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Abstract—For tabletop object rearrangement problems with
overhand grasps, storage space which may be inside or outside
the tabletop workspace, or running buffers, can temporarily
hold objects which greatly facilitates the resolution of a given
rearrangement task. This brings forth the natural question of
how many running buffers are required so that certain classes
of tabletop rearrangement problems are feasible. In this work,
we examine the problem for both the labeled (where each object
has a specific goal pose) and the unlabeled (where goal poses of
objects are interchangeable) settings. On the structural side, we
observe that finding the minimum number of running buffers
(MRB) can be carried out on a dependency graph abstracted
from a problem instance, and show that computing MRB on
dependency graphs is NP-hard. We then prove that under both
labeled and unlabeled settings, even for uniform cylindrical
objects, the number of required running buffers may grow
unbounded as the number of objects to be rearranged increases;
we further show that the bound for the unlabeled case is tight.
On the algorithmic side, we develop highly effective, exact
algorithms for finding MRB for both labeled and unlabeled
tabletop rearrangement problems, scalable to over a hundred
objects under very high object density. More importantly, our
algorithms also compute a sequence witnessing the computed
MRB that can be used for solving object rearrangement tasks.
Employing these algorithms, empirical evaluations reveal that
random labeled and unlabeled instances, which more closely
mimics real-world setups, generally have fairly small MRBs.

source: github.com/rutgers-arc-lab/running-buffer
video: youtu.be/hbD-cumF_H4

I. INTRODUCTION

In nearly all aspects of our everyday lives, be it work related,
at home, or for play, objects are to be grasped and rearranged,
e.g., tidying up a messy desk, cleaning the table after din-
ner, or solving a jigsaw puzzle. Similarly, many industrial
and logistics applications require repetitive rearrangements of
many objects, e.g., the sorting and packaging of products on
conveyors with robots, and doing so efficiently is of critical
importance to boost the competitiveness of the stakeholders.
However, even without the challenge of grasping, deciding
the sequence of objects for optimizing a rearrangement task is
non-trivial. To that end, Han et al. [1] examined the problem of
tabletop object rearrangement with overhand grasps (TORO),
where objects may be picked up, moved around, and then
placed at poses that are not in collision with other objects. An
object that is picked up but cannot be directly placed at its goal
is temporarily stored at a buffer location. For example, for the
setup given in Fig. 1, using a single manipulator, either the
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Fig. 1: A TORO instance where the three soda cans are to be
rearranged from the left configuration to the right configuration.

Coke can or the Pepsi can must be moved to a buffer before
the task can be completed. They show that computing a pick-
n-place sequence that minimizes the use of the total number
of buffers is NP-hard and provide fast methods for computing
that solution for problems with a couple dozen objects.

In this study, we examine a more practical rearrangement
objective which minimizes the number of running buffers (RB)
in solving a TORO instance. We seek rearrangement plans that
minimize the maximum number of objects stored at buffers at
any given moment, assuming that each object is moved to a
temporary location at most once. We denote this quantity as
MRB (minimum running buffer). The objective is important
because if the MRB required for solving a TORO instance
exceeds the available buffer storage, which is always limited
in practice, then the instance is infeasible under the model.
Therefore, the structural results and the algorithms that we
present may be used not only for computing feasible and high-
quality rearrangement plans, but they are also invaluable as a
verification tool, e.g., to verify that a certain rearrangement
setup will be able to solve most tasks for which it is designed
to tackle.

Besides introducing running buffers and the unlabeled de-
pendency graph, this work brings forth several novel tech-
nical contributions. First, we show that computing MRB on
arbitrary dependency graphs, which encode the combinato-
rial information of TORO instances, is NP-hard. Second, we
establish that for an n-object TORO instance, MRB can be
lower bounded by Ω(

√
n) for uniform cylinders, even when all

objects are unlabeled. This implies that the same is true for the
labeled setting. Then, we provide a matching algorithmic up-
per bound O(

√
n) for the unlabeled setting. Last but not least,

we develop multiple highly effective and optimal algorithms
for computing rearrangement plans with MRB for TORO. In
particular, we present a dynamic programming method for
the labeled setting, a priority queue-based algorithm for the
unlabeled setting, and a much more efficient depth-first-search
dynamic programming routine that readily scales to instances
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with over a hundred objects for both settings. Furthermore,
we provide methods for computing plans with the minimum
number of total buffers subject to the MRB constraints. These
algorithms not only provide the optimal number of buffers but
also provide a rearrangement plan that witness the optimal
solution.

Related work. As a high utility capability, manipulation of
objects in a bounded workspace has been extensively studied,
with works devoted to perception/scene understanding [2]–
[5], task/rearrangement planning [1], [6]–[15], manipulation
[16]–[23], as well as integrated holistic approaches [24]–[28].
As object rearrangement problems often embed within them
multi-robot motion planning problems, rearrangement inherits
the PSPACE-hard complexity [29]. These problems remain
NP-hard even without complex geometric constraints [30].
Considering rearrangement plan quality, e.g, minimizing the
number of pick-n-places or the end-effector travel, is also
computationally intractable [1].

For rearrangement tasks using mainly prehensile actions,
the algorithmic studies of Navigation Among Movable Ob-
stacles [7], [31] result in backtracking search methods that
can effectively deal with monotone and other instances with
“nice” properties. Via carefully calling monotone solvers,
difficult non-monotone cases can be solved as well [11].
Han et al. [1] relates tabletop rearrangement problems to the
Traveling Salesperson Problem [32] and the Feedback Vertex
Set problem [33], both of which are NP-hard. Nevertheless,
integer programming models are shown to quickly compute
high quality solutions for practical sized (e.g., 1-2 dozen of
objects) problems. Focusing mainly on the unlabeled setting,
bounds on the number of pick-n-places are provided under
different assumptions on disk objects in [34]. In [14], a
complete algorithm is developed that reasons about object
retrieval, rearranging other objects as needed, with later work
[35] considering plan optimality and sensor occlusion. While
objectives in most problems focus on the number of motions,
Halperin et al. [36] seeks to minimize the space needed to
carry out a rearrangement task in which discs move along
straight lines in the workspace.

Non-prehensile rearrangement has also been extensively
studied, with singulation as an early focus [37]–[39]. Iterative
search was employed in [13] for accomplishing a multitude
of rearrangement tasks spanning singulating, separation, and
sorting of identically shaped cubes. Song et al. [40] com-
bines Monte Carlo Tree Search with a deep policy network
for separating many objects into coherent clusters within
a bounded workspace, supporting non-convex objects. More
recently, a bi-level planner is proposed [15], engaging both
(non-prehensile) pushing and (prehensile) overhand grasping
for sorting a large number of objects. Synergies between non-
prehensile and prehensile actions have been explored for solv-
ing clutter removal tasks [41], [42] and the more challenging
object retrieval tasks [43] using a minimum number of pushing
and grasping actions.

