
DIRECT : A Transformer-based Model for
Decompiled Variable Name Recovery

Vikram Nitin ∗ Anthony Saieva ∗ Baishakhi Ray Gail Kaiser

Department of Computer Science, Columbia University

vikram.nitin@columbia.edu, {ant,rayb,kaiser}@cs.columbia.edu

Abstract

Decompiling binary executables to high-level

code is an important step in reverse engineer-

ing scenarios, such as malware analysis and

legacy code maintenance. However, the gen-

erated high-level code is difficult to under-

stand since the original variable names are

lost. In this paper, we leverage transformer

models to reconstruct the original variable

names from decompiled code. Inherent dif-

ferences between code and natural language

present certain challenges in applying conven-

tional transformer-based architectures to vari-

able name recovery. We propose DIRECT,

a novel transformer-based architecture cus-

tomized specifically for the task at hand. We

evaluate our model on a dataset of decompiled

functions and find that DIRECT outperforms

the previous state-of-the-art model by up to

20%. We also present ablation studies evalu-

ating the impact of each of our modifications.

We make the source code of DIRECT available

to encourage reproducible research.

1 Introduction

Proprietary software often comes in binary form,

making it difficult to comprehend its functionality,

as many high-level code abstractions (e.g., mean-

ingful variable names, code structures, etc.) are

lost when source code is compiled to binaries. To

extract meaningful information from binaries, soft-

ware analysts typically use reverse engineering that

converts binary executables into another form that

can be more easily comprehended (Ďurfina et al.,

2013). Reverse engineering is often applied in bi-

nary code inspection, legacy software maintenance,

malware analysis, and cyber forensics. For exam-

ple, reverse engineering uncovered the rebirth of

ZeUS malware variants during the coronavirus pan-

demic of 2020 (Osborne, 2020).

∗ Equal contribution

void __fastcall add_match(char *a1) {
// ... var declarations omitted ...
v1 = (i n t)(a1 - 1);
whi le (1) {
v3 = *(unsigned __int8 *)(v1++ + 1);
v2 = v3;
i f (!v3) break;
v4 = v2 > 0x7F;
i f (v2 != 127)
v4 = v2 > 0x1F;

i f (!v4) {
free(a1);
re turn;

}
}
// ... some code omitted ...

}

Figure 1: Real world Hex-Rays decompilation. Recon-

structed source differs significantly from original, and

it is hard to deduce original developers’ intentions.

Traditionally, the primary reverse engineering

tools are disassemblers, which extract assembly

instructions from a binary executable. However,

in recent years, decompilers like Ghidra (Ghidra)

and Hex Rays (Hex-Rays) have become practical

and popular. They produce a source code-like ap-

proximation of the binary code as shown in Figure

1. While these tools can retrieve the approximate

code structure, they introduce variable names that

have no semantic meaning, drastically reducing

code readability and comprehensibility (Katz et al.,

2018; Hu et al., 2018; Hayati et al., 2018).

In recent years, Machine Learning-based mod-

els have shown promise in recovering lost variable

names from decompiled code using a frequency-

based model (He et al., 2018) or LSTMs (La-

comis et al., 2019). However, variables in source

code are not independent of each other and often

have hidden long-range dependencies. LSTMs and

frequency-based models are not well-suited to cap-

ture such dependencies. Since transformer-based

models can more effectively capture long-range

dependencies (Vaswani et al., 2017), in this work

we explore transformer-based models to recover

variable names from decompiled code.

Transformers are popular in natural language

processing (Vaswani et al., 2017; Devlin et al.,

2019; Yang et al., 2019). However, code differs

from natural language in many significant ways

(Allamanis et al., 2018; Ding et al., 2020), hence

vanilla transformer architectures need modifica-

tions for practical application to the task of variable

recovery. Consider the following problems:

Unknown number of tokens to be predicted:

Transformers that capture bidirectional context usu-

ally predict a known number of tokens, but to make

the vocabulary size manageable, identifiers must

be split into subtokens. For example, an identifier

like my var could be split up as three subtokens -

“my”, “ ”, and “var”. Each identifier can be com-

prised of an arbitrary number of subtokens, and the

model needs to access the information contained

in the entire sequence while predicting the name

for an identifier. To deal with this problem, we use

an encoder-decoder transformer architecture as in

(Ahmad et al., 2021).

