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Abstract. There are n ≥ 2 stacks, each filled with d items, and one
empty stack. Every stack has capacity d > 0. A robot arm, in one stack
operation (step), may pop one item from the top of a non-empty stack
and subsequently push it onto a stack not at capacity. In a labeled prob-
lem, all nd items are distinguishable and are initially randomly scattered
in the n stacks. The items must be rearranged using pop-and-pushs so
that in the end, the kth stack holds items (k − 1)d + 1, . . . , kd, in that
order, from the top to the bottom for all 1 ≤ k ≤ n. In an unlabeled prob-
lem, the nd items are of n types of d each. The goal is to rearrange items
so that items of type k are located in the kth stack for all 1 ≤ k ≤ n. In
carrying out the rearrangement, a natural question is to find the least
number of required pop-and-pushes.

Our main contributions are: (1) an algorithm for restoring the order of
n2 items stored in an n× n table using only 2n column and row permu-
tations, and its generalization, and (2) an algorithm with a guaranteed
upper bound of O(nd) steps for solving both versions of the stack rear-
rangement problem when d ≤ ⌈cn⌉ for arbitrary fixed positive number
c. In terms of the required number of steps, the labeled and unlabeled
version have lower bounds Ω(nd+ nd log d

logn
) and Ω(nd), respectively.

1 Introduction

In a range of real-world applications, items are arranged in stacks to balance
between efficient space usage and ease of storage and retrieval. In a stack based
storage solution, only the item on the top of an non-empty stack can be accessed
instantaneously. If other stored items are to be retrieved, additional items must
be moved beforehand. Such an approach, while preventing the direct random
access of an arbitrary item, allows more economical utilization of the associ-
ated storage space, which is always limited. A prime example is the stacking
of containers at shipping ports [3, 7], where stacks of container may need to be
rearranged (shuffled) for retrieval in a specific order. Similar scenarios also ap-
pear frequently elsewhere, e.g., parking yards during busy hours in New York
City, the re-ordering of misplaced grocery items on supermarkets shelves [15],
the rearrangement of goods in warehouses [5], and so on. In all these application



scenarios, the overall efficiency of the system critically depends on minimizing
the number of item storage and retrieval operations.

We are thus motivated to examine the stack rearrangement problem in which
there are n stacks (i.e., LIFO queues), each filled to capacity with d items. In
the labeled version, or LSR (labeled stack rearrangement), the items in the stacks
are uniquely labeled 1, . . . , nd. Given an arbitrary initial arrangement of the
items, we would like to rearrange them to follow lexicographic order, in which
the kth stack, 1 ≤ k ≤ n, contains items labeled (k − 1)d + 1 to kd, with
numbers increasing monotonically from the top of the stack to the bottom of
the stack. In a single pop-and-push, step, or stack operation (we use these terms
interchangeably in this paper), an item can be popped off from any non-empty
stack and immediately pushed onto a stack which is not filled to its capacity d.
To allow the rearrangement of items, we assume that there is an empty buffer
stack with capacity d. During the moves the buffer can hold items but it must
be emptied by the end. Our goal is to minimize the number of pop-and-pushes
to take the stacks from an arbitrary initial arrangement to the specified target
arrangement, which is equivalent to having an arbitrary goal arrangement.

In an unlabeled version, or USR (unlabeled stack rearrangement), we still require
that items labeled (k− 1)d+1, . . . , kd go into kth stack but do not require these
items take a specific order within the stack. This is equivalent to saying that we
would like to sort nd items with n types of d each so that the kth stack contains
only items of type k. (see Fig. 1).
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Fig. 1. An illustration of the USR problem with an initially empty buffer stack. [left]
An initial arrangement of the items. [right] A sorted target arrangement. In LSR, items
within the kth stack are further labeled (k − 1)d + 1, . . . , kd with the smaller labeled
items closer to the top of the stack in the goal/target arrangement.

The stack rearrangement problem was first formally studied in the stated form in
[15], in which an O(ndmax{log n, log d}) upper bound is established. Heuristics-
based search methods are also developed that can compute the optimal solu-
tion for stack rearrangement problems involving tens of items. A closely related
problem is the Hanoi tower problem [4,13,25], which has additional constraints
limiting the relative order of items in a stack during the rearrangement process.