On the structural side, a central object that we study is the
dependency graph structure. To our knowledge, dependency

structures for rearrangement problems are first examined in
[44] where partial dependencies are used for optimal de-
coupling of object interactions. Subsequently, the structure
was employed for reasoning about and solving challenging
rearrangement problems [11], [45], [46]. The full labeled
dependency graph, as induced by a rearrangement instance,
is first introduced and studied in [1]. This current work in-
troduces the unlabeled dependency graph. We observe that, in
the labeled setting, through the dependency graph, the running
buffer problems naturally connect to graph layout problems
[47]–[52], where an optimal linear ordering of graph vertices is
sought. Graph layout problems find a vast number of important
applications including VLSI design, scheduling [53], and so
on. For the unlabeled setting, the dependency graph becomes
a planar one for uniform objects with a square or round
base. Rearrangement can be tackled through partitioning of
the dependency graph using a vertex separator [54]–[57]. For
a survey on these topics, see [47].

Paper organization. The rest of the paper is organized
as follows. We introduce the MRB focused rearrangement
problems and discuss the associated dependency graphs in
Sec. II. Then, in Sec. III, we establish some basic structural
properties of the optimality structure of the problems, and
show that minimizing running buffer size on dependency
graphs is computationally intractable. We proceed to establish
the lower and upper bounds on MRB in Sec. IV and describe
our proposed algorithmic solutions in Sec. V. Evaluation
follows in Sec. VI. We conclude with Sec. VII.

II. PRELIMINARIES

We describe two practical (labeled and unlabeled) formu-
lations of the tabletop object rearrangement problems using
external buffers, and discuss the important dependency graph
structure for both settings.

A. Labeled Tabletop Rearrangement with External Buffers
Consider a bounded workspace W ⊂ R2 with a set of n

objects O = {o1, . . . , on} placed inside it. All objects are
assumed to be generalized cylinders with the same height.
A feasible arrangement of these objects is a set of poses
A = {x1, . . . , xn}, xi ∈ SE(2) in which no two objects
collide. Let A1 = {xs

1, . . . , x
s
n} and A2 = {xg

1, . . . , x
g
n} be

two feasible arrangements, a tabletop object rearrangement
problem [1] seeks a plan using pick-n-place operations that
move the objects from A1 to A2 (see Fig. 2(a) for an example
with 7 uniform cylinders). In each pick-n-place operation,
an object is grasped by a robot arm, lifted above all other
objects, transferred to and lowered at a new pose p ∈ SE(2)
where the object will not be in collision with other objects,
and then released. A pick-n-place operation can be formally
represented as a 3-tuple a = (i, x′, x′′), denoting that object oi
is moved from pose x′ to pose x′′. A full rearrangement plan
P = (a1, a2, . . .) is then an ordered sequence of pick-n-place
operations.

Depending on A1 and A2, it may not always be possible to
directly transfer an object oi from xs

i to xg
i in a single pick-n-

place operation, because xg
i may be occupied by other objects.
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Fig. 2: A 7-object labeled instance with uniform cylinders; we will
use this instance as a running example. (a) The green discs (as
projections of cylinders) represent the start arrangement A1 and the
cyan discs represent the goal arrangement A2. (b) The corresponding
labeled dependency graph. (c) The corresponding unlabeled depen-
dency graph, which is bipartite and planar.

This creates dependencies between objects. If object oi at pose
xg
i intersects object oj at pose xs

j , we say oi depends on oj .
This suggests that object oj must be moved first before oi can
be placed at its goal pose xg

i .

It is possible to have circular dependencies, e.g., between
objects 3 and 5 in Fig. 2(a). In such cases, some object(s)
must be temporarily moved to an intermediate pose to solve
the rearrangement problem. Similar to [1], we assume that ex-
ternal buffers outside of the workspace are used for assuming
intermediate poses, which avoids time-consuming geometric
computations if the intermediate poses are to be placed within
W . During the execution of a rearrangement plan, there can be
multiple objects that are stored at buffer locations. We call the
buffers currently being used as running buffers (RB). With the
introduction of buffers, there are three types of pick-n-place
operations: 1) pick an object at its start pose and place at a
buffer, 2) pick an object at its start pose and place at its goal
pose, and 3) pick an object from buffer and place at its goal
pose. Notice that buffer poses are not important. Naturally,
it is desirable to be able to solve a rearrangement problem
with the least number of running buffers, yielding the running
buffer minimization problem.

Problem 1 (Labeled Running Buffer Minimization (LRBM)).
Given feasible arrangements A1 and A2, find a rearrangement
plan P that minimizes the maximum number of running buffers
used at any given time.

In an LRBM instance, the set of all dependencies induced
by A1 and A2 can be represented using a directed graph
G ℓ

A1,A2
= (V,A), where each vi ∈ V corresponds to object

oi and there is an arc vi → vj for 1 ≤ i, j ≤ n, i ̸= j
if object oi depends on object oj . We call G ℓ

A1,A2
a labeled

dependency graph. The labeled dependency graph for Fig. 2(a)
is given in Fig. 2(b). We can immediately identify multiple
circular dependencies in the graph, e.g., between objects 3
and 5, or among objects 7, 2, 6 and 5. It is not difficult to
see that the dependency graph abstraction fully captures the
information needed to solve a tabletop rearrangement problem
with external buffers.

B. Unlabeled Tabletop Rearrangement Problem
In an unlabeled setting, objects are interchangeable. That

is, it does not matter which object goes to which goal.
For example, in Fig. 2, object 5 can move to the goal for
object 6. We call this version the Unlabeled Running Buffer
Minimization (URBM) problem, which is intuitively easier. The
plan for the unlabeled problem can be represented similarly
as the labeled setting; we continue to use labels but do not
require matching labels for start and goal poses.

For the unlabeled setting, there clearly remains dependency
between start and goal arrangements, but in a different form.
We update the unlabeled dependency graph for URBM as an
undirected bipartite graph between the start arrangement and
the goal arrangement. That is, Gu

A1,A2
= (V1 ∪ V2, E) where

each v ∈ V1 (resp., v ∈ V2) corresponds to a start (resp.,
goal) pose p ∈ A1 (resp., p ∈ A2). We denote the vertices
representing the start and goal poses as start vertices and goal
vertices, respectively. There is an edge between v1 ∈ V1 and
v2 ∈ V2 if the objects at the corresponding poses overlap. The
unlabeled dependency graph for Fig. 2(a) is given in Fig. 2(c).

We make a straightforward but important observation of
the unlabeled dependency graph when objects are uniform
cylinders, which is a key sub-class of TORO problems, e.g.,
many products can be approximated as uniform cylinders.

Proposition II.1. For unlabeled tabletop object rearrange-
ment problems where all objects are identical cylinders, the
unlabeled dependency graph is a planar bipartite graph with
maximum degree 5.

Proof. The bipartite and planar part come directly from the
problem setup. Since we work with uniform cylinders which
have uniform disc base, one disc may only touch six non-
overlapping discs and non-trivially intersect at most five non-
overlapping discs.