Syntactic constraints: Unlike natural language,

code’s strict syntax requires that a variable assigned

a name at one occurrence in the prediction must be

the same at all other occurrences. For example, if

a decompiled identifier name v1 appears on line

3 and line 100, the predicted name must be the

same on both lines. We propose a novel algorithm

that uses the joint probability over sequences to

predict variable name identifiers while still obeying

constraints imposed by the code syntax.

Token Non-uniformity: While training a

model for natural language, all tokens are usu-

ally given equal importance (Vaswani et al., 2017).

However, for semantic understanding of code the

identifier tokens are more important than those to-

kens that are built into the language syntax. For ex-

ample, a variable name like “click count” pro-

vides much more sematic information than a key-

word like ”while”. We propose a token weighting

scheme specially crafted for the variable name re-

covery problem.

Code sequences are long: Adaptations of NLP

techniques to code often consider functions analo-

gous to sentences. Traditional transformers limit

the maximum sequence size to a few hundred to-

kens. While this restriction rarely presents a prob-

lem dealing with sentences, many functions are

much longer. For example, the longest function in

our benchmark dataset (Section 4.1) is over 4000

tokens long. To handle longer functions we propose

a mechanism to break long sequences into smaller

pieces and recombine their individual predictions

while still obeying code’s syntactic constraints.

Putting all these together, we propose DIRECT

(Decompiled Identifier Renaming Engine using

Contextual Transformers), the first transformer-

based model built specially for variable recovery

from decompiled binaries. We compare DIRECT

to DIRE (Lacomis et al., 2019), the state of the art

in variable name recovery on a benchmark dataset

and show that DIRECT improves on the baseline

by 20%. We also evaluate the individual impact of

each of our specific adaptations by performing a

series of ablation studies. We provide the source

code for DIRECT 1 in the hope that it will prove to

be a useful tool for other researchers.

2 Related Work

Variable Name Recovery: DIRE (Lacomis et al.,

2019), compared to in the evaluation, performs the

same task as DIRECT but uses traditional LSTMs

combined with GGNNs. DIRECT uses DIRE’s to-

kenizer as is, our innovations replace DIRE’s bidi-

rectional LSTM with our task-specific transformer

architecture. Prior to DIRE, Debin (He et al., 2018)

represented the prior state of the art using decision

tree-based modeling.

Type Inference: Debin also attempted to re-

cover type information – which is a different prob-

lem. Typilus (Allamanis et al., 2020) is a new

GGNN-based approach for type inference.

Function Name Recovery: An orthogonal de-

compilation problem is function name recovery.

Function names are usually left in executables’

metadata, by default, but in malware these sym-

bols are probably stripped. Recent work by Ar-

tuso et al. (Artuso et al., 2020) has shown trans-

formers are highly applicable to this task and the

pre-training/fine-tuning paradigm has a place in

code analysis, but they limit their experiments

to function names. Other work like David et al.

(David et al., 2020) uses LSTM architectures to

encode API call sequences as function profiles and

learned the function names commonly associated

with those call sequences.

Transformers for Filling-in Blanks: Filling in

blanks in an input sequence necessitates a model

that can capture bidirectional context. BERT’s

pre-training objective (Devlin et al., 2019) solves

1https://github.com/DIRECT-team/

DIRECT-nlp4prog

512-Token
Pieces

v1 : 'my_var'
v2 : 'end'
a1 : 'count'

v1 : 'n'
v2 : 'end'
a2': 'len'

Combine

Final
Predictions

void func (int v1, char...

...

func

...

void ...

...