In the robotics domain, our study relates to multi-object rearrangement tasks,
which may be carried out using mobile robots [2,11,17] or fixed robot arms [16,
18–20]. Clearly a challenging task and motion planning problem in the general



setting [18], even the combinatorial aspect of object rearrangement is shown
to be computationally hard in multiple problems in seemingly simple setups
[16]. A multi-arm rearrangement problem is recently explored [21]. In a more
abstract setting, multi-object rearrangement has also been studied under the
PushPush line of problems [8, 9]. More broadly, object rearrangement problems
are connected to multi-robot motion planning problems [10, 22, 23, 29] and the
problem of navigation among movable obstacles [24, 26, 28]. Lastly, as a sorting
problem, our study share some similarities with sorting networks [1, 27].

Our main algorithmic results on the stack rearrangement problem are:

– For an average case, Ω(nd+nd log d
logn ) steps are necessary for LSR (Lemma 1)

and Ω(nd) steps are necessary for USR (Lemma 2).
– For any fixed integer m > 2, LSR (and therefore, USR) with d ≤ n

m
2 can

be solved using O(nd) steps. If m is an input parameter instead, LSR with
d = n

m
2 can be solved using O(3mnd) steps (Theorem 1). Therefore, for

an arbitrary fixed real number c, LSR may be solved using O(nd) steps for
d ≤ ⌈cn⌉ (Theorem 2).

As an intermediate step toward solving USR and LSR, we investigated a per-
mutation problem which we call the Rubik table problem. The task in a Rubik
table problem is to reach an arbitrary permutation on an n × n table with n2

unique items using a small number of column/row permutations where each per-
mutation may arbitrarily rearrange items within a single table column or row.
Further generalizations allow additional dimensions to be added to the table.
The results (Propositions 1–3 in Section 3) are of independent interest for global
coordination problems involving data and physical objects.1

The rest of the paper is organized as follows. In Section 2, we provide a a lower
bound for USR and LSR for completeness. In Section 3, we define and examine
Rubik table problems. In Section 4, upper bounds are established for USR and
LSR. We discuss and conclude in Section 5.

2 Lower Bounds for Stack Rearrangement

It takes at least Ω(nd) steps to solve the stack rearrangement problem for a
typical input instance, because most items must move at least once to get into
place. In this section, we prove a stronger lower bound. We mention that similar
bounds are described in [15]. We provide a more accurate bound for LSR here
with a proof counting the number of bits required to describe an algorithm. A
bound for USR is also included for completeness.

1 A version of the result enabled a result on high-dimensional multi-robot motion
planning on grids [29]. We note that [29] explicitly cited this (then unpublished)
work and the intersection between [29] and this work is insignificant.



Lemma 1 (Lower Bound for LSR). Any algorithm for LSR must take at least
Ω(nd+ nd log d

logn ) steps for an average input.

Proof. The proof is by a counting argument. Any correct algorithm must follow
different paths for all of the (nd)! initial arrangements, since two different initial
arrangements followed by identical moves would lead to different final arrange-
ments. A step of the algorithm can be described with 2⌈log(n + 1)⌉ bits: (from
where, to where). Therefore, the two-based logarithm of the number of possible
sequences of at most t steps is upper bounded by 2t⌈log(n + 1)⌉. So as long as
it holds that

2t⌈log(n+ 1)⌉ ≤ log (0.01 · (nd)!) = Ω(nd log nd),

i.e. when t = o(nd+ nd log d
logn ), the initial arrangements that can be solved with t

steps constitute only a small minority of all arrangements. The counter-positive
of this gives the lemma.

Lemma 2 (Lower Bound for USR). Any algorithm for USR must take at least
Ω(nd) steps for an average input.

Proof. Me may view the generation of a random instance as selecting from n
types of items with replacement d for up to nd rounds. Therefore, there are
(Θ(n))Θ(nd) initial configurations. Following the same argument from the proof
of Lemma 1, Ω(nd) steps are necessary.

