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Abstract—We establish a family of sharp entropy inequalities
with Gaussian extremizers. These inequalities hold for certain de-
pendent random variables, namely entropy-maximizing couplings
subject to information constraints. Several well-known results,
such as the Zamir-Feder and Brunn-Minkowski inequalities,
follow as special cases.

I. INTRODUCTION AND MAIN RESULTS

Let X be a random vector on R”, having density f with
respect to Lebesgue measure. We define the Shannon entropy

h(X) == | f(a)log f(x)d

where log denotes the natural logarithm. If X has finite second
moments, then the entropy of X always exists in the Lebesgue
sense, and is bounded from above. If X does not admit a
density, we adopt the convention that h(X) = —ooc.

Inequalities relating entropies of random variables have
played a foundational role in information theory and its
applications, dating back to Shannon’s seminal work. In re-
cent decades, entropy inequalities have become a subject of
independent investigation due in part to their close relationship
with functional and geometric inequalities (see, e.g., [1], [2]
and references therein). Occupying a special place in this
field is the Shannon—Stam entropy power inequality (EPI) [3],
which is responsible for impossibility results in information
theory (see, e.g., applications in [4]) and statistics (e.g., [5]),
and captures Gaussian concentration phenomena through its
implication of the Gaussian log-Sobolev inequality (see, e.g.,
[6]). The EPI can be equivalently stated as the following
comparison: If Xj, X, are independent random variables
with finite entropies and second moments, and X7, Xy are
independent Gaussian random variables with h(X;) = h(X,),
then

h(X1 + X2) < h(X; + Xo). (1)

The present paper establishes a general class of such compar-
isons, unifying and extending the known landscape.

II. MAIN RESULTS

To state our main results, we start with some notation.
For a collection of random vectors (X;)%; in R™, let
II(X4,..., X)) denote the set of couplings of Xi,..., Xp.
Although II(X4, ..., X)) is technically a collection of prob-
ability measures on R™**, we write X € TI(Xy,...,X})
to denote a (n X k)-dimensional random vector X =
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(X1, X5,...,X}) such that X/ = X; in distribution for each
1 <i <k (e, the law of X is an element of II( X7, ..., X;)).
For jointly distributed random vectors (X;)¥_, in R” and a

subset S C [k] := {1,...,k}, define the “multi-information”
I(Xg) = D(PXS I1 PXi),
i€s

where Px denotes the joint law of Xg := (X;);cs. Note that
I(Xgs) = 0 implies (X;);ecs are independent. More generally,
specifying that I(Xg) < 0 ensures that Px, is J-close to
the independent coupling of the (X;);cs in relative entropy.
For a function v : 2[F] — [0, +o0], let TI(X,..., Xp;v) C
I(Xy,...,X}) denote the set of couplings of (X;)k_; that
satisfy

I(Xs) <v(S), VSCIkl.

For convenience, we adopt the convention I(Xg) = 0 for
S = () so that we do not have to persistently exclude the
degenerate case S = (). Thus, for example, if v(S) = 0 for
all S C [k], then II(Xy,..., X%;v) is a singleton set, whose
only element is the product measure Hle Px,. On the other
hand, if v(S) = 400 for all S C [k], then II(Xq, ..., Xk;v)
is equal to the set of all couplings II(X7, ..., Xj). As before,
we write X € II(Xy,..., X%;v) to denote a random vector
X = (Xl, . ,Xk) with law in H(Xl, ey Xis V).

Our first main result is a generalization of the Zamir-Feder
inequality [7] to constrained maximum-entropy couplings.
Theorem 1. Ler ()7, C (0,+00) and (Q; : R* —
R™ ), be surjective linear maps. Let (X;)}_, be real-
valued random variables with finite entropies and second
moments, and let (X:)¥_, be Gaussian random variables with
h(X;) = h(X;). For any v : 28] — [0, +0c], it holds that

m
sup > a;h(Q;X) )

)}EH(Xl,...,)}k;u) j=1

m
< sup Zozjh(QjX).
Xell(X1,...,X;v) j=1
Remark 2. If v(S) = 0 for all S C [k], then each set
of couplings is a singleton containing only the independent
coupling, thus recovering the Zamir—Feder inequality.

