
Implementation and Benchmarking of Round 2
Candidates in the NIST Post-Quantum

Cryptography Standardization Process Using
Hardware and Software/Hardware Co-design

Approaches
Viet Ba Dang1, Farnoud Farahmand1, Michal Andrzejczak2,

Kamyar Mohajerani1, Duc Tri Nguyen1 and Kris Gaj1

1 Cryptographic Engineering Research Group,
George Mason University

Fairfax, VA, U.S.A.
2 Military University of Technology

Warsaw, Poland

Abstract. Performance in hardware has typically played a major role in differentiating
among leading candidates in cryptographic standardization efforts. Winners of two
past NIST cryptographic contests (Rijndael in case of AES and Keccak in case of
SHA-3) were ranked consistently among the two fastest candidates when implemented
using FPGAs and ASICs. Hardware implementations of cryptographic operations
may quite easily outperform software implementations for at least a subset of major
performance metrics, such as speed, power consumption, and energy usage, as well as
in terms of security against physical attacks, including side-channel analysis. Using
hardware also permits much higher flexibility in trading one subset of these properties
for another. A large number of candidates at the early stages of the standardization
process makes the accurate and fair comparison very challenging. Nevertheless, in
all major past cryptographic standardization efforts, future winners were identified
quite early in the evaluation process and held their lead until the standard was
selected. Additionally, identifying some candidates as either inherently slow or costly
in hardware helped to eliminate a subset of candidates, saving countless hours of
cryptanalysis. Finally, early implementations provided a baseline for future design
space explorations, paving a way to more comprehensive and fairer benchmarking
at the later stages of a given cryptographic competition. In this paper, we first
summarize, compare, and analyze results reported by other groups until mid-May
2020, i.e., until the end of Round 2 of the NIST PQC process. We then outline
our own methodology for implementing and benchmarking PQC candidates using
both hardware and software/hardware co-design approaches. We apply our hardware
approach to 6 lattice-based CCA-secure Key Encapsulation Mechanisms (KEMs),
representing 4 NIST PQC submissions. We then apply a software-hardware co-design
approach to 12 lattice-based CCA-secure KEMs, representing 8 Round 2 submissions.
We hope that, combined with results reported by other groups, our study will provide
NIST with helpful information regarding the relative performance of a significant
subset of Round 2 PQC candidates, assuming that at least their major operations,
and possibly the entire algorithms, are off-loaded to hardware.
Keywords: Post-Quantum Cryptography · hardware · software/hardware co-design ·
FPGA · System on Chip · ASIC · Key Encapsulation Mechanism · digital signature ·
public-key · ARM · NEON

2 Implementation and Benchmarking of Round 2 PQC Candidates

1 Introduction
Hardware benchmarking has played a major role in all recent cryptographic standardization
efforts, such as the AES, eSTREAM, SHA-3 [11, 31, 44, 45], and CAESAR contests [16, 17].
With the emergence of commonly-accepted hardware application programming interfaces
(APIs) [37], development packages [33, 36], specialized optimization tools [30, 22], new
design methodologies based on High-Level Synthesis (HLS) [34, 35], and mandatory
hardware implementations in the final round of the CAESAR contest [16], the percentage
of initial submissions implemented in hardware grew from 27.5% in the SHA-3 contest [29]
to 49.1% in the CAESAR competition [17, 28]. In Round 2, all AES, all SHA-3, and all
but one CAESAR candidates had at least one hardware implementation reported by the
end of the evaluation process.
In almost all cases, candidates performing particularly well in hardware were identified
quite early during the evaluation process. For example, Keccak led in terms of speed in
hardware already in Round 2 of the SHA-3 contest. It outperformed 13 remaining Round
2 candidates and the old standard SHA-2. AEGIS-128 was identified as one of the three
fastest authenticated ciphers in Round 2 of the CAESAR contest when implemented using
high-performance FPGAs, Virtex-6, Virtex-7, Stratix IV, and Stratix V. It outperformed
at least 25 other candidates and the current standard AES-GCM. At the same time, during
each contest, several candidates were identified as particularly costly, slow, or cumbersome
to implement in hardware. Examples included Mars during the AES contest; BMW,
ECHO, and SIMD during the SHA-3 competition; HS1-SIV, POET, and OMD in the
CAESAR contest. The early identification of hardware inefficiency helped to focus the
effort of the cryptographic community on more promising candidates, potentially saving
countless hours of cryptanalysis.
Hardware vs. software. Cryptographic algorithms are routinely implemented using
both software and hardware. By software, we mean implementations that can be executed
using processors. These processors may vary from low-cost low-power embedded processors,
such as ARM Cortex-M4, to high-performance general-purpose microprocessors, such as
Intel Core i7, with Haswell microarchitecture, supporting Advanced Vector Extensions 2
(AVX2) and the AES New Instructions (AES-NI). The common feature is that all of these
processors are typically programmed using high-level programming languages, such as C.
Code written in these languages is portable among different processor types. Software
implementations can be further optimized by using assembly language programming,
involving instructions specific to a given processor (or more accurately to its Instruction
Set Architecture (ISA)). Assembly language programs are not easily portable among
processors based on different ISAs.
By hardware, we mean implementations that can be executed using Field Programmable
Gate Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs), Programmable
Logic (PL) of System on Chip FPGAs (SoC FPGAs), Application-Specific Standard
Products (ASSPs), etc. The common feature is that most of these implementations are
developed using hardware description languages (HDLs), such as VHDL and Verilog.
These languages differ substantially from high-level programming languages by introducing
the concepts of an entity, connectivity, concurrency, and timing. HDL source code is
transformed by a synthesis tool to a netlist composed of basic logic components and
connections among these components. Because of its generic nature, HDL code can be
easily ported among different technologies, such as FPGAs and ASICs. ASIC implementa-
tions are faster, use less power, and require less physical area. FPGA implementations
have the advantage of less expensive development tools, much shorter design cycle, and
reconfigurability, understood as an ability to change the function of all internal building
blocks and connections among them, even after a given integrated circuit has been deployed
in actual products.
Low cost and short development cycle are decisive factors making FPGAs more suitable

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 3

for benchmarking and ranking candidates during the evaluation period. Reconfigurability
supports the algorithm and parameter agility, making FPGAs more frequently used than
ASICs during the early stages of deployment of PQC in real products. The relative
performance of cryptographic algorithms in FPGAs has been shown correlated to their
relative performance in ASICs [31]. At the same time, this correlation is not guaranteed
to hold across multiple classes of cryptographic transformations, e.g., it is not guaranteed
to work equally well for hash functions and PQC algorithms. Therefore, both FPGA and
ASIC benchmarking studies are essential.
Although software implementations are likely to be dominant during the first phase of
deploying PQC standards in real applications, hardware implementations will inevitably
follow. They are likely to start from hardware accelerators for constrained environments,
such as smart cards and Internet of Things devices. Low-cost low-power processors
used in such applications may not be able to keep up with the increased demands for
computational power and energy usage. Thus, these processors may need to be extended
with hardware accelerators. In the medium term, high-performance security processors
enhanced with new PQC standards will emerge. These processors will be optimized to
process in hardware all the algorithms associated with secure communication (such as
those used in the post-quantum versions of TLS, IPSec, IKE, and WTLS/WAP protocols)
and secure storage. Finally, in the longer-term, support for new instructions, enabling
the efficient and side-channel resistant implementations of PQC standards, is likely to
be added to the most popular processor ISAs. Co-processors for such instructions are,
effectively, hardware implementations of PQC. Taking into account that the new PQC
standards are likely to remain in use for decades, all of the mentioned above use cases
should be given considerable weight. In particular, the performance of a given algorithm
in hardware may affect its long-term performance in software, on processors equipped
with new specialized instructions. Even if Round 2 hardware implementations are not a
final word in terms of the algorithm performance, they provide the first glimpse into each
candidate’s suitability for hardware acceleration. They also establish an open source-code
base on which more optimized implementation and implementations protected against
side-channel and fault attacks can be built in Round 3 and beyond.
High-speed vs. lightweight. Assuming the use of the same technology, hardware
implementations outperform software implementations using at least one, and typically
multiple metrics, such as speed, power consumption, energy usage, and security against
physical attacks. They also allow much higher flexibility in trading one subset of these
metrics for another. From the point of view of benchmarking and ranking of candidates,
such flexibility may become a curse, especially taking into account that no two metrics
are likely to have a simple linear dependence on each other. A practical solution to this
problem is to focus during the evaluation process on two major types of implementations:
high-speed and lightweight.
In high-speed implementations, the primary target is speed. For PQC schemes, this target
amounts to minimizing the execution times of major operations involving the public and
private key, respectively. For Key Encapsulation Mechanisms (KEMs), these operations are
encapsulation and decapsulation; for digital signature schemes, signature verification and
generation; for public-key encryption (PKE), encryption and decryption. The time of key
generation may also play a major role in the case when a public-private key pair cannot be
reused for security reasons. The resource utilization is secondary. Still, hardware designers
typically aim at achieving the Pareto optimality, in which any further improvement in
speed comes at the disproportionate cost in terms of resource utilization. The primary
advantage of high-speed implementations is that they reveal the inherent potential of a
given algorithm for parallelization. As long as the resource-utilization limit is sufficiently
high, this limit does not affect the ranking of algorithms. As a result, the ranking is
strongly correlated with the features of algorithms themselves and is not substantially

4 Implementation and Benchmarking of Round 2 PQC Candidates

influenced by any additional assumptions and technology choices. Additionally, only
high-speed hardware implementations may effectively compete with optimized software
implementations targeting high-performance processors with vector instructions (e.g.,
AVX2).
In lightweight implementations, the primary targets are typically minimum resource
utilization and minimum power consumption, under the assumption that the execution
time does not exceed a predefined maximum. Another way of formulating the goal is
to achieve minimum execution time, assuming a given maximum budget in terms of
resource utilization, power consumption, or energy usage. The maximum budget on
resource utilization is related to the cost of implementation; the budget on power assures
correct operation without overheating or devoting additional resources to cooling. The
maximum energy usage affects how long a battery-operated device can function before
the next battery recharge. In the context of the standardization process for cryptographic
algorithms, the mentioned above maximum budgets are very hard to select. Any change in
these thresholds may favor a different subset of candidates. With new standards remaining
in use for decades, timing, cost, and power requirements of new and emerging applications
are very challenging to predict.
Additionally, changes in technology significantly affect which hardware architectures
meet particular constraints. For example, an architecture capable of accomplishing the
execution time of 0.1 seconds (or below), under a certain power or energy budget, may
substantially change with the improvements in technology. As a result, the majority of
current limits are selected somewhat arbitrarily by different designers, or left undefined in
their reports. Consequently, the ranking of PQC candidates based on their lightweight
implementations, especially those developed by different groups, is extremely challenging
and assumption-dependent. These rankings have little to do with the parallelization
allowed by each algorithm, as most of the operations must be executed sequentially due
to the small resource budget. The primary feature of algorithms these implementations
reveal is the number and complexity of its distinct elementary operations. Each major
operation infers an additional functional unit, increasing resource utilization and power
consumption. Additionally, lightweight hardware implementations can outperform only
software implementations targeting specific low-cost low-power embedded processors, such
as Cortex-M4.
In the case of FPGA implementations, resource utilization is a vector, such as (#LUTs,
#flip-flops, #DSP units, #BRAMs). No single element of this vector can be expressed
in terms of other elements. As a result, imposing a resource limit implies specifying the
values of all components of this resource vector. One possible approach may be to choose
the resources of the smallest FPGA of a given low-cost FPGA family. However, FPGA
families and their resources change over time, so this limit has only a physical meaning
during the limited time, covering the evaluation period, and may lose its significance just
a few years after the standard is published and deployed. Finally, the same FPGA device
may also need to accommodate any overhead associated with countermeasures against
side-channel attacks. At the same time, this overhead or even effective countermeasures
may remain unknown at the time of the candidates’ evaluation.
As a result, in this paper, we focus on the development, benchmarking, and ranking of
high-speed implementations. At the same time, we do our best to summarize lessons
learned from the development of lightweight implementations by other groups.
Speeding-up the development process. Traditionally software and hardware bench-
marking were conducted separately by different groups of experts, equipped with different
knowledge and tools. Even the units for expressing speed were different – cycles per byte
for software and megabits per second for hardware. For PQC algorithms, this approach is
hard to maintain. These algorithms are simply too complex and too different from the
current state-of-the-art in public-key cryptography to permit the development of optimized

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 5

pure-hardware implementations for a significant fraction of Round 2 candidates by any
single group within the time frame imposed by the NIST evaluation process.
Two approaches to overcome the long development time have emerged. The first is
software/hardware co-design [21, 77]; the second is the use of HLS [14, 21, 57].
Software/hardware co-design has been used for years in the industry and studied extensively
in academia, with the goal of reaching performance targets using a shorter development
cycle than that typical for hardware-only implementations. To the best of our knowledge,
no benchmarking of software/hardware co-designs was reported during any previous
cryptographic competitions. As a result, multiple problems specific to cryptographic
contests, such as the choice of the most representative platform(s) and the fairness of
software/hardware partitioning schemes, have never been addressed. It should be clearly
stated that software/hardware benchmarking is not intended as a replacement for pure-
hardware benchmarking. On the contrary, applying this approach to selected Round
2 candidates and developing a library of hardware accelerators for major operations of
these candidates will make it much easier to develop hardware-only implementations in
subsequent rounds. Although the software/hardware co-design approach can be used to
realize both high-speed and lightweight implementations, in this paper, we focus on its
application to high-speed designs.
Within the proposed framework, one of the first issues to address is the choice of the appro-
priate platform. In particular, we need a computing platform allowing fast communication
across the software/hardware boundary. We also need the suitable prototyping board, as
the timing measurements had to be performed experimentally, and the computing platform
had to be well-suited for attempting various software/hardware partitioning schemes. The
choice of a suitable device and prototyping board is addressed in Section 4. With the
preferred platform identified, our second major concern is the fairness of software/hardware
benchmarking, especially in terms of deciding which operations within each evaluated
scheme should be offloaded to hardware. In this paper, we propose a comprehensive
approach to address this issue, aimed at achieving the best possible trade-off between the
final performance and the required development time. This approach is described in detail
in Section 4.
The second approach to substantially accelerating the development time is the use of
High-Level Synthesis. This approach amounts to refactoring a software implementation in
C or C++ in such a way that this implementation can be used as an input to a High-Level
Synthesis tool, such as Vivado HLS or LegUp, capable of automatically transforming such
an implementation to HDL code. The result is a pure hardware implementation obtained
based on the code written in a traditional programming language (typically C and C++).
This language is turned into a high-level hardware description language using synthesis
directives encoded using pragmas and specific coding techniques aimed at exposing the
potential for parallelization and resource utilization reduction.
This approach has been demonstrated to substantially reduce the development time of
Round 2 and Round 3 CAESAR candidates. At the same time, it provided an almost
identical ranking of candidates in terms of throughput and throughput to area ratio.
However, taking into account significant differences between the complexity and underlying
operations of secret-key authenticated ciphers and public-key PQC schemes, the use of HLS
for benchmarking of PQC candidates remains controversial. The common perception is
that obtained results are significantly worse in terms of both speed and resource utilization
compared to manual HDL coding. However, our preliminary research indicates that, with
a proper approach, the penalty in terms of the execution time in clock cycles can be made
negligibly small. Only the penalty in terms of resource utilization and clock frequency
remains. The former overhead affects only the secondary metric in high-speed designs;
the latter can be kept in a similar range for multiple candidates. As a result, the use of
high-level synthesis when applied to high-speed designs should remain an active area of

6 Implementation and Benchmarking of Round 2 PQC Candidates

research, and should not be dismissed upfront before more case studies are performed.
Choice of FPGA family. One of the major concerns is the NIST recommendation to
focus on hardware benchmarking using the Xilinx Artix-7 FPGA family. This recommenda-
tion appeared in several NIST presentations related to Round 2 of the NIST standardization
process, e.g., during PQCrypto 2019 in May 2019 and the Second PQC Standardization
Conference in August 2019. We believe that, in its current form, this recommendation is
counterproductive, and it impedes rather than supports fair and comprehensive hardware
and software/hardware benchmarking.
Let us start by explaining what an FPGA family is and what influence does it have on
an evaluation process. FPGA family is a set of FPGA devices sharing the same internal
structure and the same process technology (also known as technology node or process
node), described by a number related to the size and density of transistors that can be
fabricated using a given manufacturing process. With the steady improvements in process
technology, described by Moore’s Law, the maximum capacity and speed of FPGA devices
have been steadily increasing while their prices have remained approximately the same.
Every new generation of FPGA devices of a particular vendor receives a unique name,
referred to as a family name. Every family consists of multiple devices with various distinct
sizes to match the needs of different applications. All devices of a particular family share
the same internal architecture and process technology but differ in terms of the number
of resources of a particular type, such as Look-Up Tables (LUTs), flip-flops (FFs), block
memories, and digital signal processing units (DSP units) or multipliers. Most vendors
release both low-cost families (such as Xilinx Artix-7) and high-performance families (such
as Xilinx Virtex-7). Most of them also release mid-range families, such as Xilinx Kintex-7.
The maximum amount of resources available in the largest device of a low-cost family
is naturally significantly smaller than the equivalent amount in the largest device of a
high-performance family (e.g., over 5 times smaller for Artix-7 vs. Virtex-7).
Additionally, in recent years, FPGA vendors started releasing new types of programmable
devices that enhance Programmable Logic of traditional FPGAs with the Processing
System based on a hardwired embedded processor, such as ARM. Since this processor is
custom designed, it takes full advantage of a given technological process and operates at
a clock frequency significantly higher than Programmable Logic. With a fast processor
and an efficient interface between this processor and Programmable Logic, these devices
are ideal for software/hardware co-designs targeting high-speed. Although these types of
devices appear under multiple commercial names, they are often collectively referred to as
System on Chip FPGAs (SoC FPGAs). The first family of this type was Xilinx Zynq-7000,
released in 2011, based on ARM Cortex-A9 embedded processors.
Hardware designs are described in hardware description languages. HDL code is typically
identical for all FPGA families. As opposed to software, where each processor may require
different optimized assembly language code, no such concepts exist for hardware. As a
result, it is straightforward to synthesize the same HDL code targeting various FPGA
families from various vendors, as long as the maximum capacity of the largest device of a
given family is not exceeded.
Giving preference to the Xilinx Artix-7 family has several undesired consequences summa-
rized below:

1. Artix-7 is a low-cost FPGA family. As such, it is not very suitable for high-speed
implementations. Hardware resources of even the largest device of this family are
often insufficient to demonstrate the full potential for parallelizing operations a given
PQC algorithm. Thus, the use of Artix-7 makes perfect sense for benchmarking
lightweight implementations but may lead to suboptimal results for high-speed
implementations.

2. Artix-7 is a traditional FPGA, and not an SoC FPGA. As a result, the only way
to develop a single-chip software/hardware implementation using Artix-7 is the use

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 7

of so-called "soft" processor cores, i.e., processors implemented using programmable
logic. Soft processors compatible with Artix-7 include MicroBlaze and lightweight
versions of RISC-V. All of them operate at much lower clock frequency than hardwired
embedded processors of SoC FPGAs.

3. Artix-7 is unsuitable for HLS designs. Such designs typically take significantly more
resources than designs based on writing code manually in HDL. As a result, assuming
the Pareto optimization for high-speed, they are unlikely to fit in the largest Artix-7
FPGA.

4. Artix-7 is a relatively old FPGA family, released by Xilinx in 2010. By the time of
the release of the PQC standard, this family will be at least 12 years old. While
still relatively popular for low-cost applications, this family does not represent the
state-of-the-art in FPGA technology.

5. It is not customary to base ranking of candidates in cryptographic contests on results
obtained for a single family of a single vendor. Although Xilinx is the largest developer
of FPGAs and SoC FPGAs, Intel comes a strong second, and other vendors, such as
Microchip and Lattice Semiconductor, also develop FPGAs suitable for implementing
cryptographic algorithms. During the SHA-3 competition, the results were reported
for seven FPGA families from two major vendors, Xilinx and Altera. During the
CAESAR contest, four Xilinx families and four Altera families were employed. For
all of these families, results were generated based on the same HDL code. There was
no need to purchase multiple tools or boards. Free or trial versions of tools were
sufficient. The designs ended with the generation of post-place-and-route reports,
which correctly described the worst-case performance of any particular instance of
the given FPGA device.

6. Based on the authors’ experiences, multiple reviewers of papers devoted to imple-
mentations of Round 2 PQC candidates treated the NIST’s choice of Artix-7 as an
absolute requirement. Submissions not complying with this requirement were subject
to rejection or requests for major revisions. As a result, a noble goal of making the
results more comparable with one another was turned into a reason for suppressing
or delaying the publication of relevant results.

Taking these concerns into account, our recommendation for Round 3 is to encourage
reporting results for at least the following FPGA families:

1. For lightweight hardware implementations and lightweight software/hardware im-
plementations based on soft processor cores: Xilinx Artix-7 (for compatibility with
Round 2 results) and Intel Cyclone 10 LP.

2. For lightweight software/hardware implementations based on the use of hard processor
cores: Xilinx Zynq 7000-series and Intel Cyclone V SoC FPGAs.

3. For high-speed hardware and high-speed software/hardware implementations: Zynq
Xilinx UltraScale+ and Intel Stratix 10 SoC.

One of the reasons for selecting Zynq Xilinx UltraScale+, even for pure hardware im-
plementations that do not require SoC capabilities, is the support for these devices by
the free version of the Xilinx toolset, called Vivado HL WebPACK, which is sufficient to
generate all required benchmarking results. Xilinx Virtex-7 UltraScale+ FPGAs, which
could be considered as a natural candidate, are not supported by the same free version
of tools. The Zynq Xilinx UltraScale+ family is also recommended for high-speed soft-
ware/hardware implementations based on the use of hard processor cores because of
moderate cost of suitable prototyping boards and the availability of a free Benchmarking

8 Implementation and Benchmarking of Round 2 PQC Candidates

Setup for Software/Hardware Implementations of PQC Schemes, developed at George
Mason University [20].

2 Previous Work

Table 1: Reported Hardware Implementations

Algorithms High-Speed Lightweight
Lattice-based : Encryption/Key Exchange

CRYSTALS-KYBER [80], [14]H , CERG [12], [13]∗, [1], [26]
FrodoKEM [38], [14]H , [18] [12], [13]∗
LAC [80], CERG –
NewHope [14]H , [27], [81], [80], [41], CERG [12], [13]∗, [1], [26]
NTRU [14]H , CERG –
NTRU Prime CERG –
Round5 [18], [4], CERG [3]
SABER [14]H , [18], [54], [63] [26]
Three Bears – –

Isogeny-based : Encryption/Key Exchange
SIKE [49], [53], [19] [53]

Code-based : Encryption/Key Exchange
BIKE [40], [60], [61] –
Classic McEliece [75], [14]H –
HQC – –
LEDAcrypt [14]H [39]
NTS-KEM – –
ROLLO – –
RQC – –

Lattice-based : Digital Signature
CRYSTALS-DILITHIUM [14]H [12], [13]∗
FALCON – –
qTESLA [14]H [12], [13]∗, [76]

Symmetric-based : Digital Signature
Picnic [42] –
SPHINCS+ [14]H –

Multivariate : Digital Signature
GeMSS – –
LUOV – –
MQDSS [14]H –
Rainbow [24] –

H design developed using the High-Level Synthesis (HLS) approach
∗ extended version of [12]

Hardware and software/hardware implementations of Round 2 PQC candidates reported
to date are summarized in Table 1. The PQC candidates are grouped by family and a type
of scheme. All Encryption and Key Exchange schemes are listed first, followed by Digital
Signature schemes. The Encryption and Key Exchange schemes have candidates from
three major families: lattice-based, isogeny-based, and code-based. The Digital Signature
schemes have candidates representing lattice-based, symmetric-based, and multivariate
families. All implementations are classified as either High-Speed or Lightweight. However,
the dividing line is not always very clear, and, in multiple cases, the authors have not used
these terms explicitly by themselves.

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 9

HLS-based implementations are distinguished with the superscript H . These implementa-
tions were reported in only one paper [14]. They have been shown to give substantially
different results than implementations developed using traditional Register-Transfer Level
(RTL) methodology, in which HDL code is developed manually. Therefore, in this section,
we focus on implementations in which a hardware part of the design was developed using
traditional RTL methodology. The HLS designs are discussed separately in Section 5.4.
Eight out of 26 candidates (31%) do not have any high-speed implementation to date, and
13 (50%) do not have any RTL high-speed implementation. 17 out of 26 (65%) do not have
any lightweight implementation. The coverage of the code-based family is the weakest, with
only 3 out of 7 candidates (BIKE, Classic McEliece, and LEDAcrypt) implemented targeting
high-speed (including only two using RTL-based approach), and only 1 out of 6 (LEDAcrypt)
realized using a lightweight approach. Similarly, the multivariate family remains mostly
unexplored. Only two out of four candidates have their implementations reported, including
only one following the RTL methodology. The symmetric-based digital signatures have no
lightweight implementations, and even among high-speed implementations, only one is the
RTL-based implementation.
The coverage of the lattice-based and isogeny-based encryption/key exchange schemes is
the most complete. Eight out of nine lattice-based KEMs have high-speed implementations
reported. The only exception is Three Bears. Five out of these eight have, on top of that, at
least one lightweight implementation. In terms of the number of various implementations,
NewHope leads the way with 10 related publications, followed by CRYSTALS-KYBER,
with 7, and FrodoKEM and Saber with 5. The only isogeny-based scheme, SIKE, has
been thoroughly explored in hardware as well, especially taking into account the earlier
implementations of the underlying key agreement scheme SIDH [47], [9], [48], [46], [50].
The coverage of lattice-based signatures is not as good as lattice-based KEMs. In par-
ticular, FALCON appears to be very difficult to implement, using either the high-speed
or lightweight approach. Additionally, even in the case of CRYSTALS-DILITHIUM,
somewhat surprisingly, its only high-speed implementation to date is an HLS-based design.
In Tables 2–8, we summarize major results for hardware and software/hardware imple-
mentations of KEMs. Most of the schemes are KEMs with indistinguishability under the
chosen-ciphertext attack (IND-CCA). Some are PKEs with indistinguishability under the
chosen-plaintext attack (IND-CPA). If an IND-CPA-secure PKE is reported, this fact is
marked with a superscript cpa. All mentioned above tables have the same fields. The
first two columns contain a reference to the publication and the name of the algorithm
variant, respectively. The superscript z next to the publication reference indicates the
implementation using Zynq-7000 SoC FPGA. The implementations targeting Artix-7 and
Zynq-7000 are grouped together because the programmable logic of both families is realized
using the same technological process and composed of the same basic building blocks.
In the third column, the type of implementation is indicated, with HW standing for
hardware, and SW/HW standing for software/hardware. Among the software/hardware
implementations, we specify the embedded processors used with the following notation:
RV represents a RISC-V processor with the RV32IM ISA, i.e., RISC-V with the base 32-bit
integer ISA and the standard Integer Multiplication and Division extension. c represents a
custom processor, and A9 a hard processor of the Zynq-7000 SoC FPGA family, namely
ARM Cortex-A9. Unlike the first two options, this processor operates with the frequency
significantly higher than the maximum clock frequency of programmable logic. At the same
time, the transfer of control and data between the processor and the hardware accelerator
contributes a non-negligible transfer overhead to all reported execution times.

10 Implementation and Benchmarking of Round 2 PQC Candidates

Ta
bl

e
2:

Le
ve

lI
K

EM
s

an
d

PK
Es

on
A

rt
ix

-7
(d

ef
au

lt)
an

d
Zy

nq
-7

00
0

(in
di

ca
te

d
w

ith
th

e
su

pe
rs

cr
ip

t
z
)

D
es

ig
n

A
lg

or
it

hm
T

yp
e

T
ar

ge
t

M
ax

.
Fr

eq
.

LU
T

F
F

Sl
ic

e
D

SP
B

R
A

M
K

ey
G

en
er

at
io

n
E

nc
ap

s.
/E

nc
.c

p
a

D
ec

ap
s.

/(
D

ec
.+

E
nc

.)
c
p

a

cy
cl

es
µ
s

cy
cl

es
µ
s

cy
cl

es
µ
s

Se
cu

ri
ty

Le
ve

l
I

[8
1]

z
N

ew
H

op
e-

51
2c

p
a

H
W

H
S

20
0

6,
78

0
4,

02
6

–
2

7.
0

4,
20

0
21

.0
6,

60
0

33
.0

9,
10

0
45

.5
[7

5]
m

ce
lie

ce
34

88
64

c
p

a
H

W
H

S
10

6
81

,3
39

13
2,

19
0

–
0

23
6.

0
20

2,
78

7
1,

92
0.

3
2,

72
0

25
.8

12
,7

43
12

0.
7

[7
5]

m
ce

lie
ce

34
88

64
c
p

a
H

W
LW

10
8

25
,3

27
49

,3
83

–
0

16
8.

0
1,

59
9,

88
2

14
,8

00
.0

2,
72

0
25

.2
18

,3
58

16
9.

8
[2

6]
z

K
yb

er
-5

12
SW

/H
W

R
V

LW
–

23
,9

25
10

,8
44

–
21

32
.0

15
0,

10
6

–
19

3,
07

6
–

20
4,

84
3

–

[3
8]

Fr
od

oK
EM

-6
40

16
x

H
W

H
S

17
2

2,
58

7
2,

99
4

85
5

16
0

20
4,

76
6

1,
19

0.
5

–
–

–
–

17
1

5,
79

6
4,

69
4

1,
69

2
16

0
–

–
20

7,
26

9
1,

21
2.

1
–

–
14

9
6,

88
1

5,
08

1
1,

94
7

16
12

.5
–

–
–

–
20

9,
86

7
1,

40
8.

5
[1

3]
K

yb
er

-5
12

SW
/H

W
R

V
LW

25
∗

14
,9

75
2,

53
9

4,
17

3
11

14
.0

54
,8

61
2,

19
4.

4
13

4,
96

5
5,

39
8.

6
14

6,
06

8
5,

84
2.

7
[2

6]
z

N
ew

H
op

e-
51

2
SW

/H
W

R
V

LW
–

23
,9

25
10

,8
44

–
21

32
.0

12
3,

86
0

–
20

7,
29

9
–

22
6,

74
2

–
[4

9]
SI

K
Ep

43
4

H
W

H
S

13
2

21
,9

46
24

,3
28

8,
00

6
24

0
26

.5
53

0,
00

0
4,

00
9.

1
93

0,
00

0
7,

03
4.

8
98

0,
00

0
7,

41
3.

0
[4

9]
SI

K
Ep

50
3

H
W

H
S

13
0

24
,6

10
27

,7
59

9,
18

6
26

4
33

.5
64

0,
00

0
4,

92
6.

9
1,

14
0,

00
0

8,
77

6.
0

1,
20

0,
00

0
9,

23
7.

9
[1

3]
N

ew
H

op
e-

51
2

SW
/H

W
R

V
LW

25
∗

14
,9

75
2,

53
9

4,
17

3
11

14
.0

97
,9

69
3,

91
8.

8
23

6,
81

2
9,

47
2.

5
25

8,
87

2
10

,3
54

.9
[2

6]
z

Li
gh

tS
ab

er
SW

/H
W

R
V

LW
–

23
,9

25
10

,8
44

–
21

32
.0

36
6,

83
7

–
52

6,
49

6
–

65
7,

58
3

–
[1

]
K

yb
er

-5
12

SW
/H

W
R

V
LW

59
1,

84
2

1,
63

4
–

5
34

.0
71

0,
00

0
11

,9
93

.2
97

1,
00

0
16

,4
02

.0
87

0,
00

0
14

,6
95

.9
[1

]
N

ew
H

op
e-

51
2

SW
/H

W
R

V
LW

59
1,

84
2

1,
63

4
–

5
34

.0
90

4,
00

0
15

,2
70

.3
1,

42
4,

00
0

24
,0

54
.1

1,
30

2,
00

0
21

,9
93

.2
[5

3]
SI

K
Ep

43
4

SW
/H

W
c

H
S

16
2

22
,5

95
11

,5
58

7,
49

1
16

2
37

.0
1,

47
4,

20
0

91
00

2,
49

4,
80

0
15

,4
00

.0
2,

65
6,

80
0

16
,4

00
.0

[5
3]

SI
K

Ep
50

3
SW

/H
W

c
H

S
16

2
22

,5
95

11
,5

58
7,

49
1

16
2

37
.0

1,
73

3,
40

0
10

,7
00

.0
2,

93
2,

20
0

18
,1

00
.0

3,
12

6,
60

0
19

,3
00

.0

[3
8]

Fr
od

oK
EM

-6
40

1x
H

W
LW

19
1

97
1

43
3

29
0

1
0

3,
23

7,
28

8
16

,9
49

.2
–

–
–

–
19

0
4,

24
6

2,
13

1
1,

18
0

1
0

–
–

3,
27

5,
86

2
17

,2
41

.4
–

–
16

2
4,

44
6

2,
15

2
1,

25
4

1
12

.5
–

–
–

–
3,

30
6,

12
2

20
,4

08
.2

[5
3]

SI
K

Ep
43

4
SW

/H
W

c
LW

14
3

10
,9

76
7,

11
5

3,
51

2
57

21
.0

2,
18

7,
90

2
15

,3
00

.0
3,

71
8,

00
4

26
,0

00
.0

3,
94

6,
80

4
27

,6
00

.0
[5

3]
SI

K
Ep

50
3

SW
/H

W
c

LW
14

3
10

,9
76

7,
11

5
3,

51
2

57
21

.0
2,

60
2,

60
3

18
,2

00
.0

4,
39

0,
10

4
30

,7
00

.0
4,

67
6,

10
5

32
,7

00
.0

[6
1]

B
IK

E
Le

ve
l1

H
W

LW
12

1
10

,7
02

4,
94

0
3,

33
4

7
15

.0
2.

67
1,

00
0

21
,9

03
.0

15
3,

00
0

1,
25

2.
0

13
,1

20
,0

00
10

7,
58

0.
0

[6
1]

B
IK

E
Le

ve
l1

H
W

H
S

96
29

,4
48

5,
49

8
8,

41
9

7
28

.0
25

9,
00

0
2,

69
1.

0
12

,0
00

12
7.

0
13

,1
20

,0
00

13
6,

44
3.

0
[1

3]
Fr

od
oK

EM
-6

40
SW

/H
W

R
V

LW
25

∗
14

,9
75

2,
53

9
4,

17
3

11
14

.0
11

,4
53

,9
42

45
8,

15
7.

7
11

,6
09

,6
68

46
4,

38
6.

7
12

,0
35

,5
13

48
1,

42
0.

5
[4

0]
B

IK
E-

1
Le

ve
l1

c
s

H
W

H
S

16
5

1,
90

7
1,

04
9

60
8

0
7.

0
95

,5
00

57
8.

