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ABSTRACT

We propose a model-based reinforcement learning framework against federated
learning systems. Our method first approximates the distribution of the aggre-
gated data through cooperative multi-agent coordination. It then learns an attack
policy through multi-agent reinforcement learning. Experimental results demon-
strate that the proposed attack framework achieves strong performance even if the
server deploys advanced defense mechanisms. Our work sheds light on how to
attack federated learning systems through multi-agent coordination.

1 INTRODUCTION

Federated learning (FL) is a powerful machine learning framework that allows a server to train
machine learning models across multiple devices that hold local data samples, without exchanging
them. Unfortunately, federated learning systems are vulnerable to threats (Lyu et al., 2020) such as
model poisoning attacks (Fang et al., 2020; Bagdasaryan et al., 2020; Bhagoji et al., 2019), data poi-
soning attacks (Baruch et al., 2019; Fung et al., 2018; Gu et al., 2017), and inference attacks (Melis
et al., 2019; Hitaj et al., 2017; Zhu et al., 2019). These attacks are effective even when the server ap-
plies robust aggregation rules such as coordinate-wise median (Yin et al., 2018), trimmed mean (Yin
et al., 2018), Krum (Blanchard et al., 2017), or Bulyan (Mhamdi et al., 2018). Nevertheless, a recent
study (Cao et al., 2020) shows that the server can collect a small clean training dataset to bootstrap
trust to defend a variety of attacks (Fang et al., 2020; Bagdasaryan et al., 2020). Their results show
that the FLTrust (Cao et al., 2020) defense is capable of achieving a high level of robustness against
a large fraction of adversarial attackers. In this work, we propose a novel multi-agent reinforcement
learning (MARL) attack framework that is effective even if the server deploys the state-of-the-art
defense mechanism such as FLTrust.
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Figure 1: An overview of the MARL attack
framework for federated learning.

Our MARL attack framework consists distribution
learning and policy learning (See Figure 1). The
attackers first learn a model of the aggregated data
distribution, and then simulate the behavior of the
server and the benign workers using the learned
distribution. In doing so, the attackers jointly
learn an attack policy through multi-agent reinforce-
ment learning. Experiments on a real-world dataset
demonstrate that our proposed MARL method con-
sistently outperforms existing model poisoning at-
tacks (Bhagoji et al., 2019; Fang et al., 2020; Xie
et al., 2020b). It achieves strong attack performance even if the level of subsampling is as low as 5%
or the number of attackers is as small as 5.

Our method distinguishes itself in that it learns a non-myopic policy through fully cooperative multi-
agent reinforcement learning. In stark contrast, existing attack methods (e.g., (Bhagoji et al., 2019;
Fang et al., 2020; Xie et al., 2020b)) typically craft myopic attack strategies based on heuristics.
Further, most of them consider independent attackers without coordination. Recently, a distributed
backdoor attack (DBA) method is proposed in Xie et al. (2020a) where a global trigger pattern is
manually decomposed into local patterns that are embedded to different attackers. Compared with
DBA, our MARL method enables the attackers to jointly learn an attack policy through coordinating
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the behavior of attackers in distribution learning, policy learning and attack execution, while their
distributed backdoor attacks are coordinated in attack execution (i.e., trigger injection) only.

2 MARL ATTACK FRAMEWORK AGAINST FEDERATED LEARNING

Federated learning. We consider an FL setting that is similar to federated averaging (Fe-
dAvg) (McMahan et al., 2017). The FL system consists of a server and K devices (also known as
workers) in which each device has some private data. Coordinated by the server, the set of devices
cooperate to train a machine learning model within T epochs by solving the following problem:
minθ fpθq where fpθq :“

řK
k“1 pkFkpθq , pk ě 0 and

ř

k pk “ 1. The local objective Fkpθq is
usually defined as the empirical risk over device k’s local data with model parameter θ P Θ. That
is, Fkpθq “ 1

