
Sharp Maximum-Entropy Comparisons

Efe Aras and Thomas A. Courtade

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract—We establish a family of sharp entropy inequalities
with Gaussian extremizers. These inequalities hold for certain de-
pendent random variables, namely entropy-maximizing couplings
subject to information constraints. Several well-known results,
such as the Zamir–Feder and Brunn–Minkowski inequalities,
follow as special cases.

I. INTRODUCTION AND MAIN RESULTS

Let X be a random vector on R
n, having density f with

respect to Lebesgue measure. We define the Shannon entropy

h(X) = −

∫

Rn

f(x) log f(x)dx,

where log denotes the natural logarithm. If X has finite second

moments, then the entropy of X always exists in the Lebesgue

sense, and is bounded from above. If X does not admit a

density, we adopt the convention that h(X) = −∞.

Inequalities relating entropies of random variables have

played a foundational role in information theory and its

applications, dating back to Shannon’s seminal work. In re-

cent decades, entropy inequalities have become a subject of

independent investigation due in part to their close relationship

with functional and geometric inequalities (see, e.g., [1], [2]

and references therein). Occupying a special place in this

field is the Shannon–Stam entropy power inequality (EPI) [3],

which is responsible for impossibility results in information

theory (see, e.g., applications in [4]) and statistics (e.g., [5]),

and captures Gaussian concentration phenomena through its

implication of the Gaussian log-Sobolev inequality (see, e.g.,

[6]). The EPI can be equivalently stated as the following

comparison: If X1, X2 are independent random variables

with finite entropies and second moments, and X̃1, X̃2 are

independent Gaussian random variables with h(X̃i) = h(Xi),
then

h(X̃1 + X̃2) ≤ h(X1 +X2). (1)

The present paper establishes a general class of such compar-

isons, unifying and extending the known landscape.

II. MAIN RESULTS

To state our main results, we start with some notation.

For a collection of random vectors (Xi)
k
i=1 in R

n, let

Π(X1, . . . , Xk) denote the set of couplings of X1, . . . , Xk.

Although Π(X1, . . . , Xk) is technically a collection of prob-

ability measures on R
n×k, we write X ∈ Π(X1, . . . , Xk)

to denote a (n × k)-dimensional random vector X =
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(X ′
1, X

′
2, . . . , X

′
k) such that X ′

i = Xi in distribution for each

1 ≤ i ≤ k (i.e., the law of X is an element of Π(X1, . . . , Xk)).
For jointly distributed random vectors (Xi)

k
i=1 in R

n and a

subset S ⊆ [k] := {1, . . . , k}, define the “multi-information”

I(XS) := D
(
PXS

∥∥∥
∏

i∈S

PXi

)
,

where PXS
denotes the joint law of XS := (Xi)i∈S . Note that

I(XS) = 0 implies (Xi)i∈S are independent. More generally,

specifying that I(XS) ≤ δ ensures that PXS
is δ-close to

the independent coupling of the (Xi)i∈S in relative entropy.

For a function ν : 2[k] → [0,+∞], let Π(X1, . . . , Xk; ν) ⊆
Π(X1, . . . , Xk) denote the set of couplings of (Xi)

k
i=1 that

satisfy

I(XS) ≤ ν(S), ∀S ⊆ [k].

For convenience, we adopt the convention I(XS) = 0 for

S = ∅ so that we do not have to persistently exclude the

degenerate case S = ∅. Thus, for example, if ν(S) = 0 for

all S ⊆ [k], then Π(X1, . . . , Xk; ν) is a singleton set, whose

only element is the product measure
∏k

i=1 PXi
. On the other

hand, if ν(S) = +∞ for all S ⊆ [k], then Π(X1, . . . , Xk; ν)
is equal to the set of all couplings Π(X1, . . . , Xk). As before,

we write X ∈ Π(X1, . . . , Xk; ν) to denote a random vector

X = (X1, . . . , Xk) with law in Π(X1, . . . , Xk; ν).
Our first main result is a generalization of the Zamir–Feder

inequality [7] to constrained maximum-entropy couplings.