III. STRUCTURAL ANALYSIS AND NP-HARDNESS

In this section, we highlight some important structural prop-
erties of LRBM, including (1) the comparison to minimizing
the total number of buffers [1], (2) the solutions of LRBM
and the linear arrangement [58] or linear ordering [59] of its
dependency graph, and (3) the hardness of computing MRB
for labeled dependency graphs.
A. Running Buffer versus Total Buffer

As mentioned in the introduction, running buffers are related
to but different from the total number of buffers required, as
studied in [1], to solve a rearrangement problem using external
buffers. It was shown that the minimum number of total buffers
for solving an LRBM is the same as the size of the minimum
feedback vertex set (FVS) of the underlying dependency graph.
An FVS is a set of vertices the removal of which leaves a graph
acyclic. An LRBM with an acyclic dependency graph can be
solved without using any buffer. We denote the size of the
minimum FVS as MFVS.

As an example, for LRBM, consider a labeled dependency
graph that is formed by n copies of 2-cycles. The MFVS is
n. On the other hand, the MRB is just 1 for the problem.



That is, only a single external buffer is needed to solve the
problem. Therefore, whereas the total number of buffers used
has more bearing on global solution optimality, MRB sheds
more light on feasibility. Knowing the MRB tells us whether a
certain number of external buffers will be sufficient for solving
a class of rearrangement problems. This is critical for practical
applications where the number of external buffers is generally
limited to be a small constant.

We give an example where the MRB and MFVS cannot
always be optimized simultaneously. For the setup (Fig. 3)
where objects have convex footprints, the MFVS, {7, 9, 10},
has size 3. Using our algorithms, to be detailed later, the
MRB is 2 (e.g., with the sequence 10, 8, 4, 5, 3, 6, 7, 1, 2, 9,
the interpretation of which is given in Sec. III-B). However,
constrained on MRB = 2, the total number of buffers that
must be used is at least 4 > 3. We note that, this is rarely the
case; for uniform cylinders, the total number of buffers needed
after first minimizing the running buffer is almost always the
same as the MFVS size.
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Fig. 3: An LRBM instance with uniform thin cuboids (left) and its
labeled dependency graph, where the total number of buffers needed
is more than the size of the MFVS when the number of running
buffers is minimized.

B. Linear Ordering of Graph Vertices and Running Buffer
Given a graph with vertex set V , a linear ordering of V is a

bijective function φ : {1, . . . , |V |} → V . Given a dependency
graph G = (V,A) for an LRBM and a linear ordering φ, we
may turn it into a plan P by sequentially picking up objects
corresponding to vertices φ(1), φ(2), . . . For each object that
is picked up, it is moved to its goal pose if it has no further
dependencies; otherwise, it is stored in the buffer. Objects
already in the buffer will be moved to their goal pose at the
earliest possible opportunity.

For example, given the linear ordering 1, 5, 6, 3, 4, 2, 7 for
the dependency graph from Fig. 2(b), first, o1 can be directly
moved to its goal. Then, o5 is moved to the buffer because
it has dependency on o3 and o7 (but no longer on o1). Then,
o6 can be directly moved to the buffer because o5 is now at
a buffer location. Similarly, o3 can be moved to its goal next.
Then, o4 and o2 must be moved to buffer, after which o7 can
be moved to its goal directly. Finally, o2, o4, and o5 can be
moved to their respective goals from the buffer. This leads
to a maximum running buffer size of 3. This is not optimal;
an optimal sequence is 5, 6, 2, 7, 4, 3, 1, with MRB = 2. Both
sequences are illustrated in Fig. 4.

From the discussion, we may view the number of running
buffers as a function of a dependency graph G and a linear

1 5 6 3 4 2 7 5 6 2 7 4 3 1

(a) (b)

Fig. 4: Two linear orderings of vertices of the labeled dependency
graph from Fig. 2(b). The right one minimizes MRB.

ordering φ, i.e., RB(G,φ) is the number of running buffers
needed for rearranging G following the order given by φ. We
then have MRB(G) = minφ RB(G,φ).

C. Intractability of Computing MRB(G)

Since computing MFVS is NP-hard [1], one would expect
that computing MRB for a labeled dependency graph, which
can be any directed graph, is also hard. We show that this is
indeed the case, through examining the interesting relationship
between MRB and the vertex separation problem (VSP),
which is equivalent to path width, gate matrix layout and
search number problems as described in Theorem 3.1 in [47],
resulting from a series of studies [60]–[62]. Unless P = NP ,
there cannot be an absolute approximation algorithm for any
of these problems [52]. First, we describe the vertex separation
problem. Intuitively, given an undirected graph G = (V,E),
VSP seeks a linear ordering φ of V such that, for a vertex
with order i, the number of vertices come no later than i
in the ordering, with edges to vertices that come after i, is
minimized.

Vertex Separation (VSP)
Instance: Graph G(V,E) and an integer K.
Question: Is there a bijective function φ : {1, . . . , n} → V ,
such that for any integer 1 ≤ i ≤ n, |{u ∈ V | ∃(u, v) ∈
E and φ(u) ≤ i < φ(v)}| ≤ K?

As an example, in Fig. 5(a), with the given linear ordering,
at the second vertex, both the first and the second vertices
have edges crossing the vertical separator, yielding a crossing
number of 2. Given a graph G and a linear ordering φ, we
define VS(G,φ) := maxi |{u ∈ V | ∃(u, v) ∈ E and φ(u) ≤
i < φ(v)}|, VSP seeks φ that minimizes VS(G,φ). Let
MINVS(G), the vertex separation number of graph G, be
the minimum K for which a VSP instance has a yes answer,
then MINVS(G) = minφ VS(G,φ). Now, given an undirected
graph G and a labeled dependency graph G ℓ obtained from
G by replacing each edge of G with two directed edges in
opposite directions, we observe that there are clear similarities
between VS(G,φ) and RB(G ℓ, φ), which is characterized in
the following lemma.

Lemma III.1. VS(G,φ) ≤ RB(G ℓ, φ) ≤ VS(G,φ) + 1.

Proof sketch. Fixing a linear ordering φ, it is clear that
VS(G,φ) ≤ RB(G ℓ, φ), since the vertices on the left side of a
separator with edges crossing the separator for G corresponds
to the objects that must be stored at buffer locations. For
example, in Fig. 5(a), past the second vertex from the left,



both the first and the second vertices have edges crossing the
vertical “separator”. In the corresponding dependency graph
shown in Fig. 5(b), objects corresponding to both vertices
must be moved to the external buffer. On the other hand,
we have RB(G ℓ, φ) ≤ VS(G,φ) + 1 because as we move
across a vertex in the linear ordering, the corresponding object
may need to be moved to a buffer location temporarily. For
example, as the third vertex from the left in Fig. 5(a) is passed,
the vertex separator drops from 2 to 1, but for dealing with
the corresponding dependency graph in Fig. 5(b), the object
corresponding to the third vertex from the left must be moved
to the buffer before the first and the second objects stored in
buffer can be placed at their goals.

(a) (b)

Fig. 5: (a) An undirected graph and a linear ordering of its vertices.
(b) A corresponding labeled dependency graph with the same vertex
ordering.

Theorem III.1. Computing MRB, even with an absolute
approximation, for a labeled dependency graph is NP-hard.

Proof. Given an undirected graph G, we reduce from approx-
imating VSP within a constant to approximating MRB within
a constant for a dependency graph G ℓ from G constructed
as stated before, replacing each edge in G as a bidirectional
dependency.

