distribution P, and the model parameters {0°, 0%, ..., 6%} it receives from the server. In stage two,

the attacker utilizes the learned distribution P to learn an attack policy . Starting from epoch k + 1
until epoch 7', the attacker uses the same learned policy p to generate actions (i.e., gradients) given a
state as the input. It then sends the generated gradients to the server.

Stage One: Distribution Learning ﬁ Stage Two: Policy Learning
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Figure 1: An overview of the two-stage attack framework for federated learning.

Stage One: Distribution Learning Initially, the attacker does not perform attacks. Instead, it
learns the distribution of aggregated data using the deep leakage from gradients (DLG) method [18].
The DLG method utilizes only model updates (gradients) and learns the joint data-label pairs from
dummy data inputs. It is also computationally efficient. The DLG method takes the neural network
model, the gradients, and the dummy data as the input. Unlike the original DLG method, we use the
attacker’s local data instead of randomly generated data samples as the dummy data to improve the
quality of the approximated distribution. In each time step ¢, we use DLG to compute a distribution
P? with the pooled gradients up to time step ¢, which involves multiple iterations of gradient matching.
We measure the Wasserstein distance of the approximated distributions between any two consecutive

time steps, P* and P'!. The algorithm terminates once the Wasserstein distance is below a threshold.

In our experiments, we set the threshold as 0.005 and the number of iterations for gradient matching as
300 (same as [18]), and learn the data distribution from scratch. If the attacker has partial information

about P (e.g., its neighbors’ data distributions), it can learn the distribution starting from that partial
information instead of from scratch. In this way, our algorithm allows the attacker to learn and
implement attacks at any time during the training of the federated learning systems.

Stage Two: Policy Learning In this stage, the attacker learns an attack policy that minimizes the
robustness level p. The attacker’s original optimization problem can be converted to a reinforcement
learning problem that aims to maximize the total discounted rewards over 7' time steps. We use
the deep deterministic policy gradient (DDPG) method [10] to learn the attack policy p. The
policy network takes a state s as the input and outputs the action directly. We adopt OpenAl Stable
Baselines3 for DDPG implementation and use the default setting for the hyper-parameters in our
experiments.

When we train a small neural network with the DRFL system, it is natural to use ¢ as the state, and
the gradient g! as the action. When we use the DRFL framework to train a large neural network,
however, this approach does not scale as it results in extremely high search space that requires both
large runtime memory and long training time. To solve this problem, we propose to approximate the
state 0* and the action ¢! for high-dimensional data. To approximate the state 6%, we use parameters
of the last hidden layer of the current neural network model as the state. We further define the action
a; as a one-dimension scaling factor a; € [—1, 1], and set gf =a; X gf, which is used to compute
the next state and rewards.



We rescale the gradients to reduce the chance that the gradients are filtered out by the defense
mechanisms. In particular, when computing the gradients to be sent to the server, the attack method
first calculates the maximum value (,,x and the minimum value (,,;,, that occur in any dimension of
Vl(6t~1; 2) for any z in the data samples generated in the first stage. The original scaling factor a;

is in [—1, 1]. The rescaled scaling factor a; = a; X % x 0.5+ C'“z‘mitc x 0.5.

The computational complexity of the two-stage attack framework mainly comes from learning an

accurate estimation of the aggregated data distribution P, and learning an attack policy p using
the learned distribution. The training time for policy learning in stage two largely depends on the
number of training epochs used to simulate the server’s behavior, and the training episodes used by
the attacker. The larger of the two factors, the more training time is required. In practice, the attacker
can run training episodes in parallel with GPUs or other parallel computing devices. The attacker
needs to make tradeoff among the time spent on distribution learning, simulating server’s behavior
and attack execution. Before performing the attacks, it takes time (usually several epochs) for the
attacker to learn the aggregated distribution and train an attack policy. Once a policy has been trained,
the attacker can utilize the same policy to implement the attacks without extra computation required.

4 Experiments

We conduct two groups of experiments. In the first group, we visualize the benefits and advantages
of learning attack policies with deep deterministic policy gradient on a synthetic dataset. In the
second group of experiments, we test the performance the proposed method on testing datasets with
different level of perturbations on the MNIST dataset [9]. For both groups, there are 10 workers in
the federated learning system with one attacker using the two-stage attacks.

Synthetic Dataset We generate synthetic data according to the method described in [15]. In
particular, we generate 50,000 data instances Z = (X,Y) ~ Py with X; € R? ~ N(0, ) and labels
Y; = sign(|| X;||2 — 2). Each worker has 5,000 data instances. We train a small neural network with
two hidden layers of size four and two, respectively. We use ELU activations for all layers. In our
experiments, we let v = 2. To train the reinforcement learning model, we use §¢ as the state, and the
gradient as the action. We train the DRFL model for 30 epochs. It takes 3 epochs for the attacker to

learn the distribution P. Training the attack model takes 2 minutes, which is equivalent to 1 epoch of
training in DRFL.