Theorem 1. Let (αj)
m
j=1 ⊂ (0,+∞) and (Qj : R

k →
R

nj )mj=1 be surjective linear maps. Let (Xi)
k
i=1 be real-

valued random variables with finite entropies and second

moments, and let (X̃i)
k
i=1 be Gaussian random variables with

h(X̃i) = h(Xi). For any ν : 2[k] → [0,+∞], it holds that

sup
X̃∈Π(X̃1,...,X̃k;ν)

m∑

j=1

αjh(QjX̃) (2)

≤ sup
X∈Π(X1,...,Xk;ν)

m∑

j=1

αjh(QjX).

Remark 2. If ν(S) = 0 for all S ⊆ [k], then each set

of couplings is a singleton containing only the independent

coupling, thus recovering the Zamir–Feder inequality.

Remark 3. By the max-entropy property of Gaussians, it

suffices to consider jointly Gaussian couplings in (2). For

m = 1, (2) has the following interpretation in terms

of I-projections [8]: Lebesgue measure is closer to its

I-projection onto Q1]Π(X1, . . . , Xk; ν) than to that onto
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Q1]Π(X̃1, . . . , X̃k; ν), where ] denotes pushforward. This may

have applications to bounding large-deviation probabilities in

Schrödinger-type problems (cf. [9]).

We may extend Theorem 1 to a setting where the Xi’s are

random vectors of the same dimension when the linear maps

have a certain product structure (similar structure appears in

[10, Theorems 1.1 and 1.4] for order-infinity Rényi entropy

inequalities). Ultimately, this allows recovery of results such

as the multi-dimensional EPI and the Brunn–Minkowski in-

equality. Toward this end, let A : Rk → R
m be a linear map,

expressed as a matrix with real-valued entries [A]ij = aij ,

and let In denote the n × n identity matrix. Recall that the

Kronecker product A⊗In is a linear map from R
n×k to R

n×m

defined by

(A⊗In)(x1, . . . , xk) =




∑k
i=1 a1ixi∑k
i=1 a2ixi

...∑k
i=1 amixi



, xi ∈ R

n, 1 ≤ i ≤ k.

Theorem 4. Let (αj)
m
j=1 ⊂ (0,+∞) and (Qj : R

k →
R

nj )mj=1 be surjective linear maps. Let (Xi)
k
i=1 be random

vectors on R
n with finite entropies and second moments,

and let X̃i ∼ N(0, σ2
i In) be Gaussian random vectors with

variance parameters chosen so that h(X̃i) = h(Xi) for each

i = 1, . . . , k. For any ν : 2[k] → [0,+∞], it holds that

sup
X̃∈Π(X̃1,...,X̃k;ν)

m∑

j=1

αjh((Qj ⊗ In)X̃)

≤ sup
X∈Π(X1,...,Xk;ν)

m∑

j=1

αjh((Qj ⊗ In)X).

To illustrate how the above results imply some of those that

are known and considered classical, we establish the following

EPI for information-constrained max-entropy couplings. To

state it, recall that we define the entropy-power of an n-

dimensional random vector as N(X) := e2h(X)/n.

Corollary 5. Let X and Z be random vectors in R
n with

finite second moments. For any ζ ∈ [0,+∞], it holds that

N(X) +N(Z) + 2
√
(1− e−2ζ/n)N(X)N(Z)

≤ sup
(X,Z)∈Π(X,Z):I(X;Z)≤ζ

N(X + Z). (3)

Equality holds for Gaussian X,Z with proportional covari-

ances.

Taking ζ = 0 in (3) recovers the Shannon–Stam EPI,

since the the only admissible coupling is the independent one.

Hence, (3) may be regarded as an extension of the EPI for

certain dependent random variables with a sharp correction

term. We remark that Takano [11] and Johnson [12] have

established that the EPI holds for dependent random variables

which have positively correlated scores. Given the different

hypotheses, their results are not directly comparable to ours.