0
–

–
–

–
[4

0]
B

IK
E-

3
Le

ve
l1

c
s

H
W

H
S

17
0

1,
39

7
92

5
45

3
0

4.
0

98
,5

00
57

9.
0

–
–

–
–

[4
0]

B
IK

E-
2

Le
ve

l1
c
s

H
W

H
S

16
0

3,
87

4
2,

14
1

1,
31

2
0

10
.0

2,
15

0,
00

0
13

,4
37

.0
–

–
–

–
z

D
es

ig
n

im
pl

em
en

te
d

on
Zy

nq
-7

00
0

c
p

a
D

es
ig

n
of

a
P

K
E

va
ria

nt
re

si
st

an
t

ag
ai

ns
t

C
ho

se
n-

P
la

in
te

xt
A

tt
ac

k
(C

PA
)

c
s

D
es

ig
ns

fo
r

th
e

va
ria

nt
s

B
IK

E
-1

,B
IK

E
-2

,a
nd

B
IK

E
-3

co
ns

ol
id

at
ed

by
su

bm
itt

er
s

to
B

IK
E

on
M

ay
3,

20
20

R
V

co
-d

es
ig

n
us

in
g

R
IS

C
-V

RV
32

IM
c

co
-d

es
ig

n
us

in
g

a
cu

st
om

pr
oc

es
so

r
A

9
co

-d
es

ig
n

us
in

g
A

R
M

C
or

te
x-

A
9

∗
P

re
lim

in
ar

y
re

su
lt

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 11

Ta
bl

e
3:

Le
ve

lI
II

&
V

K
EM

s
an

d
PK

Es
on

A
rt

ix
-7

(d
ef

au
lt)

an
d

Zy
nq

-7
00

0
(in

di
ca

te
d

w
ith

th
e

su
pe

rs
cr

ip
t

z
)

D
es

ig
n

A
lg

or
it

hm
T

yp
e

T
ar

ge
t

M
ax

.
Fr

eq
.

LU
T

F
F

Sl
ic

e
D

SP
B

R
A

M
K

ey
G

en
er

at
io

n
E

nc
ap

s.
/E

nc
.c

p
a

D
ec

ap
s.

/(
D

ec
.+

E
nc

.)
c
p

a

cy
cl

es
µ
s

cy
cl

es
µ
s

cy
cl

es
µ
s

Se
cu

ri
ty

Le
ve

l
II

I
[7

5]
m

ce
lie

ce
46

08
96

c
p

a
H

W
LW

10
7

38
,6

69
74

,8
58

0
30

3.
0

5,
00

2,
04

4
46

,7
04

.4
3,

36
0

31
.4

31
,0

05
28

9.
5

[3
8]

Fr
od

oK
EM

-9
76

16
x

H
W

H
S

16
9

2,
86

9
3,

00
0

90
8

16
0

47
6,

05
2,

81
6.

9
–

–
–

–
16

8
6,

18
8

4,
67

8
17

82
16

0
–

–
47

9,
99

3
2,

85
7.

1
–

–
15

7
7,

21
3

5,
08

7
20

42
16

19
.0

–
–

–
–

48
3,

07
3

3,
07

6.
9

[5
4]

z
Sa

be
r

SW
/H

W
A

9
H

S
12

5
7,

40
0

7,
33

1
28

2.
0

–
3,

27
3.

0
–

4,
14

7.
0

–
3,

84
4.

0
[1

3]
K

yb
er

-7
68

SW
/H

W
R

V
LW

25
∗

14
,9

75
2,

53
9

4,
17

3
11

14
.0

84
,1

10
3,

36
4.

4
18

4,
08

0
7,

36
3.

2
19

8,
01

1
7,

92
0.

4
[4

9]
SI

K
Ep

61
0

H
W

H
S

12
5

29
,4

47
33

,1
98

10
,8

43
31

2
39

.5
90

0,
00

0
7,

18
2.

8
1,

81
0,

00
0

14
,4

45
.3

1,
78

0,
00

0
14

,2
05

.9
[5

3]
SI

K
Ep

61
0

SW
/H

W
c

H
S

16
2

22
,5

95
11

,5
58

7,
49

1
16

2
37

.0
2,

91
6,

00
0

18
,0

00
.0

5,
44

3,
20

0
33

,6
00

.0
5,

50
8,

00
0

34
,0

00
.0

[3
8]

Fr
od

oK
EM

-9
76

1x
H

W
LW

18
9

1,
24

3
44

1
36

2
1

0
7,

56
0,

00
0

40
,0

00
.0

–
–

–
–

18
7

4,
65

0
2,

11
8

1,
27

2
1

0
–

–
7,

48
0,

00
0

40
,0

00
.0

–
–

16
2

4,
88

8
2,

15
3

1,
39

0
1

19
.0

–
–

–
–

7,
71

4,
28

6
47

,6
19

.0
[5

3]
SI

K
Ep

61
0

SW
/H

W
c

LW
14

3
10

,9
76

7,
11

5
3,

51
2

57
21

.0
4,

34
7,

20
4

30
,4

00
.0

8,
10

8,
10

8
56

,7
00

.0
8,

20
8,

20
8

57
,4

00
.0

[6
1]

B
IK

E
Le

ve
l3

H
W

LW
12

2
9,

80
8

5,
07

5
2,

99
6

7
23

.0
11

,6
00

,2
07

95
,1

22
.6

60
1,

09
9

4,
92

9.
1

37
,5

96
,1

11
30

8,
29

1.
2

[6
1]

B
IK

E
Le

ve
l3

H
W

H
S

96
28

,7
84

5,
55

3
8,

18
4

7
33

.0
93

0,
17

9
9,

67
4.

2
42

,1
62

43
8.

5
37

,5
96

,1
11

39
1,

01
5.

2
[1

3]
Fr

od
oK

EM
-9

76
SW

/H
W

R
V

LW
25

∗
14

,9
75

2,
53

9
4,

17
3

11
14

.0
26

,0
05

,3
26

1,
04

0,
21

3.
0

29
,7

49
,4

17
1,

18
9,

97
6.

7
30

,4
21

,1
75

1,
21

6,
84

7.
0

Se
cu

ri
ty

Le
ve

l
V

[8
1]

z
N

ew
H

op
e-

10
24

c
p

a
H

W
H

S
20

0
6,

78
1

4,
12

7
–

2
8.

0
8,

00
0

40
.0

12
,5

00
62

.5
17

,3
00

86
.5

[4
1]

z
N

ew
H

op
e-

10
24

c
p

a
H

W
H

S
19

0
13

,2
44

8,
27

2
–

24
18

.0
–

–
34

,0
00

17
8.

0
30

,6
00

16
0.

0
[1

3]
K

yb
er

-1
02

4
SW

/H
W

R
V

LW
25

∗
14

,9
75

2,
53

9
4,

17
3

11
14

.0
11

6,
84

1
4,

67
3.

6
23

6,
88

6
9,

47
5.

4
25

6,
82

8
10

,2
73

.1
[1

3]
N

ew
H

op
e-

10
24

SW
/H

W
R

V
LW

25
∗

14
,9

75
2,

53
9

4,
17

3
11

14
.0

97
,9

69
3,

91
8.

8
23

6,
81

2
9,

47
2.

5
25

8,
87

2
10

,3
54

.9
[2

6]
z

K
yb

er
-1

02
4

SW
/H

W
LW

–
23

,9
25

10
,8

44
–

21
32

.0
34

9,
67

3
–

40
5,

47
7

–
42

4,
68

2
–

[2
6]

z
N

ew
H

op
e-

10
24

SW
/H

W
LW

–
23

,9
25

10
,8

44
–

21
32

.0
23

5,
42

0
–

39
2,

73
4

–
45

0,
54

1
–

[4
9]

SI
K

Ep
75

1
H

W
H

S
12

7
40

,7
92

49
,9

82
15

,7
94

51
2

43
.5

1,
25

0,
00

0
9,

84
2.

5
2,

21
0,

00
0

17
,4

01
.6

2,
34

0,
00

0
18

,4
25

.2
[2

7]
z

N
ew

H
op

e-
10

24
c
p

a
SW

/H
W

H
S

25
26

,6
06

26
,3

03
–

32
1.

0
35

7,
05

2
14

,2
82

.1
58

9,
28

5
23

,5
71

.4
75

6,
93

2
30

,2
77

.3
[2

6]
z

Fi
re

Sa
be

r
SW

/H
W

LW
–

23
,9

25
10

,8
44

–
21

32
.0

1,
30

0,
27

2
–

1,
62

2,
81

8
–

1,
89

8,
05

1
–

[1
]

K
yb

er
-1

02
4

SW
/H

W
R

V
LW

59
1,

84
2

1,
63

4
–

5
34

.0
2,

20
3,

00
0

37
,2

12
.8

2,
61

9,
00

0
44

,2
39

.9
2,

42
9,

00
0

41
,0

30
.4

[5
3]

SI
K

Ep
75

1
SW

/H
W

c
H

S
16

2
22

,5
95

11
,5

58
7,

49
1

16
2

37
.0

3,
74

2,
20

0
23

,1
00

.0
6,

18
8,

40
0

38
,2

00
.0

6,
65

8,
20

0
41

,1
00

.0
[1

]
N

ew
H

op
e-

10
24

SW
/H

W
R

V
LW

59
1,

84
2

1,
63

4
–

5
34

.0
1,

77
6,

00
0

30
,0

00
.0

2,
74

2,
00

0
46

,3
17

.6
2,

52
8,

00
0

42
,7

02
.7

[5
3]

SI
K

Ep
75

1
SW

/H
W

c
LW

14
3

10
,9

76
7,

11
5

3,
51

2
57

21
.0

7,
96

5,
10

8
55

,7
00

.0
13

,1
56

,0
13

92
,0

00
.0

14
,1

85
,6

14
99

,2
00

.0
[1

3]
Fr

od
oK

EM
-1

34
4

SW
/H

W
R

V
LW

25
∗

14
,9

75
2,

53
9

4,
17

3
11

14
.0

67
,9

94
,1

70
2,

71
9,

76
6.

8
71

,5
01

,3
58

2,
86

0,
05

4.
3

72
,5

26
,6

95
2,

90
1,

06
7.

8
z

D
es

ig
n

im
pl

em
en

te
d

on
Zy

nq
-7

00
0

c
p

a
D

es
ig

n
of

a
P

K
E

va
ria

nt
re

si
st

an
t

ag
ai

ns
t

C
ho

se
n-

P
la

in
te

xt
A

tt
ac

k
(C

PA
)

R
V

co
-d

es
ig

n
us

in
g

R
IS

C
-V

RV
32

IM
c

co
-d

es
ig

n
us

in
g

a
cu

st
om

pr
oc

es
so

r
A

9
co

-d
es

ig
n

us
in

g
A

R
M

C
or

te
x-

A
9

∗
P

re
lim

in
ar

y
re

su
lt

K
D

to
ta

le
xe

cu
tio

n
tim

e
of

K
ey

G
en

er
at

io
n

an
d

D
ec

ry
pt

io
n

[4
1]

on
ly

re
po

rt
s

la
te

nc
y

of
E

nc
ap

su
la

tio
n

an
d

to
ta

ll
at

en
cy

of
K

ey
G

en
er

at
io

n
an

d
D

ec
ap

su
la

tio
n

12 Implementation and Benchmarking of Round 2 PQC Candidates

The next column, Max. Freq., corresponds to the maximum clock frequency in MHz. The
next five columns are used to report FPGA resource utilization, described as a vector (LUT,
FF, Slice, DSP, BRAM), where the subsequent fields represent the number of look-up
tables, flip-flops, slices, DSP units, and 36 kbit Block RAMs. For the last of these values,
BRAM, 0.5 represents the use of an 18-kbit block RAM.
In the case of KEMs, the remaining 6 columns are used to show the execution time of
Key Generation, Encapsulation, and Decapsulation, expressed in clock cycles and µs,
respectively. In the cases when only results for the IND-CPA PKE are reported, the last
two columns represent the sum of the execution times of Encryption and Decryption. This
convention is used because the most popular transformations between an IND-CPA-secure
PKE and the corresponding IND-CCA-secure KEM involve both the Decryption and
Encryption operations on the receiver’s side. Additionally, these two operations dominate
the total Decapsulation time. For all execution times, the value in µs can be obtained by
dividing the corresponding number of clock cycles by the maximum clock frequency in
MHz.
In Tables 2 and 3, we summarize implementations targeting Xilinx Artix-7 FPGAs
and related Xilinx Zynq-7000 SoC FPGAs. For the security level 1, six candidates -
Classic McEliece, CRYSTALS-Kyber, FrodoKEM, NewHope, SIKE, and Saber - have
implementations of all three operations reported. The preliminary implementations of
BIKE focused on key generation only [40, 5]. For security level 3, NewHope does not have
a variant. For security level 5, the results are missing for Classic McEliece.
For most KEMs, the time of decapsulation is longer than the time of encapsulation. Table
entries are ordered according to the time of decapsulation in µs (and, if needed, according
to the decapsulation time in clock cycles).
The ranking of candidates listed in Tables 2 and 3 is very challenging to determine based
on available results. First, it may be unfair to compare pure hardware implementations
with software/hardware implementations. Secondly, it is hard to compare lightweight
implementations with high-speed implementations, as they are optimized with different
primary metrics in mind. Third, software/hardware implementations based on different
processors are very challenging to compare with one another. Finally, even for imple-
mentations using exactly the same type of implementation (software/hardware) and the
same type of processor (RISC-V), such as those reported in [26], the comparison may
be unintentionally biased. In the specific case of [26], significantly different hardware
support was provided for algorithms that can take advantage of the Number Theoretic
Transform - Kyber and NewHope - vs. the algorithm that cannot - Saber. An additional,
relatively minor factor is that several results for Classic McEliece and NewHope concern
their IND-CPA-secure PKEs rather than IND-CCA-secure KEMs.
Taking all these factors into account, almost the only ranking that is quite clear from
Tables 2 and 3 is the ranking of candidates that have results available for pure hardware
implementations targeting high-speed. In this specific category, the ranking for the security
level 1 is: 1. NewHope, 2. Classic McEliece, 3. FrodoKEM. If we assume that a
software/hardware implementation of SIKE with a custom processor is almost as efficient
as a pure hardware implementation, then we can also add SIKE at position 4. At level 3,
NewHope does not have a variant, and at level 5, Classic McEliece and FrodoKEM, do
not have high-speed pure hardware implementations reported.
In Tables 4 and 5, we summarize implementations targeting Xilinx Virtex-7 FPGAs.
Unfortunately, the only conclusion that can be drawn from these tables is an advantage of
Classic McEliece over SIKE in terms of all performance metrics other than the number of
LUTs and flip-flops.

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 13

Ta
bl

e
4:

Le
ve

l1
K

EM
s

on
V

irt
ex

-7
(d

ef
au

lt)
an

d
V

irt
ex

-6
(in

di
ca

te
d

w
ith

th
e

su
pe

rs
cr

ip
t

V
6)

D
es

ig
n

A
lg

or
it

hm
T

yp
e

T
ar

ge
t

M
ax

.
Fr

eq
.

LU
T

F
F

Sl
ic

e
D

SP
B

R
A

M
K

ey
G

en
er

at
io

n
E

nc
ap

./
E

nc
.c

p
a

D
ec

ap
./

D
ec

.c
p

a

cy
cl

es
µ
s

cy
cl

es
µ
s

cy
cl

es
µ
s

Se
cu

ri
ty

Le
ve

l
I

[1
9]

SI
K

Ep
43

4
H

W
H

S
25

0
12

,8
18

18
,2

71
5,

52
7

19
5

32
.0

–
–

1,
09

5,
00

0
4,

40
0.

0
1,

09
5,

00
0

4,
40

0.
0

[1
9]

SI
K

Ep
50

3
H

W
H

S
24

4
13

,9
63

19
,9

35
6,

16
3

22
5

34
.0

–
–

1,
44

0,
00

0
5,

90
0.

0
1,

44
0,

00
0

5,
90

0.
0

[4
9]

SI
K

Ep
43

4
H

W
H

S
16

8
21

,0
59

23
,8

19
8,

12
1

24
0

26
.5

53
0,

00
0

3,
14

7.
3

93
0,

00
0

5,
52

2.
6

98
0,

00
0

5,
81

9.
5

[4
9]

SI
K

Ep
50

3
H

W
H

S
16

6
23

,7
46

27
,6

09
8,

90
7

26
4

33
.5

64
0,

00
0

3,
85

7.
7

1,
14

0,
00

0
6,

87
1.

6
1,

20
0,

00
0

7,
23

3.
3

[5
3]

SI
K

Ep
43

4
SW

/H
W

H
S

14
2

21
,2

10
13

,6
57

7,
40

8
16

2
38

.0
98

1,
18

0
6,

90
0.

0
1,

67
7,

96
0

11
,8

00
.0

1,
77

7,
50

0
12

,5
00

.0
[5

3]
SI

K
Ep

50
3

SW
/H

W
H

S
14

2
21

,2
10

13
,6

57
7,

40
8

16
2

38
.0

1,
16

6,
04

0
8,

20
0.

0
1,

97
6,

58
0

13
,9

00
.0

2,
10

4,
56

0
14

,8
00

.0

[3
9]

v
6

LE
D

A
ke

m
-1

28
o

,c
p

a
H

W
LW

23
5

10
4

53
33

0
1.

0
–

–
71

2,
00

0
3,

02
9.

8
–

–
14

0
2,

22
2

65
8

87
0

0
13

.0
–

–
–

–
2,

62
0,

00
0

18
,7

14
.3

[5
3]

SI
K

Ep
43

4
SW

/H
W

LW
15

2
10

,9
37

7,
13

2
3,

41
5

57
21

.0
2,

19
1,

78
1

14
,4

00
.0

3,
71

3,
85

1
24

,4
00

.0
3,

95
7,

38
2

26
,0

00
.0

[5
3]

SI
K

Ep
50

3
SW

/H
W

LW
15

2
10

,9
37

7,
13

2
3,

41
5

57
21

.0
2,

60
2,

74
0

17
,1

00
.0

4,
38

3,
56

2
28

,8
00

.0
4,

67
2,

75
5

30
,7

00
.0

c
p

a
D

es
ig

n
of

a
K

EM
va

ria
nt

re
sis

ta
nt

ag
ai

ns
t

C
ho

se
n-

Pl
ai

nt
ex

t
A

tt
ac

k
(C

PA
)

V
6

D
es

ig
n

im
pl

em
en

te
d

on
V

irt
ex

-6
o

D
es

ig
n

fo
r

an
ol

d
pa

ra
m

et
er

se
t

ch
an

ge
d

by
th

e
su

bm
itt

er
s

on
M

ar
ch

19
th

,2
02

0

14
Im

plem
entation

and
B

enchm
arking

ofR
ound

2
PQ

C
C

andidates

Table 5: Level 3 & 5 KEMs and PKEs on Virtex-7

Design Algorithm Type Target Max.
Freq. LUT FF Slice DSP BR

AM
Key Generation Encap./Enc.cpa Decap./Dec.cpa

cycles µs cycles µs cycles µs

Security Level III
[75] mceliece460896cpa HW HS 131 109,484 168,939 0 446.0 515,806 3,943.5 3,360 25.7 17,931 137.1
[19] SIKEp610 HW HS 239 16,226 26,757 7,461 270 38.5 – – 2,280,000 9,550.0 2,280,000 9,550.0
[49] SIKEp610 HW HS 166 28,217 33,297 10,675 312 39.5 900,000 5,428.2 1,810,000 10,916.8 1,780,000 10,735.8
[53] SIKEp610 SW/HW HS 142 21,210 13,657 7,408 162 38.0 1,962,360 13,800.0 3,654,540 25,700.0 3,711,420 26,100.0
[53] SIKEp610 SW/HW LW 152 10,937 7,132 3,415 57 21.0 4,353,120 28,600.0 8,097,412 53,200.0 8,219,178 54,000.0

Security Level V
[75] mceliece6960119cpa HW HS 130 116,928 188,324 0 607.0 974,306 7,500.4 5,413 41.7 25,135 193.5
[75] mceliece6688128cpa HW HS 137 122,624 186,194 0 589.0 1,046,139 7,658.4 5,024 36.8 29,754 217.8
[75] mceliece8192128cpa HW HS 130 123,361 190,707 0 589.0 1,286,179 9,901.3 6,528 50.3 32,765 252.2
[75] mceliece6960119cpa HW LW 141 44,154 88,963 0 563.0 11,179,636 79,570.4 5,413 38.5 46,141 328.4
[75] mceliece6688128cpa HW LW 136 44,345 83,637 0 446.0 12,389,742 91,034.1 5,024 36.9 52,333 384.5
[75] mceliece8192128cpa HW LW 134 45,150 88,154 0 525.0 15,185,314 113,154.4 6,528 48.6 55,330 412.3
[19] SIKEp751 HW HS 233 20,207 39,339 11,136 452 41.5 – – 2,965,000 12,750.0 2,965,000 12,750.0
[49] SIKEp751 HW HS 163 39,953 50,079 15,834 512 43.5 1,250,000 7,664.0 2,210,000 13,550.0 2,340,000 14,347.0
[53] SIKEp751 SW/HW HS 142 21,210 13,657 7,408 162 38.0 2,516,940 17,700.0 4,166,460 29,300.0 4,479,300 31,500.0
[53] SIKEp751 SW/HW LW 152 10,937 7,132 3,415 57 21.0 7,960,426 52,300.0 13,150,685 86,400.0 14,185,693 93,200.0

cpa Design of a PKE variant resistant against Chosen-Plaintext Attack (CPA)

V
.D

an
g,

F.
Fa

ra
hm

an
d,

M
.A

nd
rz

ej
cz

ak
,K

.M
oh

aj
er

an
i,

D
.T

.N
gu

ye
n,

an
d

K
.G

aj
15

In
Ta

bl
es

6
an

d
7,

w
e

su
m

m
ar

iz
e

th
e

re
su

lts
fo

r
A

SI
C

s.
A

SI
C

pe
rf

or
m

an
ce

st
ud

ie
s

ha
ve

be
en

re
po

rt
ed

in
[8

0]
,[

12
]-[

13
],

an
d

[2
6]

.
A

ll
th

re
e

st
ud

ie
s

w
er

e
co

nd
uc

te
d

us
in

g
di

ffe
re

nt
A

SI
C

pr
oc

es
se

s
an

d
st

an
da

rd
-c

el
l

lib
ra

rie
s.

T
he

re
fo

re
,

th
e

ob
ta

in
ed

re
su

lts
ca

nn
ot

be
co

m
pa

re
d

ac
ro

ss
an

y
tw

o,
no

t
to

m
en

tio
n

th
re

e,
pu

bl
ic

at
io

ns
fr

om
th

is
lis

t.
In

al
lt

hr
ee

ca
se

s,
th

e
ap

pr
oa

ch
wa

st
he

de
ve

lo
pm

en
to

fa
la

tt
ic

e-
ba

se
d

co
-p

ro
ce

ss
or

su
pp

or
tin

g
at

le
as

t
th

re
e

di
ffe

re
nt

IN
D

-C
C

A
se

cu
re

K
EM

s.
T

he
de

sig
n

pr
es

en
te

d
in

[8
0]

is
a

do
m

ai
n-

sp
ec

ifi
c

ve
ct

or
co

-p
ro

ce
ss

or
,l

ev
er

ag
in

g
th

e
ex

te
ns

ib
le

R
IS

C
-V

ar
ch

ite
ct

ur
e.

T
hi

s
co

-p
ro

ce
ss

or
ha

s
be

en
in

te
gr

at
ed

w
ith

an
op

en
-s

ou
rc

e
R

IS
C

-V
m

ic
ro

pr
oc

es
so

r,
su

pp
or

tin
g

th
e

RV
32

IM
C

IS
A

.T
he

R
IS

C
-V

co
re

ha
s

be
en

m
od

ifi
ed

to
re

co
gn

iz
e

th
e

cu
st

om
in

st
ru

ct
io

ns
an

d
fo

rw
ar

d
th

em
to

th
e

ve
ct

or
co

-p
ro

ce
ss

or
.

Si
m

ila
rly

,i
n

[1
2]

-[1
3]

,t
he

do
m

ai
n-

sp
ec

ifi
c

Sa
pp

hi
re

cr
yp

to
-

pr
oc

es
so

r
is

co
up

le
d

w
ith

an
effi

ci
en

t
R

IS
C

-V
m

ic
ro

pr
oc

es
so

r,
su

pp
or

tin
g

th
e

RV
32

IM
IS

A
.I

n
[2

6]
,t

he
au

th
or

s
pr

op
os

ed
an

en
ha

nc
ed

R
IS

C
-V

ar
ch

ite
ct

ur
e

th
at

em
be

ds
a

se
t

of
po

w
er

fu
lt

ig
ht

ly
co

up
le

d
ac

ce
le

ra
to

rs
to

sp
ee

d
up

la
tt

ic
e-

ba
se

d
PQ

C
.T

he
se

ac
ce

le
ra

to
rs

ar
e

de
ep

ly
in

te
gr

at
ed

in
to

th
e

R
IS

C
-V

pi
pe

lin
e.

R
IS

C
-V

w
as

al
so

ex
te

nd
ed

w
ith

28
ne

w
in

st
ru

ct
io

ns
fo

r
pe

rf
or

m
in

g
pa

ck
ed

m
od

ul
ar

ar
ith

m
et

ic
,

bu
tt

er
fly

op
er

at
io

n,
up

da
te

of
Tw

id
dl

ef
ac

to
rs

,u
pd

at
e/

m
ul

tip
lic

at
io

n
w

ith
sc

al
in

g
fa

ct
or

s,
bi

t-
re

ve
rs

al
,h

as
h

co
m

pu
ta

tio
ns

,
an

d
bi

no
m

ia
ls

am
pl

in
g.

In
al

lt
hr

ee
co

-p
ro

ce
ss

or
s,

al
ls

up
po

rt
ed

la
tt

ic
e-

ba
se

d
K

E
M

s
sh

ar
e

th
e

sa
m

e
re

so
ur

ce
s.

T
he

re
fo

re
,o

nl
y

th
e

co
m

pa
ris

on
in

te
rm

s
of

th
e

ex
ec

ut
io

n
tim

e,
po

w
er

co
ns

um
pt

io
n,

an
d

en
er

gy
wa

sp
os

sib
le

.
A

ll
im

pl
em

en
ta

tio
ns

ad
op

te
d

th
e

SW
/H

W
co

-d
es

ig
n

ap
pr

oa
ch

.
In

[8
0]

,
th

e
ta

rg
et

wa
sh

ig
h-

sp
ee

d.
In

[1
2]

-[1
3]

an
d

[2
6]

th
e

m
in

im
um

po
we

ra
nd

en
er

gy
.

In
Ta

bl
e

6,
w

e
re

po
rt

th
e

ex
ec

ut
io

n
tim

es
,a

nd
in

Ta
bl

e
7

bo
th

en
er

gy
an

d
po

w
er

co
ns

um
pt

io
n

at
a

sp
ec

ifi
c

op
er

at
in

g
fr

eq
ue

nc
y,

co
m

m
on

fo
r

al
ls

ch
em

es
co

m
pa

re
d

w
ith

in
ea

ch
st

ud
y.

Pe
rf

or
m

an
ce

es
tim

at
es

fo
r

T
hr

ee
B

ea
rs

ha
ve

be
en

pr
ov

id
ed

in
[3

2]
.

T
he

im
pl

em
en

ta
tio

ns
ar

e
as

su
m

ed
to

be
re

al
iz

ed
in

th
e

A
SI

C
te

ch
no

lo
gy

,w
ith

th
e

st
an

da
rd

-c
el

ll
ib

ra
ry

T
SM

C
40

LP
.T

he
ta

rg
et

cl
oc

k
fr

eq
ue

nc
y

is
10

0
M

H
z.

Tw
o

ac
ce

le
ra

to
rs

,3
2-

bi
t

an
d

64
-b

it,
ar

e
co

ns
id

er
ed

.
A

ll
es

tim
at

es
ar

e
m

ad
e

by
us

in
g

th
e

ar
ith

m
et

ic
co

re
fro

m
a

R
am

bu
s

pu
bl

ic
-k

ey
cr

yp
to

ac
ce

le
ra

to
r

an
d

da
ta

re
po

rt
ed

in
[1

2]
.

N
o

ac
tu

al
im

pl
em

en
ta

tio
n

is
at

te
m

pt
ed

.
In

th
e

st
ud

y
re

po
rt

ed
in

[1
2]

-[1
3]

,f
or

th
e

T
SM

C
40

nm
lib

ra
ry

,t
he

ra
nk

in
g

of
ca

nd
id

at
es

in
te

rm
s

of
th

e
de

ca
ps

ul
at

io
n

tim
e

is
1.

N
ew

H
op

e,
2.

K
yb

er
,3

.
Fr

od
o-

K
EM

fo
r

th
e

se
cu

rit
y

le
ve

l1
,a

nd
1.

K
yb

er
,2

.
N

ew
H

op
e,

3.
Fr

od
o-

K
E

M
fo

r
th

e
se

cu
rit

y
le

ve
l5

.
Fr

od
oK

E
M

la
gs

be
hi

nd
th

e
N

ew
H

op
e

by
a

fa
ct

or
la

rg
er

th
an

46
fo

rt
he

se
cu

rit
y

le
ve

l1
,a

nd
28

0
fo

rt
he

se
cu

rit
y

le
ve

l5
.

In
te

rm
s

of
th

e
po

w
er

us
ag

e,
th

e
di

ffe
re

nc
es

am
on

g
al

lt
hr

ee
ca

nd
id

at
es

ar
e

ve
ry

sm
al

l.
In

te
rm

s
of

en
er

gy
us

ag
e,

N
ew

H
op

e
an

d
K

yb
er

ar
e

ve
ry

cl
os

e
to

ea
ch

ot
he

r,
an

d
Fr

od
oK

EM
la

gs
be

hi
nd

by
m

or
e

th
an

tw
o

or
de

rs
of

m
ag

ni
tu

de
.

In
te

rm
s

of
co

m
pa

ris
on

w
ith

T
hr

ee
B

ea
rs

,t
he

es
tim

at
ed

pe
rfo

rm
an

ce
of

B
ab

yB
ea

r
is

be
tt

er
th

an
th

at
re

po
rt

ed
fo

rK
yb

er
-5

12
an

d
N

ew
H

op
e-

51
2,

fo
rb

ot
h

64
-b

it
an

d
32

-b
it

ac
ce

le
ra

to
rs

.
Si

m
ila

rly
,t

he
pe

rfo
rm

an
ce

of
M

am
aB

ea
r

is
es

tim
at

ed
to

be
be

tt
er

th
an

th
at

of
K

yb
er

-7
68

fo
r

bo
th

ty
pe

s
of

ac
ce

le
ra

to
rs

.
Fo

r
Pa

pa
B

ea
r,

on
ly

th
e

64
-b

it
ac

ce
le

ra
to

r
is

es
tim

at
ed

to
be

fa
st

er
th

an
K

yb
er

-1
02

4
an

d
N

ew
H

op
e-

10
24

.
T

he
32

-b
it

ac
ce

le
ra

to
r

is
sli

gh
tly

slo
w

er
.

H
ow

ev
er

,o
ne

sh
ou

ld
ke

ep
in

m
in

d
th

at
th

e
pr

oc
es

so
rf

ro
m

[1
2]

ha
s

be
en

fu
lly

im
pl

em
en

te
d,

w
hi

le
th

e
re

su
lts

in
[3

2]
ar

e
ba

se
d

on
es

tim
at

es
on

ly
.

O
ne

of
th

e
ad

va
nt

ag
es

of
T

hr
ee

B
ea

rs
is

th
at

its
ha

rd
w

ar
e

im
pl

em
en

ta
tio

ns
ca

n
sh

ar
e

re
so

ur
ce

s
w

ith
im

pl
em

en
ta

tio
ns

of
cl

as
sic

al
pu

bl
ic

-k
ey

sc
he

m
es

,s
uc

h
as

E
lli

pt
ic

C
ur

ve
C

ry
pt

og
ra

ph
y

an
d

R
SA

.T
hi

s
fe

at
ur

e
m

ay
be

pa
rt

ic
ul

ar
ly

im
po

rt
an

t
du

rin
g

th
e

tr
an

sit
io

n
pe

rio
d,

w
he

n
hy

br
id

sc
he

m
es

,b
as

ed
on

bo
th

cl
as

sic
al

pu
bl

ic
-k

ey
cr

yp
to

gr
ap

hy
(m

os
tly

E
C

C
)

an
d

P
Q

C
,

ar
e

lik
el

y
to

be
us

ed
co

nc
ur

re
nt

ly
.

H
ow

ev
er

,
th

e
im

po
rt

an
ce

of
th

is
re

so
ur

ce
sh

ar
in

g
w

ill
lik

el
y

di
m

in
ish

ov
er

tim
e,

w
he

n
cl

as
sic

al
sc

he
m

es
ar

e
gr

ad
ua

lly
ph

as
ed

ou
t.

O
n

to
p

of
th

at
,n

o
PQ

C
di

gi
ta

ls
ig

na
tu

re
sc

he
m

e
ba

se
d

on
sim

ila
r

bi
g-

in
te

ge
r

ar
ith

m
et

ic
is

cu
rr

en
tly

un
de

r
co

ns
id

er
at

io
n

fo
r

a
ne

w
N

IS
T

PQ
C

st
an

da
rd

.

16
Im

pl
em

en
ta

tio
n

an
d

B
en

ch
m

ar
ki

ng
of

R
ou

nd
2

PQ
C

C
an

di
da

te
s

Table6:AllKEMsonASIC

DesignAlgorithmTypeTargetMax.
Freq.