Unless P = NP , VSP does not have absolute approxi-
mation in polynomial time. Henceforth, if MRB(G ℓ, φ) can
be approximated within α in polynomial time, which means
for graph G, we can find a φ∗ in polynomial time such that
RB(G ℓ, φ∗) ≤ MRB(G ℓ) + α, we then have VS(G,φ∗) ≤
RB(G ℓ, φ∗) ≤ α+ MRB(G ℓ) ≤ MINVS(G)+α+1, which
shows vertex separation can have an absolute approximation,
implying P = NP .

IV. LOWER AND UPPER BOUNDS ON MRB

We proceed to establish bounds on MRB, i.e., what is
the lowest possible MRB for LRBM and URBM, and what
is the best that we can do to lower MRB? An important
outcome is that MRB can grow unbounded with the number of
objects, even for URBM when objects are all uniform cylinders.
Another very interesting result is that we are able to close the
gap between lower and upper bound for URBM for uniform
cylinders.

A. Intrinsic MRB Lower Bounds
When there is no restrictions on object footprint, MRB can

easily reach the maximum possible n − 1 for an n object
instance, even in the URBM case. Such an example is given in
Fig. 6, where n = 6 thin cuboids are aligned horizontally in
A1, one above the other. The cuboids are vertically aligned
in A2, and every pair of start pose and goal pose induces
a collision. Clearly, this yields a bidirectional K6 labeled

dependency graph in the LRBM case and a K6,6 unlabeled
dependency graph in the URBM case. For both, n − 1 = 5
objects must be moved to buffer before the problem can
be resolved. The example clearly can be generalized to an
arbitrary number of objects.

Proposition IV.1. MRB lower bound is n − 1 for n objects
for both LRBM and URBM, which is the maximum possible,
even for uniform convex shaped objects.

Fig. 6: An instance with 6 cuboids where horizontal and vertical sets
represent start and goal poses, respectively.

The lower bound on MRB being Ω(n) is undesirable, but it
is established using objects that are “thin”. Everyday objects
are not often like that. An ensuing question of high practical
value is then: what happens when the footprint of the objects
are “nicer”? Next, we show that, the lower bound drops to
Ω(

√
n) for uniform cylinders, which approximate many real-

world objects/products. Further more, we show that this lower
bound is tight for URBM (in Section IV-B).

We first establish the Ω(
√
n) lower bound for URBM. For

convenience, assume n is a perfect square, i.e., n = m2 for
some integer m. To get to the proof, a grid-like unlabeled
dependency graph is used, which we call a dependency grid,
where A1 and A2 have fixed grid (rotated by π/4) patterns,
an example of which is given in Fig. 7. We use D(w, h) to
denote a dependency grid with w columns and h rows. Let
(x, y) be the coordinate of a vertex vx,y on D(w, h) with
the top left being (1, 1). The parity of x + y determines the
partite set of the vertex (recall that unlabeled dependency
graph for uniform cylinders is always a planar bipartite graph,
by Proposition II.1), which may correspond to a start pose
or a goal pose. With this in mind, we simply call vertices of
D(w, h) start and goal vertices; let v1,1 be a start vertex.

Fig. 7: A URBM instance (left) and its unlabeled dependency graph
(right), a 4 × 3 dependency grid. Green and cyan indicate start and
goal arrangements, respectively.

We use D(m, 2m) for establishing the lower bound on
MRB. We use a vertex pair pi,j to refer to two adjacent
vertices vi,2j−1 and vi,2j in D(m, 2m). It is clear that a vertex
pair contains a start and a goal vertex. We say that a goal vertex



is filled if an object is placed at the corresponding goal pose.
We say that a start vertex (which belongs to a vertex pair)
is cleared if the corresponding object at the vertex is picked
(either put at a goal or at a buffer) but the corresponding
goal in the vertex pair is not filled. At any moment when the
robot is not holding an object, the number of objects in the
buffer is the same as the number of cleared vertices. For each
column i, 1 ≤ i ≤ m, let fi (resp., ci) be the number of
goal (resp., start) vertices in the column that are filled (resp.,
cleared). Notice that a goal cannot be filled until the object at
the corresponding start vertex is removed.

Lemma IV.1. On a dependency grid D(m, 2m), for two
adjacent columns i and i + 1, 1 ≤ i < m, if fi + fi+1 ̸= 0
or 2m, then ci + ci+1 ≥ 1. In other words, there is at
least one cleared vertex in the two adjacent columns unless
fi = fi+1 = 0 or fi = fi+1 = m.

Proof. If there is a j, 1 ≤ j ≤ m, such that only one of the
goal vertices in vertex pairs pi,j and pi+1,j is filled (Fig. 8(a)),
then the start vertex in the other vertex pair must be cleared.
Therefore, ci + ci+1 ≥ 1.

On the other hand, if, for each j, 1 ≤ j ≤ m, both or neither
of the goal vertices in pi,j and pi+1,j is filled, then there is
a j, 1 ≤ j ≤ m − 1, such that both goal vertices in pi,j and
pi+1,j are filled but neither of those in pi,j+1 and pi+1,j+1

is filled (Fig. 8(b)) or the opposite (Fig. 8(c)). Then, for the
vertex pairs whose goal vertices are not filled, say pi,j+1 and
pi+1,j+1, one of their start vertices is a neighbor of the filled
goal in pi,j and pi,j+1. Therefore, at least one of the start
vertices in pi,j+1 and pi+1,j+1 is a cleared vertex. And thus,
ci + ci+1 ≥ 1.

pi,j pi+1,j

pi,j pi+1,j

pi,j+1

pi+1,j

pi,j+1 pi+1,j+1

(a) (b) (c)

Fig. 8: Some cases discussed in the lemma IV.1. The green and cyan
nodes represent the start and goal vertices in the dependency graph.
Specifically, the cyan nodes with a dot inside represent the filled
vertices and the green nodes with a cross inside represent the cleared
vertices. (a) When only one goal vertex in pi,j and pi+1,j is filled
up, the start vertex in the other vertex pair is a cleared vertex. (b)
When both goal vertices in pi,j and pi+1,j are filled but neither of
those in pi,j+1 and pi+1,j+1 is filled, one of the start vertices pi,j+1

and pi+1,j+1 is a cleared vertex. (c) The opposite case of (b).

Lemma IV.2. Given a URBM instance with n = m2 objects
and whose dependency graph is D(m, 2m), its MRB is lower
bounded by Ω(m) = Ω(

√
n)

Proof. We show that there are Ω(m) cleared vertices when
⌊n/3⌋ goal vertices are filled. Suppose there are q columns in

D with 1 ≤ fi ≤ m− 1. According to the definition of fi, for
each of these q columns, there is at least one goal vertex that
is filled and at least one goal vertex that is not.

If q <
⌊n/3⌋

3(m− 1)
, then there are two columns i and j, such

that fi = m and fj = 0. That is because
∑︁

1≤i≤m fi = ⌊n/3⌋
and 0 ≤ fi ≤ m for all 1 ≤ i ≤ m. Therefore, for the vertex
pairs in each row j, at least one goal vertex is filled but at
least one is not. And thus, for each j, there are two adjacent
columns i, i+ 1, 1 ≤ i < m, such that there is only one goal
vertex in pi,j and pi+1,j is filled and the start vertex in the
other vertex pair is cleared (Fig. 8(a)). Therefore, there are at
least m cleared vertices in this case.