Toward the other extreme, taking ζ = +∞ allows for

unconstrained optimization over couplings, and completing the

square gives the inequality

eh(X)/n + eh(Z)/n ≤ sup
(X,Z)∈Π(X,Z)

eh(X+Z)/n,

where we emphasize the change in exponent from 2 to 1. If

X,Z are uniform on compact subsets K,L ⊂ R
n, respectively,

we obtain the celebrated Brunn–Minkowski inequality

|K|1/n+ |L|1/n ≤ sup
(X,Z)∈Π(X,Z)

N(X+Z)1/2 ≤ |K+L|1/n,

where K+L denotes the Minkowski sum of K and L, and | · |
denotes the n-dimensional Lebesgue volume. Here, the second

inequality follows since X+Z is supported on the Minkowski

sum K + L, and hence the entropy is upper bounded by

that of the uniform distribution on that set. It is known that

equality is attained when K,L are positive homothetic convex

bodies, which highlights that the stated conditions for equality

in Corollary 5 are sufficient, but not always necessary. Indeed,

for X,Z equal in distribution, Cover and Zhang [13] showed

h(2X) ≤ sup
(X,Z)∈Π(X,Z)

h(X + Z),

with equality if and only if X is log-concave. This implies

that for X,Z identically distributed and ζ = +∞, equality is

achieved in (3) if and only if X is log-concave.

To lend some historical perspective, we note that it has long

been observed that there is a striking similarity between the

Brunn–Minkowski inequality and the EPI (see, e.g., [14] and

citing works). It is well-known that each can be obtained from

convolution inequalities involving Rényi entropies (e.g., the

sharp Young inequality [15]–[17], or rearrangement inequal-

ities analogous to (1) [18]), when the orders of the involved

Rényi entropies are taken to the limit 0 or 1, respectively.

Quantitatively linking both inequalities using only Shannon

entropies has proved elusive, and has been somewhat of a

looming question. In this sense, Corollary 5 provides an

answer. Again, the Brunn–Minkowski inequality and EPI are

obtained as logical endpoints, but this time the family of

inequalities involves only Shannon entropies instead of Rényi

entropies of varying orders. In contrast to derivations involving

Rényi entropies where summands are always independent

(corresponding to the convolution of densities), the key idea

here is to allow dependence between the random summands,

subject to a mutual information constraint.

III. PROOFS

Before proving the main results, let us first set some notation

and then explain what is known. To this end, for a k-tuple

of positive reals (a1, a2, . . . , ak), let Π(a1, a2, . . . , ak) denote

the set of positive semidefinite k×k matrices A with diagonal

entry [A]ii = ai for each i = 1, . . . , k. This is consistent with

the notation of Π for couplings; indeed, A may be thought

of as the covariance of a k-dimensional Gaussian vector that

couples Gaussian random variables with individual variances

a1, . . . , ak. Also, let diag(a1, . . . , ak) denote the diagonal
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matrix A with diagonal entry [A]ii = ai for each i = 1, . . . , k.

We denote the set of real n× n positive definite matrices by

S+(Rn), and let 〈·, ·〉 denote the trace inner product.

Now, to explain what is already known in the context of

our results, let Q := (Qj :
∏k

i=1 R
mi → R

nj )mj=1 be a

collection of surjective linear maps, and let non-negative reals

c := (ci)1≤i≤k ⊂ (0,+∞) and d := (dj)1≤j≤m ⊂ (0,+∞)
satisfy the dimension condition

k∑

i=1

cimi =
m∑

j=1

djnj .

Define Dg(Q, c,d) to be the smallest constant D ∈ R∪{+∞}
such that

k∑

i=1

cih(Xi) ≤ sup
X∈Π(X1,...,Xk)

m∑

j=1

djh(QjX) +D

for any choice of Gaussian random vectors Xi on R
mi ,

1 ≤ i ≤ k. With this notation set, [2, Theorem 1.14] and

[2, Theorem 4.2] together imply the following entropic dual

of the “forward-reverse” Brascamp–Lieb inequalities, together

with a characterization of the structure of the extremizers.