3 The Rubik Table Problem

In tackling the stack rearrangement problems, we encountered a table shuffling
problem of independent interest. We call it the Rubik table problem, which allows
globally coordinated token swapping operations to be efficiently carried out. We
associate it with the name Rubik as it shares some similarity with the Rubik’s
Cube toy (Fig. 2). The basic setting deals with a planar table.

Problem 1 (The Rubik Table Problem). Let M be an n×n table containing n2

unique items, one in each cell of the table. In a shuffle operation, the items in
a single row or a single column of M may be permuted in an arbitrary manner.
Given two configurations XI and XG = π(XI) of the items where π is some
arbitrary permutation over n2, provide a sequence of shuffles that takes the table
M from XI to XG.

It appears that at least 2n shuffles are required for solving a Rubik table prob-
lem in an average case, since, conservatively, each row and column needs to be
permuted at least once with high probability. We show that an upper bound of
3n shuffles is possible, closely matching the lower bound.



Proposition 1 (Linear Shuffle Algorithm for Rubik Table Problem).
An arbitrary Rubik table problem is solvable using 3n row/column shuffles.

Before presenting the proof of Proposition 1, we introduce a Kőnig-Hall type
matching theorem [14] with parallel edges.

Lemma 3 (Hall’s Matching Theorem with Parallel Edges). Let B be a
d-regular (d > 0) bipartite graph on n + n nodes, possibly with parallel edges.
Then B has a perfect matching.

Proof. Let the vertex set of B be L ∪̇R, where L is the left partite site of B and
R is the right partite set. Consider a maximal matching M in B. We show that
M meets all of the vertices of B, so it is perfect. Assume that M is not incident
to some vertex v ∈ L. Consider all nodes of B reachable by an alternating path
from v, that is, a path that starts in v, goes to R along some edge, then goes back
to L along an edge of M (if such an edge exists), then goes along an arbitrary
edge to R, an so on, always alternating between edges of M and non-edges of
M . We stop whenever we want. If any such path P ends up in a point w of R
not matched in M , we could make M bigger as follows: We discard from M its
intersection with P and add P\M to it, creating

M ′ = M△P = (M\(M ∩ P )) ∪ (P\M)

It is easy to see that M ′ is a matching and |M ′| = |M | + 1, contradicting the
maximality of M . Otherwise, let L′ ⊆ L be the subset of L reachable via an
alternating path from v (which includes v too), and let R′ ⊆ R be the set of
nodes reachable with alternating path from v. Then |L′| > |R′|, since every vertex
in R′ has a matching partner in L′ through M , and in addition L′ contains v,
which is not a partner of any node in R′. Furthermore, all neighbors of the nodes
in L′ must be in R′, otherwise we could find a neighbor w of a node t in L′, which
is reachable via an alternating path from v (formed by adding edge (t, w) to the
alternating path from v to t), but unmatched in M . Since the nodes in L′ have a
total of d|L′| edges incident to them (counted with multiplicities), which is more
than the number d|R′| of edges incident to R′ (counted with multiplicities), we
again have a contradiction.

Proof of Proposition 1. The n+ n+ n shuffles to construct an arbitrary permu-
tation π are outlined in Table 1.

The preparation phase is necessary for the column fitting. We need to prove
that we can permute the items only within every column (i.e. such that no item
changes column coordinate) with the effect that the n items destined to go to any
fixed column end up in n different rows. This comes from Lemma 4, which shows
the feasibility of the preparation phase and therefore, the entire algorithm.



1. Preparation: By appropriately permuting the items within each column we reach
the situation where the n items destined to go to any fixed column
will end up in n different rows.

2. Column fitting: By appropriately permuting the items within each row we reach
the situation where the n items destined to go to any fixed column
goes to that column.

3. Row Fitting: By appropriately permuting the items within each column we move
each item into its final destination.

Table 1. A three-phase shuffle plan for rearranging items in an n× n Rubik table.

Lemma 4. Let M be an n×n matrix filled with items of n different types. The
number of items of types i is exactly n for 1 ≤ i ≤ n. Then we can permute
the items within each column of M separately such that in the resulting new
arrangement all of the n items of any fixed type i (for 1 ≤ i ≤ n) go into
separate rows. In other words, the resulting arrangement is a Latin square.