Remark 3. By the max-entropy property of Gaussians, it
suffices to consider jointly Gaussian couplings in (2). For
m = 1, (2) has the following interpretation in terms
of I-projections [8]: Lebesgue measure is closer to its
I-projection onto Q1,11(X1, ..., Xy;v) than to that onto
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QlﬁH(f(l, e, X v), where f§ denotes pushforward. This may
have applications to bounding large-deviation probabilities in
Schrodinger-type problems (cf. [9]).

We may extend Theorem 1 to a setting where the X;’s are
random vectors of the same dimension when the linear maps
have a certain product structure (similar structure appears in
[10, Theorems 1.1 and 1.4] for order-infinity Rényi entropy
inequalities). Ultimately, this allows recovery of results such
as the multi-dimensional EPI and the Brunn—Minkowski in-
equality. Toward this end, let A : R¥ — R™ be a linear map,
expressed as a matrix with real-valued entries [A];; = a;j,
and let I,, denote the n x m identity matrix. Recall that the
Kronecker product A®1,, is a linear map from R™** to R"*™
defined by

Sy 0

k
Y 9T
(A1) (21, ..., 7k) = 21_1. 2

Z?:l AmiLq
Theorem 4. Let ()i, C (0,+00) and (Q; : RF —
an)m

" be surjective linear maps. Let (X;)¥_, be random
Jj=1 7 P =1
vectors on R™ with finite entropies and second moments,

and let X; ~ N(0,0%1,) be Gaussian random vectors with

variance parameters chosen so that h(X;) = h(X;) for each
i=1,...,k Forany v: 2" —[0,400], it holds that

Cosip Y ah((Q @ ) X)
XEM(Xy o, Xiiv) j=1
= sup Y ayh((Q) ® I,)X).

Xell(Xq,...,Xk;v) j=1

To illustrate how the above results imply some of those that
are known and considered classical, we establish the following
EPI for information-constrained max-entropy couplings. To
state it, recall that we define the entropy-power of an n-
dimensional random vector as N (X) := e2"(X)/,

Corollary 5. Let X and Z be random vectors in R™ with
finite second moments. For any ¢ € [0, +0o0], it holds that

N(X) + N(Z) +2y/(1 - e %/")N(X)N(2)

< sup N(X +2). 3)

(X,Z)EN(X,2):(X52)<C
Equality holds for Gaussian X, Z with proportional covari-
ances.

Taking ¢ = 0 in (3) recovers the Shannon-Stam EPI,
since the the only admissible coupling is the independent one.
Hence, (3) may be regarded as an extension of the EPI for
certain dependent random variables with a sharp correction
term. We remark that Takano [11] and Johnson [12] have
established that the EPI holds for dependent random variables
which have positively correlated scores. Given the different
hypotheses, their results are not directly comparable to ours.

,.’EZGRn,].SZSk

Toward the other extreme, taking ¢ = oo allows for
unconstrained optimization over couplings, and completing the
square gives the inequality

h(O/n 4 hZ)/n < (X +2)/n.

sup
(X,2)ell(X,2)
where we emphasize the change in exponent from 2 to 1. If
X, Z are uniform on compact subsets K, L C R", respectively,
we obtain the celebrated Brunn—Minkowski inequality

(KM < sup N(X+2)Y2 < |K+ L[V,

(X,Z)ell(X,Z)
where K + L denotes the Minkowski sum of K and L, and |- |
denotes the n-dimensional Lebesgue volume. Here, the second
inequality follows since X + Z is supported on the Minkowski
sum K + L, and hence the entropy is upper bounded by
that of the uniform distribution on that set. It is known that
equality is attained when K, L are positive homothetic convex
bodies, which highlights that the stated conditions for equality
in Corollary 5 are sufficient, but not always necessary. Indeed,
for X, Z equal in distribution, Cover and Zhang [13] showed

h(2X) < sup hNX +7Z),

(X,Z)el(X,Z)
with equality if and only if X is log-concave. This implies
that for X, Z identically distributed and ¢ = +o0, equality is
achieved in (3) if and only if X is log-concave.