Nk

řNk
jk“1 `pθ; pxjk , yjkqq, where Nk is the number of data samples available locally

on device k, `p¨, ¨q is the loss function, and pxjk , yjkq :“ zjpkq is the jkth data sample that is drawn
i.i.d. from some distribution Pk. We write pPk as the empirical distribution of the Nk data samples
drawn from Pk. Let pP :“ t pPkukPrKs denote the joint empirical data distribution across workers,
and N “

ř

kNk the total number of data samples across workers. It is typical to set pk “ Nk
N . The

empirical distribution of aggregated data of all devices is defined as sP “
řK
k“1

Nk
N

pPk.

The FL algorithm (see Algorithm 1 in the Appendix) works as follows: at each time step t, a random
subset of w devices is selected by the server for synchronous aggregation. Each selected device
j P rws then samples a minibatch b of sizeB from its local data distribution pPj . It then calculates the
average local gradient gt`1

j Ð 1
B

ř

zPb∇θ`pθ
t; zq and sends the gradient to the server. The server

then uses an aggregation rule to compute the aggregated gradient gt`1 Ð Aggrpgt`1
1 , ..., gt`1

K q and
then updates the global model parameters θt`1 Ð θt ´ ηgt`1 where η is the learning rate.

Threat Model. We assume that among the K workers, Mp1 ď M ă Kq of them are malicious.
Further, these attacker are fully cooperative and share the same goal of compromising the FL sys-
tem. They are coordinated either by one leading attacker or an external agent. We refer such agent
as a leader agent. We assume the attackers only know the global model parameters received from
the server, tθtu, the local training algorithm (including the batch size B) and their local data distri-
butions t pPiuiPrMs. In practice, the attackers may communicate with each other to share their local
information such as local data distributions, the status of whether being selected by the server or
not, their unique identifiers, and each attacker’s action. Such internal communication allows each
selected attacker i to obtain the following information at each time step t: the number of attackers
being selected by the servermtp0 ď mt ďMq, and its relative rank σti P t0, ...,m

t´1u in the set of
the selected attackers rmts. The relative rank is obtained by sorting the selected attackers according
to their identifiers in ascending order. In addition, we assume the attackers obtain information about
the total number of devices K, the number of selected workers w, and a lower bound of the total
number of training epochs T .

We consider untargeted model poisoning attacks where M cooperative attackers send crafted local
updates trgtiuiPrMs to the server that aims to maximize the empirical loss, i.e., maxθ fpθq.

Markov decision process. We formulate the attackers’ optimization problem as an episodic Markov
decision process (MDP). We represent it as a tuple pS,A, T, r,Hq, where
• S is the state space. Let τ P t0, 1, ...u denote the index of the attack step and tpτq P rT s the

corresponding FL epoch when at least one attacker is selected by the server. The state at step τ is
defined as sτ :“ pθtpτq,Atpτqq where Atpτq is the set of attackers selected at time tpτq. We further
define the observation of attacker i at τ as oτi :“ pθtpτq,mtpτq, σ

tpτq
i q, which can be derived from

sτ . Let Oi denote the space of oτi .
• A is the space of the attackers’ joint actions. If attacker i is selected at τ , its action aτi :“

rg
tpτq`1
i P Rd is the local update that attacker i sends to the server at time step tpτq, where d is the

dimension of the model parameters. The only action available to an attacker not selected at tpτq
is K, indicating that the attacker does not send any information in that step. Let Ai denote the
domain of attack i’s actions, we have A :“ A1 ˆ ¨ ¨ ¨ ˆ AM .

• T : S ˆ A Ñ PpSq is the state transition function that represents the probability of reaching a
state s1 P S from the state s P S when attackers choose actions aτ1 , ..., a

τ
M , respectively.
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• r : SˆAˆS Ñ Rě0 is the reward function. We define the reward at step τ as rτ :“ fpθtpτ`1qq´

fpθtpτqq, which is determined by the joint actions of attackers and shared by all the attackers. Both
the transition probability T and the reward function r are jointly determined by the joint empirical
distribution across workers pP (fixed but unknown to the attackers), the number of workers K, the
number of workersw selected for each time step, the size of local minibatchB, the algorithm used
by each worker, the aggregation rule used by the server, and the attackers’ actions aτ1 , ..., a

τ
M .