Proof. We begin by creating a bipartite graph B(T,C) on n+n nodes such that
the left partite set, T , stands for all the types {1, . . . n}, and the right partite
set, C, stands for all the columns of M . We draw k edges between type j and
column i, if column i contains k items of type j. Notice that B is n-regular from
both sides with parallel edges. Lemma 3 implies that graph B contains a perfect
matching M1. Label the edges of this matching with the number 1, and take it
out of B. We obtain an (n− 1)-regular bipartite graph on which Lemma 3 may
be applied again. We keep creating matchings M2, M3, . . ., in this fashion and
label their edges with 2, 3, . . ., until we arrive at Mn, when we stop. Notice that
now each type j ∈ T is connected to edges labeled with 1 through n, and that
each column Ci is connected to all n types of edges as well (in both cases exactly
one from each type). For every 1 ≤ i ≤ n we rearrange the items in column Ci

such that the item corresponding to an edge labeled with i goes into the ith row.
There will be no collisions by construction and we have arrived at the desired
arrangement.

From an algorithmic perspective, each matching step in Lemma 4 can be done in
expected n log n time [12]. Alternatively, if a deterministic algorithm is desirable,
a matching can be computed in O(n2) time [6]. The n matchings can then be
completed in O(n2 log n) expected time or O(n3) deterministic time.

To provide intuition, Fig. 2 illustrates an application of Proposition 1 on a 4× 4
table containing 4 types of items. After n column shuffles and n row shuffles,
Fig. 2(a) → Fig. 2(d) is achieved. It is clear that with one more round of column
shuffles after Fig. 2(d), items within each type, if distinguishable, can be sorted
into arbitrary order. As a general global coordination scheme, Proposition 1
turns out to be applicable to multi-robot motion planning tasks [29].
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Fig. 2. Illustration of applying the first two phases in Proposition 1. (a) Initial 4× 4
table and a random arrangement of 4 types of colored (red, green, cyan, orange) items.
(b) The bipartite graph constructed from the table and a possible set of 4 perfect
matchings, where Ci, 1 ≤ i ≤ 4 are the columns. As an example, green appears twice
in the the first column of the table in (a) so there are two edges between green and C1.
Each matching is marked with a unique line type (thin, thick, thick dash, thin dash).
(c) Permuting each column according to the matching results in each row containing
each item type exactly once. (d) Permuting each row of (c) then sorts all columns.

It can be readily verified that Proposition 1 can be generalized to tables that
are not squares.

Corollary 1 (Linear Shuffle Algorithm for Rubik Rectangle Problem).
Let M be an n×m table filled with nm unique items. In n row shuffles and 2m
column shuffles, items in M can be sorted arbitrarily.

For stack rearrangement problems, a more involved version of Proposition 1 is
required to support table cells with depth. For that, we observe the algorithm
for the Rubik table problem holds when the table has an additional dimension.
That is, we may allow M to have a “depth” K and in each row or column
permutation, nK items are arranged arbitrarily. This version of the Rubik table
problem is denoted as the fat Rubik table problem.

Problem 2 (Fat Rubik Table Problem). Let M be an n×n×K (row × column
× depth) table containing n2K unique items, one in each cell of the table. In
a shuffle operation, the items in a single fat row (i.e., items with indices in
{i} × {1, . . . , n} × {1, . . . ,K} for 1 ≤ i ≤ n) or a single fat column (i.e., items
with indices in {1, . . . , n}×{i}×{1, . . . ,K} for 1 ≤ i ≤ n) of M may be permuted
in an arbitrary manner. Given two configurations XI and XG = π(XI) of the
items where π is some arbitrary permutation over 1, . . . , n2K, provide a sequence
of shuffles that takes the table M from XI to XG.

Proposition 2 (Linear Shuffle Algorithm for Fat Rubik Table Prob-
lem). The fat Rubik table problem may be solved in 3n shuffles.

Proof. The proof of Proposition 1 can be adapted with minor changes. A similar
three-phase procedure will be followed. Again, the crucial part is the proof of the
preparation phase, where we show that we can permute the items within each



fat column to reach the situation where the nK items destined to go to any fixed
fat column will end up in nK positions, that are different when we project them
to the first and third coordinates. The needed procedure for doing this provided
in Lemma 5.