To lend some historical perspective, we note that it has long
been observed that there is a striking similarity between the
Brunn—Minkowski inequality and the EPI (see, e.g., [14] and
citing works). It is well-known that each can be obtained from
convolution inequalities involving Rényi entropies (e.g., the
sharp Young inequality [15]-[17], or rearrangement inequal-
ities analogous to (1) [18]), when the orders of the involved
Rényi entropies are taken to the limit O or 1, respectively.
Quantitatively linking both inequalities using only Shannon
entropies has proved elusive, and has been somewhat of a
looming question. In this sense, Corollary 5 provides an
answer. Again, the Brunn—Minkowski inequality and EPI are
obtained as logical endpoints, but this time the family of
inequalities involves only Shannon entropies instead of Rényi
entropies of varying orders. In contrast to derivations involving
Rényi entropies where summands are always independent
(corresponding to the convolution of densities), the key idea
here is to allow dependence between the random summands,
subject to a mutual information constraint.

III. PROOFS

Before proving the main results, let us first set some notation
and then explain what is known. To this end, for a k-tuple
of positive reals (ay, az, ..., ax), let II(ay, az, ..., ay) denote
the set of positive semidefinite k x k matrices A with diagonal
entry [A];; = a; for each i = 1,... k. This is consistent with
the notation of II for couplings; indeed, A may be thought
of as the covariance of a k-dimensional Gaussian vector that
couples Gaussian random variables with individual variances
ai,...,ag. Also, let diag(ay,...,a;) denote the diagonal
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matrix A with diagonal entry [A];; = a; foreachi=1,... k.
We denote the set of real n x n positive definite matrices by
S*(R™), and let {-,-) denote the trace inner product.

Now, to explain what is already known in the context of
our results, let Q := (Q; : [[_,R™ — R™)™ | be a
collection of surjective hnear maps, and let non- negatlve reals
C:= (Ci)lgigk C (0,+OO) and d := (d )1<]<m (0,+OO)
satisfy the dimension condition

k m
E cim; = E dj’ﬂj.
i=1 j=1

Define D4(Q, c,d) to be the smallest constant D € RU{+o0}
such that

ch )Zdjh(QjX +D
Xk j:1

for any choice of Gaussian random vectors X; on R™¢,
1 < ¢ < k. With this notation set, [2, Theorem 1.14] and
[2, Theorem 4.2] together imply the following entropic dual
of the “forward-reverse” Brascamp-Lieb inequalities, together
with a characterization of the structure of the extremizers.

sup
XEH(Xh

Theorem 6. Let the above notation prevail. For any random
vectors X; on R™, 1 < i < k, with finite entropies and finite
second moments, it holds that

k m
> eih(Xi) < sup > d;h(Q;X) + Dy(Q, c,d).
Pl XeN(X1,.. Xk) =1
“)
Moreover, if K; € ST(R™) and K € II(K,, ..., K}) satisfy
ZdeJT(Q]KQ;F)_lQ] §diag(01Kf1, 'ackKlzl)a

=1

then D,(Q, c,d) is finite, and equality is achieved for X; ~
N(0,K;), 1<i <k

Remark 7. Inequalities of the form (4) were considered in
[19] under an independence assumption. The results therein
can be realized as a special case of Theorem 6 (or the earlier
work [20]). See [2, Section 4.4] for details.