If q ≥ ⌊n/3⌋
3(m− 1)

, then we partition all the columns in D into

⌊m/2⌋ disjoint pairs: (1,2), (3,4), ... The q columns belong to
at least ⌊q/2⌋ pairs of adjacent columns. Therefore, according
to Lemma IV.1, we have Θ(m) cleared vertices.

In conclusion, there are Ω(m) cleared vertices when there
are ⌊n/3⌋ filled goal. Therefore, the minimum MRB of this
instance is Ω(m).

Because a URBM always have lower MRB than an LRBM
with the same objects and goal placements, the conclusion of
Lemma IV.2 directly applies to LRBM. Therefore, we have

Theorem IV.1. For both URBM and LRBM with n uniform
cylinders, MRB is lower bounded by Ω(

√
n).

For uniform cylinders, while the lower bound on URBM is
tight (as shown in Section IV-B), we do not know whether the
lower bound on LRBM is tight; our conjecture is that Ω(

√
n)

is not a tight lower bound for LRBM. Indeed, the Ω(
√
n) lower

bound can be realized when uniform cylinders are simply
arranged on a cycle, an illustration of which is given in Fig. 9.
For a general construction, for each object oi, let oi depend on
o(i−1 mod n) and o(i+

√
n mod n), where n is the number of

objects in the instance. From the labeled dependency graph,
we can construct the actual LRBM instance where start and
goal arrangements both form a cycle. We can show that when
n/2 objects are at the goal poses, Ω(

√
n) objects are at the

buffer. We omit the proof, which is similar in spirit to that for
Lemma IV.2.
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Fig. 9: An example of a 9-object LRBM yielding Ω(
√
n) MRB (left)

and the corresponding dependency graph (right).

B. MRB Algorithmic Upper Bounds

We now establish that regardless of how n uniform cylinders
are to be rearranged, the corresponding URBM instance admits



a solution using O(
√
n) running buffers. The lower and upper

bounds on URBM agree and are therefore tight.

Theorem IV.2. For URBM with n uniform cylinders, a poly-
nomial time algorithm can compute a plan with O(

√
n) RB,

which implies that MRB is bounded by O(
√
n).

Proof. When objects are all uniform cylinders, the corre-
sponding unlabeled dependency graph Gu

A1,A2
is a planar

graph with degree no more than 5, by Proposition II.1. We
propose an O(n log(n))-time algorithm SEPPLAN for the
setting based on a vertex separator of Gu

A1,A2
. SEPPLAN can

find a rearrangement plan with O(
√
n) running buffers.

In SEPPLAN, given the planar Gu
A1,A2

= (V,E), we can
partition V into three disjoint subsets A, B and C [54],
such that there is no edge connecting vertices in A and B,
|A|, |B| ≤ 2|V |/3, and |C| ≤ 2

√︁
2|V |(Fig. 10(a)). For the

start vertices in C and the neighbors of the goal vertices in
C, we remove them from Gu

A1,A2
. Since there are at most 5

neighbors for each goal vertex, there are at most 10
√︁
2|V |

objects moved to the buffer in this operation. After that, we
remove the goal vertices in C which should be isolated now.
Let A′, B′ be the remaining vertices in A and B. With the
removal of C from Gu

A1,A2
, A′ and B′ form two independent

subgraphs (Fig. 10(b)). We can deal with the subgraphs one
after the other by recursively calling SEPPLAN (Fig. 10(c)).
Let δ(V ′) := g(V ′) − s(V ′) where g(V ′) and s(V ′) are
the number of goal and start vertices in a vertex set V ′

respectively. Between vertex subsets A and B, we prioritize
the one with larger δ(·) value. With straightforward reasoning,
the 10

√︁
2|V | upper bound of the additional buffer size still

holds after we deal with the prioritized subgraph.

CA

V

B

A’ C B’A C B

... ... ... ... ... ...

(a) (b) (c)
Fig. 10: The recursive solver SEPPLAN for URBM. (a) A O(

√︁
|V |)

vertex separator for the planar dependency graph. (b) By removing
the start vertices in C and the neighbors of the goal vertices in C, the
remaining graph consists of two independent subgraphs and isolated
goal poses in C. (c) The problem can be solved by recursively calling
SEPPLAN.

Let the maximum RB of the plan found by SEPPLAN
be b(m), where m = 2n is the number of vertices in the
dependency graph. We have b(m) ≤ b(2m/3) + O(

√
m).

And therefore, b(m) = O(
√
m). Since the O(

√︁
|V |) vertex

separator can be found in O(|V |) time [54], SEPPLAN can
find the rearrangement plan for an arbitrary n-object URBM
instance in O(n log(n)) time. Due to limited space, the details
of SEPPLAN and this proof are omitted; they will be made
available in the extended version of this paper to be put on
arXiv.

V. FAST ALGORITHMS FOR LRBM AND URBM

In this section, we first describe a dynamic programming-
based method for LRBM (Sec. V-A). Then, we propose a
priority queue based method in Sec. V-B for URBM. Finally, a
significantly faster depth-first modification of DP for comput-
ing MRB is provided in Sec. V-C. We mention that, we also
developed an integer programming model, denoted TBMRB,
for computing the minimum total number of buffers needed
subject to the MRB constraint, which is compared with the
algorithm that computes the minimum total buffer without
the MRB constraint, denoted as TBFVS, from [1]. A brief
description of TBMRB is given in Sec. V-D.

A. Dynamic Programming (DP) for LRBM

As mentioned in Sec. III-B, a rearrangement plan in LRBM
can be represented as a linear ordering of object labels where
objects will be moved out of the start pose based on the order.
That is, given an ordering of objects, π, we start with oπ(1).
If xg

π(1) is not occupied, then oπ(1) is directly moved there.
Otherwise, it is moved to buffer location. We then continue
with the second object in the order, and so on. After we
work with each object in the given order, we always check
whether objects in buffer can be moved to their goals, and
do so if an opportunity presents. We now describe a dynamic
programming (DP) algorithm for computing an ordering that
yields the MRB.