Conf : 0.7

Conf : 0.3

v1 : 'my_var'
a1 : 'count'
v2 : 'end'
a2 : 'len'

void

BERT
Encoder

func (int

my_ var </s>

,

long int a2 = 5;

v1 ++;

...

int

...

long ...

long int

BERT Decoder

my_ var

Figure 2: Our state-of-the-art variable renaming model, DIRECT. DIRECT breaks the function into pieces, passes

each piece through a BERT encoder and decoder, and combines the predictions of all the pieces. For simplicity,

we have omitted the advanced prediction algorithm (Algorithm 1; Figure 3) in this diagram. For more details, refer

to Section 3.2.

this problem by reconstructing random masked to-

kens. SpanBERT (Joshi et al., 2020) focuses on

contiguous spans of masked tokens with a modi-

fied pre-training objective. These methods require

the location and length of each blank to be known

in advance, but Insertion Transformers (Stern and

Uszkoreit, 2019) solve for variable-length blanks

without explicitly controlling insertion.

Blank Language Models (Shen et al., 2020) solve

for fixed blanks with variable length with a special

blank character that the model can predict and feed

back in a loop. Another architecture that solves the

same problem is BART (Lewis et al., 2020). Sim-

ilar to us, BART uses a BERT encoder and a left-

right decoder to perform arbitrary transformations

on the input. However both these approaches can-

not be directly applied to variable renaming without

modification to guarantee that multiple blanks have

the same prediction.

Decompilers: There are two decompilers used

in practice. One is Hex-Rays (Hex-Rays), from

which the training set was built, and the other is the

open-source Ghidra platform (Ghidra), which both

fail to make meaningful efforts at reconstructing

variable names without debugging information. A

research compiler DREAM++ (Yakdan et al., 2016)

function signature heuristics to generate meaning-

ful variable names, but does not apply ML models.

Adapting ML to SE tasks: Recent works like

(Rahman et al., 2019) and (Ding et al., 2020) have

also investigated the difficulties of applying ML

models from other disciplines directly to software

engineering tasks.

3 Design

Figure 2 provides an overview of DIRECT. In this

section we detail each of the problems we encoun-

tered and the design decision solutions.

3.1 Encoding/Decoding

Transformers are traditionally used to predict entire

sequences; however in our problem setting most

tokens are fixed. Therefore we need to adapt trans-

formers from predicting entire sequences to pre-

dicting individual tokens based on the fixed tokens.

While making a prediction on an occurrence of

a particular variable, the model should ideally have

access to the information contained in the entire

input sequence. The naive solution is to use a bidi-

rectional transformer that with a Masked Language

Model (MLM) training scheme, such as BERT.

However by design, an MLM is designed to predict

the same number of tokens as in the input sequence.

In our case, because of subtokenization, the pre-

dicted subsequences can be of unknown length.

Adapting an MLM transformer to solve this prob-

lem is non-trivial.

The next option is to use a transformer as a

sequence-to-sequence language model to predict

the immediate next token given all the preceding

tokens. One could feed the entire sequence until a

variable is reached, start generating tokens one at

a time in an autoregressive manner, and stop when

a special end token is predicted. However such a

model cannot use bidirectional context while mak-

ing a prediction, and can only leverage the part of

the sequence that precedes each variable.

We propose to use an encoder-decoder setup,

as in (Vaswani et al., 2017). The transformer en-

coder embeds each input token, and the sequential

decoder attends over these encoder embeddings

while making predictions one token at a time. So

although we give the decoder only the portion of

the input sequence that precedes the variable of in-

terest, it also has access to the entire input sequence

through the encoder embeddings.

Of course, this still leaves open the question of

how to constrain multiple instances of the same

variable to have the same prediction. While we

will present a better solution to this problem in

Section 3.2, a good first approximation is to simply

use the prediction at the first occurrence of the

variable we are interested in. We hypothesize that

since the encoder-decoder model has access to the

entire sentence while making a prediction for each

occurrence, one cannot do drastically better than

this simple approximation.

3.2 Advanced Prediction Algorithm

Effective sequence modeling requires not only mak-

ing predictions, but also predictions that fit the

problem setting (Ding et al., 2020). Semantic pre-

serving identifier renaming mandates that once a

variable has been renamed it must have the same

value at each occurrence. This additional constraint

poses a challenge for vanilla transformers since

they predict each token independently in traditional

language modeling. Exhaustively searching the tar-

get vocabulary space is computationally intractable,

so we narrow the search space with a specialized

prediction algorithm that fits the problem setting.