We note that (4) constitutes a family of inequalities with
Gaussian extremizers, similar to our main result. However, the
key point to be made is that Theorem 1 provides a precise com-
parison between certain entropies evaluated for (marginally)
specified random variables, and those for Gaussian random
variables with the same (marginal) entropies. This is precisely
in the same spirit as the Shannon-Stam inequality and the
Zamir-Feder inequality. In contrast, (4) does not directly yield
such a comparison, because the marginal entropies of the
Gaussian extremizers are a function of the triple (Q,c,d),
and are therefore not determined by the entropies of the X;’s
we select to appear in (4). To achieve the desired comparison,
we must turn Theorem 6 around in the following sense: we

fix Q,d and (K;)1<i<k, and then show that there is a choice

of ¢ for which the Gaussians X; ~ N(0,K;), 1 <i < k are
extremal in (4). In order to accomplish this, we will at some
point require that the K;’s are positive reals, and not matrices
(n.b. this implies that each @Q; : R¥ — R™ in the definition
of Q). This is the reason that Theorem 1 is stated in terms
of random variables, despite Theorem 6 applying to random
vectors.

The crux of the above argument is contained in the follow-
ing technical lemma.

Lemma 8. Fix Q.,d and (K;)i<i<r C (0,+00). Assume
for each natural basis vector e; € RF, there is j € [m)]
(possibly depending on i) such that Qje; # 0. There exists

c = (¢)i<i<k C (0,4+00) satisfying

k m
Zci = Zdjnj7 (5)
i=1 J=1
and K € II(Ky, ..., Ky) satisfying
Zd]Q?(QJKQT)_lQJ §diag(cle1, .,CkK];I).

=1
Proof. To start, recall the Legendre duality for log det, stated
as follows: For A € ST(R"™), we have

min

n+logdet A =
BeS+(R™)

(<A7B> —IOgthB), (6)
where the minimum is uniquely achieved by B = A~!. Now,
note that for any K € II(K7,...,K}) and U; € ST(R™),
1<j<mandV; € (0,+0), 1 < i < k satisfying the

operator inequality

> 4,Q]U;Q; < diag(Va, ...

Vi), (7N
j=1
we have
Z dj log det(QjKQf) + Z djnj
j=1 jfl
<> di((QKQ]),U Z d; log det(U (8)
j=1
k
<> (Ki, Vi) Zd log det(U. )

I
—

3

The first inequality is (6), and the second inequality follows
from (7). Indeed, if we let X ~ N(0,K), we see that (7)
gives

m

Z (Q;EQ)),U. ZdQTUQX)Q

: _7_1

S Vi) X, X)

(10)
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Now, [2, Theorem 2.8] asserts the min-max principle

max d;log det(Q,; K T + d;n; 11
I UL RS SR
k m
= inf Z(m,m)-ZdjlogdetUj . (12)

W, \ S =

where the infimum is over U; € ST(R™), 1 < j < m and
Vi € (0,400), 1 < i < k satisfying (7). The fact that the
maximum in (11) is achieved (i.e., it is not a supremum) is
part of the quoted result.

Letting K* denote the maximizer in (11), we must have
det(QjK*Q;f) > 0 for each 1 < j < m, otherwise the
maximum would be equal to —oo, which is a contradiction
(indeed, consider K = diag(K71, ..., K}) and use surjectivity
of the @);’s to conclude that (11) is finite). Hence, we deduce
from (6) and the string of inequalities (8)-(9) that

Z djlog det(Q; K*QY) + Z d;n;

j=1 Jj=1
k m
:(ir)1kf > (Vi K;) = djlogdet Uy |,
Vi)k_ ‘ °
i=1 i=1 j=1

where U} = (QjK*QJT)*l, and the infimum is over (V;)%_;
satisfying the operator inequality

> d;QTUFQ; < diag(V4, ...

j=1

Vi) 13)

By compactness, it is evident that this infimum will be
achieved by some (V;*)F_, C [0,+00). Now, we define

1
ci = K;V*, so V¥ = clK_l since K; > 0 is scalar. Since

(Ur)jL, and (V*)E_, must satisfy (10) with equality, we have
Zci:ZKiV* Zd (Q;KQT),Up) de
i=1 i=1 j=1