Area
(kGE)

SRAM
(kB)

KeyGen.EncapsulationDecapsulationTechnology
cyclesuscyclesuscyclesus

SecurityLevel1&2
[80]Kyber-512SW/HWHS30097912.0018,55661.945,886153.079,989266.6

TSMC28nm [80]NewHope-512SW/HWHS30097912.0018,56361.944,513148.484,501281.7
[80]LAC-128-v3aSW/HWHS30097912.00107,511358.4189,550631.8281,953939.8

[32]
E

BabyBearSW/HWHS100145–24,300243.036,900369.060,800608.0

TSMC40nm
[32]

E
BabyBearSW/HWLW100120–57,500575.093,200932.0135,8001,358.0

[12]NewHope-512SW/HWLW7210640.2552,063723.1136,0771,890.0142,2951,976.3
[13]Kyber-512SW/HWLW7210640.2554,861762.0134,9651,874.5146,0682,028.7
[12]FrodoKEM-640SW/HWLW7210640.2511,453,942159,082.511,609,668161,245.412,035,513167,159.9
[26]Kyber-512SW/HWLW45170465∗150,1063,316.5193,0764,265.9204,8434,525.9

UMC65nm [26]NewHope-512SW/HWLW45170465∗123,8602,736.6207,2994,580.2226,7425,009.8
[26]LightSaberSW/HWLW45170465∗366,8378,105.1526,49611,632.7657,58314,529.0

SecurityLevel3&4
[32]

E
MamaBearSW/HWHS100145–46,000460.065,200652.098,300983.0

TSMC40nm [32]
E

MamaBearSW/HWLW100120–121,0001,210.0177,8001,778.0238,9002,389.0
[13]Kyber-768SW/HWLW7210640.2584,1101,168.2184,0802,556.7198,0112,750.2
[12]FrodoKEM-976SW/HWLW7210640.2526,005,326361,185.129,749,417413,186.330,421,175422,516.3

SecurityLevel5
[80]Kyber-1024SW/HWHS30097912.0039,689132.381,569271.9136,475454.9TSMC28nm [80]NewHope-1024SW/HWHS30097912.0036,584121.985,871286.2161,623538.7

[32]
E

PapaBearSW/HWHS100145–74,200742.0100,9001,009.0143,0001,430.0

TSMC40nm
[13]Kyber-1024SW/HWLW7210640.25116,8411,622.8236,8863,290.1256,8283,567.1
[12]NewHope-1024SW/HWLW7210640.2597,9691,360.7236,8123,289.1258,8723,595.4

[32]
E

PapaBearSW/HWLW100120–206,4002,064.0288,4002,884.0368,0003,680.0
[12]FrodoKEM-1344SW/HWLW7210640.2567,994,170944,363.571,501,358993,074.472,526,6951,007,315.2
[26]Kyber-1024SW/HWLW45170465∗349,6737,725.9405,4778,958.8424,6829,383.2

UMC65nm [26]NewHope-1024SW/HWLW45170465∗235,4205,201.5392,7348,677.3450,5419,954.5
[26]FireSaberSW/HWLW45170465∗1,300,27228,728.91,622,81835,855.51,898,05141,936.6

E
Theresultsreportedin[32]wereestimatedusingthearithmeticcorefromaRambuspublic-keycryptoacceleratoranddatareportedin[12].Noactual

implementationwasattempted.
AllSW/HWco-designsuseRISC-V.
∗NumbersreportedinkGE

V
.D

an
g,

F.
Fa

ra
hm

an
d,

M
.A

nd
rz

ej
cz

ak
,K

.M
oh

aj
er

an
i,

D
.T

.N
gu

ye
n,

an
d

K
.G

aj
17

Table7:PowerandEnergyComparisonforallKEMsonASIC

DesignAlgorithmTypeTargetFreq.Area
(kGE)

Memory
(kB)

KeyGenerationEncapsulationDecapsulationTechnology
Power
(mW)

Energy
(µJ)

Power
(mW)

Energy
(µJ)

Power
(mW)

Energy
(µJ)

SecurityLevel1
[80]Kyber-512SW/HWHS30097912.0029.261.8123.673.6224.946.65

TSMC28nm [80]NewHope-512SW/HWHS30097912.0031.841.9727.774.1223.826.71
[80]LAC-128-v3aSW/HWHS30097912.0025.909.2824.3315.3723.7422.31
[12]NewHope-512SW/HWLW7210640.255.304.375.3010.025.8011.46

TSMC40nm [13]Kyber-512SW/HWLW7210640.256.024.595.4310.185.9512.07
[12]FrodoKEM-640SW/HWLW7210640.256.651,057.657.011,129.956.881,150.83
[26]NewHope-512SW/HWLW10170465∗––––2.42135.03

UMC65nm [26]Kyber-512SW/HWLW10170465∗––––2.58141.41
[26]LightSaberSW/HWLW10170465∗––––2.78431.18

SecurityLevel3
[13]Kyber-768SW/HWLW7210640.256.107.135.5214.116.0516.64TSMC40nm [12]FrodoKEM-976SW/HWLW7210640.256.702,420.977.052,912.956.942,932.13

SecurityLevel5
[80]Kyber-1024SW/HWHS30097912.0035.454.6929.207.9425.5711.63TSMC28nm [80]NewHope-1024SW/HWHS30097912.0029.363.5824.537.0223.5712.70
[12]NewHope-1024SW/HWLW7210640.256.138.355.0516.595.8921.17

TSMC40nm [13]Kyber-1024SW/HWLW7210640.256.2110.085.6518.596.1221.83
[12]FrodoKEM-1344SW/HWLW7210640.256.756,374.457.107,050.837.007,051.21
[26]NewHope-1024SW/HWLW10170465∗––––2.41259.98

UMC65nm [26]Kyber-1024SW/HWLW10170465∗––––2.60307.68
[26]FireSaberSW/HWLW10170465∗––––2.771335.48

AllSW/HWco-designsusingRISC-VRV32IM
∗NumbersreportedinkGE

18
Im

plem
entation

and
B

enchm
arking

ofR
ound

2
PQ

C
C

andidates

Table 8: All KEMs and PKEs on Zynq Ultrascale+

Design Algorithm Type Target Max.
Freq. LUT FF Slice DSP BRAM Key Gen. Encapsulation Decapsulation

cycles us cycles us cycles us
Security Level 1

[18] R5ND_1KEM_0d SW/HW HS 260 55,442 82,341 10,627 0 2 – – – 19.0 – 24.0
[18] LightSaber SW/HW HS 322 12,343 11,288 1,989 256 3.5 – – – 53.0 – 56.0
[18] FrodoKEM-640 SW/HW HS 402 7,213 6,647 1,186 32 13.5 – – – 1,223.0 – 1,319.0

Security Level 3
[63] Saber HW HS 250 45,895 18,705 – 0 2 4,320 17.3 5,231 20.9 6,461 25.8
[63] Saber HW HS 250 25,079 10,750 – 0 2 5,435 21.8 6,618 26.5 8,034 32.1
[18] R5ND_3KEM_0d SW/HW HS 249 73,881 109,211 14,307 0 2 – – – 24.0 – 33.0
[18] Saber SW/HW HS 322 12,566 11,619 1,993 256 3.5 – – – 60.0 – 65.0
[18] FrodoKEM-976 SW/HW HS 402 7087 6693 1190 32 17 – – – 1,642.0 – 1,866.0

Security Level 5
[18] R5ND_5KEM_0d SW/HW HS 212 91,166 151,019 18,733 0 2 – – – 32.0 – 42.0
[41] NewHope-1024cpa HW HS 406 13,961 8,149 – 25 18 – – 34,000 83.0 30,600KD 75.0KD

[18] FireSaber SW/HW HS 322 12,555 11,881 2,341 256 3.5 – – – 74.0 – 80.0
[18] FrodoKEM-1344 SW/HW HS 417 7,015 6,610 1,215 32 17.5 – – – 2,186.0 – 3,120.0

All SW/HW co-designs using ARM Cortex-A53
cpa Design of a PKE variant resistant against Chosen-Plaintext Attack (CPA)
KD total execution time of Key Generation and Decryption

V
.D

ang,F.Farahm
and,M

.A
ndrzejczak,K

.M
ohajerani,D

.T
.N

guyen,and
K

.G
aj

19

Table 9: Digital Signature Schemes on Artix-7, Kintex-7 and Virtex-7

Design Algorithm Type Target Max.
Freq. LUT FF Slice DSP BR

AM
Key Gen. Signature Verification Signature Generation Familycycles us cycles us cycles us

Security Level 1 & 2
[42] Picnic-L1-FS HW HS 91 90,535 23,516 25,160 0 52.5 – – 29,600 325.6 31,300 344.3

Artix-7
[baner19a] qTESLA-I o2 SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 4,846,949 193,878.0 38,922 1,556.9 168,273 6,730.9
[baner19a] Dilithium-I SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 95,202 3,808.1 142,576 5,703.0 376,392 15,055.7
[baner19a] Dilithium-II SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 130,022 5,200.9 184,933 7,397.3 514,246 20,569.8

[76] qTESLA-p-I SW/HW LW 121 7,212 4,378 2,438 15 139.0 925,431 7,648.2 946,520 7,822.5 4,165,160 34,422.8
[24] Rainbow-Ic o1 HW HS 90 52,895 32,476 15,112 0 67.0 – – – – 979 10.9

Kintex-7[24] Rainbow-Ia HW HS 111 27,712 27,679 8,939 0 59.0 – – – – 1,980 17.8
[42] Picnic-L1-FS HW HS 125 90,037 23,105 – 0 52.5 – – 29,600 237.0 31,300 250.0
[24] Rainbow-Ic o1 HW HS 167 52,721 32,475 15,976 0 67.0 – – – – 979 5.9 Virtex-7[24] Rainbow-Ia HW HS 181 27,556 27,675 7,065 0 59.0 – – – – 1,980 10.9

Security Level 3
[baner19a] qTesla-III-speed o2 SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 11,898,241 475,929.6 67,712 2,708.5 317,083 12,683.3

Artix-7[baner19a] qTesla-III-size o2 SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 11,479,190 459,167.6 69,154 2,766.2 348,429 13,937.2
[baner19a] Dilithium-III SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 167,433 6,697.3 229,481 9,179.2 634,763 25,390.5

[76] qTESLA-p-III SW/HW LW 121 7,475 4,518 2,473 15 147.0 2,305,220 19,051.4 2,315,950 19,140.1 7,745,088 64,009.0
Security Level 4 & 5

[42] Picnic-L5-FS HW HS 125 167,530 33,164 – 0 98.5 – – 146,600 1,173.0 154,500 1,236.0 Kintex-7
[baner19a] Dilithium-IV SW/HW LW 25∗ 14,975 2,539 4,173 11 14.0 223,272 8,930.9 276,221 11,048.8 815,636 32,625.4 Artix-7
o1 Design for a parameter set withdrawn at the beginning of Round 2
o2 Design for a heuristic parameter set withdrawn by the submitters on Aug. 20, 2019
All SW/HW co-designs using RISC-V RV32IM
∗ Preliminary result

20
Im

plem
entation

and
B

enchm
arking

ofR
ound

2
PQ

C
C

andidates

Table 10: Digital Signature Schemes on ASIC

Design Algorithm Type Target Max.
Freq.

Area
(kGE)

SRAM
(kB)

Key Gen. Signature Verification Signature Generation Technology
cycles us cycles us cycles us

Security Level 1 & 2
[12] qTESLA-I o2 SW/HW LW 72 106 40.25 4,846,949 67,318.7 38,922 540.6 168,273 2,337.1

TSMC 40 nm[12] Dilithium-I SW/HW LW 72 106 40.25 95,202 1,322.3 142,576 1,980.2 376,392 5,227.7
[12] Dilithium-II SW/HW LW 72 106 40.25 130,022 1,805.9 184,933 2,568.5 514,246 7,142.3

Security Level 3
[12] qTesla-III-speed o2 SW/HW LW 72 106 40.25 11,898,241 165,253.3 67,712 940.4 317,083 4,403.9

TSMC 40 nm[12] qTesla-III-size o2 SW/HW LW 72 106 40.25 11,479,190 159,433.2 69,154 960.5 348,429 4,839.3
[12] Dilithium-III SW/HW LW 72 106 40.25 167,433 2,325.5 229,481 3,187.2 634,763 8,816.2

Security Level 4
[12] Dilithium-IV SW/HW LW 72 106 40.25 223,272 3,101.0 276,221 3,836.4 815,636 11,328.3 TSMC 40 nm

o2 Design for a heuristic parameter set withdrawn by the submitters on Aug. 20, 2019

V
.D

ang,F.Farahm
and,M

.A
ndrzejczak,K

.M
ohajerani,D

.T
.N

guyen,and
K

.G
aj

21

Table 11: Power and Energy Comparison for Digital Signature Schemes on ASIC

Design Algorithm Type Target Max.
Freq.

Area
(kGE)

SRAM
(kB)

Key Generation Signature Verification Signature Generation TechnologyPower
(mW)

Energy
(µJ)

Power
(mW)

Energy
(µJ)

Power
(mW)

Energy
(µJ)

Security Level 1 & 2
[12] qTESLA-I o2 SW/HW LW 72 106 40.25 7.89 531.55 7.99 4.32 9.99 23.34

TSMC 40 nm[12] Dilithium-I SW/HW LW 72 106 40.25 6.82 9.00 7.73 15.31 6.77 35.41
[12] Dilithium-II SW/HW LW 72 106 40.25 7.24 13.08 7.49 19.23 7.68 54.82

Security Level 3
[12] qTesla-III-speed o2 SW/HW LW 72 106 40.25 7.64 1,262.39 7.30 6.86 9.97 43.91

TSMC 40 nm[12] qTesla-III-size o2 SW/HW LW 72 106 40.25 7.71 1,229.18 7.59 7.27 9.97 48.23
[12] Dilithium-III SW/HW LW 72 106 40.25 7.36 17.11 7.41 23.63 7.40 65.26

Security Level 4
[12] Dilithium-IV SW/HW LW 72 106 40.25 6.89 21.38 7.44 28.55 6.93 78.53 TSMC 40 nm

o2 Design for a heuristic parameter set withdrawn by the submitters on Aug. 20, 2019
All SW/HW co-designs using RISC-V RV32IM

22 Implementation and Benchmarking of Round 2 PQC Candidates

In the study reported in [80], for the most advanced TSMC 28nm library, the ranking of
candidates in terms of the most time-critical decapsulation time is 1. Kyber, 2. NewHope,
3. LAC. The difference between positions 1 and 2 is about 6% for the security level 1,
and 18% for the security level 5. LAC lags behind NewHope by a factor larger than 3.
Kyber also uses less energy than NewHope for each major operation. The energy usage for
decapsulation is almost identical for Kyber and NewHope. At the security level 1, Kyber
uses about 1% less energy, and at the security level 5 about 7% less energy. At the same
time, at the security level 1, LAC requires over 3 times more energy.
Finally, in the study reported in [26], for the UMC 65nm library, the ranking of candidates
in terms of the decapsulation time is: 1. Kyber, 2. NewHope, 3. Saber. With very
similar power consumption reported for all three candidates, the differences in terms of the
execution time translate to the similar differences in energy usage. However, as explained
before, this study may be unintentionally biased toward candidates that are able to take
advantage of NTT. In particular, for decapsulation, the reported speed-up vs. the baseline
pure software implementation running on RISC-V is 9.2, 7.4, and 2.3 for NewHope-512,
Kyber-512, and LightSaber, respectively. Similarly, at level 5, the corresponding speed-ups
are 9.4, 9.3, and 2.3, respectively. The speed-up for NewHope and Kyber came primarily
from a dedicated NTT and Modular Arithmetic Unit. It resulted in a decrease in the
decapsulation time for NewHope and Kyber by factors ranging between 2.7 and 3.6 as
compared to the best Cortex-M4 software implementation reported to date. The speed-up
for Saber came primarily from a half-word integer multiplication and accumulation block.
It resulted in the optimized software/hardware implementations of Saber performing
decapsulation in approximately the same or slightly longer execution time than the best
Cortex-M4 implementations. As a result, it is reasonable to conclude that additional
optimizations might be possible for Saber, bringing its execution time and energy usage
to the same range as those of NewHope and Kyber. However, more work is required to
demonstrate these improvements in practice. The differences between Kyber and NewHope
in terms of the execution times for encapsulation and decapsulation remained at or below
10% for both security levels.
In Table 8, we compare results reported by our own group at the end of 2019 in [18],
with results reported by other groups for Saber and NewHope, respectively. All results
were obtained using the same SoC FPGA, Zynq UltraScale+. The software/hardware
implementation of Round5 was very close to the pure hardware implementation. The same
was not the case for the software/hardware implementation of Saber, were a significant
percentage of the execution time was devoted to functions remaining in software and to
the transfer of data and control between software and hardware. As a result, the most
accurate comparison between Round5 and Saber is possible at the security level 3, for
which the pure hardware implementation of Saber was reported in [63]. Based on this
implementation Saber outperforms Round5 by a small margin in terms of the execution
times for encapsulation and decapsulation. At the same time, even the fastest reported
implementation of Saber uses 1.6x fewer LUTs than Round5, with the same number of
BRAMs and DSP units. FrodoKEM is demonstrated to be by far slower than Saber and
Round5 for all security levels.
Somewhat differently, for the security level 5, the pure hardware implementation of
NewHope, reported in [41], is not fast enough to outperform the software/hardware
implementation of Round5 from [18]. However, the comparison is somewhat complicated
by the fact that, in [41], the results are reported the IND-CPA-secure PKE (rather than the
IND-CCA-secure KEM), and only the sum of the key generation and decryption (rather
than the decryption itself) is reported in the paper.
In Tables 9, 10, and 11, we summarize results available for the implementations of
digital signatures. The implementations targeting FPGAs are considered first in Table 9.
Unfortunately, multiple results available for qTESLA concern heuristic parameter sets

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 23

that have been withdrawn by submitters on Aug. 20, 2019. Among the remaining designs,
for Artix-7, the ranking of candidates for the security level 1 is 1. Picnic, 2. Dilithium,
and 3. qTESLA. The differences among these candidates in terms of the execution time
for the signature generation (more critical) and signature verification are very significant.
At the same time, only the implementation of Picnic is a high-speed and pure hardware
implementation. The remaining implementations are software/hardware implementations
based on RISC-V. Additionally, the number of LUTs for Picnic is approximately 6 times
larger than for Dilithium, and the number of BRAMs, 3.75 times larger. At the same
time, compared to Picnic, the execution time for signature generation is 12 times longer
for Dilithium-I and 16 times longer for Dilithium-II.
For security level 3, no implementation of Picnic is available. The implementations of
Dilithium-III and qTESLA-p-III are comparable in terms of type, target, and resource
utilization. At the same time, the implementation of Dilithium is an order of magnitude
more efficient. The implementations of digital signature schemes targeting Kintex-7 and
Virtex-7 are summarized in the same table. For the Kintex-7 implementations, Rainbow
substantially outperforms Picnic at the security level 1. For all remaining families and
security levels, only one candidate with the up-to-date parameter set is reported.
In Tables 10 and 11, Dilithium and qTESLA are compared from the point of view of
their execution time, energy usage, and power consumption in ASICs. Unfortunately, the
practical importance of the underlying study, reported in [12] and performed in the first
half of 2019, was diminished by the use of heuristic parameter sets of qTESLA, withdrawn
by the submitters on Aug. 20, 2019.

3 Choice of Algorithms to Implement
In this paper, we focus on KEMs with indistinguishability under chosen-ciphertext attack
(IND-CCA). Our primary goal was to implement all lattice-based IND-CCA secure KEMs
described in the specifications of Round 2 PQC candidates. Eventually, we fell short of
this goal by not implementing a KEM of a single lattice-based candidate, Three Bears.
Additionally, we focused on Ring Learning with Rounding (RLWR) variants of Round5,
and thus, we did not attempt to implement any LWR variants of this submission.
The submission packages of four candidates – LAC, NTRU, NTRU Prime, and Round5
– describe two substantially different KEMs each. As a result, we have implemented 12
KEMs representing 8 Round 2 candidates. For each implemented KEM, we generated
results for all supported security levels.
With a few exceptions, we did not generate results for the underlying public-key encryption
schemes (PKE) or concurrently proposed IND-CPA secure KEMs. The reason for that
was a focus on the highest-level schemes, which could be securely used to agree on shared
session keys, based on the long-term public-private key pairs valid for an extended period of
time. In this scenario, the time of the public-private key-pair generation is non-critical, and
the design can focus entirely on minimizing the time of encapsulation and decapsulation.
All implemented PQC candidates can be divided into the following major sub-families,
listed below together with their Round 2 representatives:

• LWE : Learning With Errors - FrodoKEM

• RLWE : Ring Learning with Errors - LAC (including LAC-v3a and LAC-v3b) and
NewHope

• Module-LWE: Module Learning with Errors - CRYSTALS-KYBER

• RLWR : Ring Learning With Rounding - Round5 (with and without an error
correcting code)

24
Im

plem
entation

and
B

enchm
arking

ofR
ound

2
PQ

C
C

andidates

Table 12: Features of selected NIST Round 2 PQC KEMs

Feature LAC-(v3a/v3b) NewHope Round5 Kyber Saber FrodoKEM

Underlying
problem

Ring-LWE:
Ring Learning With

Errors

Ring-LWE:
Ring Learning With

Errors

RLWR:
Ring Learning With

Rounding

Module-LWE:
Module Learning with

Errors

Mod-LWR:
Module Learning with

Rounding

LWE:
Learning With Errors

Degree n Power of 2 Power of 2 28 < n < 211 Power of 2 Power of 2 n ≡ 0 (mod 8)

Modulus q Byte-level
Prime / Power of 2 Prime Power of 2 Prime Power of 2 Power of 2

Other major
parameters

ψh
n:

Binomial distribution,
[lc, lm, ld]: BCH code

k: noise parameter,
γ: NTT parameter

p, t:
other moduli

k: the lattice
dimension as a
multiple of n,

η: noise parameter

l: number of
polynomials per vector,
p, T : other moduli,
µ: parameter of CBD

B: number of bits,
encoded in each

matrix entry,
σ: standard deviation

Hash-based
functions

SHA3-512
SHAKE256

SHAKE128,
SHAKE256

1: SHAKE128
3, 5: SHAKE256

SHA3-256,
SHA3-512,

SHAKE128,
SHAKE256

SHA3-256,
SHA3-512,
SHAKE128

1: SHAKE128
3, 5: SHAKE256

Sampling

Integers are sampled
from a fixed-weight
centered binomial
distribution(CBD)

Integers are sampled
from a centered

binomial distribution
(CBD)

Integers from a
uniform distribution
are produced by a
DRBG taking a

random seed

Integers are sampled
from a centered

binomial distribution
(CBD)

Integers are sampled
from a centered

binomial distribution
(CBD)

Integers are
sampled from an

approximation of a
rounded continuous

Gaussian distribution
Decryption
failures Yes Yes Yes Yes Yes Yes

Polynomial
Rings Zq[x]/(xn + 1) Zq[x]/(xn + 1) Zq[x]/Φn+1

∗∗ Zq[x]/(xn + 1) Zq[x]/(xn + 1) None

#Polynomial
Multiplications
in Encapsulation

2 2 2 k2 + k l2 + l
None

2 matrix-by-matrix∗

#Polynomial
Multiplications
in Decapsulation

3 3 3 k2 + 2k l2 + 2l None
3 matrix-by-matrix∗

∗ Elements of matrices in Zq

∗∗ Φn+1 = (xn+1 − 1)/(x − 1)

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 25

Table 13: Features of NIST Round 2 NTRU-based PQC KEMs

Feature NTRU-HPS NTRU-HRSS Streamlined
NTRU Prime

NTRU
LPRime

Underlying
problem

Shortest Vector
Problem

Shortest Vector
Problem

Shortest Vector
Problem

Shortest Vector
Problem

Polynomial P xn − 1 Φn = (xn − 1)/(x− 1)∗∗
xn − x− 1

irreducible in
Zq[x]

xn − x− 1
irreducible in

Zq[x]
Degree n∗ Prime Prime Prime Prime

Modulus q power of 2
with q/8 − 2 ≤ 2n/3

power of 2
with q > 8

√
2(n+ 1) Prime Prime

Other major
parameters

w:
Fixed weight
for f and r

N/A

w: Fixed
weight for f and r.

3w ≤ 2n
16w + 1 ≤ q

w: Fixed weight
for b and a.

3w ≤ 2n
16w + 2δ + 3 ≤ q

Hash-based
functions SHA3-256 SHA3-256 SHA3-512 SHA3-512

Sampling

Fixed-weight and variable
-weight polynomials are

sampled from a
uniform distribution

Variable-weight
polynomials are sampled

from a uniform
distribution

Fixed-weight
polynomials are sampled

from a uniform
distribution

Fixed-weight
polynomials are sampled

from a uniform
distribution

Decryption
failures No No No No

Polynomial Rings

R/q:
Zq[x]/(xn − 1)

S/q:
Zq[x]/(Φn)∗∗

S/3:
Z3[x]/(Φn)∗∗

R/q:
Zq[x]/(xn − 1)

S/3:
Z3[x](x− 1)/(xn − 1)

R/q:
Zq[x]/(xn − x− 1)

R/3:
Z3[x]/(xn − x− 1)

R/q:
Zq[x]/(xn − x− 1)

R/3:
Z3[x]/(xn − x− 1)

#Polynomial
Multiplications
in Encapsulation

1 in R/q 1 in R/q 1 in R/q 2 in R/q

#Polynomial
Multiplications
in Decapsulation

1 in R/q
1 in S/q
1 in S/3

1 in R/q
1 in S/q
1 in S/3

2 in R/q
1 in R/3 3 in R/q

∗ Denoted by p in the specification of Streamlined NTRU Prime and NTRU LPRime
∗∗ Φn = (xn − 1)/(x− 1) irreducible in Zq[x]

• Mod-LWR : Module Learning with Rounding - Saber,

• NTRU-based : NTRU (including NTRU-HPS and NTRU-HRSS) and NTRU Prime
(including Streamlined NTRU Prime and NTRU LPRime).

Both implemented variants of LAC were announced in the middle of Round 2, on Dec. 19,
2019. The implemented variants of the remaining algorithms have remained unchanged
since the beginning of Round 2.
The following two submissions did not limit the generation of pseudorandom bits to any
particular algorithm (e.g., SHAKE): LAC and NTRU. As a result, for each of them, we
selected a variant of a pseudorandom number generator most efficient on our benchmarking
platform. In the case of CRYSTALS-Kyber, we selected one of the variants described in
the specification - a variant based on the SHA-3 functions.
Selected features of all implemented KEMs are summarized in Tables 12 and 13.
In all of these KEMs, the elementary operation is multiplication mod q. In FrodoKEM,
LAC-v3b, Round5, Saber, NTRU-HPS, and NTRU-HRSS, q is a power of two, which
significantly simplifies the reduction mod q. In NewHope and Kyber, q is a special prime,
selected in such a way to support speeding up polynomial multiplication in Zq[x]/(xn + 1)
using the Number Theoretic Transform (NTT). In LAC-v3a, q is a one-byte prime (251).
In Streamlined NTRU Prime and NTRU LPRime, it is a prime smaller than 213. The
moduli chosen for NTRU Prime algorithms may potentially lead to a higher resistance
against future attacks.
In FrodoKEM, the most time-consuming operation is a matrix-by-matrix multiplication,
where each component of a matrix is an element of Zq. In Kyber and Saber, the most

26 Implementation and Benchmarking of Round 2 PQC Candidates

Table 14: Parameter sets of investigated algorithms. Notation: Sk - Secret Key, Pk -
Public key, Ct - Ciphertext.

Algorithm Parameter
Set

Security
Level

Degree
n

Modulus
q

Sk Size
[bytes]

Pk Size
[bytes]

Ct Size
[bytes]

FrodoKEM Frodo-640 1 640 215 19,888 9,616 9,720
Kyber KYBER512 1 256 3329 1,632 800 736
LAC-v3a LAC-128 1 512 251 1,056 544 704
LAC-v3b LAC-128 1 512 256 1,056 544 704

NewHope NEWHOPE512
-CCA-KEM 1 512 12289 1,888 928 1,120

NTRU-HPS ntruhps2048677 1* 77 211 1,235 931 931
NTRU-HRSS ntruhrss701 1* 701 213 1,452 1,138 1,138
Str NTRU Prime kem/sntrup653 2 653 4621 < 213 1,518 994 897
NTRU LPRime kem/ntrulpr653 2 653 4621 < 213 1,125 897 1,025

Round5 R5ND_CCA
_1KEM_0d 1 586 213 708 676 740

Round5 R5ND_CCA
_1KEM_5d 1 508 210 493 461 620

Saber LightSaber-KEM 1 256 213 1,568 672 736
FrodoKEM Frodo-976 3 976 216 31,296 15,632 15,744
Kyber KYBER768 3 256 3329 2,400 1,184 1,088
LAC-v3a LAC-192 3 1024 251 2,080 1,056 1,352
LAC-v3b LAC-192 3 1024 256 2,080 1,056 1,352
NTRU-HPS ntruhps4096821 3* 821 212 1,592 1,230 1,230
Str NTRU Prime kem/sntrup761 3 761 4591 < 213 1,763 1,158 1,039
NTRU LPRime kem/ntrulpr761 3 761 4591 < 213 1,294 1,039 1,167

Round5 R5ND_CCA
_3KEM_0d 3 852 212 1,031 983 1,103

Round5 R5ND_CCA
_3KEM_5d 3 756 212 828 780 934

Saber Saber-KEM 3 256 213 2,304 992 1,088
Str NTRU Prime kem/sntrup857 4 857 5167 < 213 1,463 1,184 1,312
NTRU LPRime kem/ntrulpr857 4 857 5167 < 213 1,999 1,322 1,184
FrodoKEM Frodo-1344 5 1344 216 43,088 21,520 21,632
Kyber KYBER1024 5 256 3329 3,168 1,568 1,568
LAC-v3a LAC-256 5 1024 251 2,080 1,056 1,464
LAC-v3b LAC-256 5 1024 256 2,080 1,056 1,464

NewHope NEWHOPE1024
-CCA-KEM 5 1024 12289 3,680 1,824 2,208

Round5 R5ND_CCA
_5KEM_0d 5 1170 213 1,413 1,349 1,509

Round5 R5ND_CCA
_5KEM_5d 5 946 211 1,042 978 1,285

Saber FireSaber-KEM 5 256 213 3,040 1,312 1,472
∗ assuming non-local computational models

time-consuming operations are matrix-by-vector and vector-by-vector multiplications,
where each element of a matrix or a vector is a polynomial with n coefficients in Zq, and
the multiplication of such polynomials is performed modulo the reduction polynomial
xn +1. In New Hope, LAC, Round5, and all NTRU-based KEMs, the most time-consuming
operation is a polynomial multiplication.
The only KEMs with no Decryption Failure in the underlying PKE are NTRU-based
KEMs (NTRU-HPS, NTRU-HRSS, Streamlined NTRU Prime, and NTRU LPRime).
Round5 and NTRU-based KEMs use sampling from the uniform distribution. In LAC,
NewHope, Kyber, and Saber, a Centered Binomial Distribution (CBD) is used. In
FrodoKEM, an approximation of a rounded continuous Gaussian distribution is required.
Parameter sets of 12 investigated algorithms are summarized in Table 14. The specification
of NTRU associates two different security categories with each parameter set for NTRU-

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 27

HPS and NTRU-HRSS. In this paper, we conservatively assumed the lower security level
based on the so-called non-local computational models (see [72], Section 5.3 Security
Categories). The same computation model is implicitly assumed by the submitters of the
other investigated algorithms.
In Table 14, we have divided parameter sets into three groups with security levels 1 and 2, 3
only, and 4 and 5, respectively. Only the first group contains variants of all 12 investigated
algorithms (with ten at level 1 and two at level 2). The second group includes 10 variants
at the security level 3. Finally, the last group includes 10 variants total (with two at level
4 and eight at level 5).

4 Methodology
4.1 Assumptions
All implemented schemes are Key Encapsulation Mechanisms (KEMs). For each of them,
we support two major operations: Encapsulation and Decapsulation. Whenever possible,
hardware resources and software functions are shared between these two operations. All
parameter sets of the given PQC scheme share the same HDL code. At the same time,
the choice among parameter sets is made at the time of synthesis, so the exact amount of
FPGA resources required to implement each particular parameter set can be determined
and reported. The key generation is assumed to be performed in software or using a
separate hardware unit.
Based on the considerations discussed in Section 1, our optimization target is high-speed
for both hardware and software/hardware implementation approaches. In both cases, the
primary goal is the minimum execution time for Encapsulation and Decapsulation. No
explicit limits are imposed on any resources of the FPGA platform, such as Configurable
Logic Block Slices, LUTs, flip-flops, BRAMs, or DSP units. The goal is to demonstrate
each algorithm’s inherent ability to execute multiple operations in parallel.
All implementations are required to be constant-time to make them resistant against
any known timing attacks. No physical access to the device or its proximity is assumed,
which means that countermeasures against power-based and electromagnetic analysis-based
attacks are considered non-essential. Developing and implementing such countermeasures
is beyond the scope of this study.
HDL code is required to be portable among multiple state-of-the-art FPGA families of
Xilinx and Intel, assuming that a given design fits in the largest device of a given family.
The code does not use any vendor or family-specific primitives or megafunctions. Each
hardware unit uses only a single clock. This clock can operate at an arbitrary clock
frequency lower than or equal to the maximum clock frequency determined by the critical
path of a given hardware unit. All reported execution times correspond to this maximum
clock frequency.

4.2 Choice of Benchmarking Platforms for Round 2
Hardware. The submissions selected for the hardware-only implementations (CRYSTALS-
KYBER, LAC, New Hope, and Round5) have moderate resource requirements, even when
optimized for high-speed. As a result, we have decided to generate results for two FPGA
families: Artix-7 and Virtex-7. Based on Section 2, these families were selected for
benchmarking by the largest number of other groups to date.
Software/hardware co-design. In recent years, several hardware/software co-design
platforms have emerged. The most popular in the industry are those based on integrating
an ARM-based processor and FPGA fabric on a single chip. Examples include Xilinx
Zynq 7000 System on Chip (SoC), Xilinx Zynq UltraScale+ MPSoC, Intel Cyclone V SoC

28 Implementation and Benchmarking of Round 2 PQC Candidates

FPGAs, Intel Arria 10 SoC FPGAs, and Intel Agilex F-Series SoC FPGAs. These devices
support software/hardware co-designs based on a traditional high-level language program
running on an ARM processor, with the most time-critical computations performed on a
dedicated hardware accelerator. The advantages of these platforms include the use of the
most popular embedded processor family (ARM) operating at high speed (1 GHz or above),
state-of-the-art commercial tools (available for free, or at a reduced price for academic
use), availability of relatively inexpensive prototyping boards, and practical deployment in
multiple environments.
The primary alternatives are FPGA-based systems with so-called "soft" processor cores
implemented in reconfigurable logic. Examples include Xilinx MicroBlaze, Intel Nios II, and
the open-source RISC-V, originally developed at the University of California, Berkeley [59,
78, 79]. The main advantage of these systems over "hard" processor cores is flexibility in
the allocation of resources to processor cores, including the possibility of extending them
with special instructions specific to PQC. Additionally, they are easy to port between
different FPGA families, and even between FPGAs and ASICs. A disadvantage compared
to the "hard" option is that the "soft" processors operate at much lower clock frequencies
(typically 200-450 MHz).
During Round 2, NIST asked designers to focus on the ARM Cortex-M4 for embedded
software implementations and the Artix-7 for FPGA implementations. However, we are not
aware of any SoC FPGA that contains a Cortex-M processor and the Artix-7 FPGA fabric
on a single chip. Even if such a chip existed, it would be more suitable for benchmarking
of lightweight implementations (optimized for minimum cost and power consumption),
rather than benchmarking of the high-speed implementations targeted by our study.
As a result, we have based our choice of a platform primarily on the projected practical
importance of various platforms during the initial period of deploying new PQC standards,
and the expected speed-up over pure-software implementations. These priorities led us to
choose devices from the "hard" processor class, with a hard-wired ARM processor, and
among them, the Zynq UltraScale+ family from Xilinx Inc., the vendor with the biggest
market share in this device category. Zynq UltraScale+ and similar SoC FPGAs are likely
to be used for practical deployments of PQC in the near future, wherever device speed
and time-to-market are of primary concern. Implementations using these devices are even
more likely than implementations using only hardware.
However, the use of soft-core processors, and in particular the free and open-source RISC-
V, should be considered as a natural next step, especially in light of DARPA’s recent
selection of the RISC-V Instruction Set Architecture (ISA) for investigation within its
cybersecurity-related programs [55]. Since these soft-core processors can be implemented
practically on any modern FPGA family, the choice of the family should be dependent
primarily on the selected type of implementation: lightweight vs. high-speed.
Based on the above discussion, we chose the Xilinx Zynq UltraScale+ MPSoC XCZU9EG-
2FFVB1156E as our target device and the Xilinx ZCU102 Evaluation Kit as a prototyping
board.
Our target device, Xilinx Zynq UltraScale+ MPSoC XCZU9EG-2FFVB1156E, is composed
of two major parts sharing the same chip. The primary component of the Processing
System (PS) is a quad-core ARM Cortex-A53 Application Processing Unit, running at
1.2 GHz. As in the software benchmarking experiments conducted by other groups, we
utilize only one core in all our experiments. The Programmable Logic (PL) includes
a programmable FPGA fabric similar to that of Virtex UltraScale+ FPGAs, including
Configurable Logic Block (CLB) slices, Block RAMs, DSP units, etc. The frequency of
operation depends on the particular logic instantiated in the reconfigurable fabric but
typically does not exceed 400 MHz.
Computer-Aided Design Tools. The software used is Xilinx Vivado Design Suite HLx
Edition, and Xilinx Software Development Kit (XSDK), all with version number 2018.2.