Lemma 5. Let M be an n × n × K table (row × column × depth) filled with
items of n different types. The number of items of types j is exactly nK for
1 ≤ j ≤ n. Then we can permute the items within each fat column (∗, i, ∗) of
M (1 ≤ i ≤ n) such that for any fixed type j (1 ≤ j ≤ n), if we look at the
nK items of type j, they occupy distinct (row, depth) values when we project the
triplet representing their new positions to the pair of row and depth coordinates.

Proof. The proof of the lemma is again based on applying Lemma 3 on an n+n
bipartite graph. The nodes on the left are n different types and the nodes on the
right represent the fat columns. The edges correspond to the items, end we have
K parallel edges between right node i and left node j as long as K items need to
go from fat column i to fat column j. The only difference is that now the graph
is nK-regular rather than n-regular. Again, we can decompose the edge-set of
this bipartite graph into nK perfect matchings in an iterative manner, which
gives the solution we are looking for.

Fig. 3 illustrates an application of Proposition 2 to derive the the first two sets
of permutations for restoring order to a 3 × 3 × 3 fat Rubik table. In applying
Lemma 5, type j corresponds to items numbered (j − 1) ∗ 3 to j ∗ 3 − 1. For
example, all items numbered 1− 3 are treated as type 1.
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Fig. 3. Illustration of applying the first two shuffle phases from Proposition 2. (a)
Initial 3×3×3 fat Rubik table and a random arrangement of 9 types of items. (b) The
(weighted) regular bipartite graph from the setup in (a). The numbers on edges denote
the wegiht/multiplicity of the edges. (c) The 5 sets of (weighted) perfect matching
extracted from (b). (d) The fat-column permutations based on the matchings. Note
that the numbers in the columns remain the same between (a) and (d). (e) The following
fat-row permutations which correctly sort the columns. With one more round of fat-
column permutations, we can sort the table so that each cell contains a single item
type. Additional distinguishability within a cell is allowed as well.

Again, non-square fat Rubik tables can be supported. We omit the details.



Lastly, we present a high-dimensional version of the Rubik table problem. A fat
version is again possible, which we do not future detail here.

Proposition 3 (Rubik R-D Table Problem). Let M be an n× . . .× n⏞ ⏟⏟ ⏞
R

table,

R ≥ 2, filled with nR unique items. Assuming that any (R − 1)-dimensional
column can be arbitrarily shuffled, then M can be arbitrarily sorted in (2R −
1)nR−1 shuffles.

Proof. Let F (n,R) be the number of shuffles for given n and R. We prove claimed
bound on F (n,R) by induction on R. We can do the 2 dimensional case in
3n shuffles by Proposition 1. For R > 2, select out the first two dimensions
and treat the remaining R − 2 dimensions as the depth of a fat Rubik table.
By the induction hypothesis we can permute any fat column of M any way
we want in F (n,R − 1) shuffles (by the induction hypothesis, F (n,R − 1) =
(2R−1 − 1)nR−2). In the preparation phase we must do n of these. Then we do
nR−1 row operations and finally we do again permutations on the fat columns,
which costs nF (n,R− 1). Altogether, we have

F (n,R) = 2nF (n,R− 1) + nR−1 = 2n(2R−1 − 1)nR−1 = (2R − 1)nR−1.

4 Tighter Upper Bounds for Stack Rearrangement

Results on fat Rubik table problem leads to significantly improved upper bounds
for USR and LSR that largely match the lower bound (asymptotically), which we
establish in this section. The proposed algorithmic approach applies directly to
LSR and therefore USR. The improved upper bounds are obtained through re-
cursive applications of the fat Rubik table result (Proposition 2) through “sim-
ulated” fat Rubik table column and row permutations. The recursion is done
based on increasing 2 log d

logn . We first address the case of 2 log d
logn ≤ 1 (i.e., d ≤

√
n),

followed by the case 2 log d
logn ≤ 2 (i.e., d ≤ n), and finally the general case of

2 log d
logn ≤ m (i.e., d ≤ n

m
2 ).

4.1 Linear Step Algorithm for LSR with d ≤
√
n

We first examine LSR where d =
√
n.