Note that if ¢; = 0, then V;* = 0, which means that Q);e; =0
for all j € [m] by (13) and the previous observation that U} =
(Q;K*QT)~" is positive definite for each j. This contradicts
our assumption, so we conclude each ¢; > 0 as desired. [

The combination of Lemma 8 and Theorem 6 allow us to
turn Theorem 6 on its head, as was our goal. Namely, we fix
arbitrary Q, d and positive reals (K;)1<;<k, and then show
that there is a choice of ¢ for which the Gaussian random
variables X; ~ N(0,K;), 1 < i < k are extremizers of the
inequality (4). In other words, we specify the extremizers first,
and then construct an inequality of the form (4) for which they
are extremal. This is the key idea needed to prove the following
preliminary version of Theorem 1, where the couplings are
unconstrained.

Theorem 9. Let (X;)%_, be real-valued random variables
with finite entropies and finite second moments. Let (d;)7™,
be positive real numbers, and let (Q; : RF — ]R"J)m_

be surjective linear maps. If (X )k 1 are Gaussian random
variables with h(X;) = h(X;) for each 1 < i < k, then

ZthJ Zthj
Jj=1

Xk)
Proof. Let K, denote the variance of Xi. We can assume
without loss of generality that for each natural basis vector
e; € R¥, there is j € [m] such that Q;e; # 0. Indeed, if this
is not the case, then the desired inequality does not involve
X, or X; at all, so that this coordinate can be disregarded.

sup

Xen(xl, S Xk) XGH(Xl,

Thus, by Lemma 8, there exists K € II(K7,..., K}) and
c = (¢;)1<i<k C (0, +00) satisfying (5) and
m
> d;QT(Q;KQ)) Qs < diag(er Ky, e K ).
j=1
By Theorem 6, we have
Zd 1(Q;X) + Dy(Q, c,d)
XeH(Xl, WXk) =1
- Zcih(X
i=1
k
=> ch(X sup Zd h(Q;X) + Dg(Q, c,d).
= XEM(Xy,-., Xk) 5= ’

Since Dy(Q, c,d) is finite (by Theorem 6), we may subtract
it from both sides to complete the proof. O

Finally, we are in a position to prove Theorem 1. The
strategy will be to convert the constrained optimization prob-
lem into an unconstrained one by the method of Lagrange
multipliers, and then deduce the desired result as a corollary
of Theorem 9.

Proof of Theorem 1. For real-valued random variables
(Z;)¥_, having finite entropies and second moments, define
the functional

)+ > AS

S:w(S)<+oo

F(X, Pz) ( Za]h(Qg )I(Zs) —V(S))>

for arguments \ : 2(¥/ — R and P; € (Zy,...,Zk). It
follows by Sion’s minimax theorem that
inf sup F'(\, Pz) = sup inf F(\ Pz).
Z€eW(Z1,...,Z,) A\>0 A\>0 Z€(Z1,...,Zk)
(14)

Indeed, for any fixed Pz € II(Z1, ..., Zy), the function \ —
F(\, Pz) is linear in A. On the other hand, II(Z1, ..., Zy)
is a convex subset of probability measures on R that is
closed with respect to the weak topology; it is also tight
due to the assumption of finite second moments. Hence, by
Prokhorov’s theorem, it is compact with respect to the weak
topology. For fixed A > 0, the functional Pz — F(\, Py) is
convex on I1(Zy, ..., Z;) by the usual convexity properties of
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entropy. Moreover, it is weakly lower semicontinuous. Indeed,
if a sequence (P,)n,>1 C II(Zi,...,Z) has weak limit
P* € II(Zy,...,Zy), then we also have convergence of the
moments E|Q;Z™? — E|Q;Z*|?, where Z") ~ P, and
Z* ~ P*. This follows since @; zZm — Q; Z* in distribution,
and (|Q;Z(™)|?),,>1 can be verified to be uniformly integrable
since each P, € II(Zy,...,Z), and the Z;’s have finite
second moments. The terms —h(Q;Z (")) can be written as
a relative entropy with respect to a Gaussian having the same
covariance as that of ();Z*, plus an affine function of the
difference E|Q;Z™)|? — E|Q;Z*|. Thus, the claimed lower
semicontinuity follows immediately due to the previously
established convergence of second moments together with
lower semicontinuity of relative entropy. Hence, all hypotheses
of Sion’s minimax theorem are satisfied, and (14) holds.