• H is the number of attack steps in each episode. H is a hyperparameter that can be adjusted, but
we require tpHq ă T so that the attackers have time to execute attacks.

The attackers’ objective is to jointly find an attack policy π “ pπ1, ..., πM q that maximizes the ex-
pected total rewards over H attack steps, i.e., Er

řH´1
τ“0 rτ s, where πi : Oi Ñ PpAiq denotes a sta-

tionary policy of attacker i that maps its observation oi to a probability measure over Ai. Using the
definition of rτ , this objective is equivalent to finding a policy π that maximizes EθtpHqrfpθtpHqqs.
A key obstacle to solving the MDP is that both the probability transition function T and the reward
function r in the MDP depend on the joint data distribution pP , which is unknown to the attackers.
An important observation is that the attackers can instead learn an approximation rP of the mixture
distribution sP from model updates, which is often sufficient to derive effective model poisoning
attacks. The idea is that the attacker can simulate the behavior of benign agents and the server by as-
suming that each benign agent samples data from rP . This gives rise to a new MDP pS,A, T 1, r1, Hq
where T 1 and r1 are derived from rP . We propose to apply multi-agent reinforcement learning to
solve the MDP instead of dynamic programming due to efficiency concerns.

MARL attack framework. Our proposed model-based reinforcement learning attack framework
naturally consists of distribution learning and policy learning, both of which happen while federat-
ing learning is ongoing. The attackers execute the learned attack policy once it has been trained.

Distribution learning. Initially, the attackers do not perform attacks. Instead, they jointly learn
the aggregated data distribution rP using the inverting gradients (IG) method (Geiping et al., 2020).
The IG method reconstructs images by optimizing a loss function based on the angles (+++cosine
similarity) of gradients to find images that lead to a similar change in model prediction as the ground
truth.

When a set of attackers Atpτq are selected at tpτq, they share the model updates θtpτq with the leader
agent. The leader agent utilizes the pooled model updates tθtpτ

1
quτ 1ďτ , their gradients, the dummy

data and labels (we use the attackers’ local data and labels as dummy data), and the loss function `
as the input to compute an approximation rP τ of the mixture distribution sP with the IG method. We
measure the Wasserstein distance of the approximated distributions between two consecutive attack
steps, rP τ´1 and rP τ . The algorithm terminates once the Wasserstein distance is below a threshold
ν. After distribution learning, the leader agent shares the learned distribution rP to all the attackers.
See Algorithm 2 in the Appendix for more details of distribution learning

Policy learning. As the attackers are fully cooperative and their actions are continuous, we adopt
the framework of centralized training with decentralized execution and use the multi-agent deep
deterministic policy gradient (MADDPG) method (Lowe et al., 2017) to train attack policies. Since
the attackers share the same reward function and differs in the observations only in our setting,
it suffices to train a single centralized action-value function Qµps, a1, ..., aM q for all the attackers
and a shared deterministic policy µ : Õ Ñ Ã where Õ “

Ť

iOi and Ã “
Ť

iAi. As the leader
agent has all the information needed to simulate system dynamics, the centralized training can be
implemented by the leader agent and no communication with other attackers is needed during policy
training. The learned policy is shared with all the attackers at the end of policy training and executed
in a decentralized way during attacks. See Algorithm 3 in the Appendix for details of the MADDPG.