Lemma 6 (Linear Step Algorithm for LSR, d =
√
n). LSR with d =

√
n can

be solved using O(nd) steps.



Proof. We construct an n′ × n′ ×K fat Rubik table with n′ = K = d =
√
n. A

depth K = d fat cell of the table with index (i, j), 1 ≤ i, j ≤ n′ = d is identified
with the stack indexed (j − 1) ∗ d+ i (see Fig. 4 for an example), which ranges
between 1 and n = d2.

a fat row

a fat column

Fig. 4. Correspondence between a d× d× d fat Rubik table and the n = d2 stacks of
depth d in a stack rearrangement problem instance. d = 4.

We first show that we can simulate a single fat column permutation of n′K =√
nd = d2 items in O(d2) stack operations, which can be achieved by:

1. Moving the content of
√
n = d stacks to the top of the n stacks using O(d2)

steps. For each stack, we may move its content to the top of other stacks
using the operations illustrated in the first four figures in Fig. 5, which takes
3d steps (we left out some minor ordering details that can be easily filled
in by the reader). Applying this to d stacks requires 3d2 steps, resulting the
configuration shown in the fifth figure of Fig. 5.

Fig. 5. Illustration of the steps for realizing a simulated fat column permutation in
O(n′K) = O(d2) steps. The cyan stacks are the d stacks of interest. First step (indicated
by the arrow) illustrates emptying the leftmost stack to the buffer. Then, the top of
some stacks not of current interest (the orange ones) can be moved to the emptied
stack (second step). Subsequently, the buffer content can be put on the top of stacks
(third step). After this is done for all stacks of current interest, the contents of these
stacks are moved to the top of the d2 stacks (fourth step, marked with double arrows
“→→”). After rearranging these items as needed, they can then be returned (fifth step,
marked with double arrows “→→”). The “simulated” fat-column shuffle mirrors the
step of permuting the first column of Fig. 3(a) to the first column of Fig. 3(d).



2. Sort the d2 elements on top of the stacks arbitrarily, which takes O(d2) steps.
This requires using the buffer stack to hold at most one item temporarily.
This happens in the fifth (bottom middle) figure of Fig. 5.

3. Revert the first step above to return the sorted d2 items to the d stacks
of current interest. This corresponds going from the fifth figure to the last
figure in Fig. 5.

Following the same procedure, a fat row permutation can also be carried out
in O(d2) steps. To apply Proposition 2, we partition all nd = d3 items into d
types where items of type t, 1 ≤ t ≤ d, have destinations in stack (t − 1)d + 1
to stack td. By Proposition 2, using d fat column permutations and d fat row
permutations, all items of type t, 1 ≤ t ≤ d can be moved to fat column t. Then,
applying a fat column permutation to a fat column t can sort items in the fat
column arbitrarily. This solves the LSR problem (and therefore, a USR problem).

Tallying the number of steps, we have done 3d fat column/row permutations,
each of which takes O(d2) stack pop-and-pushes. The total is then O(d3) =
O(nd) (with more careful counting, we can conclude that the number of stack
operations is bounded by 27nd).

It is straightforward to see that Lemma 6 readily generalizes to d <
√
n. If n

is a square, then the corollary directly applies. For n that is not a square, e.g.,
n = m2 + p where m2 is the largest square less than n, we can partition the
n stacks into two groups of m2 stacks each with m2 − p of the stacks overlap
between the two groups (We can assume that n is sufficiently large so that
m2 − p > p; otherwise n can be treated as a constant). Focusing on the first
group of m2 stacks, we can then apply Lemma 6 (note that m satisfies

√
n >

m > ⌈
√
n⌉− 1 ≥ d) to “concentrate” items that should go to the rest p stacks in

the m2−p stacks shared between the two groups. Then, Lemma 6 can be applied
again to the second group of m2 stacks in a similar fashion, followed by one last
application to the first group of m2 stacks, which solves the entire problem. We
have proved

Corollary 2 (Linear Step Algorithm for LSR, d ≤
√
n). LSR with d ≤

√
n

can be solved using O(nd) steps.