At the variable’s first occurrence, we make m

predictions for its name, each of which leads to a

different sequence of variable name assignments.

Throughout our algorithm, we maintain the top k

sequences only. Thus at the first occurrence of a

variable, we generate m × k possible sequences,

and pick the top k. In practice, we use m = k.

At later occurrences of a variable, we update the

scores of the existing predictions, thus maintaining

the list of k sequences. This is where our algorithm

differs from standard beam search. Note that the

predictions made at the first occurrence of a vari-

able constrain its predictions at further occurrences,

but choosing a large k mitigates this problem.

This procedure, “Advanced prediction”, is

shown in Figure 3 for the case when k = 2. Algo-

rithm 1 describes it in detail. In our experiments,

we observed that choosing k = 5 was optimal.

Algorithm 1 Advanced Prediction

1: Input : A sequence of decompiler output to-

kens S, and a model M

2: Output : S with predicted names

3: gen ← [[]], probs ← [1]

4: for tok ∈ S do

5: if tok is not a variable then

6: for seq ∈ gen do

7: seq.append(tok)

8: continue

9: if tok has been seen before then

10: for j ∈ 1...len(gen) do

11: n ← current pred of tok in gen[j]
12: p ← prob assigned to n by M at

the current position

13: gen[j] ← gen[j] + p

14: probs[j] ← probs[j]× p

15: else

16: for j ∈ 1...len(gen) do

17: Using beam search over sub-

tokens with M, find the top k

possibilities for the name of tok

18: Let the names be n1, ..., nk and

their probabilities be p1, ..., pk

19: Replace gen[j] with

(gen[j] + n1), ..., (gen[j] + nk)

20: Replace probs[j] with

(probs[j] · p1), ..., (probs[j] · pk)

21: Sort gen and probs in desc. order of probs

22: gen ← gen[1 : k]
23: probs ← probs[1 : k]

24: return gen[1]

int v1 ; char v2 ;* ++v1

 Decoder
count

age0.9

0.1

int ; char v2 ;* ++v1age

int ; char v2 ;* ++v1count

 Decoder
addr

name0.95

0.05

 Decoder
desc

str0.8

0.2

0.9

0.1

int ; char name ;* ++v1age

int ; char str ;* ++v1count

 Decoderage 0.85

 Decodercount 0.9

0.9 x 0.95

0.9 x 0.05

0.1 x 0.8

0.1 x 0.2

0.86

0.08

0.86 x 0.85

0.08 x 0.9

Figure 3: Advanced Prediction with k = 2. The de-

coder takes as input the portion of the sequence that

precedes the variable being predicted. Our algorithm

differs from standard beam search in the prediction of

the second occurrence of v1. Rather than generate mul-

tiple predictions for v1, the algorithm simply updates

the scores of the existing predictions in order to obey

the syntactic constraints of code.

3.3 Identifier Token Coefficient

A typical transformer treats all tokens identically

when computing the loss function during pre-

training and fine-tuning. Code differs from natural

language in the grammar requires the majority of

the tokens. The only opportunity for the program-

mer to inject semantic meaning into the source

code text is through identifiers, which makes this

problem compelling in the first place. The model

should therefore treat identifier tokens differently.

We implement this concept by training with a

custom loss function as shown in Figure 4. Tra-

ditional NLP architectures predict the entire se-

quence, and then train on a loss function by aver-

aging the error uniformly across all tokens. Our

custom weighting scheme places increased signif-

icance on prediction of identifiers, using a mask

which increases the loss 50-fold for identifiers as

compared to all other tokens. We expect that this

identifier token coefficient (ITC) hyper parameter

could be tuned in the future for better performance.