The pseudo-code of the algorithm is given in Algo. 1. The
algorithm maintains a search tree T , each node of which rep-
resents an arrangement where a set of objects S have left the
corresponding start poses. We record the objects currently at
the buffer (T [S].b) and the minimum running buffer from the
start arrangement A1 to the current arrangement (T [S].MRB).
The DP starts with an empty T . We let the root node represent
A1 (line 1). At this moment, there is no object in the buffer
and the MRB is 0(line 2-3). And then we enumerate all the
arrangements with |S| = 1, 2, · · · and finally n(line 4-5).
For arbitrary S, the objects at the buffer are the objects in
S whose goal poses are still occupied by other objects(line
6), i.e., {o ∈ S|∃o′ ∈ O\S, (o, o′) ∈ A}, where A is the set
of arcs in G ℓ

A1,A2
. T [S].MRB, the minimum running buffer

from the root node T [∅] to T [S], depends on the last object
oi added into S and can be computed by enumerating oi (line
7-20):

T [S].MRB = min
oi∈S

max(T [S\{oi}].MRB, |T [S].b|,
|T [S\{oi}].b| + TC(S\{oi}, S)),

where the transition cost TC is given as

TC(S\{oi}, S) =
{︄
1, oi ∈ T [S].b,

0, otherwise,

with xg
i currently occupied (line 10), the transition cost is

due to objects dependent on oi cannot be moved out of the
buffer before moving oi to the buffer(line 11). If T [S].MRB
is minimized with oi being the last object in S from the starts,



then T [S\{oi}] is the parent node of T [S] in T (line 14-16).
Once T [O] is added into T , T [O].MRB is the MRB of the
instance (line 17) and the path in T from T [∅] to T [O] is the
corresponding solution to the instance.

Algorithm 1: Dynamic Programming

Input : GA1,A2(O, A): labeled dependency graph
Output: MRB: the minimum number of running buffers

1 T.root← ∅
2 T [∅].b← ∅ % objects currently at the buffer

3 T [∅].MRB ← 0 % current minimum running buffer

4 for 1 ≤ k ≤ |O| do
% enumerate cases where k objects have left

the start poses
5 for S ∈ k-combinations of O do
6 T [S].b← {o ∈ S | ∃o′ ∈ O\S, (o, o′) ∈ A}

% Find the MRB from T [∅] to T [S]

7 T [S].MRB ←∞
8 for oi ∈ S do
9 parent = S\{oi}

10 if oi ∈ T [S].b then
11 RB ← max(T [parent].MRB, |T [S].b|,

|T [parent].b|+ 1)
12 else
13 RB ← max(T [parent].MRB, |T [S].b|)
14 if RB< T [S].MRB then
15 T [S].MRB ← RB
16 T [S].parent← parent

17 return T [O].MRB

For the LRBM instance in Fig. 2, Tab. I shows T [S].MRB
with different last-object options when S = {o2, o5, o6}. If the
last object oi is o5, then we need to move o5 into the buffer
before moving o6 out of the buffer. Therefore, even though
buffer sizes of the parent node and the current node are both
2, there is a moment when all of the three objects are at the
buffer. However, when we choose o2 or o6 as the last object
to add, the T [S].MRB becomes 2.

TABLE I. T [S].MRB for different last objects ([p] = [parent])

Last object T [p].MRB T [p].b T [S].b T [S].MRB
o2 1 {o5} {o2, o5} 2
o5 2 {o2, o6} {o2, o5} 3
o6 2 {o2, o5} {o2, o5} 2

B. A Priority Queue based method for URBM

Similar to LRBM, rearrangement plans in URBM can be
represented by a linear ordering of goal vertices in Gu

A1,A2
.

We can compute the ordering that yields MRB by maintaining
a search tree like in Algo. 1. Each node T [V ] in the tree
represents an arrangement where a set of goal vertices V have
been filled. The remaining dependencies of T [V ] is an induced
graph of Gu

A1,A2
, formed from V (Gu

A1,A2
)\(V ∪N(V )) where

N(V ) is the neighbors of V in Gu
A1,A2

. The running buffer
size of T [V ] is |N(V )| − |V |. Given an induced graph I(V ),
denote the goal vertices with no more than one neighbor in
I(V ) as free goals. We make two observations. First, given
an induced graph I(V ), we can always prioritize the free

goals in terms of the order to fill without optimality loss.
Second, multiple free goals may be generated as a goal vertex
is filled. For example, in the instance shown in Fig. 2(a), when
the goal representing c5g is filled, c2g , c3g , and c4g become free
goals and can be added to the linear ordering in an arbitrary
order. In conclusion, the necessary nodes (nodes without free
goals in the induced graph) in the search tree are sparse and
enumerating nodes with DP carries much overhead.

As such, instead of exploring the search tree layer by layer
like DP, we maintain a sparse tree with a priority queue Q.
While each node still represents an arrangement, each edge in
the tree represents either an action moving an object to the
buffer or multiple actions filling free goal poses. We always
pop out and develop the node with the smallest MRB in Q.
If a child node of the one that we develop already exist in
the tree but is with smaller MRB than previously claimed,
we will update the parent of the child node into the node we
are developing. The MRB of the node representing A2 sets
an upper bound of the solution and nodes in Q with larger
MRB will be pruned away. The algorithm terminates when Q
is empty. We denote this priority queue-based search method
PQS.

C. Dynamic Programming with Depth-First Exploration

Both LRBM and URBM can be viewed as solving a series
of decision problems, i.e., asking whether we can find a
rearrangement plan with k = 1, 2, . . . running buffers. As
dynamic programming is applied to solve such decision prob-
lems, instead of performing the more standard breadth first
exploration of the search tree, we identified that a depth-first
exploration is much more effective. We call this variation
of dynamic programming, which is a fairly straightforward
alteration of a standard DP procedure. Essentially, DFDP fixes
a k and checks whether there is a plan requiring no more
than k running buffers. As the search tree (see Sec. V-A) is
explored, depth-first exploration is used instead of breadth-
first. The intuition is that, when there are many rearrangement
plans on the search tree that do not use more than k running
buffers, depth-first search will quickly find such a solution,
whereas a standard DP must grow the full search tree before
returning a feasible solution. A similar depth-first exploration
heuristic is used in [63].

D. Minimizing Total Buffers Subject to MRB Constraints

Let binary variables ci,j represent G ℓ
A1,A2

: ci,j = 1 if and
only if i = j or (i, j) is in the arc set of G ℓ

A1,A2
. Let yi,j be the

binary sequential variables: yi,j = 1 if and only if i = j or oi
moves out of the start pose before oj . MRB can be expressed
based on three constraints: First, MRB is at least the size of
the running buffer at any moment; Second, an object oj ∈ O
is at the goal pose if and only if all the objects ok ∈ O with
cj,k = 1 have left the start poses. Third, an object oj ∈ O
is at the buffer if and only if oj is neither at the start pose
nor at the goal pose. To encode the constraints, we further
introduce two sets of binary variables gi,j and bi,j . gi,j = 1
and bi,j = 1 indicate that oj is at the goal pose and oj is at



the buffer respectively when the action moving oi away from
the start pose is complete. Therefore, given a running buffer
limit k, we have:

k ≥
∑︂

1≤j≤n

bi,j ∀1 ≤ i ≤ n (1)

∑︂
1≤l≤n

cj,lyi,l
n

≤ gi,j ≤
∑︂

1≤l≤n

cj,lyi,l ∀1 ≤ i, j ≤ n (2)

∑︂
1≤l≤n

2− yi,l − gi,l
2

≤ bi,j ≤
∑︂

1≤l≤n

(2− yi,l − gi,l)

∀1 ≤ i, j ≤ n

(3)

The constraints can be added into the MFVS ILP formu-
lation [1] to find the minimum total buffer size with at most
k running buffers. We denote this method as TBMRB when
k = MRB, and the MFVS method from [1] as TBFVS.