Another consequence of Proposition 2 is that, if we allow b = ⌈
√
n⌉ empty buffer

stacks (instead of a single buffer stack) of depth d each, USR with arbitrary
n and d can be solved using O(nd) steps. This is true because a constrained
(items are distinguishable by types but do not have individual label) fat column
permutation can be readily executed in 2

√
nd steps using ⌈

√
n⌉ buffer stacks.

Corollary 3 (Linear Step Algorithm for USR with Extra Buffers). Given
b = ⌈

√
n⌉ buffer stacks, USR with arbitrary but sufficiently large n and d can be

solved using O(nd) steps.



If n is a perfect square, then the number of required steps is bounded by 6nd.
It is not clear that having ⌈

√
n⌉ buffers help with solving LSR in O(nd) time for

arbitrary n and d; we leave this as an open question.

4.2 Linear Step Algorithm for LSR with d = n
m
2 and Constant m

We continue to look at the case where 2 log d
logn > 1, starting with n = d = k2

for some integer k. The algorithm for doing so will invoke Lemma 6 repeatedly,
which uses the top k rows of the stacks.

Lemma 7 (Linear Step Algorithm for LSR, d = n). For n = d = k2, LSR
can be solved in O(nd) steps.

Proof. Similar to how Lemma 6 is proven, we will simulate column and row
permutations on a fat Rubik table mapped to the stack rearrangement instance.
To do the mapping, we simply identify stacks (i− 1)k+1, . . . ik with the ith fat
column of the fat Rubik table. The j, j + k, j + 2k, . . . , j + (d − 1)k stacks are
identified with the jth fat row. It is clear that, if we can simulate fat column/row
permutations using O(k3) steps, then the statement of the lemma holds.

To simulate a fat column/row permutation, we note that the content of any
k stacks can be flipped with the contents of the top k rows of the k2 stacks,
using the buffer stack. This takes O(k3) stack operations and is illustrated in
Fig. 6(a)→(b), which is similar to the procedure illustrated in Fig. 5 (if we
“compress” k consecutive items in a stack into a single item). Once the contents
of the selected k stacks (corresponding to a fat column/row) occupy the top
k rows of the k2 stacks, Lemma 6 may be applied to rearrange the items in
them arbitrarily, which takes O(k3) time as well. A reversal of the first step
then completes a simulated fat column/row permutation. The total number of
operations used is O(k3).

It is clear that Lemma 7 continues to apply when
√
n < d < n, following the

same argument used for establishing Corollary 3. That is,

Proposition 4 (Linear Step Algorithm for LSR, d ≤ n). LSR with d ≤ n
can be solved using O(nd) steps.

The condition d = n in Lemma 7 may be viewed as log d
logn = 1 or d = n

m
2 with

m = 2. Taking a closer look at the proof for Lemma 7, it is straightforward to
see that the same argument directly extends to show that the LSR case of d = k3

and n = k2 ( log d
logn = 3

2 ) can be solved using O(nd) steps for any positive integer
k. In proving Lemma 7, the top k rows of the stacks are used as a swap space
for applying Lemma 6, simulating a fat column/row permutation. In a similar
fashion, for d = k3 and n = k2, the top k2 rows can be used as the swap space,



(a) (b) (c)

Fig. 6. Illustration of a simulated fat column permutation over n stacks of depth d,
with n = d = k2. (a) The cyan colored stacks map to a fat column of a Fat Rubik
table. (b) Moving from the configuration given in (a) can be done in O(k3) stack pop-
and-pushes. Lemma 6 can be applied to the top k rows. (c) After rearrangement, the
stacks contents are restored, completing the fat column shuffle.

which allows us to work with a total of k2 · k2 = k4 items. Once the swap space
is properly set up, the k4 items can be rearranged arbitrarily by Lemma 7 using
O(k4) pop-and-pushes. So LSR with d = n

m
2 for m = 3 can be solved in O(nd)

steps. Corollary 3 then generalizes to apply to all cases where log d
logn ≤ 3

2 .

Recursively, Lemma 7 may be generalized to arbitrary m ≥ 2. For m = 3, the
procedure will call the m = 2 case 3k times. If the n = d case requires cnd = ck4

steps for some constant c, then the m = 3 case will need 3ck5 steps. Recursively,
for generalm, the recursive procedure will require about 3mcnd steps for d = n

m
2 .