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 29

Output FIFOInput FIFO
Hardware

Accelerator

Zynq Processing System

AXI DMA

FIFO
Interface

FIFO
Interface

AXI Stream
Interface

AXI Stream
Interface

A
X

I L
it

e
In

te
rf

a
ce

A
X

I F
u

ll

In
te

rf
a

ce

A
X

I L
it

e
In

te
rf

a
ce

IR
Q

Clocking wizard

rd_clkwr_clk wr_clk rd_clkclk

UUT_clk

Main Clock

A
X

I L
it

e
In

te
rf

a
ce

AXI Timer
AXI Lite

Interface

Figure 1: Block diagram of software/hardware co-design.

4.3 Benchmarking Setup for Software/Hardware Co-design
A high-level block diagram of the experimental software/hardware co-design platform is
shown in Fig. 1. The Hardware Accelerator is connected, through the dual-clock Input
and Output FIFOs, to the AXI DMA, supporting the high-speed communication with
the Processing System. Timing measurements are performed using the popular Xilinx
IP unit called AXI Timer, which is capable of measuring time in clock cycles of the 200
MHz system clock. The Hardware Accelerator can operate at a variable clock frequency,
controlled from software using the Clocking wizard unit.

4.4 Interface and Communication Protocol
The interface of the hardware accelerator is shown in Fig. 2. This interface is assumed to
be identical for both hardware and software/hardware implementations and matches the
interface of the Input and Output FIFOs, shown in Fig. 3. The default width of the data
bus is 64 bits. Each particular operation, such as load public key, start encapsulation, etc.,
is initiated by sending an appropriate header (in the form of a single 64-bit word) from
a program running on the ARM processor to the data input of a hardware accelerator.
When an operation requires additional data, this data is transmitted using the subsequent
Input FIFO words.
After the hardware accelerator produces results or detects an error, a header word is sent
in the opposite direction. If an additional output is required, this output follows the header
and is arranged in 64-bit words. The detailed format of the exchanged inputs and outputs
is left up to the designer of a hardware accelerator.
Compared to an earlier proposed PQC Hardware API [25], the adopted interface is
significantly simpler and more flexible. Only one input port, infifo, is used in place of
three separate ports, Public Data Input (PDI), Secret Data Input (SDI), and Random
Data Input (RDI). Only one output port, outfifo, is used in place of two separate ports,

30 Implementation and Benchmarking of Round 2 PQC Candidates

outfifo_full

Hardware
Accelerator

outfifo_write

outfifo_data

infifo_read

infifo_empty

infifo_data

Figure 2: Hardware accelerator interface.

fifo_empty

Input FIFO
fifo_read

fifo_data

axis_tvalid

axis_tready

axis_tdata

axis_tvalid

Output FIFO

axis_tready

axis_tdata
fifo_write

fifo_full

fifo_data
axis_tlast

AXI Lite Slave

axi_awaddr

axi_awprot

axi_awvalid

axi_awready

axi_wdata

axi_wvalid

axi_wready

axi_bresp

axi_wstrb

axi_bvalid

axi_bready

axi_araddr

axi_arprot

axi_arvalid

axi_rdata

axi_rresp

axi_rvalid

axi_arready

axi_rready

(a) Input FIFO

fifo_empty

Input FIFO
fifo_read

fifo_data

axis_tvalid

axis_tready

axis_tdata

axis_tvalid

Output FIFO

axis_tready

axis_tdata
fifo_write

fifo_full

fifo_data
axis_tlast

AXI Lite Slave

axi_awaddr

axi_awprot

axi_awvalid

axi_awready

axi_wdata

axi_wvalid

axi_wready

axi_bresp

axi_wstrb

axi_bvalid

axi_bready

axi_araddr

axi_arprot

axi_arvalid

axi_rdata

axi_rresp

axi_rvalid

axi_arready

axi_rready

(b) Output FIFO

Figure 3: The Input and Output FIFO Interface.

Public Data Output (PDO) and Secret Data Output (SDO).
The proposed interface does not provide physical separation among the public, secret, and
random data. Still, it appears to be sufficient at the current stage of the evaluation process
for both pure hardware and software/hardware implementations. It also significantly
simplifies the software/hardware partitioning and transfer of data between the processor
and the hardware accelerator.

4.5 Porting Software Implementations to ARM Cortex-A53
To minimize overhead, we have run software in the Bare Metal mode, without any operating
system. We have started from the best high-level language implementations of selected
candidates available to date. In order to be run on ARM Cortex-A53 in the Bare Metal
mode, these implementations had to be modified as described below.
Since no functions of Open-SSL are available in the Bare Metal mode, we have adopted
for AES the Optimized ANSI C code of the Rijndael cipher based on the use of T-boxes,
developed by Vincent Rijmen, Antoon Bosselaers, and Paulo Barreto [62]. Compared

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 31

to the OpenSSL implementation, the selected implementation is written entirely in C,
rather than in an assembly language of a specific processor. It does not contain any
countermeasures against cache-timing attacks.
For SHA-3, for all candidates other than Round5, we adopted fips202.c from SUPERCOP
by Ronny Van Keer, Gilles Van Assche, Daniel J. Bernstein, and Peter Schwabe. For
Round5, we used r5_xof_shake.c by Markku-Juhani O.Saarinen and keccak1600.c from
SUPERCOP, by the same authors as fips202.c
For all investigated KEMs, the encapsulation operation uses multiple calls to the function
randombytes(), which produces a sequence of random bytes with uniform distribution.
Other PQC benchmarking projects use a version of this function based on operating system
functions and/or functions from OpenSSL [berns19, 64, 43, 68]. None of these options
is available in the Bare Metal mode. Therefore, in our code, we use the implementation
of randombytes() proposed by Saarinen in April 2018 [64], which is an improved version
of the implementation developed by NIST for the generation of known-answer tests [58].
Since both of these implementations are based on AES in the ECB mode, from the
OpenSSL library, we have replaced the code of AES by the mentioned above standalone,
optimized implementation of AES in C [62]. As a result, the selected implementation of
randombytes() is likely to have different timing characteristics than the implementations
used in other benchmarking studies, such as SUPERCOP [berns19], pqcbench [64],
pqm4 [43], and liboqs [68].
Taking into account that the C implementations of NTRU-HPS, NTRU-HRSS, and
Streamlined NTRU Prime use randombytes() to generate 3211, 1400, and 2611 bytes,
respectively, we have sped up these function calls by a) limiting the number of bytes
returned by randombytes() to 32, and b) generating the remaining random bytes using
SHAKE128. For the three KEMs mentioned above, this change resulted in the speed-up
of the relevant functions by a factor greater than 3.
No attempt at the optimization of the software implementations of KEMs by employing
assembly language coding has been made.

4.6 Software Profiling, C Source Code Analysis, and Software/Hardware
Partitioning

Our first step in evaluating the suitability of cryptographic algorithms for software/hardware
co-design was profiling of their software implementations using one core of the ARM
Cortex-A53. Profiling produced a list of the most time-consuming functions, including
their absolute execution time, percentage execution time, and the number of times they
are called.
We decided which functions to offload to hardware based on the highest potential for the
total speed-up, as well as the fairness of comparison among investigated algorithms. The
total speed-up obtained by offloading an operation to hardware depends on two major
factors: the percentage of the execution time taken in software by an operation offloaded
to hardware, and the speed-up for the offloaded operation itself. In order to maximize
the first factor, we gave priority to operations that take the largest percentage of the
execution time, preferably more than 90%. These operations may involve a single function
call, several adjacent function calls, or a sequence of consecutive instructions in C. It
is preferred that a given operation is executed only once, or only a few times, as each
transfer of control and data between software and hardware involves a certain fixed timing
overhead, independent of the size of input and output to the accelerator. In order to
maximize the second factor, we gave priority to operations that have a high potential for
parallelization in hardware, and a small total size of inputs and outputs (which will need
to be transferred to and from the hardware accelerator, respectively)
Most of the data required to make informed decisions regarding software/hardware par-
titioning can be obtained by profiling software implementations, possibly extended with

32 Implementation and Benchmarking of Round 2 PQC Candidates

some small modifications required to gather all relevant data. However, determining the
potential for parallelization requires some knowledge of hardware or at least basic concepts
of concurrent computing.
To assure fairness in our comparison, we offloaded to hardware all operations common to
or similar across the implemented algorithms (e.g., all polynomial multiplications), and
all operations that contributed significantly to the total execution time. Nevertheless, it
should be understood that this heuristic procedure may need to be repeated several times
because, after each round of offloading to hardware, different software operations may
emerge as taking the majority of the total execution time. This process can stop when the
development effort required for offloading the next most-critical operation to hardware is
disproportionately high compared to the projected speed-up.
All encapsulations involve a single call to the function randombytes(), returning a seed to
a pseudorandom number generator. This function could be possibly offloaded to hardware
by implementing a True Random Number Generator (TRNG) in Programmable Logic.
However, the correct implementation of a TRNG in FPGA fabric is a substantial project
by itself. Additionally, in some cases, the seed would need to be transferred back to
software, while in others it could be used directly by a hardware accelerator. To avoid
these additional complications, in all the current software/hardware partitioning schemes,
the seed is assumed to be generated in software.

4.7 RTL Design Methodology
The design of a hardware accelerator follows a traditional Register-Transfer Level (RTL)
methodology. The entire system is divided into the Datapath and Controller. The Datapath
is described using a hierarchical block diagram, and the Controller using hierarchical
algorithmic state machine (ASM) charts. Multiple local controllers may be advantageous
compared to a single global Controller. The RTL approach, although not novel by itself, is
an important part of our methodology as it facilitates very efficient hardware accelerator
designs. The block diagrams and ASM charts are very easy to translate to efficient and
fully synthesizable VHDL code.

4.8 Potential Software Optimizations
Our software/hardware implementations could be potentially sped up by accelerating the
remaining software part using assembly language programming.
The ARM Cortex-A53 is a microarchitecture implementing the ARMv8-A 64-bit instruction
set. This instruction set consists of traditional RISC instructions operating on 31 general-
purpose 64-bit registers, as well as Single-Instruction Multiple-Data (SIMD) instructions
operating on 32 128-bit registers, treated as vectors composed of smaller data words. The
SIMD architecture extension for the ARM Cortex-A processors, including Cortex-A53,
is referred to as NEON [7]. The NEON 128-bit registers are considered as vectors of
elements of the same data type, with NEON instructions operating on multiple elements
simultaneously. Multiple data types are supported by this technology, including floating-
point and integer operations.
A programmer can take advantage of NEON instructions using any of the following
methods: a) Auto-vectorization by a compiler, b) Use of NEON-enabled libraries, c) using
NEON intrinsics, and d) Using hand-coded NEON assembly language code [7].
Auto-vectorization is the process by which a compiler automatically analyzes the code and
identifies opportunities to optimize performance using NEON instructions and register files.
NEON-enabled libraries focus on signal and image processing, computer vision, physics,
and machine learning. Examples include Arm Compute Library, Ne10, Libyuv, and Skia.
NEON intrinsics are function calls that the compiler replaces with an appropriate NEON
instruction or sequence of NEON instructions. Intrinsics provide almost as much control

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 33

as writing assembly language but leave the allocation of registers to the compiler [6].
Finally, using hand-coded NEON assembly language code provides the programmer with
the highest level of control, which may be used for the most aggressive and advanced
optimizations.
Our implementations take advantage of only Option a) Auto-vectorization by a compiler.
Regarding Option b), we are not aware of any NEON-enabled library that explicitly
benefits lattice-based cryptosystems. No attempt was made to optimize software parts of
our implementations using either intrinsics or hand-coded NEON assembly.
Our justification for these choices is as follows. Operations that are most suitable for a
speed-up using NEON instructions are typically also excellent candidates for offloading
to hardware. As a result, at the time when further offloading to hardware is judged to
be either counterproductive or too labor intensive, the remaining operations executed
in software are most likely sequential in nature and cannot take advantage of NEON
instructions and registers.
Still, some speed up could be potentially accomplished by hand-coding these operations
using scalar instructions of the ARMv8-A 64-bit instruction set. However, doing that would
make the implementation much less portable. A similar effort could possibly be better
spent on offloading all remaining operations to hardware. Even if the further offloaded
operations cannot by themselves benefit from any substantial speed-up, moving them to
hardware will eventually eliminate the entire transfer time, which remains substantial in
all our software/hardware co-designs.
As a result, optimizing software implementations using NEON instructions and registers
should be treated as an alternative optimization path, starting from the same starting point
as our software/hardware co-designs. This starting point is a portable C implementation,
that can be easily profiled and analyzed for inherent parallelism.

4.9 Verification and Generation of Results
Functional verification of the hardware description language (HDL) code is performed by
comparing simulation results with precomputed outputs generated by a reference software
implementation.
Fully verified and independently optimized VHDL code is then combined with the optimized
software implementation of a given PQC candidate. Functional verification of the integrated
software/hardware design is performed by running the code on the prototyping board
and comparing the obtained outputs with outputs generated by a functionally equivalent
reference implementation, run on the same ARM Cortex-A53 processor.
Experimental timing measurements follow, with the hardware accelerator’s clock set (using
the Clocking wizard) to the optimal target frequency identified during the synthesis and
implementation runs. The execution time is measured by using the AXI Timer module,
shown in Fig. 1, in clock cycles of the AXI Timer, which operates at the default clock
frequency of 200 MHz.
The encapsulation time does not include the time necessary to transfer public key to the
hardware accelerator. Similarly, the decapsulation time does not include the time necessary
to transfer private key to the hardware accelerator. In case a public key of the receiver
is required during decapsulation, this key is assumed to be a part of the corresponding
private key.
The time required for a key upload is calculated as a difference between the time necessary
for transferring a concatenation of the key and the first input (e.g., the seed for encapsu-
lation, or the ciphertext for decapsulation) minus the time required to transfer the first
input itself. This convention is consistent with the fact that the transmission of the key
does not need to be repeated if the same key is reused multiple times. At the same time,
the key upload overhead is typically so small that it is not efficient to send the key well

34 Implementation and Benchmarking of Round 2 PQC Candidates

before its first use. As a result, the key upload is assumed to be always combined with the
transmission of the first input.

5 Results
5.1 Results for Hardware Implementations

Table 15: Maximum frequency and resource utilization of hardware implementations on
Artix-7.

Algorithm Security Category:
Parameter Set

Max.
Freq. LUT FF Slice DSP BR

AM
Kyber 1: KYBER512 210 11,864 10,348 3,989 8 15.0
Kyber 2: KYBER768 210 11,884 10,380 3,984 8 15.0
Kyber 5: KYBER1024 210 12,183 12,441 4,511 8 15.0
LAC-v3a 1: LAC-128 185 23,314 15,950 7,099 0 8.5
LAC-v3a 3: LAC-192 172 38,898 26,174 11,700 0 11.5
LAC-v3a 5: LAC-256 167 42,721 26,872 12,903 0 11.5
LAC-v3b 1: LAC-128 192 18,955 15,958 5,421 0 8.5
LAC-v3b 3: LAC-192 190 28,362 26,182 7,949 0 11.5
LAC-v3b 5: LAC-256 167 32,184 26,882 8,995 0 11.5
NewHope 1: NEWHOPE512-CCA-KEM 225 9,000 8,732 3,194 4 12.0
NewHope 5: NEWHOPE1024-CCA-KEM 225 9,000 8,732 3,194 4 12.0
Round5 1: R5ND_CCA_1KEM_0d 185 57,137 80,676 21,291 0 3.0
Round5 3: R5ND_CCA_3KEM_0d 165 78,825 107,564 29,441 0 3.0
Round5 5: R5ND_CCA_5KEM_0d Doesn’t fit
Round5 1: R5ND_CCA_1KEM_5d 204 36,578 56,355 14,042 0 3.0
Round5 3: R5ND_CCA_3KEM_5d 174 59,852 95,170 24,869 0 3.0
Round5 5: R5ND_CCA_5KEM_5d 169 69,548 113,913 28,286 0 3.0

Table 16: Maximum frequency and resource utilization of hardware implementations on
Virtex-7.

Algorithm Security Category:
Parameter Set

Max.
Freq. LUT FF Slice DSP BR

AM
Kyber 1: KYBER512 245 13,745 11,107 4,590 8 14.0
Kyber 3: KYBER768 245 13,889 11,113 4,500 8 14.0
Kyber 5: KYBER1024 245 14,163 13,179 5,172 8 14.0
LAC-v3a 1: LAC-128 286 24,452 16,097 7,320 0 8.5
LAC-v3a 3: LAC-192 250 39,220 26,325 12,021 0 11.5
LAC-v3a 5: LAC-256 208 44,722 27,033 13,659 0 11.5
LAC-v3b 1: LAC-128 294 18,972 16,061 5,300 0 8.5
LAC-v3b 3: LAC-192 286 28,344 26,206 7,654 0 11.5
LAC-v3b 5: LAC-256 213 32,177 26,846 9,111 0 11.5
NewHope 1: NEWHOPE512-CCA-KEM 295 11,345 8,838 3,572 4 12.0
NewHope 5: NEWHOPE1024-CCA-KEM 295 11,345 8,838 3,572 4 12.0
Round5 1: R5ND_CCA_1KEM_0d 238 62,407 80,726 23,918 0 3.0
Round5 3: R5ND_CCA_3KEM_0d 208 78,727 107,631 28,034 0 3.0
Round5 5: R5ND_CCA_5KEM_0d 215 108,472 156,532 39,008 0 3.0
Round5 1: R5ND_CCA_1KEM_5d 256 38,350 56,413 14,731 0 3.0
Round5 3: R5ND_CCA_3KEM_5d 222 59,824 95,270 23,505 0 3.0
Round5 5: R5ND_CCA_5KEM_5d 202 69,561 113,933 28,643 0 3.0

Six CCA-secure KEMs representing four candidate - CRYSTALS-Kyber, LAC, NewHope,
and Round5 - have been implemented in pure hardware. LAC is represented by two variants,
v3a with q=251 and v3b with q=256. Round5 is represented by R5ND_CCA_KEM_0d

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 35

- a ring variant without any error correcting code, and R5ND_CCA_KEM_5d - a ring
variant with the XE5 forward error correcting code used to decrease decryption failure
rates during decapsulation (and thus improve bandwidth and security).
The maximum clock frequency and resource utilization of our hardware implementations
of all six KEMs are summarized in Table 15 for Xilinx Artix-7 FPGAs and in Table 16
for Xilinx Virtex-7 FPGAs. All but one KEM fit within the largest device of the Artix-7
family. The only one that does not is the security level 5 variant of Round5 without error
correction. Taking into account that we target high-speed implementations, more suitable
for high-performance FPGAs, such as Virtex-7, the inability to fit the high-speed version of
the highest-security variant in low-cost FPGA family should not be used against Round5.
LAC-v3b, with q=256, clearly outperforms LAC-v3a, with q=251, in terms of both the
maximum clock frequency and resource utilization. For example, for the security level 1 on
Artix-7, the implementation of LAC-v3b has about 4% higher frequency and requires about
19% fewer LUTs. In the case of Round5, R5ND_CCA_KEM_5d (with error correction)
significantly outperforms R5ND_CCA_KEM_0d (without error correction). For example,
at the security level 1 on Artix-7, the difference is at the level of 10% in terms of clock
frequency, and 36% in terms of the number of LUTs.
Taking into account the best variants of all four submissions at the security level 1, all
clock frequencies are in a very small range between 192 and 210 MHz for Artix-7 and
between 235 and 294 for Virtex-7. Thus, no significant advantage in terms of the maximum
clock frequency is demonstrated by any candidate.
Ranking of candidates in terms of resource utilization is also very difficult because of
no clear equivalence between various elements of the resource utilization vectors. For
example, on Artix-7, NEWHOPE512-CCA-KEM uses about 4 times fewer LUTs than
R5ND_CCA_1KEM_5d, but requires 4 vs. 0 DSP units, and 4 times more BRAMs.
Thus, none of these implementations can be claimed to be clearly superior vs. the other.
However, an important differentiating factor is the use of either similar or significantly
different amount of resources for implementing different security levels. It is generally
more desirable to have an algorithm that can be implemented using the same amount of
resources, independently of the security level. This feature allows an easier upgrade of a
security level. It also indirectly implies that the 3-in-1 or 2-in-1 designs will have a similar
resource utilization as the lowest-security variant rather than the resource utilization higher
than that of the highest-security variant. Out of six investigated KEMs, this desirable
property is exhibited only by Kyber and NewHope. On top of that, Kyber is slightly
more flexible, due to the existence of a variant at the security level 3. On the other hand,
NewHope has a small advantage in terms of all elements of the resource utilization vector
(e.g., for level 1 at Artix-7, it uses 9000 vs. 11,864 LUTs, 8,732 vs. 10,348 FFs, 3,194 vs.
3,989 slices, 4 vs. 8 DSP units, and 12 vs. 15 BRAMs).
The times necessary to load a public key (required for encapsulation) and a secret (private)
key (required for decapsulation) are proportional to the size of the respective key and
inversely proportional to the maximum clock frequency of a given PQC unit. All transfers
are assumed to be conducted using a 64-bit infifo_data bus. The sizes of keys for all
variants of all investigated algorithms are summarized in Table 14. The maximum clock
frequencies are listed in Table 15 for Artix-7 and Table 16 for Virtex-7. In Fig. 4, we
compare these key loading times for Artix-7, and in Fig. 5 for Virtex-7. For both Artix-7
and Virtex-7, R5ND_CCA_KEM_5d has the shortest key-loading times, and NewHope
the longest. However, the differences among these times are relatively minor. They do not
exceed a factor of 2 for loading a public key, and 3 for loading a private key.
The ranking of all 6 implemented KEMs in terms of the two primary performance metrics,
for high-speed implementations, is shown in Fig. 6 for Artix-7 and in Fig. 7 for Virtex-7.
The exact results and relative differences among the candidates are also summarized in
Tables 17 and 18. The primary metrics used for ranking are the execution times for

36 Implementation and Benchmarking of Round 2 PQC Candidates

Table 17: Ranking of hardware implementations in terms of the execution time for
encapsulation. For each algorithm, the first number represent the execution time in µs;
the second number is the ratio of the execution time for a given algorithm and the best
execution time in the given ranking.

Artix-7
Level 1 Level 3 Level 5

Round5_5d 12.2 1.00 Kyber 19.9 1.00 Round5_5d 27.6 1.00
Kyber 14.8 1.21 LAC-v3b 21.2 1.07 LAC-v3b 28.1 1.02
LAC-v3b 14.8 1.21 Round5_5d 21.6 1.09 Kyber 28.4 1.03
Round5_0d 16.0 1.31 Round5_0d 25.6 1.29 NewHope 30.3 1.10
NewHope 16.3 1.34 LAC-v3a 29.1 1.46 LAC-v3a 33.9 1.23
LAC-v3a 17.9 1.47

Virtex-7
Level 1 Level 3 Level 5

LAC-v3b 9.6 1.00 LAC-v3b 14.1 1.00 LAC-v3b 22.1 1.00
Round5_5d 9.7 1.01 Round5_5d 16.9 1.20 Round5_5d 23.0 1.04
LAC-v3a 11.5 1.20 Kyber 17.1 1.21 NewHope 23.1 1.05
NewHope 12.4 1.29 LAC-v3a 20.1 1.43 Kyber 24.3 1.10
Round5_0d 12.5 1.30 Round5_0d 20.3 1.44 Round5_0d 26.9 1.22
Kyber 12.6 1.31 LAC-v3a 27.2 1.23

Table 18: Ranking of hardware implementations in terms of the execution time for
decapsulation. For each algorithm, the first number represent the execution time in µs;
the second number is the ratio of the execution time for a given algorithm and the best
execution time in the given ranking.

Artix-7
Level 1 Level 3 Level 5

Round5_5d 16.3 1.00 Kyber 27.2 1.00 Kyber 36.2 1.00
LAC-v3b 18.9 1.16 Round5_5d 28.4 1.04 Round5_5d 36.4 1.01
Round5_0d 20.6 1.26 LAC-v3b 28.7 1.06 LAC-v3b 37.9 1.05
Kyber 21.4 1.31 Round5_0d 33.2 1.22 NewHope 41.5 1.15
NewHope 22.0 1.35 LAC-v3a 37.4 1.38 LAC-v3a 43.8 1.21
LAC-v3a 22.2 1.36

Virtex-7
Level 1 Level 3 Level 5

LAC-v3b 12.4 1.00 LAC-v3b 19.1 1.00 Kyber 31.0 1.00
Round5_5d 13.3 1.07 Round5_5d 22.7 1.19 Round5_5d 31.2 1.01
LAC-v3a 14.4 1.16 Kyber 23.3 1.22 NewHope 31.7 1.02
Round5_0d 16.0 1.29 LAC-v3a 25.8 1.35 Round5_0d 35.8 1.15
NewHope 16.8 1.35 Round5_0d 27.0 1.41 LAC-v3b 37.7 1.22
Kyber 18.3 1.48 LAC-v3a 43.5 1.40

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 37

0
.2
8 0
.5
6

0
.7
3

0
.3
5 0
.6
9

0
.7
9

0
.3
7 0
.7
7

0
.7
9

0
.4
6 0
.7
5

0
.4
8 0
.7
0 0
.9
3

0
.5
2

1
.0
1

1 3 5 1 3 5 1 3 5 1 3 1 3 5 1 5

R5ND_CCA
_KEM_5d

LAC-v3b LAC-v3a R5ND_CCA
_KEM_0d

Kyber New
Hope

(a)

0
.3
0 0
.6
0

0
.7
8

0
.4
8 0
.7
8

0
.6
9

1
.3
7 1
.5
6

0
.7
1

1
.5
1

1
.5
6

0
.9
7

1
.4
3

1
.8
9

1
.0
5

2
.0
4

1 3 5 1 3 1 3 5 1 3 5 1 3 5 1 5

R5ND_CCA
_KEM_5d

R5ND_CCA
_KEM_0d

LAC-v3b LAC-v3a Kyber New
Hope

(b)

Figure 4: (a) Public Key and (b) Private Key transfer latency (µs) on Artix-7

0
.2
3 0
.4
4

0
.6
1

0
.2
3 0
.4
6

0
.6
2

0
.2
4 0
.5
3

0
.6
3

0
.3
6 0
.5
9 0
.7
9

0
.3
9 0
.7
7

0
.4
1 0
.6
0 0
.8
0

1 3 5 1 3 5 1 3 5 1 3 5 1 5 1 3 5

R5ND_CCA
_KEM_5d

LAC-v3b LAC-v3a R5ND_CCA
_KEM_0d

New
Hope

Kyber

(a)

0
.2
4 0
.4
7 0
.6
5

0
.3
7 0
.6
2 0
.8
2

0
.4
5

0
.9
1 1
.2
2

0
.4
6

1
.0
4 1
.2
5

0
.8
0

1
.5
6

0
.8
3

1
.2
2

1
.6
2

1 3 5 1 3 5 1 3 5 1 3 5 1 5 1 3 5

R5ND_CCA
_KEM_5d

R5ND_CCA
_KEM_0d

LAC-v3b LAC-v3a New
Hope

Kyber

(b)

Figure 5: (a) Public Key and (b) Private Key transfer latency (µs) on Virtex-7

encapsulation and decapsulation, respectively.
LAC-v3b, with q=256, clearly outperforms LAC-v3a, with q=251, in terms of both
encapsulation and decapsulation time. Similarly, R5ND_CCA_KEM_5d (with error
correction) outperforms R5ND_CCA_KEM_0d (without error correction). The relative
ranking of Kyber, LAC-v3b, NewHope, and R5ND_CCA_KEM_5d, changes depending
on the operation, security level, and FPGA family, but overall differences are minuscule.
Thus, none of these four algorithms has a clear edge over the other in terms of hardware
efficiency. Overall, the most efficient variants of all four candidates are in a virtual tie with
one another.
In Table 19, we compare our hardware implementation of NewHope with the best high-speed
implementation of this algorithm available to date. This implementation was described
in [81], but it covered only a subset of the functionality of the IND-CCA KEM, namely
the IND-CPA secure public-key encryption (PKE). Since for our own implementation,
we could generate results for any subset of the complete CCA KEM design and using an
arbitrary platform, the presented comparison is as fair as possible. Both sets of results
concern exactly the same functionality, implemented using the same optimization target,
with results generated using exactly the same platform.

38 Implementation and Benchmarking of Round 2 PQC Candidates

1
1
.8

2
0
.9

2
6
.6

1
4
.3 1
9
.2

2
7
.4

1
4
.3

2
0
.3

2
7
.0

1
5
.5

2
4
.7

1
5
.7

2
9
.3

1
7
.4

2
8
.1 3
2
.8

0
.4

0
.7

1
.0

0
.5

0
.7

1
.0

0
.5

0
.9

1
.1

0
.5

0
.9

0
.6

1
.0

0
.5

1
.0

1
.1

1 3 5 1 3 5 1 3 5 1 3 1 5 1 3 5

R5ND_CCA
_KEM_5d

Kyber LAC-v3b R5ND_CCA
_KEM_0d

New
Hope

LAC-v3a

Hardware Transfer

(a)
1
5
.9

2
7
.7

3
5
.4

1
8
.4

2
7
.8

3
6
.8

2
0
.1

3
2
.4

2
0
.9 2
6
.5

3
5
.2

2
1
.5

4
0
.5

2
1
.7

3
6
.4

4
2
.7

0
.4

0
.7

1
.0

0
.5

0
.9

1
.1

0
.5

0
.8

0
.5

0
.7

1
.0

0
.5

1
.0

0
.5

1
.0

1
.1

1 3 5 1 3 5 1 3 1 3 5 1 5 1 3 5

R5ND_CCA
_KEM_5d

LAC-v3b R5ND_CCA
_KEM_0d

Kyber New
Hope

LAC-v3a

Hardware Transfer

(b)

Figure 6: Execution Time for (a) Encapsulation and (b) Decapsulation (µs) on Artix-7

9
.3 1
3
.5

2
1
.2

9
.4

1
6
.4

2
2
.2

1
1
.2

1
9
.4

2
6
.3

1
2
.0

2
2
.3

1
2
.1

1
9
.6

2
6
.0

1
2
.2 1
6
.5

2
3
.5

0
.3

0
.6

0
.9

0
.3

0
.5

0
.8

0
.3

0
.7

0
.9

0
.4

0
.8

0
.4

0
.7

0
.9

0
.4

0
.6

0
.8

1 3 5 1 3 5 1 3 5 1 5 1 3 5 1 3 5

LAC-v3b R5ND_CCA
_KEM_5d

LAC-v3a New
Hope

R5ND_CCA
_KEM_0d

Kyber

Hardware Transfer

(a)

1
2
.1

1
8
.5

3
6
.8

1
2
.7

2
1
.7

2
9
.6

1
4
.1

2
5
.1

4
2
.6

1
5
.6

2
5
.7

3
4
.0

1
6
.4

3
0
.9

1
7
.9 2
2
.7

3
0
.2

0
.3

0
.6

0
.9

0
.3

0
.5

0
.8

0
.3

0
.7

0
.9

0
.4

0
.7

0
.9

0
.4

0
.8

0
.4

0
.6

0
.8

1 3 5 1 3 5 1 3 5 1 3 5 1 5 1 3 5

LAC-v3b R5ND_CCA
_KEM_5d

LAC-v3a R5ND_CCA
_KEM_0d

New
Hope

Kyber

Hardware Transfer

(b)

Figure 7: Execution Time for (a) Encapsulation and (b) Decapsulation (µs) on Virtex7

Our implementation outperforms the design by Zhang et al. [81] in terms of all execution
times. At security level 1, the speed-up varies between 2.2 for decryption, through 2.4 for
key generation, to 2.6 for encryption. Similarly, at the security level 5, the speed-up varies
between 2.0 for decryption, through 2.4 for key generation, to 2.6 for encryption. The
penalty paid for this increase in speed is the increase in the number of LUTs by 33%, in
flip-flops by a factor of 2.2, doubling the number of DSP units from 2 to 4, and increasing
the number of BRAMs from 7-8 to 12. Overall, taking into the optimization for high-speed,
our design is superior. However, the design by [81] provides an interesting example of
trading the speed for a reduction in resource utilization.

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 39

Ta
bl

e
19

:
C

om
pa

ris
on

be
tw

ee
n

th
is

w
or

k
an

d
th

e
be

st
ha

rd
w

ar
e

de
sig

n
of

N
ew

H
op

e
re

po
rt

ed
in

th
e

lit
er

at
ur

e
to

da
te

.
A

ll
re

su
lts

fo
r

Zy
nq

-7
00

0
So

C
FP

G
A

.

D
es

ig
n

M
ax

.
Fr

eq
.

Fr
eq

.
R

at
io

LU
T

LU
T

R
at

io
F

F
F

F
R

at
io

D
SP

D
SP

R
at

io
B

R
A

M
B

R
A

M
R

at
io

K
ey

G
en

er
at

io
n

C
PA

E
nc

ry
pt

io
n

C
PA

D
ec

ry
pt

io
n

cy
cl

es
cy

cl
.

ra
ti

o
µ
s

µ
s

ra
ti

o
cy

cl
es

cy
cl

.
ra

ti
o

µ
s

µ
s

ra
ti

o
cy

cl
es

cy
cl

.
ra

ti
o

µ
s

µ
s

ra
ti

o

N
ew

H
op

e-
51

2
C

PA
-P

K
E

[8
1]

20
0

0.
89

6,
78

0
0.

75
4,

02
6

0.
46

2
0.

50
7

0.
58

4,
20

0
2.

16
21

.0
2.

44
6,

60
0

2.
16

33
.0

2.
43

2,
50

0
1.

68
12

.5
1.

89
T

W
22

5
9,

00
9

8,
76

8
4

12
1,

94
6

8.
6

3,
06

1
13

.6
1,

48
7

6.
6

N
ew

H
op

e-
10

24
C

PA
-P

K
E

[8
1]

20
0

0.
89

6,
78

1
0.

75
4,

12
7

0.
47

2
0.

50
8

0.
67

8,
00

0
2.

14
40

.0
2.

41
12

,5
00

2.
18

62
.5

2.
45

4,
80

0
1.

66
24

.0
1.