Theorem 6. Let the above notation prevail. For any random

vectors Xi on R
mi , 1 ≤ i ≤ k, with finite entropies and finite

second moments, it holds that

k∑

i=1

cih(Xi) ≤ sup
X∈Π(X1,...,Xk)

m∑

j=1

djh(QjX) +Dg(Q, c,d).

(4)

Moreover, if Ki ∈ S+(Rmi) and K ∈ Π(K1, . . . ,Kk) satisfy

m∑

j=1

djQ
T
j (QjKQT

j )
−1Qj ≤ diag(c1K

−1
1 , . . . , ckK

−1
k ),

then Dg(Q, c,d) is finite, and equality is achieved for Xi ∼
N(0,Ki), 1 ≤ i ≤ k.

Remark 7. Inequalities of the form (4) were considered in

[19] under an independence assumption. The results therein

can be realized as a special case of Theorem 6 (or the earlier

work [20]). See [2, Section 4.4] for details.

We note that (4) constitutes a family of inequalities with

Gaussian extremizers, similar to our main result. However, the

key point to be made is that Theorem 1 provides a precise com-

parison between certain entropies evaluated for (marginally)

specified random variables, and those for Gaussian random

variables with the same (marginal) entropies. This is precisely

in the same spirit as the Shannon–Stam inequality and the

Zamir–Feder inequality. In contrast, (4) does not directly yield

such a comparison, because the marginal entropies of the

Gaussian extremizers are a function of the triple (Q, c,d),
and are therefore not determined by the entropies of the Xi’s

we select to appear in (4). To achieve the desired comparison,

we must turn Theorem 6 around in the following sense: we

fix Q,d and (Ki)1≤i≤k, and then show that there is a choice

of c for which the Gaussians Xi ∼ N(0,Ki), 1 ≤ i ≤ k are

extremal in (4). In order to accomplish this, we will at some

point require that the Ki’s are positive reals, and not matrices

(n.b. this implies that each Qj : Rk → R
nj in the definition

of Q). This is the reason that Theorem 1 is stated in terms

of random variables, despite Theorem 6 applying to random

vectors.

The crux of the above argument is contained in the follow-

ing technical lemma.

Lemma 8. Fix Q,d and (Ki)1≤i≤k ⊂ (0,+∞). Assume

for each natural basis vector ei ∈ R
k, there is j ∈ [m]

(possibly depending on i) such that Qjei 6= 0. There exists

c := (ci)1≤i≤k ⊂ (0,+∞) satisfying

k∑

i=1

ci =

m∑

j=1

djnj , (5)

and K ∈ Π(K1, . . . ,Kk) satisfying

m∑

j=1

djQ
T
j (QjKQT

j )
−1Qj ≤ diag(c1K

−1
1 , . . . , ckK

−1
k ).

Proof. To start, recall the Legendre duality for log det, stated

as follows: For A ∈ S+(Rn), we have

n+ log detA = min
B∈S+(Rn)

(〈A,B〉 − log detB) , (6)

where the minimum is uniquely achieved by B = A−1. Now,

note that for any K ∈ Π(K1, . . . ,Kk) and Uj ∈ S+(Rnj ),
1 ≤ j ≤ m and Vi ∈ (0,+∞), 1 ≤ i ≤ k satisfying the

operator inequality

m∑

j=1

djQ
T
j UjQj ≤ diag(V1, . . . , Vk), (7)

we have

m∑

j=1

dj log det(QjKQT
j ) +

m∑

j=1

djnj

≤
m∑

j=1

dj〈(QjKQT
j ), Uj〉 −

m∑

j=1

dj log det(Uj) (8)

≤
k∑

i=1

〈Ki, Vi〉 −
m∑

j=1

dj log det(Uj). (9)