Fig. 2 illustrates the class boundaries for four DRFL training methods (no attack, random attack, inner
product manipulation attack and two-stage reinforcement learning attack) over the ELU-activated
models. Without attacks, similar to the original distributationaly robust learning described in [15],
the DRFL provides a certified level of robustness as evidenced by an axisymmetric classification
boundary that is resilient to adversarial perturbations in all directions (see Fig. 2b). When there
are attacks in the federated training, the trained model no longer maintains the certified robustness
(see Figs. 2c, 2d, and 2e). Of all the three attack models, our proposed two-stage attack using
reinforcement learning performs the best (as evidenced by the missing classification boundary in
2e) by learning a non-myopic policy that minimizes the level of robustness p. The inner product
manipulation attack outperforms the random attack due to the fact that it uses the information of the
normal agents’ average gradients. When the server employs the coordinate-wise median defense, the
random attack and the inner product manipulation attack are still effective. However, their ability
to deviate the robustness of the DRFL decreases (see Figs. 2h and 2i). This is also true when the
server uses the Krum defense mechanism (not shown in the figure). Even when the server employs a
defense mechanism, the two-stage reinforcement learning attack can compromise federated learning
to the largest extent among all the attack methods (see Fig. 2j).

MNIST Dataset We test the performance of our two-stage reinforcement learning attack on a
real-world supervised-learning benchmark - the MNIST dataset with 70,000 data instances. Each
worker has 7,000 data instances. Our experiment procedure is similar to that in [15]. We train a neural
network classifier that consists of 8 X8, 6 x 6, and 5 x 5 convolutional filter layers with ELU activations
and a fully connected layer and softmax output. In our experiment, we set v = 0.04E 5| X||2], where
X is the transformed image vector. To train the reinforcement learning model, we use parameters of
the last hidden layer as the state. For each dimension of the state, the space is [—in f, in f]. We define
the action as a scaling factor of the original gradients. The action space is [—1, 1]. We train the DRFL
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Figure 2: Results on synthetic data with no defense and coordinate-wise median based defense.
. Classification boundaries are shown in red, purple,

Training data are shown in blue and

gray, and for no attack (NA), random attack (RN), inner product manipulation (IPM), and

reinforcement learning (RL) attack.

model for 30 epochs. It takes 5 epochs for the attacker to learn the distribution P. Training the attack

model takes 1 minutes, which is equivalent to 1.4 epochs in DRFL training.

We test the performance of five federated models with testing datasets that have different levels of
data shifts (in terms of Wasserstein perturbations) from the original data distribution. We measure
the testing errors for different perturbation level p under three conditions for the server: no defense,
coordinate-wise median, and Krum. In this experiment, we introduce a variant of the two-stage attack
- blackbox reinforcement learning attack, where the attacker does not know the aggregation rule used
by the server and simply uses the average rule to predict the next state in stage two.

Fig. 3a shows that the two-stage reinforcement learning attack outperforms both the random attack
and the inner product manipulation attack substantially for all the settings in terms of the testing
errors. The performance of the proposed two-stage attack remains stable even if the perturbation level
p changes. This observation demonstrates the advantages of model-based reinforcement learning
attacks in federated learning. When the server employs defense mechanisms such as coordinate-wise
median and Krum, both the white-box and black-box reinforcement learning attacks consistently
outperform the other two attack methods (see Figs. 3b and 3c). The experimental results indicate that
even if defense mechanisms are employed by the server, the two-stage reinforcement learning attacks
still can effectively compromise the federated learning models. This result raises security concerns
for training distributionally robust models in federated learning.

> iPM

i
H
H
W’
—— NA '
RN i
i
— RL
—— RLB

000 001 002 003 004 005 006 007
p

(a) No Defense

— i
RN e >+
H
H

M
',»V*"H R

—— RLB

000 001 002 003 004 005 006 007
o

(b) Median

|
i
M
—— N !
RN i
- M H
—RL H

—— RLB

000 001 002 003 004 005 006 0.07
0

(c) Krum

Figure 3: A comparison of misclassification errors (including both false positive and false negative)
for different perturbation levels p with five DRFL models: NA, RN, IPM, RL and reinforcement
learning-blackbox (RLB) when the server uses no defense, coordinate-wise median, and Krum,
respectively. The vertical line indicates the robustness level p of the trained model without attack.



5 Conclusion and Future Work

We propose a two-stage attack framework that combines distribution matching and deep reinforcement
learning to learn a non-myopic attack policy that can effectively compromise the robustness of
federated learning systems. Our experiments show that the proposed two-stage attack can effectively
degrade the performance of distributionally robust federated learning models. Our work opens up new
exciting revenues for further study. A rewarding direction would be to extend the current framework
to federated learning systems with non-i.i.d. data. A key step towards the solution is to develop novel
methods to effectively learn the distribution of the aggregated data in stage one. In our work, we
assume that the attacker is always selected by the server. However, if the server adopts subsampling,
the attacker might not be selected for some rounds. As a result, the attacker might not be able to learn
an accurate distribution P. In addition, the attacker might not be able to always implement the attack.
A systematic study to investigate the effectiveness of the proposed two-stage attack method under
such condition is needed. The proposed method requires the attacker to first learn an accurate model
P and then learn an attack policy using deep reinforcement learning before it performs attacks. It
would be interesting to study novel online methods to allow the attacker to learn the attack policy
immediately after learning an approximate (not necessarily accurate) distribution.
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