Predicting the identifiers and ignoring the rest

of the characters in the sequence would result in a

model that doesn’t learn the context surrounding

the identifier which informs the prediction.

v1

-

(

(

int

)

a1

-

1

;

)

Transformer
Based

Prediction
LOSS

Predicted
Sequence

Identifier
Token

Coefficients

Input
Sequence

len

-

(

(

int

)

my

-

2

;

)

_

rec

len

-

(

(

char

)

my

-

1

;

)

_

var

NLL
50

1

1

1

1

1

50

1

1

1

1

50

50

Actual
Sequence

+X

Figure 4: Identifier Token Coefficient loss function.

The Negative Log Likelihood (NLL) loss is computed

for each token, and a weighted sum taken to compute

the loss.

3.4 Splitting and Merging Mechanism

Another inherent difference between code and nat-

ural language when considering sequence to se-

quence modeling is the length of the sequence. Dis-

cussion of natural language modeling overlooks

this aspect since sentences rarely exceed 200 to-

kens. In code however functions are significantly

longer so the ML models must support sequences

of arbitrary length. In fact our benchmark dataset

contains a small number of sequences with length

greater than 2000. With respect to identifier re-

covery, longer sequences mean more variables to

recover, multiple usages per variable, and more

opportunity for errors. This poses a problem for

transformers as traditional transformer based archi-

tectures, like BERT, require a maximum sequence

length set in advance. Furthermore since attention

must be trained across all tokens, the memory us-

age increases quadratically with sequence length.

In order to use our model for arbitrary sequence

lengths, we developed a novel splitting and joint

prediction mechanism. As described in Figure 2

we divide the sequence into multiple chunks of

512 tokens upon which the model predicts. A sin-

gle variable can have a different prediction in each

chunk we combine these predictions using the pre-

diction at the first chunk in which a variable occurs.

We also tried using the chunk with the highest

confidence, but we found that this did not perform

as well. We suspect this is because the probabili-

ties are less than one, and multiplications with each

successive variable only decrease the probability of

the entire sequence. Hence smaller pieces with per-

haps just one or two occurrences of a variable will

be more confident in their predictions despite hav-

ing less information. One could impose a penalty

for pieces with fewer variables, but we defer this

analysis to future work.

Other transformer variants can handle sequences

arbitrary lengths like XLNet (Yang et al., 2019),

and we expect these advanced models will handle

this issue as well as present new challenges. We

again leave these endeavors to future work.

3.5 DIRECT

Using the techniques from the previous sections,

we put it all together to get DIRECT, a state-of-

the-art variable renaming system. Given an input

sequence, DIRECT splits it into pieces of length

at most 512 each (default BERT architecture), and

puts each piece through a BERT encoder and a

BERT decoder with advanced prediction (Algo-

rithm 1). Different predictions across pieces for the

same variable are combined by taking the predic-

tion of the first piece in the sequence that contains

the variable. Figure 2 depicts the entire model.

4 Experimental Setup

4.1 Data

We use the dataset provided by DIRE (Lacomis

et al., 2019). It was generated using C binaries

from Github, which were then decompiled using

Ida’s Hex-Rays decompilation plugin (Hex-Rays).

The training data set consists of 1,011,049 func-

tions, with a median of 16 variables per function,

a median of 4 unique variables per function, and

a median sequence length of 150 subtokens. We

follow DIRE and use Sentencepiece (Kudo and

Richardson, 2018) to split the functions into subto-

kens.

We use only the “Body-not-in-train” subset for

the validation and test data. They consist of 23662

and 24862 examples, respectively.

4.2 Metrics

We define accuracy as an exact match between the

original variable name as determined by the debug

information mapping, and the name predicted by

DIRECT. We also examine the edit distance be-

tween predicted names and true names, and use the

edit distance per number of characters (the charac-

ter error rate) as our metric as in DIRE (Lacomis

et al., 2019) to capture success of partial matches.

We also measure the Jaccard similarity which is

the ratio of the number of overlapping n-grams

between two sequences to the total number of n-

grams contained in them. We use n=1, so that each

word is treated as a set of its constituent charac-

ters. There are some instances when decompiler

variables have no corresponding true name. These

are ignored from all metrics.