87
T

W
22

5
9,

00
9

8,
76

8
4

12
3,

73
8

16
.6

5,
74

6
25

.5
2,

89
2

12
.9

40 Implementation and Benchmarking of Round 2 PQC Candidates

Table 20: Comparison of the execution times of major operations of the related CPA
PKE and CCA KEM schemes when implemented in hardware using Artix-7. The ratio
columns contain ratios of the execution times of Encapsulation/Encryption and Decapus-
lation/(Encryption+Decryption). All execution times are calculated without taking into
account the time necessary to read inputs and offload outputs.

Algorithms
CPA-PKE CCA-KEM

Encryption Decryption Encapsulation Decapsulation
cycles us cycles us cycles us ratio cycles us ratio

Kyber-512 2,602 12.4 1,608 7.7 2,995 14.3 1.15 4,395 20.9 1.04
Kyber-768 3,498 16.7 1,800 8.6 4,035 19.2 1.15 5,555 26.5 1.05
Kyber-1024 5,074 24.2 1,992 9.5 5,755 27.4 1.13 7,395 35.2 1.05
LAC-128-v3a 3,021 16.3 864 4.7 3,215 17.4 1.07 4,023 21.7 1.03
LAC-192-v3a 4,516 26.3 1,461 8.5 4,840 28.1 1.07 6,272 36.4 1.05
LAC-256-v3a 5,156 30.9 1,607 9.6 5,480 32.8 1.06 8,499 42.7 1.05
LAC-128-v3b 2,542 13.2 864 4.5 2,736 14.3 1.08 3,544 18.4 1.04
LAC-192-v3b 3,542 18.6 1,461 7.7 3,866 20.3 1.09 5,297 27.8 1.06
LAC-256-v3b 4,182 25.0 1,607 9.6 4,506 27.0 1.08 7,525 36.8 1.06
NewHope-512 3,061 13.6 1,487 6.6 3,538 15.7 1.16 4,829 21.5 1.06
NewHope-1024 5,746 25.5 2,892 12.9 6,583 29.3 1.15 9,111 40.5 1.05

Figure 8: Dependencies between CPA and CCA versions of Round5 proposals [73]

Table 21: Comparison between CPA-KEM, CCA-KEM and CCA-PKE variants of
R5ND_5d on Artix-7

Algorithm Max.
Freq.

Encaps./Encrypt. Decaps./Decrypt.
cycles ratio us ratio cycles ratio us ratio

CPA_1KEM 204 2,308 1.00 11.3 1.00 1,137 1.00 5.6 1.00
CCA_1KEM 204 2,492 1.08 12.2 1.08 3,328 2.93 16.3 2.93
CCA_1PKE 183 2,518 1.09 13.8 1.22 3,352 2.95 18.3 3.29
CPA_3KEM 169 3,582 1.00 21.2 1.00 1,726 1.00 10.2 1.00
CCA_3KEM 174 3,755 1.05 21.6 1.02 4,932 2.86 28.3 2.78
CCA_3PKE 163 3,782 1.06 23.2 1.09 4,956 2.87 30.4 2.98
CPA_5KEM 154 4,435 1.00 28.8 1.00 2,123 1.00 13.8 1.00
CCA_5KEM 169 4,655 1.05 27.5 0.96 6,137 2.89 36.3 2.63
CCA_5PKE 156 4,683 1.06 30.0 1.04 6,161 2.90 39.5 2.86

In Table 20, we compare the execution times of the CCA-KEM schemes with the execution
times of the underlying CPA-PKE schemes, for Kyber, LAC, and NewHope. The ratios

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 41

of the encapsulation and encryption times vary between to 1.07 and 1.17. That means
that the PKE encryption is a dominant operation, and an overhead of other operations
does not exceed 17%. For all four KEMs listed in this table, decapsulation includes one
call to decryption and one call to encryption. Thus, the ratio listed under Decapsulation
is a ratio of the execution time of decapsulation over the sum of the execution times of
encryption and decryption. This ratio varies between 1.03 and 1.06, which means that the
overhead of remaining operations does not exceed 6%.
In Table 21, we compare our hardware implementations of different schemes of the Round5
proposal. The dependencies among these schemes are graphically illustrated in Fig. 8. Our
comparison contains results for maximum clock frequency and the execution times of major
operations in the CPA-KEM, CCA-KEM, and CCA-PKE schemes. These metrics illustrate
the cost of additional security of CCA-KEM as compared to CPA-KEM. The biggest
difference is in the execution time of the CCA-KEM decapsulation and the CCA-PKE
decryption, as compared to the CPA-KEM decapsulation. This difference comes from
the Fujisaki-Okamoto transformation, used for providing CCA security. In CCA-KEM,
during decapsulation, one additional CPA-PKE encryption is performed. CCA-KEM
and CCA-PKE use the same parameter set, but CCA-PKE includes CCA-KEM and
performs additional symmetric-key encryption after encapsulation of the key used for it.
The differences in the execution times of the CPA-KEM and CCA-KEM encapsulations
and the CCA-PKE encryption are negligible.

5.2 Profiling the best available software implementations in C

Table 22: Source of software implementations

Algorithm Software Source Ref Opt
FrodoKEM https://github.com/Microsoft/PQCrypto-LWEKE ✓ ✓
Kyber https://github.com/pq-crystals/kyber ✓
LAC https://github.com/pqc-lac/lac-intel64 ✓ ✓
NewHope https://github.com/newhopecrypto/newhope ✓
NTRU https://github.com/jschanck/ntru ✓
NTRU Prime https://bench.cr.yp.to/supercop.html ✓ ✓
Round5 https://github.com/r5embed/r5embed ✓ ✓
Saber https://github.com/KULeuven-COSIC/SABER ✓

We implemented 12 CCA-secure KEMs representing eight Round 2 lattice-based candi-
dates using the software/hardware co-design approach described in detail in Section 4. In
Table 22, we list the repositories containing C source code used as a starting point for our
software/hardware implementations. In the case of four candidates - FrodoKEM, LAC,
NTRU Prime, and Round5 - optimized implementations in C, different than reference
implementations exist. For the remaining four candidates, their best portable implemen-
tations are the same (or almost the same) as their reference implementations submitted
at the beginning of Round 2. We used the mentioned above implementations in C as a
starting point for our first software implementation of each of the 12 implemented KEMs,
ported to ARM Cortex-A53 using the procedure described in Section 4.5.
The results of profiling for the obtained pure-software implementations, running on a single
core of ARM Cortex-A53, at the frequency of 1.2 GHz, are presented in the left portions
of Tables 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, in Appendix A.
For each of the 12 investigated algorithms and each major operation (Encapsulation and
Decapsulation), two to five most time-consuming functions are identified. For each of these
functions, we provide their execution time (in microseconds) and the percentage of the
total execution time. In the right portions of the same tables, we list in bold functions
offloaded to hardware. For the functions combined together, they are listed in the same

42 Implementation and Benchmarking of Round 2 PQC Candidates

field of the table, with sub-indices, such as 1.1, 1.2, 1.3, etc. A single execution time and a
single percentage of the software/hardware execution time is given for such a combined
function.
It is important to note that the execution time of all functions offloaded to hardware, listed
in Tables 29–38 include both the execution time in hardware as well as the time necessary
to transfer control, inputs, and outputs between the processor and a hardware accelerator.
It should also be mentioned that the number of functions offloaded to hardware may be
misleading, as these functions may appear at different levels of hierarchy. For example, for
the encapsulation in Kyber, only two functions are offloaded. However, these are function
involving the majority of operations of Kyber, amounting to 99.55-99.81% of the total
execution time in the software-only implementation. For all algorithms, at least the first
and the second most time-consuming functions are offloaded to hardware.
The total percentage of the execution time taken by a portable software implementation
to execute operations offloaded to hardware is shown in Figs. 9 and 10.

9
9
.7

9
9
.7

9
9

.6

9
9
.5

9
9

.5

9
9
.4

9
9
.2

9
8
.6

9
8

.5

9
4
.6

9
8
.4

9
6
.9

9
9
.7

9
9
.7

9
9
.7

9
9
.6

9
9
.6

9
9

.6

9
8
.9

9
8

.5

9
7

.2 9
7
.5

9
8
.6

9
7
.3

9
9
.8

9
9

.8

9
9
.8

9
9

.8

9
9

.6

9
9
.6

9
9
.1

9
8
.6

90

92

94

96

98

100

LAC-v3a LAC-v3b NewHope Kyber NTRU
-HPS

R5ND_CCA
_KEM_0d

R5ND_CCA
_KEM_5d

NTRU
-HRSS

Saber NTRU
LPRime

Str NTRU
Prime

FrodoKEM

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 9: Encapsulation: The Software Part Sped Up by Hardware [%]

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

9
9

.3

9
9

.0

9
7
.6

9
4
.0

9
7
.9

9
7
.4

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

9
9

.4

9
8

.0

9
8

.1

9
7

.6

9
6

.8

9
8
.2

9
7
.8

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

0
.0

9
8

.4

9
7

.1

90.0

92.0

94.0

96.0

98.0

100.0

Kyber LAC-v3a LAC-v3b NewHope R5ND_CCA
_KEM_0d

R5ND_CCA
_KEM_5d

NTRU
-HPS

NTRU
-HRSS

NTRU
LPRime

Saber Str NTRU
Prime

FrodoKEM

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 10: Decapsulation: The Software Part Sped Up by Hardware [%]

5.3 Results for Software/Hardware Implementations
Twelve hardware accelerators developed using the methodology described in Section 4 are
characterized in Table 23 using their maximum clock frequency and resource utilization

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 43

Table 23: Maximum frequency and resource utilization of hardware accelerators developed
as a part of software/hardware co-designs targeting Zynq Ultrascale+

Algorithm Security Category:
Parameter Set

Max.
Freq. LUT FF Slice DSP BR

AM
FrodoKEM Frodo-640 402 7,213 6,647 1,186 32 13.5
FrodoKEM Frodo-976 402 7,087 6,693 1,190 32 17.0
FrodoKEM Frodo-1344 417 7,015 6,610 1,215 32 17.5
Kyber KYBER512 410 12,034 10,532 2,327 8 14.0
Kyber KYBER768 405 12,195 10,461 2,253 8 14.0
Kyber KYBER1024 405 12,589 12,574 2,635 8 14.0
LAC-v3a LAC-128 385 25,123 16,005 3,720 0 8.5
LAC-v3a LAC-192 370 41,898 26,233 6,134 0 11.5
LAC-v3a LAC-256 357 46,756 26,989 6,774 0 11.5
LAC-v3b LAC-128 400 18,311 15,966 2,672 0 8.5
LAC-v3b LAC-192 385 27,209 26,193 4,024 0 11.5
LAC-v3b LAC-256 357 33,234 26,567 4,889 0 11.5
NewHope NEWHOPE512-CCA-KEM 490 9,307 8,928 1,721 4 11.0
NewHope NEWHOPE1024-CCA-KEM 490 9,307 8,928 1,721 4 11.0
NTRU-HPS ntruhps2048677 200 42,578 22,717 8,235 677 8.5
NTRU-HPS ntruhps4096821 200 49,735 30,599 9,924 821 8.5
NTRU-HRSS ntruhrss701 200 48,773 25,178 8,110 701 2.5
NTRU LPRime kem/ntrulpr653 278 45,901 39,426 8,938 0 8.0
NTRU LPRime kem/ntrulpr761 263 55,054 45,133 9,769 0 8.0
NTRU LPRime kem/ntrulpr857 250 64,022 50,120 10,554 0 8.0
Str NTRU Prime kem/sntrup653 278 62,797 33,531 9,110 0 9.0
Str NTRU Prime kem/sntrup761 263 70,066 38,144 10,319 0 9.0
Str NTRU Prime kem/sntrup857 250 78,379 42,274 11,509 0 9.0
Round5 R5ND_CCA_1KEM_0d 294 52,589 80,875 10,154 0 3.0
Round5 R5ND_CCA_3KEM_0d 267 72,870 107,748 13,360 0 3.0
Round5 R5ND_CCA_5KEM_0d 250 99,310 156,732 18,095 0 3.0
Round5 R5ND_CCA_1KEM_5d 357 38,116 56,189 7,538 0 3.0
Round5 R5ND_CCA_3KEM_5d 294 54,532 95,436 12,395 0 3.0
Round5 R5ND_CCA_5KEM_5d 238 69,254 114,007 12,774 0 3.0
Saber LightSaber-KEM 322 12,343 11,288 1,989 256 3.5
Saber Saber-KEM 322 12,566 11,619 1,993 256 3.5
Saber FireSaber-KEM 322 12,555 11,881 2,341 256 3.5

when implemented on Xilinx Zynq UltraScale+ SoC FPGA. All results have been obtained
after placing and routing.
NewHope, Kyber, and FrodoKEM are able to achieve the highest clock frequencies, above
400 MHz for all parameter sets. LAC has frequencies between 350 and 400 MHz, depending
on a variant and security level. The maximum frequency of Round5 decreases significantly
with the increase in the security level, especially for a version with the error-correcting
code, where the frequency drops from 357 MHz for security level 1 to 238 MHz for security
level 5. On the other hand, Saber has the same clock frequency, 322 MHz, for all of
its parameter sets. The operating frequencies for the two variants of NTRU Prime are
in the range 250-280. They are limited mainly by the reduction modulo q. To reduce
numbers with the prime modulus q, we selected the conditional subtraction method, which
is relatively simple but comes with a long critical path. NTRU-HPS and NTRU-HRSS
have the lowest clock frequency of 200 MHz. These frequencies are affected by the logic
for converting polynomials from R/q to S/q and from R/q to S/3.
The accelerators for NTRU-HPS and NTRU-HRSS involve the highest number of integer
multiplications performed in parallel. These multiplications in the FPGA fabric are
delegated to dedicated DSP units. The DSP units are also taken advantage of in Saber and
to a lower extent in FrodoKEM, Kyber, and NewHope. LAC, Round5, NTRU LPRime,

44 Implementation and Benchmarking of Round 2 PQC Candidates

and Streamlined NTRU Prime do not involve any integer multiplications in hardware.
This is because the coefficients of one of the multiplied polynomials always belong to the
set {-1, 0, 1}.
FrodoKEM is the algorithm with the highest utilization of BRAMs, which reaches 17.5
blocks. The algorithms with the lowest utilization of BRAMs (between 2.5 and 3.5) include
NTRU-HRSS, Round5, and Saber. The remaining KEMs require 8–14 BRAMs.
Round5, Streamlined NTRU Prime, and NTRU LPRime use the largest number of LUT,
flip-flops (FFs), and Slices. FrodoKEM, NewHope, Kyber, and Saber use the smallest
number. The amount of resources used increases noticeably with the increase in the
security level for 8 out of 12 KEMs. The following algorithms have a desirable property
that the security levels do not substantially affect resource utilization (except for the small
increase in the number of BRAMs in FrodoKEM): FrodoKEM, Kyber, NewHope, and
Saber.
Because of the timing dependencies, and in particular, the bottleneck caused by SHAKE,
our implementation of FrodoKEM cannot be easily sped up by trading additional resources
for speed. This example clearly illustrates the potential algorithmic limits on the amount
of parallelization (and thus the maximum speed-up), which is independent of the amount
of hardware resources available to the designer.
The times necessary to load a public key (required for encapsulation) and a secret (private)
key (required for decapsulation) are proportional to the size of the respective key and
inversely proportional to the maximum clock frequency of a given PQC unit. All transfers
are assumed to be conducted using a 64-bit infifo_data bus. The sizes of keys for all
variants of all investigated algorithms are summarized in Table 14. The maximum clock
frequencies are listed in Table 23. In Fig. 11, we compare these key loading times for
all 12 implemented KEMs. R5ND_CCA_KEM_5d has the shortest key-loading times,
and FrodoKEM the longest. However, the differences among these times are relatively
minor for all KEMs other than FrodoKEM. They do not exceed a factor of 2 for loading a
public key, and 4 for loading a private key. Except for NewHope at the security level 5
and FrodoKEM at all security levels, the public-key loading times stay below 1 µs, and
private-key loading times below 2 µs.
Total execution times of our software/hardware implementations are summarized in Fig. 12
for encapsulation, and Fig. 13 for decapsulation.
Rankings can be considered separately for three groups of parameter sets listed in Table 14,
with the security levels 1 and 2, 3 only, and 4 and 5, respectively. Only the first group
contains all 12 investigated algorithms. In the second group, NTRU-HRSS and NewHope
are missing, and in the third group, NTRU-HRSS and NTRU-HPS are not represented. In
Figs. 12 and 13, KEMs are arranged according to their ranking for security levels 1 and 2.
Each execution time is separated into three components: the execution time in hardware
(i.e., in the hardware accelerator located in programmable logic of Zynq UltarScale+ SoC
FPGAs), the time required to transfer data and control between the processor and the
hardware accelerator, and the execution time in software (i.e., in ARM Cortex-A53). For
encapsulation, at least the function randombytes() is assumed to be executed in software
to generate a seed for a deterministic random bit generator (typically based on SHAKE)
implemented in hardware. For decapsulation, no internal function of KEM has to be
executed in software. We treat implementation as a software/hardware implementation
even if the operation of the processor is limited only to sending KEM inputs to and
receiving KEM outputs from the hardware accelerator. Hence, our software/hardware
implementations of LAC-v3b, R5ND_CCA_KEM_5d, NewHope, Kyber, LAC-v3a, and
R5ND_CCA_KEM_0d, which have the shortest execution times of encapsulation and
decapsulation are based on the pure hardware implementations of KEMs, described in
Section 5.1. The ranking of these six KEMs is similar, but not identical to the ranking
of their corresponding hardware implementations. The small changes in rankings come

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 45

0
.2

9 0
.4

9

0
.6

2

0
.3

4

0
.6

6

0
.6

6

0
.3

4

0
.6

6

0
.6

6

0
.4

2 0
.6

2 0
.8

2

0
.4

3 0
.6

2 0
.8

5

0
.5

0 0
.7

4 0
.9

8

0
.5

7

0
.6

5 0
.8

3

0
.5

8

1
.1

4

0
.5

9 0
.7

7

0
.6

3

0
.7

3

0
.7

4

0
.7

2

6
.0

1

9
.7

7

1
3

.4
5

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 2 3 4 1 5 1 3 2 3 4 1 1 3 5

R5ND_CCA
_KEM_5d

LAC-v3a LAC-v3b Saber R5ND_CCA
_KEM_0d

Kyber NTRU
LPRime

New
Hope

NTRU
- HPS

Str NTRU
Prime

NTRU
-HRSS

FrodoKEM

(a)

0
.3

1 0
.5

2

0
.6

6

0
.4

5 0
.6

5 0
.8

9

0
.6

6

1
.3

0

1
.3

0

0
.6

6

1
.3

0

1
.3

0

0
.7

1

0
.8

1

1
.2

5

0
.7

8 1
.0

0

0
.9

1

0
.9

5

1
.1

1

0
.9

2

0
.9

8

1
.4

4

1
.9

0

1
.0

2

1
.5

0

1
.9

8

1
.1

8

2
.3

0

1
2

.4
3

1
9

.5
6

2
6

.9
3

1 3 5 1 3 5 1 3 5 1 3 5 2 3 4 1 3 1 2 3 4 1 3 5 1 3 5 1 5 1 3 5

R5ND_CCA
_KEM_5d

R5ND_CCA
_KEM_0d

LAC-v3a LAC-v3b NTRU
LPRime

NTRU
- HPS

NTRU
-HRSS

Str NTRU
Prime

Saber Kyber New
Hope

FrodoKEM

(b)

Figure 11: (a) Public Key and (b) Private Key transfer latency (µs) of SW/HW co-design
on Zynq-Ultrascale+

from small differences in the transfer time and execution time in software, as well as from
the different maximum clock frequency of hardware accelerators when implemented in
programmable logic of Zynq UltraScale+ rather than Artix-7 or Virtex-7 (as in Figs. 6
and 7). Overall, however, not leaving any operation (other than randombytes()) in
software gives these 6 KEMs enough advantage to outperform all six remaining schemes.
FrodoKEM is by far the slowest KEM, and it cannot outperform any other scheme even if
100% of its operations are moved to hardware. For encapsulation, NTRU-HPS, Streamlined
NTRU Prime, and NTRU LPRime are also very unlikely to move in ranking ahead of any
of the first six schemes, because even after reducing their execution time in software to
zero and making the transfer time similar to the transfer time of the first six schemes (i.e.,
in the range of 6.2-7.0 mus), their execution times would exceed the overall time for the
KEM at position 6, R5ND_CCA_KEM_0d.

46 Implementation and Benchmarking of Round 2 PQC Candidates

6
.8 1
0

.0

1
2

.6

7
.0 1

2
.8 1

9
.6

7
.2 1

3
.4

7
.3 1
0

.0 1
4

.2

8
.4 1

3
.1

1
5

.4

1
0

.1 1
5

.8 2
3

.2

1
6

.2 1
9

.6

1
7

.8 2
1

.9 2
6

.0

7
.6 1

2
.0 1

8
.7 2
1

.9 2
6

.7 3
1

.6

1
0

.2

3
1

4
.7

/
3

7
.8

/
8

7
0

.5

7
1

7
.0

/
4

3
.8

/
8

8
1

.7

1
,2

7
9

.5
/

4
8

.9
/

8
5

7
.8

6
.6

6
.8 6

.9

6
.5

6
.6

6
.8

6
.2

6
.3

6
.4 6

.4

6
.3

6
.6

6
.8 6

.9

6
.8

6
.8

7
.0

9
.3

1
1

.9

6
.6

6
.7

7
.0

3
5

.8

3
7

.2

3
6

.4

7
.0

7
.1

7
.3

1
5

.1

1
5

.6

1
6

.9

2
4

.2

2
7

.0

3
0

.4

5
.6

7
.8

1
0

.2

2
2

.7

2
5

.7

2
8

.5

4
3

.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 3 5 1 3 5 1 5 1 3 5 1 3 5 1 3 5 1 3 2 3 4 1 3 5 2 3 4 1 1 3 5

LAC-v3b R5ND_CCA
_KEM_5d

New
Hope

Kyber LAC-v3a R5ND_CCA
_KEM_0d

NTRU
- HPS

Str NTRU
Prime

Saber NTRU
LPRime

NTRU
-HRSS

FrodoKEM

Hardware Transfer Software

Figure 12: Encapsulation: Total Execution Time in Software/Hardware [µs]

8
.9 1
3
.8

1
7
.2

9
.3 1
6
.8 2
5
.8

9
.9 1
8
.6

1
0
.7

1
3
.7

1
8
.3

1
0
.4 1
7
.0

1
9
.9

1
3
.0 2
0
.5 3
0
.0

9
.7 1
4
.8 2
2
.4

1
6
.4

2
1
.9

2
3
.8

2
5
.0

3
0
.5 3
6
.6

1
4
.5

1
7
.5

1
1
.7

3
1
1
.9
/
3
1
.1
/
9
7
8
.4

7
1
2
.1
/
3
7
.6
/
1
,1
1
6
.5

1
,2
7
3
.2
/
4
3
.3
/
1
,8
0
3
.4

6
.6 6
.8 6
.9

6
.7

6
.6

6
.7

6
.3

6
.3

6
.3 6
.3 6
.4

6
.6

6
.8 6
.9

6
.7

7
.1

6
.8

3
1
.6 3
3
.3 3
2
.7

7
.1 6
.7 7
.0 7
.1

8
.2

1
0
.7

1
9
.6 1
9
.9

3
4
.6

1
1
.3

1
6
.5

2
1
.9

4
3
.4

5
0
.3 5
6
.0

3
8
.8

4
5
.4

5
0
.2

6
1
.2 6
9
.7

8
9
.3

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

1 3 5 1 3 5 1 5 1 3 5 1 3 5 1 3 5 1 3 5 2 3 4 2 3 4 1 3 1 1 3 5

LAC-v3b R5ND_CCA
_KEM_5d

New
Hope

Kyber LAC-v3a R5ND_CCA
_KEM_0d

Saber Str NTRU
Prime

NTRU
LPRime

NTRU
- HPS

NTRU
-HRSS

FrodoKEM

Hardware Transfer Software

Figure 13: Decapsulation: Total Execution Time in Software/Hardware [µs]

For Saber and NTRU-HRSS, it is too early to make such a judgment. However, the
presented results at least reveal some potential weaknesses of these two algorithms (from
the point of view of ease of their software/hardware partitioning), which can be observed
by analyzing their profiling results, summarized in Tables 38 and 34. For NTRU-HRSS,

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 47

even after moving to hardware its four most time-consuming operations, the software still
amounts to a significant percentage of the total execution time. In Saber, even after moving
to hardware its five most time-consuming operations, transfer time still dominates the
total execution time. This last point can be reinforced by analyzing Table 24. According
to this table, our software/hardware implementation of Saber has the largest number of
transfers between the processor and the accelerator (6). Disregarding FrodoKEM, which
is very slow in hardware already, NTRU-HRSS is the only other algorithm that requires
more than one transfer during the enacapsulation.

Table 24: Data Transfer Summary for SW-HW co-designs

Algorithms Encapsulation Decapsulation

Count Load
(bytes)

Return
(bytes) Count Load

(bytes)
Return
(bytes)

KYBER512 1 32 768 1 736 32
KYBER768 1 32 1,120 1 1,088 32
KYBER1024 1 32 1,600 1 1,568 32
R5ND_1KEM_0d 1 16 740 1 724 16
R5ND_3KEM_0d 1 24 1,103 1 1,079 24
R5ND_5KEM_0d 1 32 1,509 1 1,477 32
R5ND_1KEM_5d 1 16 620 1 604 16
R5ND_3KEM_5d 1 24 934 1 910 24
R5ND_5KEM_5d 1 32 1,285 1 1,253 32
LightSaber-KEM 6 1,600 704 5 1,216 896
Saber-KEM 6 2,272 960 5 1,216 1,280
FireSaber-KEM 6 2,976 1,216 5 1,600 1,664
Frodo-640 4 19,400 22,032 3 9,768 22,008
Frodo-976 4 31,472 31,328 3 15,816 31,304
Frodo-1344 4 42,780 43,136 3 21,728 43,104
LAC-128-v3a 1 16 736 1 704 32
LAC-192-v3a 1 32 1,384 1 1,352 32
LAC-256-v3a 1 32 1,496 1 1,464 32
LAC-128-v3b 1 16 736 1 704 32
LAC-192-v3b 1 32 1,384 1 1,352 32
LAC-256-v3b 1 32 1,496 1 1,464 32
NEWHOPE512 1 32 960 1 928 32
NEWHOPE1024 1 32 1,856 1 1,824 32
ntruhps2048677 1 720 1,372 2 2,318 1,408
ntruhps4096821 1 864 1,708 2 2,906 1,692
ntruhrss701 2 1,024 1,436 3 2,854 1,512
kem/sntrup653 1 40 1,448 1 912 72
kem/sntrup761 1 40 1,664 1 1,048 72
kem/sntrup857 1 40 1,856 1 1,192 72
kem/ntrulpr653 1 40 1,584 1 1,040 72
kem/ntrulpr761 1 40 1,800 1 1,176 72
kem/ntrulpr857 1 40 1,992 1 1,320 72

For decapsulation, the execution time in software is eliminated entirely for the first six
KEMs in the ranking. The transfer time is similar for all algorithms from that group.
The transfer time dominates the execution time in Saber, because, as shown in Table 24,
five transfers are required, more than for any other algorithm. The transfer time is also

48 Implementation and Benchmarking of Round 2 PQC Candidates

unusually long for NTRU-HRSS and NTRU-HPS (with 3 and 2 transfers, respectively). As
a result, it might be too early to judge whether Saber, NTRU-HRSS, and NTRU-HPS can
be made as efficient as the first six KEMs, after moving all their operations to hardware.
On the other hand, for NTRU LPRime and Streamlined NTRU Prime there is already a
strong indication that these algorithms will not be able to move ahead of any of the first
six KEMs, even if implemented entirely in hardware. Finally, FrodoKEM is by far the
slowest algorithm out of all 12 implemented in this study.

5.4 Use of High-Level Synthesis
A traditional approach to high-level synthesis is based on starting from the existing
implementation in C, C++, or System C, and then introducing modifications aimed at:

• inferring the desired interface

• optimizing speed

• minimizing resource utilization.

In the case of PQC candidates, a starting point is naturally determined by either reference
implementation or the best portable implementation written entirely in C, such as those
described in Section 4.5, used as a starting point for the software/hardware co-design.
Traditionally, a significant percentage of all modifications amounts to guiding the synthesis
tool toward the desired outcome using the C language pragmas, ignored by traditional
high-level language compilers, but treated as directives by a given synthesis tool. This
approach is used, in particular, in two popular HLS tools targeting FPGAs, Vivado HLS
and LegUp. For example, there are over 20 pragma directives in the current version of
Vivado HLS. Their different combinations lead to different hardware architectures. The
impact of a particular pragma directive is heavily dependent on the code structure and the
algorithm. Some directives may have no impact at all; others may dramatically change
the speed vs. cost trade-off. Exploring all possible combinations is often unrealistic.
Additionally, in many cases, code refactoring may give better results than an optimal
choice and placement of directives.
The first attempt at applying HLS to benchmarking PQC schemes was reported in [14].
Only a few directives aimed at accomplishing unrolling of loops and pipelining were applied.
The authors also attempted to synthesize the C code of the entire algorithm. Taking into
account the limited availability of RTL code, no comparison with the equivalent RTL code
was attempted.
An outcome of this approach is quite clearly illustrated in Table 25. The differences in
obtained results are huge, although probably not that surprising, taking into account
the almost complete reliance on tools in [14]. The HLS-based designs are bigger than
RTL-based designs in terms of the number of LUTs by a factor of at least 144 for Kyber,
14.5 for NewHope, and 7.5 for Classic McEliece. These factors are obtained by dividing
the area of the decapsulation/decryption unit in the HLS-based approach by the area of
the combined unit, capable of performing key generation, encapsulation/encryption and
decapsulation/decryption in the RTL approach. Thus, if units with the same functionality
were compared, the ratios could be even higher. The HLS to RTL ratios of the encapsula-
tion/encryption times are 10.5 for Kyber, 93 for NewHope, and 700 for Classic McEliece.
For decapsulation/(decryption+encryption), the corresponding ratios are 36 for Kyber,
741 for NewHope, and 551 for Classic McEliece. Overall in terms of the latency times
area product, the HLS-based designs are three orders of magnitude worse. Additionally, a
significant difference in specific ratios for Kyber and NewHope, combined with the almost
identical performance and resource usage of RTL designs, indicates that the approach
pursued in [14] cannot correctly predict the relative ranking of PQC candidates unless the
differences among them are truly enormous.

V
.D

ang,F.Farahm
and,M

.A
ndrzejczak,K

.M
ohajerani,D

.T
.N

guyen,and
K

.G
aj

49

Table 25: Comparison between HLS-based designs from [14] and the corresponding RTL-based designs. All results for Virtex-7 FPGAs. TW
denotes this work.

Design Max.
Freq.

Freq.
Ratio LUT LUT

Ratio FF FF
Ratio DSP BR

AM
Key Generation Encaps./Enc. Decaps./(Dec.+Enc.)cpa

cycles µs cycles cycl.
ratio µs

µs
ratio cycles cycl.

ratio µs
µs

ratio

Kyber-512 CCA-KEM

[14] 67 0.27
1,307,815
1,977,896 95.15

143.90

11,699
194,126 1.05

17.48
- - - - 31,669 10.57 475.0 38.86 43,018 9.79 645.3 35.97

TW 245 13745 11107 8 14 2,160 8.8 2,995 12.2 4,395 17.9

NewHope-512 CCA-KEM

[14] 67 0.23
136,457
164,937 12.03

14.54

25,639
28,999 2.90

3.28
0 0 - - 307,847 87.01 4,617.7 385.03 721,986 149.51 10,829.8 661.58

TW 295 11,345 8,838 4 10.0 2,122 7.2 3,538 12.0 4,829 16.4

mceliece6960119 CPA-PKE

[14] 100 0.77
840,430
870,908 7.19

7.45

60,270
79,962 0.32

0.42
- - - - 3,787,729 699.75 37,877.3 908.33 10,659,024 424.07 106,590.2 550.85

[75] 130 116,928 188,324 0 607.0 974,306 7,500.4 5,413 41.7 25,135 193.5

50 Implementation and Benchmarking of Round 2 PQC Candidates

Table 26: Comparison between HLS and RTL method for NTT implementations.

Method DSP BR
AM LUT FF Slice Max.

Freq.
Latency
(cycles)

NewHope-512 with 1 NTT module
HLS 4 3 1,181 1,403 239 454 3,247
RTL 4 3 1,040 940 190 476 3,247

HLS/RTL 1.00 1.00 1.14 1.49 1.26 0.95 1.00
NewHope-1024 with 1 NTT module

HLS 4 5 1,110 1,342 219 455 6,266
RTL 4 5 842 803 170 476 6,266

HLS/RTL 1.00 1.00 1.32 1.67 1.29 0.96 1.00
Kyber512 with 2 NTT modules

HLS 24 7 2,325 2,346 430 455 1,271
RTL 24 5 2,040 3,223 433 500 1,271

HLS/RTL 1.00 1.40 1.14 0.73 0.99 0.91 1.00
Kyber768 with 3 NTT modules

HLS 36 11 5,379 4,043 1,074 416 1,271
RTL 36 7.5 3,054 5,098 637 500 1,271

HLS/RTL 1.00 1.47 1.76 0.79 1.69 0.83 1.00
Kyber1024 with 4 NTT modules

HLS 48 14 7,111 5,457 1,374 416 1,271
RTL 48 10 4,055 6,803 960 500 1,271

HLS/RTL 1.00 1.40 1.75 0.80 1.43 0.83 1.00

As a result, a substantially different approach was needed to overcome this inefficiency.
This approach was demonstrated by our group in [21], [23], [56], and [57]. First, HLS is
combined with software/hardware co-design. This way, only the most time-consuming
operations (and preferably a single operation) needs to be offloaded to hardware. These
operations can be identified using techniques described in Section 4.6. Secondly, these
critical operations are described using block diagrams. Third, the block diagrams are
translated into HLS-ready C code, written from scratch, and enhanced with HLS directives
encoded using pragmas. The designer then debugs the code using a C testbench, which is
much easier to develop and easier to use than HDL testbench. When the code is determined
to be functionally correct, it is passed through synthesis. If the number of clock cycles
is different from the expected number obtained from the analysis of the block diagram,
additional pragmas need to be added, or the code needs to be refactored (rewritten) to
make it more suitable for HLS tools. For example, a programmer may apply explicit
function sharing or eliminate dependencies preventing multiple operations from executing
in parallel. These optimizations continue at least until the required number of clock cycles
is reached. They may also be applied to reduce the number of specific logic resources, such
as LUTs, DSP units, or BRAMs, as well as to increase the maximum clock frequency.
Below, we demonstrate the application of this approach to the preliminary software/hardware
implementations of two Round 2 candidates: NewHope and Kyber. In both implemen-
tations, we decided to offload to hardware only the most time-consuming operation, the
Number Theoretic Transform (NTT). This operation was first expressed using a detailed
block diagram, presented in [57]. Then, the described above methodology was followed. In
parallel, optimized RTL implementation was developed for the purpose of evaluating the
quality of our HLS design. The obtained results are summarized in Table 26.
These results indicate that our primary goal of reaching the same number of clock cycles
as that obtained using the RTL approach was accomplished. At the same time, the clock
frequency was lower by up to 17%, and the number of LUTs, flip-flops, and slices higher

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 51

by up to 76%, 67%, and 69%, respectively.
Overall, the RTL- and HLS-based approaches to the design of a hardware accelerator for
NTT led to almost the same total speed-up of the software/hardware implementation.
At the same time, the development time was several times shorter for the HLS-based
approach.
The disadvantage of our approach is the need for a detailed block diagram, which requires
either hardware expertise within a team of HLS programmers or collaboration with a group
of hardware designers. Additionally, most of the HLS-ready code needs to written from
scratch. The reduction in clock frequency plays a secondary role, as it typically does not
significantly affect the overall speed-up of the software/hardware implementation over the
portable C code. Similarly, for high-speed implementations, the exact resource utilization
plays a secondary role and does not affect the ranking of candidates.