VI. EXPERIMENTAL STUDIES

Our evaluation focuses on uniform cylinders, given their
prevalence in practical applications. For simulation studies, in-
stances with different object densities are created, as measured
by density level ρ := nπr2/(h∗w), where n is the number of
objects and r is the base radius. h and w are the height and
width of the workspace. In other words, ρ is the proportion of
the tabletop surface occupied by objects.

The evaluation is conducted on both random object place-
ments and manually constructed difficult setups (e.g., depen-
dency grids with MRB = Ω(

√
n)). For generating test cases

with high ρ value, we invented a physic engine (we used
Gazebo) based approach for doing so. Within a rectangular
box, we sample placements of cylinders at lower density and
then also sample locations for some smaller “filler” objects
(see Fig. 11, left). From here, one side of the box is pushed
to reach a high density setting (Fig. 11, right), which is
very difficult to generate via random sampling. By controlling
the ratio of the two types of objects, different density levels
can be readily obtained. Fig. 12 shows three random object
placements for ρ = 0.2, 0.4 and 0.6.

Fig. 11: Generating dense instances using a physics-engine based
simulator through compression of the left scene to the right scene.

Fig. 12: Unlabeled arrangements with ρ = 0.2, 0.4, 0.6 respectively.

From two randomly generated object placements with same
ρ and n values, a URBM instance can be readily created by
superimposing one over the other. LRBM instances can be
generated from URBM instances by assigning each object a
random label in [n] for both start and goal configurations.

The proposed algorithms are implemented in Python and
all experiments are executed on an Intel® Xeon® CPU at
3.00GHz. For solving ILP, Gurobi 9.16.0 [64] is used.

A. Labeled Rearrangement over Random Instances

In Fig. 13, we compare the effectiveness of the DP and
DFDP, in terms of computation time and success rate, for
different densities. Each data point is the average of 30 test
cases minus the unfinished ones, if any, subject to a time
limit of 300 seconds per test case. For LRBM, we are able
to push to ρ = 0.4, which is fairly dense. The results clearly
demonstrate that DFDP significantly outperform the baseline
DP. Based on the evaluation, both methods can be used to
tackle practical sized problems (e.g., tens of objects), with
DFDP demonstrating superior efficiency and robustness.
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Fig. 13: Performance of DFDP and DP over LRBM. The top row
shows the average computation time (s) and the bottom row the
success rate, for density levels ρ = 0.2, 0.3, 0.4, from left to right.
The x-axis denotes the number of objects involved in a test case.

The actual MRB sizes for the same test cases from Fig. 13
are shown in Fig. 14 on the left. We observe that MRB is
rarely very large even for fairly large LRBM instances. The
size of MRB appears correlated to the size of the largest
connected component of the underlying dependency graph,
shown in Fig. 14 on the right.
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Fig. 14: For LRBM instances with ρ = 0.2-0.4 and n = 20-100,
the left figure shows average MRB size and range. The right figure
shows the size of the largest connected component of the dependency
graph.

For LRBM with ρ = 0.3 and n up to 50, we computed
the MFVS sizes using TBFVS (which does not scale to
higher ρ and n) and compared that with the MRB sizes, as



shown in Fig. 15 (a). We observe that the MFVS is about
twice as large as MRB, suggesting that MRB provides more
reliable information for estimating the design parameters of
pick-n-place systems. For these instances, we also computed
the total number of buffers needed subject to the MRB
constraint using TBMRB. Out of about 150 instances, only 1
showed a difference as compared with MFVS (therefore, this
information is not shown in the figure). In Fig. 15 (b), we
provided computation time comparison between TBFVS and
TBMRB, showing that TBMRB is practical, if it is desirable
to minimize the total buffers after guaranteeing the minimum
number of running buffers.
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Fig. 15: (a) Comparison between size of MRB and MFVS. (b)
Computation time comparison between TBFVS and TBMRB.

Considering our theoretical findings and the evaluation
results, an important conclusion can be drawn here is that
MRB is effectively a small constant for random instances,
even when the instances are very large. Also, minimizing the
total number of buffers used subject to MRB constraint can
be done quickly for practical sized problems.

B. Unlabeled Rearrangement over Random Instances

For URBM, we carry out similar performance evaluation as
we have done for LRBM. Here, PQS and DFDP are compared.
For each combination of ρ and n, 100 random test cases
are evaluated. Notably, we can reach ρ = 0.6 with relative
ease. From Fig. 16, we observe that DFDP is more efficient
than PQS, especially for large-scale dense settings. In terms
of the MRB size, all instances tested has an average MRB
size between 0 and 0.7, which is fairly small (Fig. 17).
Interestingly, we witness a decrease of MRB as the number of
objects increases, which could be due to the lessening “border
effect” of the larger instances. That is, for instances with
fewer objects, the bounding square puts more restriction on
the placement of the objects inside. For larger instances, such
restricting effects become smaller. We mention that the total
number of buffers for random URBM cases subject to MRB
constraints are generally very small.

C. Manually Constructed Difficult Cases

In the random scenario, the running buffer size is limited. In
particular, for LRBM, the dependency graph tends to consist of
multiple strongly connected components that can be dealt with
independently. We further show the performance of DFDP
on the instances with MRB = Θ(

√
n). We evaluate three

kinds of instances: (1) UG: m2-object URBM instances whose
Gu

A1,A2
are dependency grid D(m, 2m) (e.g., Fig. 7); (2) LG:

m2-object LRBM instances whose start and goal arrangements
are the same as the instances in (1). (3) LC: m2-object
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Fig. 16: Performance of DFDP and PQS over URBM. The top row
shows the average computation time and the bottom row shows the
success rate, for density levels ρ = 0.4, 0.5, 0.6, from left to right.
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Fig. 17: Average MRB size for URBM instances with ρ = 0.4− 0.6
and n = 20 − 100. For ρ = 0.4 and 0.5, the MRB sizes are near
zero as the number of objects goes beyond 20.

LRBM instances with objects placed on a cycle (Fig. 9). The
computation time and the corresponding MRB are shown in
Fig. 18. For LG instances, the labels are randomly assigned.
We try 30 test cases and then plot out the average. We observe
that the MRB are much larger for these handcrafted instances
as compared with random instances with similar density and
number of objects.
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Fig. 18: For handcrafted cases and different number of objects, the
left figure shows the computation time by DFDP and the right figure
the resulting MRB size.

VII. CONCLUSION AND DISCUSSION

In this work, we investigate the problem of minimizing the
number of running buffers (MRB) for solving labeled and un-
labeled tabletop rearrangement problems with overhand grasps
(TORO), which translates to finding a best linear ordering of
vertices of the associated underlying dependency graph. For
TORO, MRB is an important quantity to understand as it
determines the problem’s feasibility if only external buffers are
to be used, which is the case in some real-world applications
[1]. Despite the provably high computational complexity that
is involved, we provide effective dynamic programming-based
algorithms capable of quickly computing MRB for large and
dense labeled/unlabeled TORO instances. In addition, we also



provide methods for minimizing the total number of buffers
subject to MRB constraints. Whereas we prove that MRB
can grow unbounded for both labeled and unlabeled settings
for special cases for uniform cylinders, empirical evaluations
suggest that real-world random TORO instances are likely to
have much smaller MRB values.