4.3 Pre-training Procedure

We pre-train one BERT model using the standard

MLM task on source sequences directly from the

decompiler output (with the dummy variable names

from the decompiler). We call this the BERT en-

coder. Similarly we pre-train another BERT model

using MLM on target sentences (with the true vari-

able names), and call this the BERT decoder. Both

models used 4 attention heads, 6 hidden layers,

and a hidden embedding size of 256. We trained

the encoder and decoder for 220k and 140k steps,

respectively, using a batch size of 128 sequences.

While masking tokens, we do not differentiate be-

tween variable and non-variable tokens since we

want the model to learn the complete structure of

the code sequences. We also used the standard op-

timization techniques employed by BERT (Devlin

et al., 2019), wherein an Adam optimizer is used

with a variable learning rate. The learning rate in-

creases linearly from 0 to 10−4 over the ”warm-up”

period of 40k iterations, and then decreases linearly

from 10−4 to 0 at the end of pre-training.

4.4 Fine-tuning Procedure

After reviewing our proof of concept experiments

we trained our best configuration for 85 epochs to

produce the DIRECT prototype. We follow the

same convention as DIRE (Lacomis et al., 2019),

whereby the number of sequences per batch is vari-

able, but the total number of tokens in the batch

is fixed to define the size of the batch. We used

a batch size of 4096 tokens per batch. We used a

learning rate of 1e-4 for the first 10 epochs, 0.3e-4

for the next 10, and 1e-5 thereafter.

5 Results

5.1 DIRECT Evaluation

In order to evaluate the effectiveness of DIRECT,

we compare its performance against that of DIRE

on our test dataset. The results are shown in Table

1. We observe that DIRECT achieves an increase

of 7.1 percentage points in accuracy over DIRE,

which is a relative increase of 19.9%. We obtained

all DIRE results by re-running the authors’ code on

Model Accuracy (%) ↑ Top-5 Accuracy (%) ↑ CER ↓ Jaccard Dist ↓

DIRE 35.8 41.5 .664 .537

DIRECT 42.8 49.3 .663 .501

Improvement 20% 19% .2% 6.5%

Table 1: Test Accuracy, Top-5 Accuracy (computed by taking the top 5 predictions for each sequence and using

the predictions of variables contained in these sequences), Character Error Rate and Jaccard distance of DIRE vs

DIRECT. DIRECT outperforms DIRE on all four metrics. DIRE results are reproduced by re-running the authors’

code on our dataset.

Figure 5: A visualization of the attention weights of

the trained decoder while predicting variables. Darker

represents larger weights. The variable subtokens that

are being predicted are boxed . For more details, refer

to Section 5.

the dataset, rather than simply using the numbers

from their paper.

5.2 Qualitative Analysis

We also perform some qualitative inspection of

the attention weights of the trained model to un-

derstand what information it is using to make its

inferences. An example of this is shown in Figure

5 where the predicted identifier is outlined in black.

The attentions shown are the weights used while

predicting a name for the variable shown in a box,

averaged over all attention heads at the last layer

of the decoder.

We observe that when making a prediction on

the first occurrence of a variable, the decoder model

pays attention mainly to the function header, more

specifically the return type and function name.

However for later occurrences of the same vari-

able, although it does look at the function header

Figure 6: Variation of Accuracy of DIRECT and DIRE

with length. The spike in DIRE’s performance for the

last two categories with very few examples is likely to

be an anomaly and not representative of its true perfor-

mance on sequences of those lengths. Note that this is

on the validation set.

to some extent, it relies chiefly on its predictions

for earlier instances of the same variable.

5.3 Performance on Long Sequences

The graph in Figure 6 shows the accuracy of DI-

RECT on sequences of various lengths. As we

cross the 500 token mark, and the splitting tech-

nique takes over, there is a steep drop in accuracy.

This problem is mirrored in DIRE’s accuracy al-

though not quite as steeply. Still for sequences of

length less than 512 tokens DIRECT has a improve-

ment of 10 percentage points over DIRE (48.9%

vs. 38.8%). DIRE has high accuracy in the longest

two sets of sequences, but this is likely an anomaly

caused by insufficient samples sizes.