The first inequality is (6), and the second inequality follows

from (7). Indeed, if we let X ∼ N(0,K), we see that (7)

gives

m∑

j=1

dj〈(QjKQT
j ), Uj〉 = E〈

m∑

j=1

djQ
T
j UjQjX,X〉

≤ E〈diag(V1, . . . , Vk)X,X〉

=

k∑

i=1

〈Ki, Vi〉. (10)
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Now, [2, Theorem 2.8] asserts the min-max principle

max
K∈Π(K1,...,Kk)

m∑

j=1

dj log det(QjKQT
j ) +

m∑

j=1

djnj (11)

= inf
(Vi)ki=1

,(Uj)mj=1




k∑

i=1

〈Vi,Ki〉 −
m∑

j=1

dj log detUj


 . (12)

where the infimum is over Uj ∈ S+(Rnj ), 1 ≤ j ≤ m and

Vi ∈ (0,+∞), 1 ≤ i ≤ k satisfying (7). The fact that the

maximum in (11) is achieved (i.e., it is not a supremum) is

part of the quoted result.

Letting K? denote the maximizer in (11), we must have

det(QjK
?QT

j ) > 0 for each 1 ≤ j ≤ m, otherwise the

maximum would be equal to −∞, which is a contradiction

(indeed, consider K = diag(K1, . . . ,Kk) and use surjectivity

of the Qj’s to conclude that (11) is finite). Hence, we deduce

from (6) and the string of inequalities (8)-(9) that

m∑

j=1

dj log det(QjK
?QT

j ) +

m∑

j=1

djnj

= inf
(Vi)ki=1




k∑

i=1

〈Vi,Ki〉 −
m∑

j=1

dj log detU
?
j


 ,

where U?
j = (QjK

?QT
j )

−1, and the infimum is over (Vi)
k
i=1

satisfying the operator inequality

m∑

j=1

djQ
T
j U

?
j Qj ≤ diag(V1, . . . , Vk). (13)

By compactness, it is evident that this infimum will be

achieved by some (V ?
i )

k
i=1 ⊂ [0,+∞). Now, we define

ci := KiV
?
i , so V ?

i = ciK
−1
i since Ki > 0 is scalar. Since

(U?
j )

m
j=1 and (V ?

i )
k
i=1 must satisfy (10) with equality, we have

k∑

i=1

ci =

k∑

i=1

KiV
?
i =

m∑

j=1

dj〈(QjKQT
j ), U

?
j 〉 =

m∑

j=1

djnj .

Note that if ci = 0, then V ?
i = 0, which means that Qjei = 0

for all j ∈ [m] by (13) and the previous observation that U?
j =

(QjK
?QT

j )
−1 is positive definite for each j. This contradicts

our assumption, so we conclude each ci > 0 as desired.

The combination of Lemma 8 and Theorem 6 allow us to

turn Theorem 6 on its head, as was our goal. Namely, we fix

arbitrary Q,d and positive reals (Ki)1≤i≤k, and then show

that there is a choice of c for which the Gaussian random

variables Xi ∼ N(0,Ki), 1 ≤ i ≤ k are extremizers of the

inequality (4). In other words, we specify the extremizers first,

and then construct an inequality of the form (4) for which they

are extremal. This is the key idea needed to prove the following

preliminary version of Theorem 1, where the couplings are

unconstrained.

Theorem 9. Let (Xi)
k
i=1 be real-valued random variables

with finite entropies and finite second moments. Let (dj)
m
j=1

be positive real numbers, and let (Qj : R
k → R

nj )mj=1

be surjective linear maps. If (X̃i)
k
i=1 are Gaussian random

variables with h(X̃i) = h(Xi) for each 1 ≤ i ≤ k, then

sup
X̃∈Π(X̃1,...,X̃k)

m∑

j=1

djh(QjX̃) ≤ sup
X∈Π(X1,...,Xk)

m∑

j=1

djh(QjX).

Proof. Let Ki denote the variance of X̃i. We can assume

without loss of generality that for each natural basis vector

ei ∈ R
k, there is j ∈ [m] such that Qjei 6= 0. Indeed, if this

is not the case, then the desired inequality does not involve

Xi or X̃i at all, so that this coordinate can be disregarded.