5.5 Results for Software Implementations Optimized Using NEON In-
structions of ARM

Reference
Implementation

in C

Optimized
Portable Implementation

in C

Software/Hardware
Implementation

in C & HDL

NEON-optimized
Implementation

in C with NEON intrinsics

Hardware
Implementation

in HDL

NEON-optimized
implementation

in assembly language
of ARMv8-A

Figure 14: Types of optimized implementations.

Table 27: Comparison between Software Implementations using NEON instructions and
Software-Hardware co-designs.

Algorithm
SW-Ref SW-Neon SW-HW Ref/Neon Ref/SW-HW Neon/SW-HW

Encaps. Decaps. Encaps. Decaps. Encaps. Decaps. Encaps. Decaps. Encaps. Decaps. Encaps. Decaps.
µs µs µs µs µs µs Ratio Ratio Ratio Ratio Ratio Ratio

NewHope-1024 723.5 891.2 338.3 363.6 21.3 24.9 2.1 2.5 34.0 35.8 15.92 14.61
ntruhrss701 3,060.0 8,896.0 207.0 311.0 68.3 135.6 14.8 28.6 44.8 65.6 3.03 2.29
ntruhps2048677 3,134.0 8,281.0 483.0 256.0 41.2 95.3 6.5 32.3 76.0 86.9 11.72 2.68
ntruhps4096821 4,504.0 12,125.0 598.0 327.0 48.4 107.1 7.5 37.0 93.0 113.2 12.35 3.05
LightSaber 503.1 629.4 141.8 151.0 49.0 52.5 3.5 4.1 10.3 12.0 2.89 2.87
Saber 965.3 1158.4 235.4 250.8 56.9 64.7 4.1 4.6 16.9 17.9 4.13 3.87
FireSaber 1573.9 1835.6 349.9 374.3 65.2 77.1 4.5 4.9 24.1 23.8 5.36 4.85

On the selected platform, Zynq UltraScale+, a reference implementation of a PQC scheme
in C can be optimized using several approaches shown in Fig. 14. First, basic optimizations
may be still possible in C without affecting the portability of the code. From here, two
divergent paths are worth investigating. First, Optimized Portable Implementation in
C can be turned into a Software/Hardware Implementation in C and HDL, using the
methodology described in this paper in Sections 4.3, 4.4, 4.6, 4.7. After all C functions are
moved to hardware, this implementation becomes a pure hardware implementation in HDL.

52 Implementation and Benchmarking of Round 2 PQC Candidates

An alternative path is based on the use of SIMD instructions of ARMv8-a, referred to as
NEON instructions. These instructions can be called from C using the so-called intrinsics.
NEON intrinsics are function calls that the compiler replaces with an appropriate NEON
instruction or a sequence of NEON instructions. Intrinsics provide almost as much control
as writing assembly language but leave the allocation of registers to the compiler [6].
Operations that cannot take advantage of vector instructions are left in C. This path
can be further extended into pure assembly language code. This code may consist of
hand-coded NEON assembly language instructions, as well as remaining (so-called scalar)
assembly language instructions of ARMv8-a.
We have developed NEON-optimized implementations in C with NEON intrinsics for 4
investigated KEMs, representing 3 Round 2 PQC candidates, namely NewHope, NTRU-
HPS, NTRU-HRSS, and Saber. Our starting point consisted of optimized implementations
of these algorithms, targeting Intel and AMD processors, using AVX2 (Advanced Vector
Extensions 2). In Table 27, we compare the performance of NEON-optimized software
implementations (based on intrinsics) with the performance of our software/hardware
implementations.
Our software/hardware implementations appear to be superior for all investigated can-
didates and parameter sets. Compared to the software implementation based on NEON
intrinsics, the execution times for NewHope-1024 are over 14.5 times smaller in soft-
ware/hardware. For NTRU-HPS software/hardware implementation is about 8 times
faster for encapsulation and 3.5-4.0 times faster for decapsulation. Saber has the ratios
approximately the same for encapsulation and decapsulation. However, the advantage of
software/hardware increases with the increase in the security level. Finally, NTRU-HRSS
has the smallest ratios in the range of 1.8-1.9.
Multiple conference papers have been devoted to the NEON-based implementation of a
single public-key cryptosystem [15, 65, 66, 10, 51, 69, 67]. These papers demonstrate
that developing optimized implementations based on NEON intrinsics, hand-coded NEON
assembly language code, and hand-coded ARMv8-A RISC assembly language code is at
least as complex and labor intensive as the development of optimized software/hardware
implementations.
The advantages of NEON-based implementations include a) software-only paradigm - no
need for expertise in hardware and knowledge of HDLs, b) NEON vector instructions run
at a higher clock frequency than an FPGA-based hardware accelerator, c) using the NEON
co-processor involves minimal (if any) transfer overhead, d) the NEON co-processor can be
potentially reused for non-cryptographic operations, such as signal and image processing.
The primary advantages of the software/hardware implementations are: a) Programmable
logic is much more powerful and less restrictive than the NEON co-processor in terms
of the number and type of operations that can be executed in parallel. As a result, a
higher overall speed-up is accomplished. b) Hardware written in HDL is likely to be more
portable than software written in the assembly language of a particular processor. In
particular, our software/hardware implementations can be ported to any other modern
SoC FPGA, assuming that the amount of the required hardware resources does not exceed
the capabilities of the programmable logic of a given SoC device.

6 Comparison with performance of the AVX2-optimized
software implementations

In Table 28, we compare the performance of our software/hardware implementations,
running on Zynq UltraScale+, with the performance of the best software implementations
available to date, running on Intel Xeon E3-1220 v3 (3.1 GHz).
When comparing these implementations, one needs to keep in mind that the software

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 53

Table 28: Comparison of the GMU software/hardware implementations, running on Zynq
UltraScale+, with the software implementations in supercop-20200525 running on Intel
Xeon E3-1220 v3 (3100MHz)

Algorithm median
cycles

SW
(us)

SW/HW
(us) Ratio

Encapsulation
Level 1 & 2

ntruhrss701 26116 8.4 68.3 0.12
ntruhps2048677 35352 11.4 41.2 0.28
kyber512 44404 14.3 15.2 0.94
sntrup653 46620 15.0 48.5 0.31
lightsaber2 67568 21.8 49.0 0.44
ntrulpr653 69400 22.4 51.6 0.43
lac128 82684 26.7 15.9 1.67
r5nd1kem0d 89500 28.9 16.7 1.73
newhope512cca 109040 35.2 15.0 2.34
r5nd1kem5d 122492 39.5 13.8 2.85
frodokem640shake 4529184 1,461.0 1,223.0 1.19

Level 3
ntruhps4096821 43100 13.9 48.4 0.29
sntrup761 48780 15.7 55.5 0.28
ntrulpr761 72372 23.3 59.6 0.39
kyber768 74040 23.9 17.9 1.34
saber2 115948 37.4 56.9 0.66
lac192 158628 51.2 21.4 2.39
r5nd3kem5d 209572 67.6 19.2 3.52
r5nd3kem0d 317244 102.3 21.9 4.67
frodokem976shake 9467152 3,053.9 1,642.5 1.86

Level 4 & 5
sntrup857 60668 19.6 63.4 0.31
ntrulpr857 91416 29.5 67.3 0.44
kyber1024 103936 33.5 22.1 1.52
firesaber2 175844 56.7 65.2 0.87
lac256 188244 60.7 23.8 2.55
newhope1024cca 201772 65.1 21.3 3.06
r5nd5kem5d 368004 118.7 26.0 4.57
r5nd5kem0d 392492 126.6 29.2 4.34
frodokem1344shake 16379980 5,283.9 2,186.2 2.42

Decapsulation
Level 1 & 2

kyber512 37600 12.1 17.1 0.71
r5nd1kem0d 43000 13.9 19.3 0.72
sntrup653 59324 19.1 66.9 0.29
ntruhps2048677 62004 20.0 95.3 0.21
r5nd1kem5d 63624 20.5 15.7 1.31
ntruhrss701 63632 20.5 135.6 0.15
lightsaber2 69508 22.4 52.5 0.43
ntrulpr653 82732 26.7 70.9 0.38
lac128 105388 34.0 17.1 1.99
newhope512cca 109728 35.4 16.1 2.19
frodokem640shake 4494652 1,449.9 1,321.3 1.10

Level 3
sntrup761 59120 19.1 78.9 0.24
kyber768 63916 20.6 20.1 1.03
ntruhps4096821 79448 25.6 107.1 0.24
ntrulpr761 85908 27.7 84.1 0.33
r5nd3kem5d 117028 37.8 22.8 1.65
saber2 118848 38.3 64.7 0.59
r5nd3kem0d 156692 50.5 27.0 1.87
lac192 243008 78.4 23.7 3.30
frodokem976shake 9380108 3,025.8 1,866.2 1.62

Level 4 & 5
sntrup857 80904 26.1 86.8 0.30
kyber1024 91628 29.6 24.7 1.20
ntrulpr857 112116 36.2 97.5 0.37
firesaber2 182136 58.8 77.1 0.76
r5nd5kem0d 193228 62.3 35.9 1.73
newhope1024cca 206248 66.5 24.8 2.68
r5nd5kem5d 209136 67.5 31.7 2.13
lac256 377784 121.9 26.9 4.54
frodokem1344shake 16312844 5,262.2 3,119.9 1.69

54 Implementation and Benchmarking of Round 2 PQC Candidates

portions of our implementations are written in portable C and run on a much less powerful
processor, ARM Cortex-A53, at the frequency of 1.2 GHz. Hardware portions run in the
programmable logic of Zynq UltraScale+, at a frequency specific to each algorithm, listed
in Table 23, varying between 200 MHz for NTRU-HPS and NTRU-HRSS, through 322
MHz for Saber, until 490 MHz for NewHope. Even the frequency of NewHope is over
6 times smaller than the frequency of Intel Xeon. Additionally, all compared software
implementations are optimized using AVX2 instructions, which let them take advantage of
the parallelism present in each algorithm.
Under these circumstances, it is no surprise that Zynq UltraScale+ can outperform Intel
Xeon only when its software/hardware implementation is fully optimized by moving all
operations other than randombytes() to programmable logic. Such implementations of
Kyber, LAC, NewHope, and Round5, outperform the best software implementations for
both encapsulation and decapsulation. For encapsulation, the speed-ups vary from 1.34 for
Kyber at level 3 to 4.67 for Round5 without error correction for level 3. For decapsulation,
the speed-ups vary from 1.03 for Kyber at level 3 to 4.54 for LAC at level 5. The only
exceptions are: Kyber at level 1, which reaches only the ratio of 0.94 for encapsulation,
and 0.71 for decapsulation, and Round5 without error correction, which reaches only the
ratio of 0.72 for level 1.
Somewhat surprisingly, also our software/hardware implementation of FrodoKEM out-
performs the best software implementation, even though the percentage of operations
offloaded to hardware in FrodoKEM is the smallest among all implemented KEMs, as
shown in Figs. 9 and 10.

7 Conclusions
In this paper, we first reviewed the previous work on hardware and software/hardware im-
plementations of Round 2 PQC schemes. Out of 26 candidates, six - NewHope, CRYSTALS-
Kyber, FrodoKEM, Saber, Round5, and SIKE - received the highest coverage in terms of
the number of implementations and related publications. All of them have both high-speed
and lightweight implementations reported. Candidates with the Register-Transfer Level
(RTL) high-speed implementations and no lightweight implementations include LAC, Clas-
sic McEliece, Picnic, and Rainbow. The publications on BIKE focused on key generation
and decoding but did not report results for the entire KEM or PKE. Candidates with at
least one software/hardware lightweight implementation but no RTL high-speed implemen-
tations include LEDAcrypt, CRYSTALS-DILITHIUM, and qTESLA. The coverage of the
following candidates was limited to High-Level Synthesis implementations: SPHINCS+
and MQDSS. We are not aware of any publications on hardware or software/hardware im-
plementations of Three Bears, HQC, NTS-KEM (before the merger with Classic McEliece),
ROLLO, RQC, FALCON, GeMSS, and LUOV. With a few exceptions, the majority of
lightweight implementations were software/hardware implementations based on RISC-V.
The lattice-based family received by far the most extensive coverage. The following
candidates from other families were shown competitive to lattice-based cryptography in
terms of speed: for encryption and key exchange: Classic McEliece, for digital signatures
Picnic and Rainbow. However, all of them were investigated primarily from the point of
view of high-speed implementations.
In terms of the comparison of the lattice-based schemes, the previous publications were
somewhat inconclusive. The largest differences were demonstrated in studies targeting ASIC
implementations. These studies indicated the significant advantage of Kyber and NewHope
over LAC and FrodoKEM, in terms of both the execution times of encapsulation and
decapsulation, as well as power consumption and energy usage. However, the advantage over
LAC could have been caused by devoting more effort and silicon area to the implementation
of NTT (which benefits only NewHope and Kyber) vs. the implementation of vector

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 55

arithmetic, units used to speed up LAC. The benchmarking of lattice-based signature
schemes was limited to CRYSTALS-DILITHIUM and qTESLA. The conclusions were
complicated by the withdrawal of heuristic parameters of qTESLA by the submitters on
Aug. 20, 2019, and very limited coverage of the remaining parameter sets.
Due to the timing constraints, in our study, we decided to focus on 12 CCA-secure Key
Encapsulation Mechanisms (KEMs) representing 8 out of 9 lattice-based key exchange
schemes (all except Three Bears). Taking into account that even for this subset of
candidates, the development of full RTL implementations appeared to be beyond the
capabilities of a single group, we investigated the use of two techniques to speed up the
development process: software/hardware co-design and High-Level Synthesis. A hybrid
of these two approaches, with some modifications to the traditional HLS methodology,
appeared to give quite promising results. However, we eventually devoted most of our
effort to software/hardware co-design based on the merger of the RTL HDL code and
optimized C code.
Unlike other groups, we applied software/hardware co-design to high-speed rather than
lightweight implementations, which led to the choice of Xilinx Zynq UltraScale+, a state-of-
the-art SoC FPGA family, as our primary platform. The differentiating factor is that this
platform includes a hardwired ARM Cortex-A53 processor operating at the frequency of
1.2 GHz and a significant amount of programmable logic supporting hardware accelerators
operating at the clock frequencies up to 500 MHz. Still, our designs remained almost
completely portable due to leaving the software portion in C and modeling hardware
portion in hardware description languages, such as VHDL, Verilog, and Chisel.
The detailed design methodology is described in this paper, and the corresponding code
required to build a generic benchmarking platform, suitable for performing timing measure-
ments of hardware and software/hardware co-designs is available for other groups to adopt.
It is also our intention to make our implementations of PQC candidates open-source after
the corresponding publications are accepted to peer-reviewed conferences or journals.
Our software/hardware co-design approach was successfully applied to all 12 mentioned
above KEMs. For each KEM, multiple parameters sets, typically corresponding to three
security levels, were supported. In order to determine FPGA resources required for each
parameter set individually, the choice between parameter sets is performed during logic
synthesis rather than at the run time.
For all algorithms other than FrodoKEM, the percentage of the original execution time in
software taken by operations offloaded to hardware exceeded 97.4% for decapsulation and
96.9% for encapsulation. For FrodoKEM operations taking at least 94% of the execution
time in software were offloaded to hardware. Significant speed-ups ranging between 7.6
and 111.1 were obtained versus a portable implementation in C, running on ARM Cortex-
A53. More importantly, even when four KEMs representing three candidates - NewHope,
NTRU, and Saber - were optimized in software by using NEON intrinsics, corresponding
to special SIMD instructions of ARM, our sofware/hardware implementations maintained
the lead by a factor varying between 1.81 for encapsulation in NTRU-HRSS up to 16.27
for encapsulation in NewHope. Finally, as an ultimate test, our implementations were
compared with the software implementations optimized using AVX2 vector instructions,
running on Intel Xeon E3-1220 v3, with the frequency 3.1 GHz. For each security level,
between 4 and 6 software/hardware implementations, running on Zynq UltraScale+ with
the 1.2 GHz ARM core were superior than the corresponding AVX2 implementations.
For each candidate, an attempt was made to offload as many as possible operations to
hardware. For 50% of investigated KEMs, this percentage reached 100%. Thus, the
corresponding implementations could be treated as hardware implementations, assuming
that a random seed (of the size of 16, 24, or 32 bytes) was transferred to the hardware
module during encapsulation. KEMs implemented using this approach included Kyber,
LAC (v3a and v3b), NewHope, and Round5 (with and without error-correcting code).

56 Implementation and Benchmarking of Round 2 PQC Candidates

Their code was benchmarked using Artix-7 and Virtex-7 FPGAs.
In terms of both the execution times and resource utilization, Round5 with an error-
correcting code (R5ND_5d) outperformed Round5 without an error-correcting code
(R5ND_0d). Similarly, LAC-v3b appeared superior over LAC-v3a in terms of both
speed and use of FPGA resources. Then, when the best representatives of four candidates
- Kyber, LAC, NewHope, and Round5 - were compared, the following conclusions could
be drawn. The execution times of these candidates were extremely close to one another.
For encapsulation, the execution times were within 10% from one another at the security
level 5, within 22% at the security level 3, and within 32% at the security level 1. For
decapsulation, the largest differences were 26% at level 5, 22% at level 3, and 48% at
level 1. In multiple instances, just a change of an FPGA family from low-cost Artix-7 to
high-performance Virtex-7 caused a significant change in the rankings, even though the
HDL code remained exactly the same. As a result, we must conclude that the differences
among these candidates in terms of speed are too small to give preference to any particular
candidate. These results contradict one of the earlier reports placing LAC well behind
NewHope and Kyber.
In terms of resource utilization, a small advantage belongs to NewHope and Kyber. Both
of them use fewer LUTs and flip-flops than LAC and Round5, and their use of DSP units
and BRAMs, although slightly higher, is very moderate. Additionally, both NewHope and
Kyber use almost the same amount of resources independently of the security level. In
the case of both LAC and Round5, resource usage increases sharply with the increase in
security level. The former property appears to be an advantage for applications requiring
support for the highest or all security levels. In particular, the k-in-1 designs, which
support all k security levels and allow modifying them at run time, typically have only
slightly higher resource utilization than that for the maximum security level. Thus, the
flat dependence of the resource utilization on the security level implies a potential for very
cost-effective k-in-1 designs. At the same time, this potential should still be confirmed
through complete designs.
Independently of our own results, the results reported in [63] and summarized in Table 8
indicate that Saber–when implemented entirely in hardware–can reach the same perfor-
mance level as the KEMs ranked on the first six positions in our study. It may also require
fewer resources than at least Round5. With its resource utilization almost independent of
the security level, it naturally allows 2-in-1 and 3-in-1 designs, supporting multiple security
levels with a relatively small overhead in terms of speed and resource usage as compared
to the implementation for the lowest security level. Similarly, estimates reported in [32]
indicate that the performance of ThreeBears is likely to be very similar to that of Kyber
and NewHope.
For the remaining 5 KEMs, representing FrodoKEM, NTRU, and NTRU Prime, the
conclusions could be drawn only by comparing their software/hardware implementations
and contrasting them with the corresponding software/hardware implementations of
Kyber, LAC, NewHope, and Round5. In this case, all KEMs were implemented in Zynq
UltraScale+. Hardware accelerators were assumed to be preloaded with appropriate public
and private keys. Encapsulation started from generating 16-32 random bytes in software
and passing these bytes to the hardware accelerator. Decapsulation started by sending the
ciphertext to the hardware accelerator. Both operations ended when the shared secret was
available in the memory of the processor core. Our evaluation revealed that FrodoKEM was
by at least an order of magnitude slower than the remaining investigated KEMs. Ranking of
the remaining candidates in hardware could not be determined conclusively based on their
software/hardware co-design rankings. Software/hardware co-designs of Saber, NTRU-
HRSS, and NTRU-HPS in particular, and somewhat less likely of Streamlined NTRU
Prime and NTRU LPRime, could be possibly still significantly improved by offloading
more operations to hardware, up to the level of bypassing at least one of the first six

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 57

candidates in the ranking.
This pitfall of software/hardware co-designs was identified early on during the benchmarking
process. It could have been overcome only if candidates were significantly different from
the point of view of their hardware efficiency. Such large differences were not identified
in the case of the mentioned above five lattice-based KEMs. Consequently, the only way
to overcome this inherent weakness of the software/hardware methodology, when applied
to this particular set of candidates, is to move all (or almost all) remaining operations of
these algorithms to hardware. Doing that is, however, impractical at this point due to the
timeline imposed by NIST.
At the same time, taking into account that moving more operations of these KEMs to
hardware can only increase the resource usage of the corresponding hardware accelerators,
it is still fair to compare their resource utilization with those of Kyber and NewHope. For
NTRU-HPS and NTRU-HRSS, the concern is a large number of DSP units, exceeding
700 for NTRU-HRSS and 800 for NTRU-HPS at the security level 3. For Streamlined
NTRU Prime and NTRU LPRime, the only concern is a relatively large number of LUTs,
clearly exceeding that of LAC-v3b and approaching or exceeding that of Round5 with an
error-correcting code (R5ND_5d).
Still, it is up to NIST and the cryptographic community to decide whether such relatively
small differences in the hardware efficiency of lattice-based candidates should play any role
in the Round 3 down-selection process.

8 Future Work
Future work will depend on the number and type of candidates qualified for Round 3.
Based on the lessons learned from Round 2, the following adjustments may be advisable:

• More focus on hardware implementations vs. software/hardware implementations.
Software/hardware implementations may still be helpful for lightweight implementa-
tions with a clear resource utilization threshold. In these implementations, moving
more operations to hardware may be prohibited by exceeding the resource budget.

• More focus on comparisons across families, rather than within the same family.
Round 2 designs illustrate substantial similarities between candidates belonging to
the same family but give a hint of more profound differences among representatives
of different families.

• More hardware platforms to focus on. The larger the spectrum of platforms, the
higher certainty that the reported rankings are not artifacts of a particular platform
and will carry over to future generations of integrated circuits. For FPGAs and
SoC FPGAs, benchmarking should target families of at least two major vendors,
Xilinx and Intel. For ASIC implementations, different standard-cell libraries should
be considered. ASIC studies are particularly challenging, as they are more time-
consuming and costlier. However, they are indispensable as they may lead to different
conclusions than those obtained from FPGA investigations.

• More work on optimized software implementations targeting vector instructions of
embedded processors, such as RISC-V and ARM (including NEON instructions).

• Investigation of lightweight implementations protected against side-channel and fault
attacks should be conducted by multiple groups, serving interchangeably as attackers
and defenders.

• Trade-offs among speed, area, power, energy, and resistance against side channel
attacks should be thoroughly studied, especially for lightweight implementations.

58 Implementation and Benchmarking of Round 2 PQC Candidates

References
[1] Erdem Alkim et al. ISA Extensions for Finite Field Arithmetic - Accelerating Kyber

and NewHope on RISC-V. Cryptology ePrint Archive 2020/049. Jan. 2020.
[2] Erdem Alkim et al. NewHope - Algorithm Specifications and Supporting Documenta-

tion Version 1.1. Tech. rep. Apr. 2020.
[3] Michał Andrzejczak. “The Low-Area FPGA Design for the Post-Quantum Cryp-

tography Proposal Round5”. In: 2019 Federated Conference on Computer Science
and Information Systems. Vol. 18. Leipzig, Germany, Sept. 2019, pp. 213–219. doi:
10/ggbsbd.

[4] Michal Andrzejczak, Farnoud Farahmand, and Kris Gaj. “Full Hardware Imple-
mentation of the Post-Quantum Public-Key Cryptography Scheme Round5”. In:
2019 International Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig). Cancun, Mexico: IEEE, Dec. 2019, pp. 1–2. isbn: 978-1-72811-957-1. doi:
10.1109/ReConFig48160.2019.8994765.

[5] Nicolas Aragon et al. BIKE: Bit Flipping Key Encapsulation: Submission for Round
3 Consideration. Tech. rep. May 2020.

[6] ARM. Neon Intrinsics Reference. https://developer.arm.com/architectures/
instruction-sets/simd-isas/neon/intrinsics. 2020.

[7] ARM. Neon Programmer’s Guide for Armv8-A. https://developer.arm.com/
architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-
for-armv8-a. 2020.

[8] Roberto Avanzi et al. CRYSTALS-KYBER: Algorithm Specifications And Supporting
Documentation (Version 2.0). Tech. rep. Apr. 2019.

[9] Reza Azarderakhsh et al. “Key Compression for Isogeny-Based Cryptosystems”. In:
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptogra-
phy - AsiaPKC ’16. Xi’an, China: ACM Press, 2016, pp. 1–10. isbn: 978-1-4503-4286-5.
doi: 10/ggbsbz.

[10] Reza Azarderakhsh et al. NEON PQCryto: Fast and Parallel Ring-LWE Encryption
on ARM NEON Architecture. Cryptology ePrint Archive 2015/1081. Nov. 2015.

[11] Brian Baldwin et al. “FPGA Implementations of the Round Two SHA-3 Candidates”.
In: 2010 International Conference on Field Programmable Logic and Applications,
FPL 2010. Milan, Italy, Aug. 2010, pp. 400–407. isbn: 978-1-4244-7842-2. doi:
10/bmn2zv.

[12] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. “Sapphire: A
Configurable Crypto-Processor for Post-Quantum Lattice-Based Protocols”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2019.4 (Aug. 2019).
doi: 10.13154/tches.v2019.i4.17-61.

[13] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire: A
Configurable Crypto-Processor for Post-Quantum Lattice-Based Protocols (Extended
Version). Cryptology ePrint Archive 2019/1140. Sept. 2020.

[14] Kanad Basu et al. NIST Post-Quantum Cryptography- A Hardware Evaluation Study.
Cryptology ePrint Archive 2019/047. May 2019.

[15] Daniel J Bernstein and Peter Schwabe. “NEON Crypto”. In: Cryptographic Hardware
and Embedded Systems - CHES 2012. Vol. 7428. LNCS. Leuven, Belgium, Sept. 2012,
pp. 320–339. doi: 10.1007/978-3-642-33027-8_19.

[16] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness - Web Page. https://competitions.cr.yp.to/caesar.html. 2019.

https://doi.org/10/ggbsbd
https://doi.org/10.1109/ReConFig48160.2019.8994765
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a
https://doi.org/10/ggbsbz
https://doi.org/10/bmn2zv
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.1007/978-3-642-33027-8_19

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 59

[17] Cryptographic Engineering Research Group (CERG) at George Mason University.
Hardware Benchmarking of CAESAR Candidates. https://cryptography.gmu.
edu/athena/index.php?id=CAESAR. 2019.

[18] Viet B Dang et al. “Implementing and Benchmarking Three Lattice-Based Post-
Quantum Cryptography Algorithms Using Software/Hardware Codesign”. In: 2019
International Conference on Field Programmable Technology, FPT 2019. Tianjin,
China: IEEE, Dec. 9-13, 2019, pp. 206–214. doi: 10.1109/ICFPT47387.2019.00032.

[19] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Efficient and
Fast Hardware Architectures for SIKE Round 2 on FPGA. Cryptology ePrint Archive
2020/611. May 2020.

[20] Farnoud Farahmand. Benchmarking Setup for Software/Hardware Implementations
of PQC Schemes. Sept. 2019.

[21] Farnoud Farahmand et al. “Evaluating the Potential for Hardware Acceleration of
Four NTRU-Based Key Encapsulation Mechanisms Using Software/Hardware Code-
sign”. In: 10th International Conference on Post-Quantum Cryptography, PQCrypto
2019. LNCS. Chongqing, China: Springer, May 2019.

[22] Farnoud Farahmand et al. “Minerva: Automated Hardware Optimization Tool”. In:
2017 International Conference on ReConFigurable Computing and FPGAs, ReConFig
2017. Cancun: IEEE, Dec. 2017, pp. 1–8.

[23] Farnoud Farahmand et al. “Software/Hardware Codesign of the Post Quantum
Cryptography Algorithm NTRUEncrypt Using High-Level Synthesis and Register-
Transfer Level Design Methodologies”. In: 29th International Conference on Field
Programmable Logic and Applications, FPL 2019. Barcelona, Spain: IEEE, Sept.
2019, pp. 225–231. isbn: 978-1-72814-884-7. doi: 10.1109/FPL.2019.00042.

[24] Ahmed Ferozpuri and Kris Gaj. “High-Speed FPGA Implementation of the NIST
Round 1 Rainbow Signature Scheme”. In: 2018 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig). Cancun, Mexico: IEEE, Dec. 2018,
pp. 1–8. isbn: 978-1-72811-968-7. doi: 10/ggbsdm.

[25] Ahmed Ferozpuri et al. Hardware API for Post-Quantum Public Key Cryptosystems.
GMU Report. Fairfax, VA: George Mason University, Apr. 2018.

[26] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly Coupled
RISC-V Accelerators for Post-Quantum Cryptography. Cryptology ePrint Archive
2020/446. Apr. 2020.

[27] Tim Fritzmann et al. “Towards Reliable and Secure Post-Quantum Co-Processors
Based on RISC-V”. In: 2019 Design, Automation Test in Europe Conference Exhibi-
tion (DATE). Mar. 2019, pp. 1148–1153. doi: 10.23919/DATE.2019.8715173.

[28] Kris Gaj. “Challenges and Rewards of Implementing and Benchmarking Post-
Quantum Cryptography in Hardware”. In: 2018 Great Lakes Symposium on VLSI,
GLSVLSI 2018. Chicago, IL, USA: ACM Press, 2018, pp. 359–364. isbn: 978-1-4503-
5724-1. doi: 10/ggbscs.

[29] Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski. “Fair and Comprehensive
Methodology for Comparing Hardware Performance of Fourteen Round Two SHA-3
Candidates Using FPGAs”. In: Cryptographic Hardware and Embedded Systems,
CHES 2010. Vol. 6225. LNCS. Santa Barbara, CA, Aug. 2010, pp. 264–278. isbn:
978-3-642-15030-2 978-3-642-15031-9. doi: 10.1007/978-3-642-15031-9_18.

https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://doi.org/10.1109/ICFPT47387.2019.00032
https://doi.org/10.1109/FPL.2019.00042
https://doi.org/10/ggbsdm
https://doi.org/10.23919/DATE.2019.8715173
https://doi.org/10/ggbscs
https://doi.org/10.1007/978-3-642-15031-9_18

60 Implementation and Benchmarking of Round 2 PQC Candidates

[30] Kris Gaj et al. “ATHENa - Automated Tool for Hardware EvaluatioN: Toward Fair
and Comprehensive Benchmarking of Cryptographic Hardware Using FPGAs”. In:
2010 International Conference on Field Programmable Logic and Applications, FPL
2010. Milan, Italy: IEEE, Aug. 2010, pp. 414–421. isbn: 978-1-4244-7842-2. doi:
10/d2bzw2.

[31] Kris Gaj et al. Comprehensive Evaluation of High-Speed and Medium-Speed Imple-
mentations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs. Cryptology
ePrint Archive 2012/368. 2012.

[32] Mike Hamburg. ThreeBears Estimates on ASIC. June 2020.
[33] E. Homsirikamol et al. Implementer’s Guide to Hardware Implementations Compliant

with the CAESAR Hardware API. GMU Report. Fairfax, VA: GMU, 2016.
[34] Ekawat Homsirikamol and Kris Gaj. “Hardware Benchmarking of Cryptographic

Algorithms Using High-Level Synthesis Tools: The SHA-3 Contest Case Study”. In:
Applied Reconfigurable Computing - ARC 2015. Vol. 9040. LNCS. Cham: Springer
International Publishing, 2015, pp. 217–228. isbn: 978-3-319-16213-3 978-3-319-
16214-0. doi: 10.1007/978-3-319-16214-0_18.

[35] Ekawat Homsirikamol and Kris Gaj. “Toward a New HLS-Based Methodology for
FPGA Benchmarking of Candidates in Cryptographic Competitions: The CAESAR
Contest Case Study”. In: 2017 International Conference on Field Programmable
Technology, FPT 2017. Melbourne, Australia: IEEE, Dec. 2017, pp. 120–127. isbn:
978-1-5386-2656-6. doi: 10/ggbsf4.

[36] Ekawat Homsirikamol, Panasayya Yalla, and Farnoud Farahmand. Development
Package for Hardware Implementations Compliant with the CAESAR Hardware API.
https://cryptography.gmu.edu/athena/index.php?id=CAESAR. 2016.

[37] Ekawat Homsirikamol et al. CAESAR Hardware API. Cryptology ePrint Archive
2016/626. 2016.

[38] James Howe. “Optimised Lattice-Based Key Encapsulation in Hardware”. In: Second
NIST Post-Quantum Cryptography Standardization Conference 2019. Aug. 2019,
p. 13.

[39] Jingwei Hu et al. “Lightweight Key Encapsulation Using LDPC Codes on FPGAs”.
In: IEEE Trans. Comput. 69.3 (Mar. 2020). issn: 0018-9340, 1557-9956, 2326-3814.
doi: 10.1109/TC.2019.2948323.

[40] Jingwei Hu et al. “Optimized Polynomial Multiplier Over Commutative Rings on
FPGAs: A Case Study on BIKE”. In: 2019 International Conference on Field-
Programmable Technology (ICFPT). Tianjin, China: IEEE, Dec. 2019, pp. 231–234.
isbn: 978-1-72812-943-3. doi: 10.1109/ICFPT47387.2019.00035.

[41] Arpan Jati et al. SPQCop: Side-Channel Protected Post-Quantum Cryptoprocessor.
Cryptology ePrint Archive 2019/765. June 2019.

[42] Daniel Kales et al. “Efficient FPGA Implementations of LowMC and Picnic”. In: The
Cryptographers’ Track at the RSA Conference 2020, CT-RSA 2020. San Francisco:
Springer, Feb. 2020.

[43] Matthias J. Kannwischer et al. Pqm4 - Post-Quantum Crypto Library for the {ARM}
{Cortex-M4}. https://github.com/mupq/pqm4. 2019.