At each step τ , the leader agent generates the next state sτ`1 and the reward rτ given the current
state sτ and the joint attack actions (shared by attackers), based on the learned distribution rP . The
experience will then be used to update the centralized action-value function, which will in turn be
used to update the joint attack policy. In doing so, the leader agent simulates the behavior of the
benign workers and the server. To simulate the benign workers, the leader agent samples a minibatch
that is i.i.d. drawn from the same learned distribution rP for each benign worker and computes the
respective gradients given the current model update θtpτq. Since the attackers have no information
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about Nk, the leader agent assumes that each benign worker has the same amount of data (i.e.,
pk “

1
K ). To simulate the server’s behavior, the leader agent applies the same aggregation rule as

the server to compute the next model update. In practice, the leader agent is usually equipped with
GPUs or other parallel computing facilities and can run multiple training episodes in parallel. Note
that the total training epochs (including distribution learning and policy learning) should be less
than the number of FL training epochs T (or a lower bound of T ) so that the attackers have time to
execute the attacks. We further propose a method to reduce the state and action space as well as a
gradient rescaling technique to counter the effect of robust aggregation rules (See the Appendix).

Attack execution. After policy learning, each selected attacker i sends the crafted gradients accord-
ing to the learned policy µ and its local observation oi in the remaining FL epochs. Since attacker
i’s local observation depends on its rank information, the set of attackers need to communicate with
each other in each epoch to share the number of selected attackers as well as their unique identifiers.

3 EXPERIMENTS

We conduct experiments on a real-world dataset: Fashion-MNIST (Xiao et al., 2017). We compare
the performance of different attack methods: no attack (NA), random attack (RN), inner product
manipulation (IPM) (Xie et al., 2020b), local model poisoning attack (LMP) (Fang et al., 2020),
explicit boosting (EB) (Bhagoji et al., 2019), and three variants of our reinforcement learning attack
menthod, namely, RL with a single attacker (RL), RL with multiple independent attackers (IRL),
and the proposed MARL attack. See the Appendix for details of the experimental settings.

Results show that our model-based reinforcement learning methods (RL, IRL and MARL) consis-
tently outperform existing methods such as LMP, EB and IPM (See Figure 2). The primary reason
is that our methods learn a non-myopic attack policy using the learned distributions instead of craft-
ing model updates myopically with heuristics. Among the three RL methods, the proposed MARL
method performs the best due to better coordination among the attackers. Its advantage expands as
the server employs more effective defense mechanisms.

Figure 2: A comparison of classification error rates for FL with three different aggregation rules.

When the server uses advanced defense mechanism such as FLTrust, existing attack methods of-
ten perform poorly. Such situation still holds even for a relatively large number of attackers or a
relatively high subsampling level (See Figure 3). In sharp contrast, our proposed MARL method
achieves a classification error rate of 0.657 even when the total number of attackers is limited to 5.
In comparison, the IRL method obtains 0.292 while all other methods get less than 0.15. Even if the
subsampling is as low as 5%, MARL obtains a classification error rate of 0.562 while all other meth-
ods obtain an error rate below 0.2. A main factor contributing to MARL’s superior performance is
that it requires significantly less time for distribution learning without sacrificing the accuracy of the
learned distribution due to multi-agent coordination (See Table 1 in the Appendix for a comparison).

Figure 3: A comparison of classification error rates for FL with FLTrust on non-i.i.d. data.

4 CONCLUSION

We propose a multi-agent reinforcement learning attack framework to learn a non-myopic attack
policy that can effectively compromise FL systems even with advanced defense mechanisms applied.
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Our experiments show that the proposed MARL attack framework achieves a superior performance
over existing attack methods due to non-myopic policy learning and better coordination among the
attackers. While our focus has been on untargeted attacks against FL systems, our attack framework
can be extended to targeted attacks or backdoor attacks. Another direction is to investigate novel
methods to automatically learn optimal parameters such as the threshold of distribution learning and
the number of policy learning epochs. Future work is needed to identify how best to do so.
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APPENDIX