Thus, by Lemma 8, there exists K ∈ Π(K1, . . . ,Kk) and

c := (ci)1≤i≤k ⊂ (0,+∞) satisfying (5) and

m∑

j=1

djQ
T
j (QjKQT

j )
−1Qj ≤ diag(c1K

−1
1 , . . . , ckK

−1
k ).

By Theorem 6, we have

sup
X̃∈Π(X̃1,...,X̃k)

m∑

j=1

djh(QjX̃) +Dg(Q, c,d)

=

k∑

i=1

cih(X̃i)

=

k∑

i=1

cih(Xi) ≤ sup
X∈Π(X1,...,Xk)

m∑

j=1

djh(QjX) +Dg(Q, c,d).

Since Dg(Q, c,d) is finite (by Theorem 6), we may subtract

it from both sides to complete the proof.

Finally, we are in a position to prove Theorem 1. The

strategy will be to convert the constrained optimization prob-

lem into an unconstrained one by the method of Lagrange

multipliers, and then deduce the desired result as a corollary

of Theorem 9.

Proof of Theorem 1. For real-valued random variables

(Zi)
k
i=1 having finite entropies and second moments, define

the functional

F (λ, PZ) :=





−

m
∑

j=1

αjh(QjZ) +
∑

S:ν(S)<+∞

λ(S)(I(ZS)− ν(S))





for arguments λ : 2[k] → R and PZ ∈ Π(Z1, . . . , Zk). It

follows by Sion’s minimax theorem that

inf
Z∈Π(Z1,...,Zk)

sup
λ≥0

F (λ, PZ) = sup
λ≥0

inf
Z∈Π(Z1,...,Zk)

F (λ, PZ).

(14)

Indeed, for any fixed PZ ∈ Π(Z1, . . . , Zk), the function λ 7→
F (λ, PZ) is linear in λ. On the other hand, Π(Z1, . . . , Zk)
is a convex subset of probability measures on R

k that is

closed with respect to the weak topology; it is also tight

due to the assumption of finite second moments. Hence, by

Prokhorov’s theorem, it is compact with respect to the weak

topology. For fixed λ ≥ 0, the functional PZ 7→ F (λ, PZ) is

convex on Π(Z1, . . . , Zk) by the usual convexity properties of
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entropy. Moreover, it is weakly lower semicontinuous. Indeed,

if a sequence (Pn)n≥1 ⊂ Π(Z1, . . . , Zk) has weak limit

P ∗ ∈ Π(Z1, . . . , Zk), then we also have convergence of the

moments E|QjZ
(n)|2 → E|QjZ

∗|2, where Z(n) ∼ Pn and

Z∗ ∼ P ∗. This follows since QjZ
(n) → QjZ

∗ in distribution,

and (|QjZ
(n)|2)n≥1 can be verified to be uniformly integrable

since each Pn ∈ Π(Z1, . . . , Zk), and the Zi’s have finite

second moments. The terms −h(QjZ
(n)) can be written as

a relative entropy with respect to a Gaussian having the same

covariance as that of QjZ
∗, plus an affine function of the

difference E|QjZ
(n)|2 − E|QjZ

∗|2. Thus, the claimed lower

semicontinuity follows immediately due to the previously

established convergence of second moments together with

lower semicontinuity of relative entropy. Hence, all hypotheses

of Sion’s minimax theorem are satisfied, and (14) holds.

Now, let (Xi)
k
i=1 and (X̃i)

k
i=1 be as defined in the statement

to prove. Using the above observation together with Theorem

9, we have

inf
X∈Π(X1,...,Xk;ν)

−
m∑

j=1

αjh(QjX)

= inf
X∈Π(X1,...,Xk)

sup
λ≥0

F (λ, PX)

= sup
λ≥0

inf
X∈Π(X1,...,Xk)

F (λ, PX)

≤ sup
λ≥0

inf
X̃∈Π(X̃1,...,X̃k)

F (λ, PX̃) (15)

= inf
X̃∈Π(X̃1,...,X̃k)

sup
λ≥0

F (λ, PX̃)

= inf
X̃∈Π(X̃1,...,X̃k;ν)

−
m∑

j=1

αjh(QjX̃).