Now, let (X;)*_, and (X;)¥_, be as defined in the statement
to prove. Using the above observation together with Theorem
9, we have

inf
Xell(Xq,..

sup F'(\, P
Xk)A>13 ( X)

()‘7PX)

= sup inf
A>0 XEM(Xy,..., Xx)

<sup _inf

F(\ Pz)
A>0 Xell(Xy,...

Xk)
sup F'(A, Pg)
Xi) A>0

(15)
= inf
)?EH()?l,
m

- Z OéJh(Qj)?)

j=1

= inf

XEH()}l,...,)}k;u)

To see why inequality (15) follows from Theorem 9, write

> AS)I(Xs)
S:w(S)<+o0
= > S) D (X > MOh(nsX),
S:w(S)<+oo icS S:w(S)<+oo
where g is the projection 7g : (x1,...,2%) = (%;)ics (a

surjective linear map). As a result, Theorem 9 implies

_ sup Zaj Qg Z (S)h(ﬂ—SXP)

Xell(Xy,...,Xk) S v(S)<+oo

< sup ZOZjh(Qj Z A(S)h(msX)
Xel(Xy,... j=1 S:w(S)<+oo

Taken together with h(fg) = h(X;), we obtain (15). Thus,
the proof is complete. O

Proof of Theorem 4. Let Q denote the collection of linear
maps (Q;)i<j<m. For any choice of positive reals d =
(d;)1<j<m, we can repeat the argument of Theorem 9 to con-
clude that there is a valid choice of ¢ = (¢;)1<i<x for which

the Gaussian random variables Z; ~ N(0,02),..., 2 ~
N(0,03) saturate the inequality
k
Y ah(Z) < sup Zd h(Q;Z) + Dy(Q, ¢, d),
i—1 Zell(Z1,.,2x) 5
(16)

holding (by definition) for all collections of random variables
(Zi)1<i<k with finite entropies and second moments. Note
that a simple consequence of subadditivity of entropy is that

m

2 il

W Xk) j=

(Q) ® I,)X)
XEH(X17

< nZa] Qj
Jj=1

ZEH(Zh Zy)

a7)

where X, ~ N(0,021,),..., X, ~ N(0,02I,) as in the
statement of the theorem. However, we have equality in (17)
by considering only the couplings in IT(X7, ..., X}) that are
the n-fold products of the optimal coupling in the RHS.

By the tensorization properties enjoyed by D, (see [2],
[20]), it holds that Dy(Q",c,d) = nD,(Q,c,d), where
Q" == (Q; ® I,,)1<j<m- Hence, we conclude that (X;)F_;
saturate the inequality

k
i=1

> " d;ih((Q; ® 1,)X) + Dy(Q", e, d),

Xk) 5=1

< sup
Xell(Xq,...,

which (by definition) holds for all collections of random
vectors (X;)¥_, in R™ with finite entropies and second mo-

ments. The rest proceeds exactly as in the one-dimensional
setting. O

Finally, we are in a position to prove our last result.

Proof of Corollary 5. By Theorem 4,

sup N(X +2)<
(X, Z2)en(X,Zv)

sup N(X +2),
(X,2)ell(X,Z;v)

(18)

where X ~ N(0,021I,) and Z ~ N(0,021,) are such that
h(X) = h(X) and h(Z) = h(Z). Now, straightforward
computations reveal

)+ 2\/ 1—e~2/7)N(X)N(Z)
N(X + 7).

N(X)+ N(Z
= sup

(X,Z2)eN(X,2):1(X;2)<¢

Combining with (18) completes the proof since N ()? ) =
N(X) and N(Z) = N(Z). O
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