Algorithm 1 Federated Learning
Input: Initial weight θ0, K workers indexed by k, size of subsampling m, local minibatch size
B, step size η, number of global training steps T
Output: θT
Server executes:

for t “ 0 to T ´ 1 do
rms Ð randomly select m workers from K workers
for each worker j P rms in parallel do
gt`1
j ÐWorkerUpdate(j, θt)

end for
gt`1 Ð Aggrpgt`1

1 , ..., gt`1
K q

θt`1 Ð θt ´ ηgt`1

end for
WorkerUpdatepj, θq:

Sample a minibatch b of size B
g Ð 1

B

ř

zPb∇θ`pθ, zq
return g to server

More details about distribution learning. At the beginning of distribution learning, the leader
agent uses all the M attackers’ local data to serve as the dummy data Ddummy . The attackers only
need access to the gradients of the aggregated data, not each individual device’s gradients. The
former can be derived using common information by ḡτ “ pθtpτ´1q ´ θtpτqq{η, where θtpτ´1q and
θtpτq are previous and current FL model parameters received from the server, and η is the server’s
learning rate. For each epoch that at least one attacker is selected, the leader agent then uses the
inverting gradients algorithm (Geiping et al., 2020) to reconstruct the normal workers’ data based
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on the dummy data and the derived gradient ḡ by minimizing a loss function that is adapted from the
inverting gradients algorithm (Geiping et al., 2020). The optimization objective aims to reconstruct
data points by iteratively solving:

arg min
xPRn,yPR

1´
x∇θ`pθ; px, yqq, ḡy

||∇θ`pθ; px, yqq|| ¨ ||ḡ||
` βTV pxq, (1)

where n is the dimension of x, TV pxq is the total variation (Rudin et al., 1992) of x and β is total
variation parameter. For each data point, the inverting gradients algorithm terminates aftermax iter
iterations. After data reconstruction in each epoch τ , all the reconstructed data will be added to the
set of dummy data. The approximated mixture distribution rP consists of the reconstructed data
and the M attackers’ local data. To determine whether an approximated distribution is sufficiently
accurate, we measure the Wasserstein distance W p rP pτ ´ 1q, rP pτqq between the approximated dis-
tributions of the two consecutive attack steps. We use the data points across all the devices in the
previous step and the current step to approximate the previous and current mixture distributions.
The distribution learning algorithm terminates when the Wasserstein distance is below a predefined
threshold ν.

Algorithm 2 Distribution Learning
Input: Wasserstein distance threshold for termination ν, number of iterations for inverting gra-
dients max iter, step size for FL η and step size for inverting gradients η1, model parameters
tθtpτqu

Output: rP

Wasserstein distance W p rP p´1q, rP p0qq Ð 8, τ Ð 0
Ddummy ÐM attackers’ local data
while W p rP pτ ´ 1q, rP pτqq ą ν do
τ Ñ τ ` 1
Compute the aggregated gradients using ḡτ Ð pθtpτ´1q ´ θtpτqq{η
for px, yq P Ddummy do
px0, y0q Ð px, yq
for i “ 0 to max iter ´ 1 do

∇θ`pθ
tpτq; pxi, yiqq Ð B`pθtpτq; pxi, yiqq{Bθ

Li Ð 1´ x∇θ`pθtpτq;pxi,yiqq,ḡ
τ
y

||∇θ`pθtpτq;pxi,yiqq||¨||ḡτ ||
` βTV pxiq

xi`1 Ð xi ´ η
1∇xiLi, yi`1 Ð yi ´ η

1∇yiLi
end for

end for
Add newly all reconstructed data points px, yq to Ddummy

Compute the current approximated mixture distribution rP pτq with all the reconstructed data
points and the M attackers’ local data
Compute the Wasserstein distance W p rP pτ ´ 1q, rP pτqq

end while

Cooperative multi-agent deep deterministic policy gradient. We adapt the Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) (Lowe et al., 2017) algorithm to our fully cooperative
setting with subsampling as follows. We let all the agents (attackers) share the same action-value
function Qµps, a1, ..., aM q and the same policy µφp¨|oiq with parameters φ. Note that although the
attackers share the same policy, their actions in each step vary due to the unique observations they
receive. Using the chain rule, we can derive the gradient of the expected return Jpφq “ Er