[44] Jens-Peter Kaps et al. “Lightweight Implementations of SHA-3 Candidates on
FPGAs”. In: 12th International Conference on Cryptology in India, Indocrypt 2011.
Vol. 7107. LNCS. Chennai, India, Dec. 2011, pp. 270–289. isbn: 978-3-642-25577-9
978-3-642-25578-6. doi: 10.1007/978-3-642-25578-6_20.

https://doi.org/10/d2bzw2
https://doi.org/10.1007/978-3-319-16214-0_18
https://doi.org/10/ggbsf4
https://doi.org/10.1109/TC.2019.2948323
https://doi.org/10.1109/ICFPT47387.2019.00035
https://doi.org/10.1007/978-3-642-25578-6_20

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 61

[45] Miroslav Knezevic et al. “Fair and Consistent Hardware Evaluation of Fourteen Round
Two SHA-3 Candidates”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20.5 (May 2012), pp. 827–840. issn: 1063-8210, 1557-9999. doi:
10/ctjzhr.

[46] B. Koziel, R. Azarderakhsh, and M. M. Kermani. “A High-Performance and Scalable
Hardware Architecture for Isogeny-Based Cryptography”. In: IEEE Transactions on
Computers 67.11 (Nov. 2018), pp. 1594–1609. issn: 0018-9340. doi: 10/gff4vv.

[47] Brian Koziel et al. “NEON-SIDH: Efficient Implementation of Supersingular Isogeny
Diffie-Hellman Key Exchange Protocol on ARM”. In: Cryptology and Network
Security. Ed. by Sara Foresti and Giuseppe Persiano. Vol. 10052. Cham: Springer
International Publishing, 2016, pp. 88–103. isbn: 978-3-319-48964-3 978-3-319-48965-
0. doi: 10.1007/978-3-319-48965-0_6.

[48] Brian Koziel et al. “Post-Quantum Cryptography on FPGA Based on Isogenies on
Elliptic Curves”. In: IEEE Transactions on Circuits and Systems I: Regular Papers
64.1 (Jan. 2017), pp. 86–99. issn: 1549-8328, 1558-0806. doi: 10/gd89pp.

[49] Brian Koziel et al. “SIKE’d Up: Fast Hardware Architectures for Supersingular
Isogeny Key Encapsulation”. en. In: IEEE Transactions on Circuits and Systems I:
Regular Papers (May 2020), pp. 1–13. issn: 1549-8328, 1558-0806. doi: 10.1109/
TCSI.2020.2992747.

[50] Weiqiang Liu et al. “High Performance Modular Multiplication for SIDH”. In: IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. (2019), pp. 1–1. issn: 0278-0070,
1937-4151. doi: 10.1109/TCAD.2019.2960330.

[51] Patrick Longa. FourQNEON: Faster Elliptic Curve Scalar Multiplications on ARM
Processors. Cryptology ePrint Archive 2016/645. July 2016.

[52] Xianhui Lu et al. LAC: Practical Ring-LWE Based Public-Key Encryption with
Byte-Level Modulus. Cryptology ePrint Archive 2018/1009. Dec. 2019.

[53] Pedro Maat C. Massolino et al. “A Compact and Scalable Hardware/Software Co-
Design of SIKE”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems (Mar. 2020), pp. 245–271. issn: 2569-2925. doi: 10.13154/tches.v2020.
i2.245-271.

[54] Jose Maria Bermudo Mera et al. Compact Domain-Specific Co-Processor for Ac-
celerating Module Lattice-Based Key Encapsulation Mechanism. Cryptology ePrint
Archive 2020/321. Mar. 2020, p. 15.

[55] Richard Newell. Survey of Notable Security-Enhancing Activities in the RISC-V
Universe. 17th International Workshop on Cryptographic Architectures Embedded
in Logic Devices, CryptArchi 2019. Pruhonice, Czech Republic, June 2019.

[56] Duc Tri Nguyen, Viet B. Dang, and Kris Gaj. “A High-Level Synthesis Approach
to the Software/Hardware Codesign of NTT-Based Post-Quantum Cryptography
Algorithms”. In: 2019 International Conference on Field-Programmable Technology
(ICFPT). Tianjin, China: IEEE, Dec. 2019, pp. 371–374. isbn: 978-1-72812-943-3.
doi: 10.1109/ICFPT47387.2019.00070.

[57] Duc Tri Nguyen, Viet B Dang, and Kris Gaj. “High-Level Synthesis in Implementing
and Benchmarking Number Theoretic Transform in Lattice-Based Post-Quantum
Cryptography Using Software/Hardware Codesign”. In: 16th International Sympo-
sium on Applied Reconfigurable Computing, ARC 2020. Apr. 2020.

[58] NIST. PQC - API Notes. 2017.
[59] David Patterson and Andrew Waterman. The RISC-V Reader: An Open Architecture

Atlas. Book version: 0.0.1. Strawberry Canyon LLC, Oct. 2017.

https://doi.org/10/ctjzhr
https://doi.org/10/gff4vv
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10/gd89pp
https://doi.org/10.1109/TCSI.2020.2992747
https://doi.org/10.1109/TCSI.2020.2992747
https://doi.org/10.1109/TCAD.2019.2960330
https://doi.org/10.13154/tches.v2020.i2.245-271
https://doi.org/10.13154/tches.v2020.i2.245-271
https://doi.org/10.1109/ICFPT47387.2019.00070

62 Implementation and Benchmarking of Round 2 PQC Candidates

[60] Andrew H Reinders et al. Efficient BIKE Hardware Design with Constant-Time
Decoder. Cryptology ePrint Archive 2020/117. Feb. 2020.

[61] Jan Richter-Brockmann and Tim Güneysu. Folding BIKE: Scalable Hardware Im-
plementation for Reconfigurable Devices. Cryptology ePrint Archive 2020/897. July
2020.

[62] Vincent Rijmen, Antoon Bosselaers, and Paulo Barreto. Optimized ANSI C Code
for the Rijndael Cipher (Now AES), Rijndael-Alg-Fst.c, v3.0. Dec. 2000.

[63] Sujoy Sinha Roy and Andrea Basso. High-Speed Instruction-Set Coprocessor for
Lattice-Based Key Encapsulation Mechanism: Saber in Hardware. Cryptology ePrint
Archive 2020/434. Apr. 2020.

[64] Markku-Juhani O. Saarinen. Pqcbench. https://github.com/mjosaarinen/pqcbench.
2019.

[65] Hwajeong Seo et al. “Montgomery Modular Multiplication on ARM-NEON Revisited”.
In: International Conference on Information Security and Cryptology - ICISC 2014.
Vol. 8949. LNCS. Cham: Springer International Publishing, 2014, pp. 328–342. isbn:
978-3-319-15942-3 978-3-319-15943-0. doi: 10.1007/978-3-319-15943-0.

[66] Hwajeong Seo et al. Parallel Implementation of Number Theoretic Transform. Cryp-
tology ePrint Archive 2015/1024. Oct. 2015.

[67] Hwajeong Seo et al. SIDH on ARM: Faster Modular Multiplications for Faster Post-
Quantum Supersingular Isogeny Key Exchange. Cryptology ePrint Archive 2018/700.
July 2018.

[68] Douglas Stebila and Michele Mosca. Liboqs - Master Branch. https://github.com/
open-quantum-safe/liboqs. 2019.

[69] Silvan Streit and Fabrizio De Santis. “Post-Quantum Key Exchange on ARMv8-A:
A New Hope for NEON Made Simple”. In: IEEE Transactions on Computers 67.11
(Nov. 2018), pp. 1651–1662. issn: 0018-9340, 1557-9956, 2326-3814. doi: 10/gff3sc.

[70] FrodoKEM Submission Team. Round 2 Submissions - FrodoKEM Candidate Submis-
sion Package. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions. Apr. 2019.

[71] NTRU Prime Submission Team. Round 2 Submissions - NTRU Prime Candidate
Submission Package. https://csrc.nist.gov/Projects/Post-Quantum-Cryptog
raphy/Round-2-Submissions. Apr. 2019.

[72] NTRU Submission Team. Round 2 Submissions - NTRU Candidate Submission
Package. Apr. 2019.

[73] Round5 Submission Team. Round 2 Submissions - Round5 Candidate Submission
Package. https://csrc.nist.gov/Projects/Post- Quantum- Cryptography/
Round-2-Submissions. Apr. 2019.

[74] Saber Submission Team. Round 2 Submissions - Saber Candidate Submission Package.
Apr. 2019.

[75] Wen Wang, Jakub Szefer, and Ruben Niederhagen. “FPGA-Based Niederreiter
Cryptosystem Using Binary Goppa Codes”. In: 9th International Conference on
Post-Quantum Cryptography, PQCrypto 2018. Ed. by Tanja Lange and Rainer
Steinwandt. Vol. 10786. LNCS. Fort Lauderdale, Florida: Springer International
Publishing, Apr. 2018, pp. 77–98. isbn: 978-3-319-79062-6 978-3-319-79063-3. doi:
10.1007/978-3-319-79063-3_4.

[76] Wen Wang et al. Parameterized Hardware Accelerators for Lattice-Based Cryptography
and Their Application to the HW/SW Co-Design of qTESLA. Cryptology ePrint
Archive 2020/054. Apr. 2020.

https://doi.org/10.1007/978-3-319-15943-0
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://doi.org/10/gff3sc
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://doi.org/10.1007/978-3-319-79063-3_4

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 63

[77] Wen Wang et al. “XMSS and Embedded Systems - XMSS Hardware Accelerators
for RISC-V”. In: Selected Areas in Cryptography – SAC 2019. Vol. 11959. LNCS.
Waterloo, Ontario, Canada: Springer, 2019, pp. 523–550.

[78] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual .
Volume I: Unprivileged ISA v2.2. Tech. rep. 20190608-Base-Ratified. June 2019,
p. 236.

[79] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual, Volume
II: Privileged Architecture, v1.12. Tech. rep. June 2019, p. 113.

[80] Guozhu Xin et al. “VPQC: A Domain-Specific Vector Processor for Post-Quantum
Cryptography Based on RISC-V Architecture”. In: IEEE Transactions on Circuits
and Systems I: Regular Papers 67.8 (Aug. 2020), pp. 1–13. issn: 1558-0806. doi:
10.1109/TCSI.2020.2983185.

[81] Neng Zhang et al. “Highly Efficient Architecture of NewHope-NIST on FPGA Using
Low-Complexity NTT/INTT”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems (Mar. 2020), pp. 49–72. issn: 2569-2925. doi: 10.13154/
tches.v2020.i2.49-72.

https://doi.org/10.1109/TCSI.2020.2983185
https://doi.org/10.13154/tches.v2020.i2.49-72
https://doi.org/10.13154/tches.v2020.i2.49-72

64 Implementation and Benchmarking of Round 2 PQC Candidates

A Results of Profiling

Table 29: Results of profiling FrodoKEM

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
FrodoKEM1344 - Encapsulation

1. frodo_mul_add_sa_plus_e 58,577.48 94.36 1.1 frodo_mul_add_sa_plus_e
1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e
1.4 Shake256

1,328.39 60.762. Shake128 and frodo_sample_n x3 1,416.27 2.28
3. frodo_mul_add_sb_plus_e 654.64 1.05
4. Shake256 569.60 0.92
5. frodo_pack 386.22 0.62 2. frodo_pack 386.22 17.67
6. frodo_unpack 276.00 0.44 3. frodo_unpack 276.00 12.62
Others 195.62 0.32 Others 195.62 8.95
Total 62,075.83 100.00 Total 2,186.23 100.00

FrodoKEM1344 - Decapsulation
1. frodo_mul_add_sa_plus_e 58,754.02 94.19 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e
1.4 Shake256

1,316.52 42.202. Shake128 and frodo_sample_n x3 883.14 1.42
3. frodo_unpack x3 765.56 1.23
4. frodo_mul_add_sb_plus_e 649.68 1.04
5. frodo_mul_bs 507.08 0.81 2. frodo_unpack x3 765.56 24.54
6. Shake256 286.64 0.46 3. frodo_mul_bs 507.08 16.25
Others 530.74 0.85 Others 530.74 17.01
Total 62,376.86 100.00 Total 3,119.90 100.00

FrodoKEM976 - Encapsulation
1. frodo_mul_add_sa_plus_e 31,430.38 90.82 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e
1.4 Shake256

760.74 46.322. Shake128 and frodo_sample_n x3 1,410.18 4.07
3. frodo_mul_add_sb_plus_e 472.16 1.36
4. Shake256 414.11 1.20
5. frodo_pack 357.58 1.03 2. frodo_pack 357.58 21.77
6. frodo_unpack 297.73 0.86 3. frodo_unpack 297.73 18.13
Others 226.40 0.65 Others 226.40 13.78
Total 34,608.54 100.00 Total 1,642.45 100.00

FrodoKEM976 - Decapsulation
1. frodo_mul_add_sa_plus_e 31,441.14 90.74 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e
1.4 Shake256

749.76 40.182. Shake128 and frodo_sample_n x3 1,410.86 4.07
3. frodo_unpack x3 594.63 1.72
4. frodo_mul_add_sb_plus_e 471.29 1.36
5. frodo_mul_bs 368.32 1.06 2. frodo_unpack x3 594.63 31.86
6. Shake256 208.83 0.60 3. frodo_mul_bs 368.32 19.74
Others 153.51 0.44 Others 153.51 8.23
Total 34,648.58 100.00 Total 1,866.22 100.00

FrodoKEM640 - Encapsulation
1. frodo_mul_add_sa_plus_e 13,794.27 85.19 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e
1.4 Shake256

352.52 28.822. Shake128 and frodo_sample_n x3 1,002.40 6.19
3. frodo_mul_add_sb_plus_e 309.68 1.91
4. Shake256 215.55 1.33
5. frodo_pack 291.83 1.80 2. frodo_pack 291.83 23.86
6. frodo_unpack 277.26 1.71 3. frodo_unpack 277.26 22.67
Others 301.38 1.86 Others 301.38 24.64
Total 16,192.37 100.00 Total 1,222.99 100.00

FrodoKEM640 - Decapsulation
1. frodo_mul_add_sa_plus_e 13,793.01 85.18 1.1 frodo_mul_add_sa_plus_e

1.2 Shake128 and frodo_sample_n
1.3 frodo_mul_add_sb_plus_e
1.4 Shake256

342.95 25.952. Shake128 and frodo_sample_n x3 1,002.85 6.19
3. frodo_unpack x3 548.74 3.39
4. frodo_mul_add_sb_plus_e 309.21 1.91
5. frodo_mul_bs 242.40 1.50 2. frodo_unpack x3 548.74 41.53
6. Shake256 108.93 0.67 3. frodo_mul_bs 242.40 18.35
Others 187.23 1.16 Others 187.23 14.17
Total 16,192.37 100.00 Total 1,321.32 100.00

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 65

Table 30: Results of profiling Kyber

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
Kyber CCA-KEM 1024 - Encapsulation

1. indcpa_enc 736.7 93.55 1.1. indcpa_enc
1.2. hash 20.5 93.182. hash 49.3 6.26

3. randombytes 1.5 0.19 2. randombytes 1.5 6.82
Total 787.5 100.00 Total 22.0 100.00

Kyber CCA-KEM 1024 - Decapsulation
1. indcpa_enc 734.2 76.99 1.1 indcpa_enc

1.2 indcpa_dec
1.3 hash & verify

24.7 100.002. indcpa_dec 191.7 20.10
3. hash & verify 27.7 2.90
Total 953.7 100.00 Total 24.7 100.00

Kyber CCA-KEM 768 - Encapsulation
1. indcpa_enc 496.3 92.48 1.1. indcpa_enc

1.2. hash 16.3 91.582. hash 38.9 7.24
3. randombytes 1.5 0.28 2. randombytes 1.5 8.42
Total 536.7 100.00 Total 17.8 100.00

Kyber CCA-KEM 768 - Decapsulation
1. indcpa_enc 493.2 73.60 1.1 indcpa_enc

1.2 indcpa_dec
1.3 hash & verify

20.1 100.002. indcpa_dec 154.6 23.07
3. hash & verify 22.3 3.33
Total 670.1 100.00 Total 20.1 100.00

Kyber CCA-KEM 512 - Encapsulation
1. indcpa_enc 302.8 91.19 1.1. indcpa_enc

1.2. hash 13.7 90.102. hash 27.8 8.36
3. randombytes 1.5 0.45 2. randombytes 1.5 9.90
Total 332.0 100.00 Total 15.2 100.00

Kyber CCA-KEM 512 - Decapsulation
1. indcpa_enc 298.5 68.93 1.1 indcpa_enc

1.2 indcpa_dec
1.3 hash & verify

17.1 100.002. indcpa_dec 117.9 27.22
3. hash & verify 16.7 3.85
Total 433.0 100.00 Total 17.1 100.00

66 Implementation and Benchmarking of Round 2 PQC Candidates

Table 31: Results of profiling LAC-v3a

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
LAC-v3a-256 - Encapsulation

1. pke_enc_seed 901.0 99.42 1.1 pke_enc_seed
1.2 hash_to_k
1.3 Others

22.3 93.692. hash_to_k 2.3 0.26
3. random_bytes 1.5 0.17
Others 1.4 0.16 2. random_bytes 1.5 6.31
Total 906.3 100.00 Total 23.8 100.00

LAC-v3a-256 - Decapsulation
1. pke_enc_seed 901.1 65.37 1.1 pke_enc_seed

1.2 pke_dec
1.3 hash_to_k
1.4 Others

26.9 100.002. pke_dec 472.4 34.27
3. hash_to_k 2.3 0.17
Others 2.6 0.19
Total 1,378.4 100.00 Total 26.9 100.00

LAC-v3a-192 - Encapsulation
1. pke_enc_seed 558.5 99.06 1.1 pke_enc_seed

1.2 hash_to_k
1.3 Others

19.9 92.992. hash_to_k 2.3 0.41
3. random_bytes 1.5 0.27
Others 1.5 0.26 2. random_bytes 1.5 7.01
Total 563.8 100.00 Total 21.4 100.00

LAC-v3a-192 - Decapsulation
1. pke_enc_seed 558.7 71.44 1.1 pke_enc_seed

1.2 pke_dec
1.3 hash_to_k
1.4 Others

23.7 100.002. pke_dec 218.6 27.95
3. hash_to_k 2.3 0.30
Others 2.5 0.31
Total 782.1 100.00% Total 23.7 100.00

LAC-v3a-128 - Encapsulation
1. pke_enc_seed 328.6 98.73 1.1 pke_enc_seed

1.2 hash_to_k
1.3 Others

14.9 93.732. hash_to_k 2.3 0.69
3. random_bytes 1.0 0.30
Others 0.9 0.27 2. random_bytes 1.0 6.27
Total 332.8 100.00 Total 15.9 100.00

LAC-v3a-128 - Decapsulation
1. pke_enc_seed 328.5 71.01 1.1 pke_enc_seed

1.2 pke_dec
1.3 hash_to_k
1.4 Others

17.1 100.002. pke_dec 130.3 28.17
3. hash_to_k 2.3 0.50
Others 1.5 0.32
Total 462.6 100.00 Total 17.1 100.00

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 67

Table 32: Results of profiling LAC-v3b

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
LAC-v3b-256 - Encapsulation

1. pke_enc_seed 861.8 99.05 1.1 pke_enc_seed
1.2 hash_to_k
1.3 Others

19.6 92.882. hash_to_k 2.3 0.27
3. random_bytes 1.5 0.17
Others 4.4 0.51 2. random_bytes 1.5 7.12
Total 870.0 100.00 Total 21.1 100.00

LAC-v3b-256 - Decapsulation
1. pke_enc_seed 861.6 64.69 1.1 pke_enc_seed

1.2 pke_dec
1.3 hash_to_k
1.4 Others

24.1 100.002. pke_dec 463.3 34.78
3. hash_to_k 2.3 0.17
Others 4.7 0.35
Total 1,331.9 100.00 Total 24.1 100.00

LAC-v3b-192 - Encapsulation
1. pke_enc_seed 522.7 98.54 1.1 pke_enc_seed

1.2 hash_to_k
1.3 Others

16.8 91.822. hash_to_k 2.3 0.44
3. random_bytes 1.5 0.28
Others 3.9 0.74 2. random_bytes 1.5 8.18
Total 530.4 100.00 Total 18.3 100.00

LAC-v3b-192 - Decapsulation
1. pke_enc_seed 522.8 70.59 1.1 pke_enc_seed

1.2 pke_dec
1.3 hash_to_k
1.4 Others

20.6 100.002. pke_dec 211.2 28.51
3. hash_to_k 2.3 0.31
Others 4.4 0.59
Total 740.7 100.00 Total 20.6 100.00

LAC-v3b-128 - Encapsulation
1. pke_enc_seed 309.4 98.34 1.1 pke_enc_seed

1.2 hash_to_k
1.3 Others

13.4 93.072. hash_to_k 2.3 0.73
3. random_bytes 1.0 0.32
Others 1.9 0.61 2. random_bytes 1.0 6.93
Total 314.6 100.00 Total 14.4 100.00

LAC-v3b-128 - Decapsulation
1. pke_enc_seed 309.3 70.25 1.1 pke_enc_seed

1.2 pke_dec
1.3 hash_to_k
1.4 Others

15.5 100.002. pke_dec 126.3 28.69
3. hash_to_k 2.3 0.52
Others 2.3 0.53
Total 440.2 100.00 Total 15.5 100.00

68 Implementation and Benchmarking of Round 2 PQC Candidates

Table 33: Results of profiling NewHope

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
NewHope CCA-KEM 1024 - Encapsulation

1. cpapke_enc 668.3 91.33 1.1. cpapke_enc
1.2. hash 19.7 92.922. hash 62.0 8.47

3. randombytes 1.5 0.20 2. randombytes 1.5 7.08
Total 731.7 100.00 Total 21.2 100.00

NewHope CCA-KEM 1024 - Decapsulation
1. cpapke_enc 660.7 74.01 1.1 cpapke_enc

1.2 cpapke_dec
1.3 hash & verify

24.8 100.002. cpapke_dec 193.9 21.72
3. hash & verify 38.2 4.27
Total 892.7 100.00 Total 24.8 100.00

NewHope CCA-KEM 512 - Encapsulation
1. cpapke_enc 316.9 89.60 1.1. cpapke_enc

1.2. hash 13.5 89.982. hash 35.3 9.97
3. randombytes 1.5 0.42 2. randombytes 1.5 10.02
Total 353.6 100.00 Total 15.0 100.00

NewHope CCA-KEM 512 - Decapsulation
1. cpapke_enc 311.8 72.92 1.1 cpapke_enc

1.2 cpapke_dec
1.3 hash & verify

16.1 100.002. cpapke_dec 93.3 21.82
3. hash & verify 22.5 5.26
Total 427.5 100.00 Total 16.1 100.00

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 69

Table 34: Results from profiling NTRU

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
NTRU HPS 4096821- Encapsulation

1. poly_Rq_mul 3,954.9 92.29 1.1 poly_Rq_mul
1.2 owcpa_samplemsg
1.3 shake256
1.4 sha3_256

29.8 63.772. owcpa_samplemsg 251.4 5.87
3. shake256 54.3 1.27
4. sha3_256 7.6 0.18
Others 16.9 0.39 Others 16.9 36.23
Total 4,285.1 100.00 Total 46.7 100.00

NTRU HPS 4096821 - Decapsulation
1. poly_S3_mul 3,972.1 33.15 1.1 poly_Rq_mul

1.2 poly_S3_mul
1.3 poly_Sq_mul
1.4 sha3_256 x2

37.4 34.922. poly_Sq_mul 3,960.3 33.05
3. poly_Rq_mul 3,955.4 33.01
4. poly_S3_frombytes x2 31.1 0.26
5. sha3_256 x2 24.2 0.20 2. poly_S3_frombytes x2 31.1 29.01
Others 38.6 0.32 Others 38.6 36.07
Total 11,981.7 100.00 Total 107.1 100.00

NTRU HPS 2048677- Encapsulation
1. poly_Rq_mul 2,692.6 90.92 2.1 poly_Rq_mul

2.2 owcpa_samplemsg
2.3 shake256
2.4 sha3_256

26.0 62.442. owcpa_samplemsg 199.8 6.75
3. shake256 45.9 1.55
4. sha3_256 7.5 0.25
Others 15.6 0.53 Others 15.6 37.56
Total 2,961.5 100.00 Total 41.6 100.00

NTRU HPS 2048677 - Decapsulation
1. poly_S3_mul 2,706.8 33.11 1.1 poly_Rq_mul

1.2 poly_S3_mul
1.3 poly_Sq_mul
1.4 sha3_256 x2

34.1 35.772. poly_Sq_mul 2,693.2 32.94
3. poly_Rq_mul 2,693.1 32.94
4. poly_S3_frombytes x2 25.9 0.32
5. sha3_256 20.6 0.25 2. poly_S3_frombytes x2 25.9 27.14
Others 35.3 0.43 Others 35.3 37.10
Total 8,174.9 100.00 Total 95.3 100.00

NTRU-HRSS - Encapsulation
1. poly_Rq_mul 2,886.1 97.36 1. poly_lift 27.9 42.74
2. shake256 24.2 0.82 2.1 poly_Rq_mul

2.2 owcpa_samplemsg
2.3 shake256
2.3 sha3_256

22.3 34.123. poly_lift 27.9 0.94
4.sha3_256 7.6 0.26
5. owcpa_samplemsg 3.5 0.12
Others 15.1 0.51 Others 15.1 23.14
Total 2,964.5 100.00 Total 65.3 100.00

NTRU-HRSS - Decapsulation
1. poly_S3_mul 2,900.8 33.00 1.1 poly_Rq_mul

1.2 poly_S3_mul
1.3 poly_Sq_mul
1.4 sha3_256

46.4 34.172. poly_Sq_mul 2,890.7 32.89
3. poly_Rq_mul 2,886.6 32.84
4. poly_lift 27.2 0.31
5. sha3_256 22.3 0.25 2. poly_lift 27.2 20.05
Others 62.1 0.71 Others 62.1 45.78
Total 8,789.8 100.00 Total 135.6 100.00

70 Implementation and Benchmarking of Round 2 PQC Candidates

Table 35: Results of profiling NTRULPRime

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
NTRULPrime857 - Encapsulation

1. Rq_mult_small x2 1,448.9 70.32 1.1 Short_fromlist
1.2 Expand x2
1.3 Hash X4
1.4 Rq_mult_small x2
1.5.crypto_encode_857x1723round
1.6 Others

69.6 70.97

2. Short_fromlist 261.6 12.69
3. Expand x2 245.4 11.91
4. Hash x4 60.7 2.95
5. crypto_decode_857x1723 28.5 1.38
6. crypto_encode_857x1723round 4.7 0.23
Others 10.9 0.53 2. crypto_decode_857x1723 28.5 29.03
Total 2,060.5 100.00 Total 98.0 100.00

NTRULPrime857 - Decapsulation
1. Rq_mult_small x3 2,173.5 78.00 1.1 Short_fromlist

1.2 expand x2
1.3 Rq_mult_small x3
1.4 Hash x3
1.6 crypto_encode_857x1723round
1.7 Others

47.3 48.52

2. Short_fromlist 261.4 9.38
3. expand x2 246.5 8.85
4. crypto_decode_857x1723 x2 50.2 1.80
5. Hash x3 34.0 1.22
6. crypto_encode_857x1723round 4.8 0.17
Others 16.3 0.58 2. crypto_decode_857x1723 x2 50.2 51.48
Total 2,786.6 100.00 Total 97.5 100.00

NTRULPrime761 - Encapsulation
1. Rq_mult_small x2 1,169.5 68.62 1.1 Short_fromlist

1.2 Expand x2
1.3 Hash X4
1.4 Rq_mult_small x2
1.5 crypto_encode_761x1531round
1.6 Others

66.0 67.07

2. Short_fromlist 226.2 13.27
3. Expand x2 214.8 12.60
4. Hash X4 54.4 3.19
5. crypto_decode_761x1531 25.7 1.51
6. crypto_encode_761x1531round 4.2 0.25
Others 9.5 0.56 2. crypto_decode_761x1531 32.4 32.93
Total 1,704.4 100.00 Total 98.4 100.00

NTRULPrime761 - Decapsulation
1. Rq_mult_small x3 1,753.6 76.60 1.1 Short_fromlist

1.2 expand x2
1.3 Rq_mult_small x3
1.4 Hash x3
1.5 crypto_encode_761x1531round
1.6 Others

71.4 54.20

2. Short_fromlist 225.9 9.87
3. Expand x2 214.9 9.39
3. crypto_decode_761x1531 x2 45.4 1.98
4. Hash x3 31.0 1.35
5. crypto_encode_761x1531round 4.3 0.19
Others 14.2 0.62 2. crypto_decode_761x1531 x2 60.3 45.80
Total 2,289.4 100.00 Total 131.7 100.00

NTRULPrime653 - Encapsulation
1. Rq_mult_small x2 934.0 67.19 1.1 Short_fromlist

1.2 Expand x2
1.3 Rq_mult_small x2
1.4 Hash x4
1.5 crypto_encode_653x1541round
1.6 Others

58.6 67.90

2. Short_fromlist 190.0 13.67
3. Expand x2 183.6 13.21
4. Hash x4 48.2 3.46
5. crypto_decode_653x1541 22.7 1.64
6. crypto_encode_653x1541round 3.6 0.26
Others 8.1 0.58 2. crypto_decode_653x1541 27.7 32.10
Total 1,390.2 100.00 Total 86.3 100.00

NTRULPrime653 - Decapsulation
1. Rq_mult_small x3 1,400.9 75.50 1.1 Short_fromlist

1.2 Expand x2
1.3 Rq_mult_small x3
1.4 Hash x3
1.5 crypto_encode_653x1541round
1.6 Others

64.2 55.60

2. Short_fromlist 187.9 10.13
3. Expand x2 183.7 9.90
4. crypto_decode_653x1541 x2 38.8 2.09
5. Hash x3 27.6 1.49
6. crypto_encode_653x1541round 3.7 0.20
Others 12.9 0.70 2. crypto_decode_653x1541 x2 51.3 44.40
Total 1,855.5 100.00 Total 115.5 100.00

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 71

Table 36: Results of profiling Streamlined NTRU Prime

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
StreamlinedNTRUPrime857 - Encapsulation

1. Rq_mult_small 724.5 63.36 1.1 crypto_sort_uint32
1.2 Hash x5
1.3 Rq_mult_small
1.4 Round_and_encode
1.5 Others

60.1 62.95
2. crypto_sort_uint32 259.7 22.71
3. Hash x5 71.9 6.29
4. Rq_decode 30.4 2.66
5. Round_and_encode 8.2 0.72
Others 48.8 4.27 2. Rq_decode 35.4 37.05
Total 1,143.5 100.00 Total 95.5 100.00

StreamlineNTRUPrime857 - Decapsulation
1. R3_mult 1,019.4 39.43 1.1 Hash x4

1.2 Rq_mult_small x2
1.3 R3_mult
1.4 Others

57.3 48.392. Rq_mult_small x2 1,448.9 56.05
3. Hash x4 42.1 1.63
4. Rq_decode 27.9 1.08
5. Rounded_decode 28.1 1.09 2. Rq_decode 33.0 27.90
Others 18.9 0.73 3. Rounded_decode 28.1 23.71
Total 2,585.2 100.00 Total 118.4 100.00

StreamlineNTRUPrime761 - Encapsulation
1. Rq_mult_small 584.6 61.65 1.1 crypto_sort_uint32

1.2 Hash x5
1.3 Rq_mult_small
1.4. Round_and_encode
1.5 Others

56.3 63.97
2. crypto_sort_uint32 223.8 23.61
3. Hash x5 62.5 6.59
4. Rq_decode 27.0 2.85
5. Round_and_encode 7.7 0.81
Others 42.7 4.50 2. Rq_decode 31.7 36.03
Total 948.2 100.00 Total 88.0 100.00

StreamlineNTRUPrime761- Decapsulation
1. R3_mult 816.2 39.06 1.1 Hash x4

1.2 Rq_mult_small x2
1.3 R3_mult
1.4 Others

53.3 59.352. Rq_mult_small x2 1,169.4 55.96
3. Hash x4 35.8 1.72
4. Rq_decode 24.5 1.17
5. Rounded_decode 25.8 1.24 2. Rq_decode 32.3 35.97
Others 17.8 0.85 3. Rounded_decode 4.2 4.68
Total 2,089.6 100.00 Total 89.8 100.00

StreamlineNTRUPrime653 - Encapsulation
1. Rq_mult_small 467.0 60.19 1.1 crypto_sort_uint32

1.2 Hash x5
1.3 Rq_mult_small
1.4 Round_and_encode
1.5 Others

52.3 65.60
2. crypto_sort_uint32 185.5 23.90
3. Hash x5 54.8 7.06
4. Rq_decode 24.2 3.11
5. Round_and_encode 6.4 0.82
Others 38.2 4.92 2. Rq_decode 27.4 34.40
Total 775.9 100.00 Total 79.7 100.00

StreamlineNTRUPrime653- Decapsulation
1. R3_mult 617.3 37.58 1.1 Hash x4

1.2 Rq_mult_small x2
1.3 R3_mult
1.4 Others

51.0 63.882. Rq_mult_small x2 933.7 56.85
3. Hash x4 35.7 2.17
4. Rq_decode 21.0 1.28
5. Rounded_decode 22.4 1.37 2. Rq_decode 25.2 31.61
Others 12.4 0.76 3. Rounded_decode 3.6 4.51
Total 1,642.5 100.00 Total 79.8 100.00

72 Implementation and Benchmarking of Round 2 PQC Candidates

Table 37: Results of profiling Round5

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
R5ND_CCA_5KEM_0d - Encapsulation

1. r5_cpa_pke_encrypt 290.8 86.42 1.1. r5_cpa_pke_encrypt
1.2. hash 30.1 95.202. hash 44.2 13.13

3. randombytes 1.5 0.45 2. randombytes 1.5 4.80
Total 336.5 100.00 Total 31.6 100.00

R5ND_CCA_5KEM_0d - Decapsulation
1. r5_cpa_pke_encrypt 287.1 69.05 1.1 r5_cpa_pke_encrypt

1.2 r5_cpa_pke_decrypt
1.3 hash & verify

36.8 100.002. r5_cpa_pke_decrypt 83.6 20.11
3. hash & verify 45.1 10.84
Total 415.8 100.00 Total 36.8 100.00

R5ND_CCA_3KEM_0d - Encapsulation
1. r5_cpa_pke_encrypt 211.4 86.27 1.1. r5_cpa_pke_encrypt

1.2. hash 22.6 95.722. hash 32.6 13.32
3. randombytes 1.0 0.41 2. randombytes 1.0 4.28
Total 245.0 100.00 Total 23.6 100.00

R5ND_CCA_3KEM_0d - Decapsulation
1. r5_cpa_pke_encrypt 208.2 67.27 1.1 r5_cpa_pke_encrypt

1.2 r5_cpa_pke_decrypt
1.3 hash & verify

27.6 100.002. r5_cpa_pke_decrypt 67.5 21.80
3. hash & verify 33.9 10.94
Total 309.5 100.00 Total 27.6 100.00

R5ND_CCA_1KEM_0d - Encapsulation
1. r5_cpa_pke_encrypt 133.9 86.69 1.1. r5_cpa_pke_encrypt

1.2. hash 16.9 94.462. hash 19.6 12.67
3. randombytes 1.0 0.64 2. randombytes 1.0 5.54
Total 154.5 100.00 Total 17.9 100.00