Other transformer based variants address this

sequence issue such as XLNet (Yang et al., 2019),

and we expect these advanced models will handle

this issue as well as present new challenges. We

again leave these endeavors to future work.

Model Accuracy (%) ↑ CER ↓

Uniform token weighting 30.0 .80

Weighting identifiers only 33.7 .76

ITC weighting scheme 34.4 .75

Table 2: Validation accuracy and Character Error Rate for various token weighting schemes. Prediction is done

using the “first prediction” strategy. All the models are trained for 15 epochs. Refer to Section 3.3 for more details.

Model Accuracy (%) ↑ CER ↓

First pred 34.4 .75

Advanced pred 34.6 .75

Table 3: Validation accuracy and Character Error Rate

for advanced prediction versus first prediction. Both

models are trained for 15 epochs. Refer to Section 3.2

for more details.

Model Accuracy (%) CER

Decoder Only 19.6 .97

Encoder-Decoder 34.4 .75

Table 4: Validation accuracy and Character Error Rate

for our encoder-decoder model versus a decoder-only

model. Both models are trained for 15 epochs. Refer

to Section 3.1 for more details.

5.4 Ablation Studies

In this section, we evaluate the impact of each of

our design choices. We train all the models for 15

epochs and evaluate them on the validation set.

5.4.1 Encoder-Decoder Architecture

Table 4 shows the performance of our encoder-

decoder model vs a decoder-only model (a single

transformer, operating as an autoregressive lan-

guage model) using the prediction at the first occur-

rence of each variable. As we can see, the decoder-

only model does significantly worse, which is ex-

pected since it has access only to a part of the func-

tion while making a prediction at the first instance

of a variable.

5.4.2 Advanced Prediction Algorithm

Table 3 compares the results of advanced prediction

with “first prediction”, i.e., taking the prediction at

the first occurrence of a variable. We observe that

advanced prediction improves the performance of

our encoder-decoder model by a small amount.

This could be explained by our observation in

Section 5.2 that the model seems to rely its earlier

predictions while predicting the name of a particu-

lar variable. Later predictions of a variable refer to

the value assigned at the first prediction, and so the

prediction of a variable seldom changes from what

was predicted at the first instance.

5.4.3 Identifier Token Coefficient

We compare the performance of three different

token weighting schemes in the loss function -

weighting all tokens uniformly, weighting accord-

ing to ITC (as described in Section 3.3), and weight-

ing the identifiers only while ignoring the rest of

the tokens.

As seen in Table 2, ITC shows a 4.4% increase in

accuracy relative to the uniform weighting scheme,

without hyperparameter tuning of the coefficient.

As expected the model that ignores the surrounding

tokens in the loss function performs worse. This

is because the model doesn’t effectively learn the

context surrounding the identifiers, resulting in a

decrease in accuracy by 0.7 percentage points.

6 Conclusion and Future Work

The problem of variable name reconstruction poses

certain challenges for traditional transformer-based

models. Specifically, the variable length of the

prediction target, the constraints imposed by code

syntax, architecture limitations that make long

sequences difficult, and the task specific non-

uniformity of token significance. In this work, we

developed a series of solutions to address these is-

sues, namely 1) an encoding/decoding scheme to

handle arbitrary sub-token length prediction, 2) a

specialized prediction algorithm, 3) a customized

identifier token coefficient weighting scheme, and

4) a splitting and combining algorithm for stan-

dard transformers to handle sequences of arbitrary

length. In addition to empirical studies evaluating

the effectiveness of each of these techniques, we

also combined them to create DIRECT, a practical

open-sourced identifier renaming engine. We eval-

uated DIRECT using a standard benchmark dataset

against the state of the art, DIRE (Lacomis et al.,

2019), and found that DIRECT provides a 20%

improvement. We hope that in addition to an open-

sourced tool, this work functions as a roadmap for

other researchers trying to solve the types of prob-

lems we encountered when adapting transformer-

based models to code analysis tasks. Future work

could leverage the Abstract Syntax Tree (AST) of

each function, and employ new transformer archi-

tectures like XLNet (Yang et al., 2019) to avoid

splitting up the input while handling longer se-

quences. Our approach might also improve the

results of other code analysis tasks like type infer-

ence, function re-naming, docstring prediction, and

function boundary identification.