řH´1
τ“0 rτ s

as follows:

∇φJpφq “ Es,a„Dr

M
ÿ

i“1

∇φµφpo
j
i q∇aiQ

µpsj , aj1, . . . , ai, . . . , a
j
M q|ai“µpo

j
i q
s,

where the experience reply buffer D contains tuples ps, r, s1, a1, . . . , aM q. Note that for attacker i
not selected by the server in a certain step, its action does not affect the Qµ value, which implies
that ∇aiQ

µ “ 0 for any ai when the state indicates that attacker i is not sampled. Hence, the policy
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gradient formula makes sense even when subsampling is applied. Similar to Lowe et al. (2017), the
shared action-value function Qµ is updated by minimizing the loss:

Lpφq “ Es,a,r,s1try ´Qµps, a1, . . . , aM qs
2u, y “ r `Qµ

1

ps1, a11, . . . , a
1
M q|a1

k“µ
1pokq.

where µ1 is the target policy with delayed parameters φ1.

Algorithm 3 Cooperative Multi-Agent Deep Deterministic Policy Gradient
for episode “ 1 to max episode do

Initialize a random process N for action exploration
Receive initial state s
for τ “ 1 to H do

for each attacker i, select action ai “ µφpoiq `Nτ w.r.t the current policy and exploration
Execute actions a “ pa1, . . . , aM q and observe reward r and new state s1
Store ps, a, r, s1q in replay buffer D
sÐ s1

Sample a random minibatch of C samples psj , aj , rj , s1jq from D
Set yj “ rj `Qµ

1

ps1j , a11, . . . , a
1
M q|a1

k“µ
1pojkq

Update critic by minimizing the loss:
Lpφq “ 1

C

ř

jry
j ´Qµpsj , aj1, . . . , a

j
M qs

2

Update actor using the sampled policy gradient:
∇φJ «

1
C

ř

j

ř

i∇φµφpo
j
i q∇aiQ

µpsj , aj1, . . . , ai, . . . , a
j
M q|ai“µpo

j
i q

Update target network parameters φ1 Ð αφ` p1´ αqφ1

end for
end for

State and action space reduction. When we train a small neural network with the federated
learning system, it is natural to use pθtpτq,Atpτqq as the state, and the gradient rg

tpτq`1
i as the ac-

tion. When we use the federated learning system to train a large neural network, however, this
approach does not scale as it results in extremely large search space that requires both large runtime
memory and long training time, which is usually prohibitive. To solve this problem, we propose to
approximate the state pθtpτq,Atpτqq and the action gtpτq`1

i for high-dimensional data. To approx-
imate the state, we use parameters of the last hidden layer of the current neural network model to
replace θtpτq in state pθtpτq,Atpτqq. This is because because the last hidden layer passes on values
to the output layer and typically carry information about important features of the model (Sun et al.,
2014). Note that the true state is still the full FL model that determines transition probabilities and
rewards. We further define the action aτi as a one-dimension scaling factor aτi P r´1, 1s, and set
rg
tpτq`1
i “ aτi ˆ g

tpτq`1
i , which is used to compute the next state and reward.

Gradient rescaling. To reduce the chance that the gradients from the attackers are filtered out by
the defense mechanisms (e.g., coordinate-wise median, Krum, or FLTrust), we further rescale the
gradients. When computing the gradients to be sent to the server, the attack method first calculates
the maximum value ζmax and the minimum value ζmin that occur in any dimension of ∇θlpθ

tpτq; zq
for any z in the data samples generated in the distribution learning stage. The original scaling factor
aτ is in r´1, 1s. The rescaled scaling factor ãτ “ aτ ˆ ζmax´ζmin

|ζmax|
ˆ 0.5` ζmax`ζmin

|ζmax|
ˆ 0.5.