We conclude by leaving the readers with some interesting
open problems. On the structural side, while LRBM in general
is proven to be NP-Hard, the computational intractability
of either LRBM with uniform cylinders or URBM in general
remains unresolved. As for bounds, the lower and upper
bounds of MRB for LRBM for uniform cylinders do not yet
agree; can the bound gap be narrowed further?
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planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011, pp. 1470–1477.

[25] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[26] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[27] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, et al., “Robotic pick-and-place
of novel objects in clutter with multi-affordance grasping and cross-
domain image matching,” in 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2018, pp. 3750–3757.

[28] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
robotics and automation letters, vol. 4, no. 2, pp. 1255–1262, 2019.

[29] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; pspace-hardness of
the ‘warehouseman’s problem’,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[30] G. Wilfong, “Motion planning in the presence of movable obstacles,”
Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 131–
150, 1991.

[31] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Proceedings 2007 IEEE
international conference on robotics and automation. IEEE, 2007, pp.
3327–3332.

[32] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-
complete,” Theoretical computer science, vol. 4, no. 3, pp. 237–244,
1977.

[33] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[34] S. Bereg and A. Dumitrescu, “The lifting model for reconfiguration,”
Discrete & Computational Geometry, vol. 35, no. 4, pp. 653–669, 2006.

[35] C. Nam, J. Lee, Y. Cho, J. Lee, D. H. Kim, and C. Kim, “Planning for
target retrieval using a robotic manipulator in cluttered and occluded
environments,” arXiv preprint arXiv:1907.03956, 2019.

[36] D. Halperin, M. van Kreveld, G. Miglioli-Levy, and M. Sharir, “Space-
aware reconfiguration,” arXiv preprint arXiv:2006.04402, 2020.



[37] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 3875–3882.

[38] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny,
A. D. Dragan, and K. Goldberg, “Robot grasping in clutter: Using a
hierarchy of supervisors for learning from demonstrations,” in 2016
IEEE International Conference on Automation Science and Engineering
(CASE). IEEE, 2016, pp. 827–834.

[39] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects using
a push proposal network,” in Robotics research. Springer, 2020, pp.
405–419.

[40] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic, and
J. A. Stork, “Multi-object rearrangement with monte carlo tree search:
A case study on planar nonprehensile sorting,” arXiv:1912.07024, 2019.

[41] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4238–
4245.

[42] B. Huang, S. D. Han, A. Boularias, and J. Yu, “DIPN: Deep Interaction
Prediction Network with Application to Clutter Removal,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[43] B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual foresight tree for
object retrieval from clutter with nonprehensile rearrangement,” arXiv
preprint arXiv:2105.02857, 2021.

[44] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans.” in Robotics: Science and systems, vol. 2, no. 2.5, 2009, pp. 2–3.

[45] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrangement
tasks: A fast extension primitive for an incremental sampling-based
planner,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 3924–3931.

[46] F. Wang and K. Hauser, “Robot packing with known items and non-
deterministic arrival order,” IEEE Transactions on Automation Science
and Engineering, 2020.

[47] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout problems,”
ACM Computing Surveys (CSUR), vol. 34, no. 3, pp. 313–356, 2002.

[48] M. R. Garey and D. S. Johnson, “Vertex ordering,” in Computers and
Intractability: a Guide to The Theory of NP-Completeness, 1979, pp.
199–201.

[49] C. H. Papadimitriou, “The np-completeness of the bandwidth minimiza-
tion problem,” Computing, vol. 16, no. 3, pp. 263–270, 1976.

[50] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified np-
complete problems,” in Proceedings of the sixth annual ACM symposium
on Theory of computing, 1974, pp. 47–63.

[51] F. Gavril, “Some np-complete problems on graphs,” John Hopkins
University, Baltimore, MD, 1977, pp. 91–95.

[52] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, “Approx-
imating treewidth, pathwidth, frontsize, and shortest elimination tree,”
Journal of Algorithms, vol. 18, no. 2, pp. 238–255, 1995.

[53] T.-h. Shin, H. Oh, and S. Ha, “Minimizing buffer requirements for
throughput constrained parallel execution of synchronous dataflow
graph,” in 16th Asia and South Pacific Design Automation Conference
(ASP-DAC 2011). IEEE, 2011, pp. 165–170.

[54] R. J. Lipton and R. E. Tarjan, “A separator theorem for planar graphs,”
SIAM Journal on Applied Mathematics, vol. 36, no. 2, pp. 177–189,
1979.

[55] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, “A separator theorem
for graphs of bounded genus,” Journal of Algorithms, vol. 5, no. 3, pp.
391–407, 1984.

[56] N. Alon, P. Seymour, and R. Thomas, “A separator theorem for graphs
with an excluded minor and its applications,” in Proceedings of the
twenty-second annual ACM symposium on Theory of computing, 1990,
pp. 293–299.

[57] U. Elsner, Graph partitioning-a survey. Techn. Univ., 1997.
[58] Y. Shiloach, “A minimum linear arrangement algorithm for undirected

trees,” SIAM Journal on Computing, vol. 8, no. 1, pp. 15–32, 1979.
[59] D. Adolphson and T. C. Hu, “Optimal linear ordering,” SIAM Journal

on Applied Mathematics, vol. 25, no. 3, pp. 403–423, 1973.
[60] L. M. Kirousis and C. H. Papadimitriou, “Searching and pebbling,”

Theoretical Computer Science, vol. 47, pp. 205–218, 1986.
[61] N. G. Kinnersley, “The vertex separation number of a graph equals its

path-width,” Information Processing Letters, vol. 42, no. 6, pp. 345–350,
1992.

[62] M. R. Fellows and M. A. Langston, “On search decision and the
efficiency of polynomial-time algorithms,” in Proceedings of the twenty-
first annual ACM symposium on Theory of computing, 1989, pp. 501–
512.

[63] R. Wang, K. Gao, D. Nakhimovich, J. Yu, and K. E. Bekris, “Uniform
object rearrangement: From complete monotone primitives to effi-
cient non-monotone informed search,” arXiv preprint arXiv:2101.12241,
2021.

[64] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2021.
[Online]. Available: http://www.gurobi.com

http://www.gurobi.com

	Introduction
	Preliminaries
	Labeled Tabletop Rearrangement with External Buffers
	Unlabeled Tabletop Rearrangement Problem

	Structural Analysis and NP-Hardness
	Running Buffer versus Total Buffer
	Linear Ordering of Graph Vertices and Running Buffer
	Intractability of Computing MRB (G)

	Lower and Upper Bounds on MRB
	Intrinsic MRB Lower Bounds
	MRB Algorithmic Upper Bounds

	Fast Algorithms for LRBM and URBM
	Dynamic Programming (DP) for LRBM
	A Priority Queue based method for URBM
	Dynamic Programming with Depth-First Exploration
	Minimizing Total Buffers Subject to MRB Constraints

	Experimental Studies
	Labeled Rearrangement over Random Instances 
	Unlabeled Rearrangement over Random Instances
	Manually Constructed Difficult Cases

	Conclusion and Discussion
	References