7 Acknowledgements

This work was supported in part by DARPA

N6600121C4018, NSF CCF-1815494, NSF CNS-

1563555, NSF CCF-1845893, NSF CCF-1822965,

NSF CNS-1842456. We thank the anonymous re-

viewers for their helpful feedback. We would also

like to thank Suman Jana for his generous provision

of computing resources.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine
learning for big code and naturalness. ACM Com-
puting Surveys (CSUR), 51(4):1–37.

Miltiadis Allamanis, Earl T Barr, Soline Ducousso,
and Zheng Gao. 2020. Typilus: Neural Type Hints.
In 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 91–105.

Fiorella Artuso, Giuseppe Antonio Di Luna, Luca
Massarelli, and Leonardo Querzoni. 2020. In
Nomine Function: Naming Functions in Stripped
Binaries with Neural Networks. arXiv preprint
arXiv:1912.07946.

Yaniv David, Uri Alon, and Eran Yahav. 2020. Neu-
ral Reverse Engineering of Stripped Binaries. arXiv
preprint arXiv:1902.09122.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In 17th Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 4171–4186.

Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu,
and Vincent J Hellendoorn. 2020. Patching as trans-
lation: the data and the metaphor. In 2020 35th

IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 275–286. IEEE.

Ghidra. 2021. GHIDRA, A software reverse engineer-
ing (SRE) suite of tools developed by NSA’s Re-
search Directorate in support of the Cybersecurity
mission. https://ghidra-sre.org/.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Gra-
ham Neubig. 2018. Retrieval-based neural code gen-
eration. Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing.

Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin
Raychev, and Martin Vechev. 2018. Debin: Pre-
dicting Debug Information in Stripped Binaries. In
ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1667–1680.

Hex-Rays. 2021. Hex-Rays Decompiler. https://

hex-rays.com/decompiler/.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin.
2018. Deep code comment generation. In 2018
IEEE/ACM 26th International Conference on Pro-
gram Comprehension (ICPC), pages 200–20010.
IEEE.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
Spanbert: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Deborah S Katz, Jason Ruchti, and Eric Schulte. 2018.
Using recurrent neural networks for decompilation.
In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pages 346–356. IEEE.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz,
Miltiadis Allamanis, Claire Le Goues, Graham Neu-
big, and Bogdan Vasilescu. 2019. DIRE: A Neural
Approach to Decompiled Identifier Naming. In 34th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 628—-639.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Charlie Osborne. 2020. Zeus sphinx revamped as
coronavirus relief payment attack wave continues.
https://tinyurl.com/ka2t6k2r.

Md Masudur Rahman, Saikat Chakraborty, Gail Kaiser,
and Baishakhi Ray. 2019. Toward Optimal Selection
of Information Retrieval Models for Software Engi-
neering Tasks. In 19th International Working Con-
ference on Source Code Analysis and Manipulation
(SCAM), pages 127–138.

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi Jaakkola. 2020. Blank Language Models.
arXiv preprint arXiv:2002.03079.

Kiros Stern, Chan and Uszkoreit. 2019. Insertion
transformer: Flexible sequence generation via inser-
tion operations. https://arxiv.org/abs/1902.
03249.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In 31st Conference on Neural Informa-
tion Processing Systems (NIPS).

Khaled Yakdan, Sergej Dechand, Elmar Gerhards-
Padilla, and Matthew Smith. 2016. Helping Johnny
to Analyze Malware: A Usability-Optimized De-
compiler and Malware Analysis User Study. In
IEEE Symposium on Security and Privacy (S&P),
pages 158–177.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In 33rd Conference on
Neural Information Processing Systems (NIPS).

Lukás Ďurfina, Jakub Křoustek, and Petr Zemek. 2013.
Psybot malware: A step-by-step decompilation case
study. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 449–456.