Training time. The training time mainly comes from learning an accurate estimation of the mix-
ture data distribution sP , and learning an attack policy µ. For a typical subsampling rate (e.g., 20%),
the distribution learning stage usually takes only a few federated learning epochs of time before
convergence. The distribution learning time also depends on the degree of data heterogeneity. (We
follow the definition of the degree of non-i.i.d. in (Fang et al., 2020)). A higher degree of hetero-
geneity requires a longer time for distribution learning. The time for policy learning in stage two
largely depends on the number of training epochs used to simulate the FL dynamics in each training
episode, and the number of training episodes used by the attackers. The larger of the two factors, the
more training time is required. To this end, we assume that the leader agent has access to GPUs or
other parallel computing facilities so that it can run multiple training episodes in parallel. We further
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observe that with the large number of episodes trained in parallel, there is no need to simulate the
complete FL process for T epochs. It suffices to consider much shorter epochs in practice. Another
important observation is that the length of a simulating epoch is typically shorter than that of a true
epoch in FL since the simulated process involves no communications with the devices.

Dataset. Fashion-MNIST includes 60,000 training examples and 10,000 testing examples, where
each example is a 28×28 grayscale image, associated with a label from 10 classes. We consider
a federated learning system that consists of 100 workers. We assume that there are 10 attackers
unless stated otherwise. For the i.i.d. setting, we randomly split the dataset into 100 groups, each
of which consists of the same number of training samples and the same number of testing samples.
For the non-i.i.d. setting, we follow the method of Fang et al. (2020) to quantify the heterogeneity
of the data. We split the workers into 10 groups and model the non-i.i.d. federated learning by
assigning a training instance with label c to the c-th group with probability pr and to all the groups
with probability 1´pr. A higher pr indicates a higher level of heterogeneity. For for non-i.i.d. data,
we set the degree of non-i.i.d. pr “ 0.5 as the default setup.

Federated learning settings. We adopt the following default parameters for the federate learning
models: learning rate η “ 0.01, number of total devices = 100, number of attackers = 10 (0 for
NA and 1 for RL), subsampling level = 20%, and number of total epochs = 100. We train a neural
network classifiers consisting of 8×8, 6×6, and 5×5 convolutional filter layers with ELU activations
followed by a fully connected layer and softmax output. We set the local batch size B “ 128. We
implement the FL model with PyTorch (Paszke et al., 2019) and run all the experiments on the same
2.30GHz Linux machine with NVIDIA Tesla P100 GPU.

Distribution learning settings. In our experiments, we set the step size for inverting gradients
η1 “ 0.001 the total variation parameter β “ 0.01, the threshold for distribution learning ν “ 0.1
and the number of iterations for inverting gradients max iter “ 4, 800 (same as (Geiping et al.,
2020)), and learn the data distribution from scratch.

Policy learning settings. We adopt a PyTorch implementation of the MADDPG and use the de-
fault setting for the hyper-parameters as that in Lowe et al. (2017) in our experiments unless stated
otherwise. The default parameters are described as the following : number of policy training epochs
= 30, number of policy training episodes max episode = 6, 000. We train the 6, 000 episodes in
parallel. Note that instead of fixing H , which corresponds to the number of attack steps in policy
learning when at least one attacker is selected so that the leader agent can observe the new state and
reward, we fix the number of simulating epochs in each episode in policy learning, including those
epochs when no attacker is selected. Thus, H varies across episodes in experiments.

Table 1: A comparison of training time (in number of epochs) in each stage for RL-based attacks
(number of attackers = 10, subsampling level = 20%, all other parameters are set as the default
settings).

Method Distribution learning Policy learning Execution Classification error

MARL 6 30 64 0.735
IRL(ν “ 0.1) 54 30 16 0.416
IRL(ν “ 0.3) 28 30 42 0.367
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