We have proved

Theorem 1 (Algorithm for LSR with d = n
m
2 and m ≥ 2). LSR with d = n

m
2

for m ≥ 2 can be solved using O(3mnd) steps.

For any fixed m ≥ 2, it is clear that LSR can be solved in O(nd) steps for

n
m−1

2 < d < n
m
2 , possibly with a larger constant than the d = n

m
2 case. For

fixed m, 3m is also a constant. Summarizing the results on the upper bounds
obtained so far, we have

Theorem 2 (Linear Step Algorithm for LSR with d ≤ ⌈cn⌉). For arbitrary
fixed real number c > 0, LSR with d ≤ ⌈cn⌉ can be solved using O(nd) steps.

For USR with d = n = k2, with additional care in carrying out the recursive
procedure, we only need to make 2k calls to Lemma 6 instead of 3k as required
in proving Lemma 7. This gives us that USR with d = n

m
2 for m ≥ 2 can be

solved using O(2mnd) steps instead of the O(3mnd) stated in Theorem 1. We
omit the very involved procedure, which boils down to doing a mixed column
and row permutation. The procedure does not apply to LSR.



4.3 Constant n or d

Lastly, we briefly discuss what happens when n or d is a constant. An O(nd log n)
algorithm for USR is provided in [15] for arbitrary n and d, using divide and
conquer over the number of stacks n. This implies that for constant n, O(d)
steps is sufficient, matching the Ω(nd) lower bound. For constant d, each stack
can be sorted in O(1) steps by first moving all type k items to the top of the
stacks they are at (for a stack i that contains type k item, this can be done
by first moving the top item from some d stacks to the buffer, moving items
in stack i to the empty d top spots, and then moving them back to stack i so
that type k items stay on the top). Then type k items can be all moved to the
buffer stack and followed by emptying stack k, then to stack k. This yields an
O(n)-step algorithm, also matching the lower bound.

5 Conclusion and Discussion

In this study, we have analyzed a formulation of the stack rearrangement problem
where objects stored in stacks must be shuffled. A stack can only be accessed
from the top (i.e., it is a LIFO queue). As the main result, we show that the
labeled and unlabeled versions of the problem with n filled stacks of capacity
d can both be solved using O(nd) (i.e., linear number of) steps for an average
case input, where d ≤ ⌈cn⌉ for some constant c. This closely matches the lower
bound O(nd) for USR and LSR (when d ≤ ⌈cn⌉, log d

logn is a constant).

We conclude the work by raising several open questions.

Bound Gap. Whereas we know that it is not possible to reach O(nd) for LSR
for arbitrary n and d, we do not know whether the same is true for USR. In our
algorithmic solution, though we achieve O(nd) for arbitrarily large but fixed d

n ,
we have not fully closed the gap. In the approach that we have used, the issue
is caused by the 3k recursive calls. The 3 there is where the 3m factor (in the
O(3mnd) complexity stated in Theorem 1) comes from. For USR, we were able
to future drop the required number of moves to O(2mnd). Reducing the number
of recursive calls may get us closer to closing the small remaining gap between
the lower and upper bounds.

Hardness. The question of whether USR and LSR are NP-hard to solve optimally
remains open. In this regard, it may be interesting to study the case of constant
d. Whereas the case of d = 1 can be readily solved, larger d appears to be
challenging.

Utility of Multiple Buffer Stacks In the current study, we have mainly
examined the case of using a single buffer stack. We also show that using

√
n

empty buffer stacks allow the resolution of USR inO(nd) steps. A natural question
to ask is for what values of b ∈ [1,

√
n), b empty buffer stacks would enable solving

USR in O(nd) steps. As have been discussed, it is not clear that
√
n buffer stacks



are sufficient for solving LSR in O(nd) steps for arbitrary n and d, which also
warrants further examination.

Other Queuing Models As generalizations to the current problem, it could be
interesting to study a two-dimensional stack setting, e.g., items may be accessed
both from the top or from the left side. Does such a setting, which provides
similar storage capacity as stacks, allows more access flexibility? One may also
replace a stack with a queue that may be accessed from both ends. Many addi-
tional settings similar to these two can be examined.
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