To see why inequality (15) follows from Theorem 9, write

∑

S:ν(S)<+∞

λ(S)I(XS)

=
∑

S:ν(S)<+∞

λ(S)
∑

i∈S

h(Xi)−
∑

S:ν(S)<+∞

λ(S)h(πSX),

where πS is the projection πS : (x1, . . . , xk) 7→ (xi)i∈S (a

surjective linear map). As a result, Theorem 9 implies

sup
X̃∈Π(X̃1,...,X̃k)




m∑

j=1

αjh(QjX̃) +
∑

S:ν(S)<+∞

λ(S)h(πSX̃)




≤ sup
X∈Π(X1,...,Xk)




m∑

j=1

αjh(QjX) +
∑

S:ν(S)<+∞

λ(S)h(πSX)


 .

Taken together with h(X̃i) = h(Xi), we obtain (15). Thus,

the proof is complete.

Proof of Theorem 4. Let Q denote the collection of linear

maps (Qj)1≤j≤m. For any choice of positive reals d =
(dj)1≤j≤m, we can repeat the argument of Theorem 9 to con-

clude that there is a valid choice of c = (ci)1≤i≤k for which

the Gaussian random variables Z̃1 ∼ N(0, σ2
1), . . . , Z̃k ∼

N(0, σ2
k) saturate the inequality

k∑

i=1

cih(Zi) ≤ sup
Z∈Π(Z1,...,Zk)

m∑

j=1

djh(QjZ) +Dg(Q, c,d),

(16)

holding (by definition) for all collections of random variables

(Zi)1≤i≤k with finite entropies and second moments. Note

that a simple consequence of subadditivity of entropy is that

sup
X̃∈Π(X̃1,...,X̃k)

m∑

j=1

αjh((Qj ⊗ In)X̃)

≤ sup
Z̃∈Π(Z̃1,...,Z̃k)

n

m∑

j=1

αjh(QjZ̃), (17)

where X̃1 ∼ N(0, σ2
1In), . . . , X̃k ∼ N(0, σ2

kIn) as in the

statement of the theorem. However, we have equality in (17)

by considering only the couplings in Π(X̃1, . . . , X̃k) that are

the n-fold products of the optimal coupling in the RHS.

By the tensorization properties enjoyed by Dg (see [2],

[20]), it holds that Dg(Q
n, c,d) = nDg(Q, c,d), where

Qn := (Qj ⊗ In)1≤j≤m. Hence, we conclude that (X̃i)
k
i=1

saturate the inequality

k∑

i=1

cih(Xi)

≤ sup
X∈Π(X1,...,Xk)

m∑

j=1

djh((Qj ⊗ In)X) +Dg(Q
n, c,d),

which (by definition) holds for all collections of random

vectors (Xi)
k
i=1 in R

n with finite entropies and second mo-

ments. The rest proceeds exactly as in the one-dimensional

setting.

Finally, we are in a position to prove our last result.

Proof of Corollary 5. By Theorem 4,

sup
(X̃,Z̃)∈Π(X̃,Z̃;ν)

N(X̃ + Z̃) ≤ sup
(X,Z)∈Π(X,Z;ν)

N(X + Z), (18)

where X̃ ∼ N(0, σ2
1In) and Z̃ ∼ N(0, σ2

2In) are such that

h(X̃) = h(X) and h(Z̃) = h(Z). Now, straightforward

computations reveal

N(X̃) +N(Z̃) + 2

√
(1− e−2ζ/n)N(X̃)N(Z̃)

= sup
(X̃,Z̃)∈Π(X̃,Z̃):I(X̃;Z̃)≤ζ

N(X̃ + Z̃).

Combining with (18) completes the proof since N(X̃) =
N(X) and N(Z̃) = N(Z).
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forward-reverse Brascamp–Lieb inequality: Entropic duality and Gaus-
sian optimality. Entropy, 20(6):418, 2018.

1509