R5ND_CCA_1KEM_0d - Decapsulation
1. r5_cpa_pke_encrypt 130.3 67.61 1.1 r5_cpa_pke_encrypt

1.2 r5_cpa_pke_decrypt
1.3 hash & verify

19.7 100.002. r5_cpa_pke_decrypt 41.7 21.62
3. hash & verify 20.8 10.77
Total 192.7 100.00 Total 19.7 100.00

R5ND_CCA_5KEM_5d - Encapsulation
1. r5_cpa_pke_encrypt 372.0 91.87 1.1. r5_cpa_pke_encrypt

1.2. hash 26.4 94.552. hash 31.4 7.76
3. randombytes 1.5 0.38 2. randombytes 1.5 5.45
Total 404.9 100.00 Total 27.9 100.00

R5ND_CCA_5KEM_5d - Decapsulation
1. r5_cpa_pke_encrypt 372.0 69.24 1.1 r5_cpa_pke_encrypt

1.2 r5_cpa_pke_decrypt
1.3 hash & verify

32.5 100.002. r5_cpa_pke_decrypt 132.3 24.63
3. hash & verify 32.9 6.12
Total 537.2 100.00 Total 32.5 100.00

R5ND_CCA_3KEM_5d - Encapsulation
1. r5_cpa_pke_encrypt 214.3 88.83 1.1. r5_cpa_pke_encrypt

1.2. hash 19.3 95.042. hash 25.9 10.75
3. randombytes 1.0 0.42 2. randombytes 1.0 4.96
Total 241.3 100.00 Total 20.4 100.00

R5ND_CCA_3KEM_5d - Decapsulation
1. r5_cpa_pke_encrypt 214.2 67.19 1.1 r5_cpa_pke_encrypt

1.2 r5_cpa_pke_decrypt
1.3 hash & verify

23.3 100.002. r5_cpa_pke_decrypt 78.5 24.63
3. hash & verify 26.1 8.18
Total 318.8 100.00 Total 23.3 100.00

R5ND_CCA_1KEM_5d - Encapsulation
1. r5_cpa_pke_encrypt 111.7 88.59 1.1. r5_cpa_pke_encrypt

1.2. hash 13.5 93.152. hash 13.4 10.62
3. randombytes 1.0 0.79 2. randombytes 1.0 6.85
Total 126.1 100.00 Total 14.4 100.00

R5ND_CCA_1KEM_5d - Decapsulation
1. r5_cpa_pke_encrypt 111.8 64.72 1.1 r5_cpa_pke_encrypt

1.2 r5_cpa_pke_decrypt
1.3 hash & verify

16.0 100.002. r5_cpa_pke_decrypt 46.7 27.06
3. hash & verify 14.2 8.22
Total 172.7 100.00 Total 16.0 100.00

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 73

Table 38: Results of profiling for Saber

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
FireSaber - Encapsulation

1. MatrixVectorMul 815.84 69.08% 1.1 MatrixVectorMul
1.2 InnerProduct
1.3 GenMatrix
1.4 Hash
1.5 GenSecret

55.09 84.43%
2. InnerProduct 204.44 17.31%
3. GenMatrix 92.93 7.87%
4. Hash 45.10 3.82%
5. GenSecret 12.50 1.06%
Others 10.16 0.86% Others 10.16 15.57%
Total 1,180.97 100.00% Total 65.25 100.00%

FireSaber - Decapsulation
1. MatrixVectorMul 816.34 59.31% 1.1 MatrixVectorMul

1.2 InnerProduct x2
1.3 GenMatrix
1.4 Hash
1.5 GenSecret

55.14 71.55%
2. InnerProduct x2 408.14 29.65%
3. GenMatrix 92.99 6.76%
4. Hash 24.49 1.78%
5. GenSecret 12.53 0.91%
Others 21.92 1.59% Others 21.92 28.45%
Total 1,376.41 100.00% Total 77.06 100.00%

Saber - Encapsulation
1. MatrixVectorMul 458.94 63.55% 1.1 MatrixVectorMul

1.2 InnerProduct
1.3 GenMatrix
1.4 Hash
1.5 GenSecret

49.15 86.36%
2. InnerProduct 153.19 21.21%
3. GenMatrix 53.29 7.38%
4. Hash 37.98 5.26%
5. GenSecret 10.97 1.52%
Others 7.76 1.07% Others 7.76 13.64%
Total 722.13 100.00% Total 56.91 100.00%

Saber - Decapsulation
1. MatrixVectorMul 458.98 52.93% 1.1 MatrixVectorMul

1.2 InnerProduct x2
1.3 GenMatrix
1.4 Hash
1.5 GenSecret

48.15 74.47%
2. InnerProduct x2 306.52 35.35%
3. GenMatrix 53.29 6.15%
4. Hash 20.87 2.41%
5. GenSecret 11.00 1.27%
Others 16.51 1.90% Others 16.51 25.53%
Total 867.17 100.00% Total 64.66 100.00%

LightSaber - Encapsulation
1. MatrixVectorMul 203.70 54.55% 1.1 MatrixVectorMul

1.2 InnerProduct
1.3 GenMatrix
1.4 Hash
1.5 GenSecret

43.36 88.49%
2. InnerProduct 102.26 27.38%
3. GenMatrix 23.67 6.34%
4. Hash 27.31 7.31%
5. GenSecret 10.86 2.91%
Others 5.64 1.51% Others 5.64 11.51%
Total 373.44 100.00% Total 49.00 100.00%

LightSaber - Decapsulation
1. MatrixVectorMul 204.43 43.44% 1.1 MatrixVectorMul

1.2 InnerProduct x2
1.3 GenMatrix
1.4 Hash
1.5 GenSecret

41.27 78.55%
2. InnerProduct x2 204.80 43.52%
3. GenMatrix 23.67 5.03%
4. Hash 15.55 3.30%
5. GenSecret 10.83 2.30%
Others 11.27 2.40% Others 11.27 21.45%
Total 470.55 100.00% Total 52.54 100.00%

74 Implementation and Benchmarking of Round 2 PQC Candidates

B Pseudocode of Implemented Algorithms
Below we show the pseudocode of all implemented KEMs, with parts offloaded to hardware
marked with the gray background.

B.1 FrodoKEM

Algorithm 1 Pseudocode of FrodoKEM.Encaps [70]
Input: Public key pk = seedA ||b ∈ {0, 1}lenseedA

+D.n.n̄.
Output: Ciphertext c1||c2 ∈ {0, 1}(m̄.n+m̄.n̄)D and shared secret SS∈ {0, 1}lenss .

1: Choose a uniformly random key µ← s U({0, 1}lenµ)
2: Compute pkh ← SHAKE(pk, lenpkh)
3: Generate pseudorandom values seedSE ||k ← SHAKE (pkh||µ, lenseedSE + lenk)
4: Generate pseudorandom bit string (r(0), r(1), ..., r(2m̄n+mn−1)))←

SHAKE(0x96||seedSE , 2m̄n + mn.lenx)
5: Sample error matrix S’ ← Frodo.SampleMatrix((r(0), r(1), ..., r(m̄n−1))), m̄, n, Tx)
6: Sample error matrix E’ ← Frodo.SampleMatrix((r(m̄n), r(m̄n+1), ..., r(2m̄n−1))), m̄, n, Tx)
7: Generate A ← Frodo.Gen(seedA)
8: Compute B’ ←S’A+ E’
9: Compute c1 ← Frodo.Pack(B’)

10: Sample error matrix E"← Frodo.SampleMatrix((r(2m̄n), r(2m̄n+1), ..., r(2m̄n+mn−1))), m̄, n̄, Tx)
11: Compute B ← Frodo.Unpack(b,n, n̄)
12: Compute V ←S’B+ E"
13: Compute C ←V + Frodo.Encode(µ)
14: Compute c2 ← Frodo.Pack(C)
15: Compute ss ← SHAKE(c1||c2||k, kenss)
16: return ciphertext (c1||c2 and shared secret ss

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 75

Algorithm 2 Pseudocode of FrodoKEM.Decaps [70]
Input: Ciphertext c1||c2 ∈ {0, 1}m̄.n+m̄.n̄)D, secret key sk′ = (s||seedA||b, S, pkh) ∈
{0, 1}lens+lenseedA+D.n.n̄ × Zn×n̄

q × {0, 1}lenpkh .
Output: Shared secret ss ∈ {0, 1}lenss .

1: B’ ← Frodo.Unpack(c1)
2: C ← Frodo.Unpack(c2)
3: Compute M ←C - B’S
4: Compute µ’ ← Frodo.Decode(M)
5: Parse pk ← seedA || b
6: Generate pseudorandom values seedSE

′ ||k′ ← SHAKE (pkh||µ′, lenseedSE + lenk)
7: Generate pseudorandom bit string (r(0), r(1), ..., r(2m̄n+mn−1)))←

SHAKE(0x96||seed′
se, 2m̄n + mn.lenx)

8: Sample error matrix S’ ← Frodo.SampleMatrix((r(0), r(1), ..., r(m̄n−1))), m̄, n, Tx)
9: Sample error matrix E’ ← Frodo.SampleMatrix((r(m̄n), r(m̄n+1), ..., r(2m̄n−1))), m̄, n, Tx)

10: Generate A ← Frodo.Gen(seedA)
11: Compute B" ←S’A+ E’
12: Sample error matrix E"← Frodo.SampleMatrix((r(2m̄n), r(2m̄n+1), ..., r(2m̄n+mn−1))), m̄, n̄, Tx)
13: Compute B ← Frodo.Unpack(b,n, n̄)
14: Compute V ←S’B+ E"
15: Compute C’ ←V + Frodo.Encode(µ′)
16: if B’ || C = B" || C’ then
17: return shared secret ss ← SHAKE (c1||c2||k′, lenss)
18: else
19: return shared secret ss ← SHAKE (c1||c2||s, lenss)
20: end if

B.2 LAC

Algorithm 3 LAC-CCA Key Generation [52]
Input: Random seed
Output: pk = (seeda⃗, b⃗), sk = (s⃗, pk)

1: (seeda⃗, seeds⃗, seede⃗)← GenSeed(seed)
2: a⃗← UniformSampl(seeda⃗) ∈ Rq

3: s⃗← CBDSampl(seeds⃗)
4: e⃗← CBDSampl(seede⃗)
5: b⃗← a⃗s⃗ + e⃗ ∈ Rq

6: pk = (seeda⃗, b⃗)
7: sk = (s⃗, pk = (seeda⃗, b⃗))

76 Implementation and Benchmarking of Round 2 PQC Candidates

Algorithm 4 LAC-CCA Encapsulation [52]
Input: pk = (seeda⃗, b⃗), message m⃗
Output: A ciphertext c⃗ and a session key ss⃗

1: seed← GenSeed(m⃗, pk)
2: seeds← GenSeed(seed)
3: a⃗← UniformSampl(seeda⃗) ∈ Rq

4: (r⃗, e⃗1, e⃗2)← CBDSampl(seeds)
5: c⃗1 ← a⃗r⃗ + e⃗1 ∈ Rq

6: m⃗′ ← BCH.Enc(m⃗) ∈ {0, 1}lv

7: m⃗′′ ← D2.Enc(m⃗′) ∈ Zlv
q

8: c⃗2 ← Compress((b⃗r⃗)lv + e⃗2 + m⃗′′)
9: c⃗← (c⃗1, c⃗2)

10: ss⃗← Hash(m⃗, c⃗)

Algorithm 5 LAC-CCA Decapsulation [52]
Input: sk = (s⃗, pk = (seeda⃗, b⃗)), c⃗ = (c⃗1, c⃗2)
Output: A session key ss⃗

1: u⃗← c⃗1s⃗ ∈ Rq

2: m⃗′′ ← Decompress(c⃗2)− (u⃗)lv ∈ Zlv
q

3: m⃗′ ← D2.Dec(m⃗′′) ∈ {0, 1}lv

4: m⃗← BCH.Dec(m⃗′)
5: seed← GenSeed(m⃗, pk)
6: seeds← GenSeed(seed)
7: a⃗← UniformSampl(seeda⃗) ∈ Rq

8: (r⃗, e⃗1, e⃗2)← CBDSampl(seeds)
9: c⃗1 ← a⃗r⃗ + e⃗1 ∈ Rq

10: m⃗′ ← BCH.Enc(m⃗) ∈ {0, 1}lv

11: m⃗′′ ← D2.Enc(m⃗′) ∈ Zlv
q

12: c⃗2 ← Compress((b⃗r⃗)lv + e⃗2 + m⃗′′)
13: c⃗← (c⃗1, c⃗2)
14: if c⃗ = c⃗ then
15: ss⃗← Hash(m⃗, c⃗)
16: else
17: ss⃗← Hash(Hash(sk), c⃗)
18: end if

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 77

B.3 Kyber

Algorithm 6 Pseudocode of Kyber.CCAKEM.Enc(pk) [8]
Input: Public key pk ∈ B12.k.n/8+32

Output: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

Output: Shared key K ∈ B∗

1: m← B32

2: m← H(m)
3: (K̄, r) := G(m||H(pk))
4: c := Kyber.CPAPKE.Enc(pk, m, r)
5: K := KDF(K̄||H(c))
6: return (c, K)

Algorithm 7 Pseudocode of Kyber.CCAKEM.Dec(c, sk) [8]
Input: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

Input: Secret key sk ∈ B24.k.n/8+96

Output: Shared key K ∈ B∗

1: pk := sk + 12.k.n/8
2: h := sk + 24.k.n/8 + 32 ∈ B32

3: z := sk + 24.k.n/8 + 64
4: m′ := Kyber.CPAPKE.Dec(s, (u, v))
5: (K̄′

, r′) := G(m′||h)
6: c′ := Kyber.CPAPKE.Enc(pk, m′, r′)
7: if c = c′ then
8: return K := KDF(K̄′||H(c))
9: else

10: return K := KDF(z||H(c))
11: end if
12: return K

78 Implementation and Benchmarking of Round 2 PQC Candidates

Algorithm 8 Pseudocode of Kyber.CPAPKE.Enc(pk,m, r): encryption [8]
Input: Public key pk ∈ B12.k.n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

1: N := 0
2: t̂ := Decode12(pk)
3: ρ := pk + 12.k.n/8
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: Â

T [i][j] := Parse(XOF(ρ, i, j))
7: end for
8: end for
9: for i from 0 to k − 1 do

10: r[i] := CBDη(PRF(r, N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do
14: e1[i] := CBDη(PRF(r, N))
15: N := N + 1
16: end for
17: e2 := CBDη(PRF(r, N))
18: r̂ := NTT(r)
19: u := NTT−1(ÂT ◦ r̂) + e1

20: v := NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1)
21: c1 := Encodedu (Compressq(u, du))
22: c2 := Encodedv (Compressq(v, dv))
23: return c = (c1||c2)

Algorithm 9 Pseudocode of Kyber.CPAPKE.Dec(sk, c): decryption [8]
Input: Secret key sk ∈ B12.k.n/8

Input: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu (c), du)
2: v := Decompressq(Decodedv (c + du.k.n/8), dv)
3: ŝ := Decode12(sk)
4: m := Encode1(Compressq(v −NTT−1(ŝT ◦NTT(u)), 1))
5: return m

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 79

B.4 NewHope

Algorithm 10 Pseudocode of NewHope-CCA-KEM Encapsulation [2]
1: function NewHope-CCA-KEM.Encaps(pk)
2: coin

$←− {0, . . . , 255}32

3: µ← SHAE256(32, coin) ∈ {0, . . . , 255}32

4: K||coin′||d← SHAE256(96, µ||SHAE256(32, pk)) ∈ {0, . . . , 255}32+32+32

5: c← NewHope-CPA-PKE.Encrypt(pk, µ, coins′)
6: ss← SHAKE256(32, K||SHAKE256(32, c||d))
7: return (c̄ = c||d, ss)

Algorithm 11 Pseudocode of NewHope-CCA-KEM Decapsulation [2]
1: function NewHope-CCA-KEM.Decaps(c̄, sk̄)
2: c||d← c̄ ∈ {0, . . . , 255}3n/8+7n/4+32

3: sk||pk||h|s← sk̄ ∈ {0, . . . , 255}7n/4+7n/4+32+32+32

4: µ′ ← CPA.Decrypt(c, sk)
5: K′||coin′′||d′ ← SHAKE256(96, µ′||h) ∈ {0, . . . , 255}32+32+32

6: if c = NewHope-CPA-PKE.Encrypt(pk, µ′, coin′′) and d = d′ then
7: fail← 0
8: else
9: fail← 1

10: K ← K′

11: K ← s
12: return (ss = SHAKE256(32, Kfail||SHAKE256(32, c||d)))

Algorithm 12 Pseudocode of NewHope-CPA-PKE Encryption [2]
1: function NewHope-CPA-PKE.Encrypt(pk ∈ {0, . . . , 255}7n/4+32, µ ∈ {0, . . . , 255}32,
2: coin ∈ {0, . . . , 255}32)
3: (b̂, publicseed)← DecodePk(pk)
4: â← GenA(publicseed)
5: s′ ← BitRev(Sample(coin, 0))
6: e′ ← BitRev(Sample(coin, 1))
7: e′′ ← Sample(coin, 2)
8: t̂← NTT(s′)
9: û← â ◦ t̂ + NTT(e′)

10: v ← Encode(µ)
11: v′ ← NTT−1(b̂ ◦ t̂) + e′′ + v
12: h← Compress(v′)
13: return c = EncodeC(û, h)

80 Implementation and Benchmarking of Round 2 PQC Candidates

Algorithm 13 Pseudocode of NewHope-CPA-PKE Decryption [2]
1: function NewHope-CPA-PKE.Decrypt(c ∈ {0, . . . , 255}7n/4+3n/8, sk ∈ {0, . . . , 255}7n/4)
2: (û, h)← DecodeC(c)
3: ŝ← DecodePoly(sk)
4: v′ ← Decompress(h)
5: µ = Decode(v′ −NTT−1(û ◦ ŝ))
6: return µ

B.5 NTRU-HPS and NTRU-HRSS

Algorithm 14 Pseudocode of NTRU KEM Encapsulate(h) [72]
1: coins ←$ {0, 1}256

2: (r, m)← Sample_rm (coins)
3: c← Encrypt (h, (r, m))
4: k ← H1(r, m)
5: return (c, k)

Algorithm 15 Pseudocode of NTRU KEM Decapsulate((f, fp, hq, s), c) [72]
1: (r, m, fail)← Decrypt((f, fp, hq), c)
2: k1 ← H1(r, M)
3: k2 ← H2(s, c)
4: if fail = 0 then
5: return k1
6: else
7: return K2
8: end if

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 81

Algorithm 16 Pseudocode of NTRU DPKE Encrypt(h, (r,m))) [72]
1: m′ ← Lift(m)
2: c← (r · h + m′) mod (q, Φ1Φn)
3: return c

Algorithm 17 Pseudocode of NTRU DPKE Decrypt((f, fp, hp), c) [72]
1: if c ̸= 0 (mod (q, Φ1)) then
2: return (0, 0, 1)
3: end if
4: a← (c · f) mod (q, Φ1Φn)
5: m← (a · fp) mod (3, Φn)
6: m′ ← Lift (m)
7: r ← ((c−m′) · hq) mod (q, Φn)
8: if (r, m) ∈ Lr × Lm then
9: return (r, m, 0)

10: else
11: return (0, 0, 1)
12: end if

B.6 Streamlined NTRU Prime and NTRULPRime

Algorithm 18 Pseudocode of Encapsulation in Streamlined NTRU Prime and NTRUL-
PRime [71]
Input: K ∈ PublicKeys.
Output: Ciphertexts′ × SessionKeys′ = Ciphertexts × Confirm × SessionKeys′.

1: Decode K, obtaining K ∈ PublicKeys.
2: Generate a uniform random r ∈ Inputs.
3: Encode r as a string r ∈ Inputs.
4: Compute c = Encrypt(r, K) ∈ Ciphertexts.
5: Encode c as a string c ∈ Ciphertexts.
6: Compute C = (c, HashConfirm(r, K)) ∈ Ciphertexts× Confirm
7: Return (C, HashSession(1, r, C)).

82 Implementation and Benchmarking of Round 2 PQC Candidates

Algorithm 19 Pseudocode of Decapsulation in Streamlined NTRU Prime and NTRUL-
PRime [71]
Input: C = (c, γ) ∈ Ciphertexts × Confirm and (k, K, ρ) ∈ SecretKeys× PublicKeys× Inputs
Output: SessionKeys

1: Decode c, obtaining c ∈ Ciphertexts.
2: Decode k, obtaining k ∈ SecretKeys.
3: Compute r′ = Decrypt(c, k) ∈ Inputs.
4: Encode r′ as a string r′ ∈ Inputs.
5: Compute c′ = Encrypt(r′, K) ∈ Ciphertexts.
6: Encode c′ as a string c′ ∈ Ciphertexts.
7: Compute C′ = (c′, HashConfirm(r′, K)) ∈ Ciphertexts× Confirm
8: If C′ = C then return HashSession(1, r, C). Otherwise return HashSession(0, ρ, C).

(The choice between these two outputs is secret information.)

Algorithm 20 Pseudocode of Encryption in Streamlined NTRU Prime [71]
Input: r ∈ Inputs and K = h ∈ PublicKeys.
Output: c ∈ Ciphertexts.

1: Compute hr ∈ R/q.
2: Return c = Round(hr).

Algorithm 21 Pseudocode of Decryption in Streamlined NTRU Prime [71]
Input: c ∈ Ciphertexts and k = (f, v) ∈ Short×R/3.
Output: r′ ∈ Inputs.

1: Compute 3fc ∈ L/q.
2: View each coefficient of 3fc ∈ R/q as an integer between −(q − 1)/2 and (q − 1)/2, and

then reduce modulo 3, obtaining a polynomial e ∈ R/3.
3: Multiply by v ∈ R/3.
4: Lift ev ∈ R/3 to a small polynomial r′ ∈ R.
5: Return r′ if r′ has weight w. Otherwise output (1, 1, ..., 1, 0, 0,..., 0).

Algorithm 22 Pseudocode of Encryption in NTRU LPRime Expand [71]
Input: r ∈ Inputs and K = (S, A) ∈ Seeds× Rounded.
Output: c ∈ Ciphertexts.

1: Compute G = Generator(S).
2: Generate a uniform random b ∈ HashShort(r).
3: Compute bG in R/q.
4: Compute bA in R/q.
5: Compute T = (T0, T1, ..., TI−1) ∈ (Z/τ)I as follows: Tj = Top((bA)j + rj(q − 1)/2).
6: Return c = (Round(bG), T) ∈ Ciphertexts.

Algorithm 23 Pseudocode of Decryption in NTRU LPRime Expand [71]
Input: c = (B, T) ∈ Rounded× (Z/τ)I and k = a ∈ SecretKeys.
Output: r′ ∈ Inputs.

1: Compute aB in R/q.
2: Compute (r′

0, r′
1, ..., r′

I−1) ∈ {0, 1} as follows. View Right(Tj)− (aB)j + 4w + 1 ∈ (Z/q)
as an integer between −(q − 1)/2 and (q − 1)/2. Then r′

j is the sign bit of this integer:
1 if the integer is negative, otherwise 0.

3: Return r′ = (r′
0, r′

1, ..., r′
I−1) ∈ Inputs

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 83

B.7 Round5

Algorithm 24 Pseudocode of r5_cca_kem_encapsulate(pk) [73]
Parameters: Integers p, t, q, n, d, m̄, n̄, µ, b, k, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
Input: pk ∈ {0, 1}k ×R

d/n×n̄
n,p

Output: ct = (Ũ , v, g) ∈ R
m̄×d/n
n,p × Zµ

t × {0, 1}k, k ∈ {0, 1}k

1: m
$←− {0, 1}k

2: (L, g, ρ) = G(m||pk)
3: (Ũ , v) = r5_cpa_pke_encrypt(pk, m, ρ)
4: ct = (Ũ , v, g)
5: k = H(L||ct)
6: return (ct, k)

Algorithm 25 Pseudocode of r5_cca_kem_decapsulate(ct,sk) [73]
Parameters: Integers p, t, q, n, d, m̄, n̄, µ, b, k, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
Input: ct = (Ũ , v, g) ∈ R

m̄×d/n
n,p × Zµ

t × {0, 1}k, sk = (skCP A−P KE,y,pk) ∈ {0, 1}k × {0, 1}k ×
({0, 1}k ×R

d/n×n̄
n,p)

Output: k ∈ {0, 1}k

1: m′ = r5_cpa_pke_decrypt(skCP A−P KE,(Ũ,v))
2: (L′, g′, ρ′) = G(m′||pk)
3: (Ũ ′

, v′) = r5_cpa_pke_encrypt(pk, m′, ρ′)
4: ct′ = (Ũ ′

, v′, g′)
5: if (ct = ct′) then
6: return k = H(L′||ct))
7: else
8: return k = H(y||ct))
9: end if

84 Implementation and Benchmarking of Round 2 PQC Candidates

Algorithm 26 Pseudocode of r5_cpa_pke_encrypt(pk) [73]
Parameters: Integers p, t, q, n, d, m̄, n̄, µ, b, k, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
Input: pk = (σ, B) ∈ {0, 1}k ×R

d/n×n̄
n,p , m, ρ ∈ {0, 1}k

Output: ct = (Ũ , v) ∈ R
m̄×d/n
n,p × Zµ

t

1: A = f
(τ)
d,n(c)

2: R = fR(ρ)
3: U = Rq→p,h2 (⟨AT R⟩Φn+1)
4: Ũ = UT

5: v = ⟨Rp→t,h2 (Sampleµ(⟨BT R⟩ξ))⟩
t

6: ct = (Ũ , v)
7: return ct

Algorithm 27 Pseudocode of r5_cpa_pke_decrypt(sk,ct) [73]
Parameters: Integers p, t, q, n, d, m̄, n̄, µ, b, k, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
Input: sk ∈ {0, 1}k, ct = (Ũ , v) ∈ R

m̄×d/n
n,p × Zµ

t

Output: m̂ ∈ {0, 1}k

1: vp = p

t
b

2: S = fs(sk)
3: U = Ũ

T

4: y = Rp→b,h3 (vp − Sampleµ((ST (U + h4J))ξ))
5: return m̂

B.8 Saber

Algorithm 28 Pseudocode of Saber.KEM.Encaps (pk = (seedA, b)) [74]
1: m← u({0, 1}256)
2: (K̂, r) = g(F (pk), m)
3: c = Saber.PKE.Enc(pk, m; r)
4: K = H(K̂, c)
5: return (c, K)

V. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D.T. Nguyen, and K. Gaj 85

Algorithm 29 Pseudocode of Saber.KEM.Decaps (sk = (s, z, pkh), pk = (seedA, b), c)
[74]

1: m′ = Saber.PKE.Dec(s, c)
2: (K̂, r′) = g(pkh, m′)
3: c′ = Saber.PKE.Enc(pk, m′; r′)
4: if c = ct′ then
5: return K = H(K̂′

, c)
6: else
7: return K = H(z, c)
8: end if

Algorithm 30 Pseudocode of Saber.PKE.Enc (pk = (seedA, b),m ∈ R2; r) [74]
1: A = gen(seedA) ∈ Rl×l

q

2: (K̂, r′) = g(pkh, m′)
3: if r is not specified then
4: r = u({0, 1}256)
5: end if
6: s′ = βµ(Rl×l

q ; r)
7: b′ = ((As′ + h) mod q) >> (ϵq − ϵp) ∈ Rl×l

p

8: v′ = bT (s′ mod p) ∈ Rp

9: cm = (v′ + h1 − 2ϵp−1mmodp) >> (ϵq − ϵT) ∈ RT

10: return c := (cm, b′)

Algorithm 31 Pseudocode of Saber.PKE.Dec (sk = s, c = (cm, b
′)) [74]

1: v = b′T (s mod p) ∈ Rp

2: m′ = ((v − 2ϵp − ϵT cm + h2) mod p) >> (ϵp − 1) ∈ R2
3: return m′

C Speed-ups Compared to the Best Portable Implementa-
tions in C

In Table 39, for each investigated KEM and each major operation (Encapsulation and
Decapsulation), we list the total execution time in software (for the optimized portable
software implementations in C running on ARM Cortex-A53 of Zynq UltraScale+ MPSoC),
the total execution time in software and hardware (after offloading the most time-consuming
operations to hardware), and the obtained speed-up. The ARM processor runs at 1.2 GHz,
DMA for the communication between the processor and the hardware accelerator at 200
MHz, and the hardware accelerators at the maximum frequencies, specific for the RTL
implementations of each algorithm, listed in Table 23. All execution times were obtained
through experimental measurements using the setup shown in Fig. 1. The speed-up for
the software part offloaded to hardware itself is given in the column Accel. Speed-up. This
speed-up is a ratio of the execution time of the accelerated portion in software (column
Accel. SW [ms]) and the execution time of the accelerated portion in hardware, including
all overheads (column Accel. HW [ms]). The last column indicates how big percentage
of the software-only execution time was taken by an accelerated portion of the program.
Links to the underlying software implementations are summarized in Table 22.

86 Implementation and Benchmarking of Round 2 PQC Candidates

Table 39: Speed-ups Compared to the Best Portable Implementations in C

Algorithm Parameter Set
Total
SW
[ms]

Total
SW/HW

[ms]

Total
Speed-

up

Accel.
SW
[ms]

Accel
HW
[ms]

Accel.
Speed-

up

SW part
Sped up

by
HW [%]

Encapsulation
FrodoKEM Frodo-640 16.192 1.223 13.2 15.322 0.353 43.5 94.62
FrodoKEM Frodo-976 34.609 1.642 21.1 33.727 0.761 44.3 97.45
FrodoKEM Frodo-1344 62.076 2.186 28.4 61.218 1.328 46.1 98.62
Kyber Kyber_512 0.327 0.015 21.5 0.326 0.014 23.9 99.52
Kyber Kyber_768 0.533 0.018 29.8 0.531 0.016 32.5 99.71
Kyber Kyber_1024 0.784 0.022 35.5 0.783 0.021 38.2 99.80
LAC-v3a LAC-128-v3a 0.333 0.016 22.0 0.332 0.015 22.2 99.70
LAC-v3a LAC-192-v3a 0.564 0.021 28.0 0.562 0.020 28.3 99.73
LAC-v3a LAC-256-v3a 0.906 0.024 41.0 0.905 0.022 40.6 99.83
LAC-v3b LAC-128-v3b 0.315 0.014 23.0 0.314 0.013 23.4 99.68
LAC-v3b LAC-192-v3b 0.530 0.018 31.0 0.529 0.017 31.4 99.72
LAC-v3b LAC-256-v3b 0.870 0.021 44.0 0.868 0.020 44.4 99.83
NewHope NewHope_512 0.348 0.015 23.1 0.346 0.013 25.7 99.55
NewHope NewHope_1024 0.723 0.021 34.0 0.722 0.020 36.7 99.78
Round5 R5ND-CCA1KEM0d 0.155 0.018 8.6 0.154 0.017 9.1 99.36
Round5 R5ND-CCA3KEM0d 0.245 0.024 10.4 0.244 0.023 10.8 99.59
Round5 R5ND-CCA5KEM0d 0.337 0.032 10.6 0.335 0.030 11.1 99.55
Round5 R5ND_CCA1KEM5d 0.126 0.014 8.7 0.125 0.013 9.3 99.21
Round5 R5ND_CCA3KEM5d 0.241 0.020 11.9 0.240 0.019 12.4 99.58
Round5 R5ND_CCA5KEM5d 0.405 0.028 14.5 0.403 0.026 15.3 99.62
Saber LightSaber-KEM 0.373 0.049 7.6 0.368 0.043 8.5 98.49
Saber Saber-KEM 0.722 0.057 12.7 0.714 0.049 14.5 98.93
Saber FireSaber-KEM 1.181 0.065 18.1 1.171 0.055 21.3 99.14
NTRU LPRime kem/ntrulpr653 1.390 0.052 26.9 1.367 0.029 47.4 98.36
NTRU LPRime kem/ntrulpr761 1.704 0.060 28.6 1.679 0.034 49.6 98.49
NTRU LPRime kem/ntrulpr857 2.061 0.067 30.6 2.032 0.039 52.3 98.62
NTRU-HPS ntruhps2048677 2.961 0.041 71.9 2.946 0.026 115.2 99.47
NTRU-HPS ntruhps4096821 4.285 0.048 88.5 4.268 0.032 135.4 99.61
NTRU-HRSS ntruhrss701 2.964 0.068 43.4 2.921 0.025 115.4 98.55
Str NTRU Prime kem/sntrup653 0.776 0.049 16.0 0.752 0.024 30.9 96.89
Str NTRU Prime kem/sntrup761 0.948 0.056 17.1 0.921 0.029 32.3 97.15
Str NTRU Prime kem/sntrup857 1.143 0.063 18.0 1.113 0.033 33.7 97.34

Decapsulation
FrodoKEM Frodo-640 16.192 1.321 12.3 15.214 0.343 44.4 93.96
FrodoKEM Frodo-976 34.649 1.866 18.6 33.532 0.750 44.7 96.78
FrodoKEM Frodo-1344 62.377 3.120 20.0 60.573 1.317 46.0 97.11
Kyber Kyber_512 0.428 0.017 25.1 0.428 0.017 25.1 100.00
Kyber Kyber_768 0.666 0.020 33.2 0.666 0.020 33.2 100.00
Kyber Kyber_1024 0.950 0.025 38.5 0.950 0.025 38.5 100.00
LAC-v3a LAC-128-v3a 0.463 0.017 27.1 0.463 0.017 27.1 100.00
LAC-v3a LAC-192-v3a 0.782 0.024 32.9 0.782 0.024 32.9 100.00
LAC-v3a LAC-256-v3a 1.378 0.027 51.3 1.378 0.027 51.3 100.00
LAC-v3b LAC-128-v3b 0.440 0.015 28.4 0.440 0.015 28.4 100.00
LAC-v3b LAC-192-v3b 0.741 0.021 36.0 0.741 0.021 36.0 100.00
LAC-v3b LAC-256-v3b 1.332 0.024 55.2 1.332 0.024 55.2 100.00
NewHope NewHope_512 0.426 0.016 26.4 0.426 0.016 26.4 100.00
NewHope NewHope_1024 0.891 0.025 35.9 0.891 0.025 35.9 100.00
Round5 R5ND_CCA1KEM0d 0.193 0.020 9.8 0.19273 0.020 9.8 100.00
Round5 R5ND_CCA3KEM0d 0.309 0.028 11.2 0.30946 0.028 11.2 100.00
Round5 R5ND_CCA5KEM0d 0.416 0.037 11.3 0.4158 0.037 11.3 100.00
Round5 R5ND_CCA1KEM5d 0.173 0.016 10.8 0.17267 0.016 10.8 100.00
Round5 R5ND_CCA3KEM5d 0.319 0.023 13.7 0.31877 0.023 13.7 100.00
Round5 R5ND_CCA5KEM5d 0.537 0.033 16.5 0.53721 0.033 16.5 100.00
Saber LightSaber-KEM 0.471 0.053 9.0 0.459 0.041 11.1 97.60
Saber Saber-KEM 0.867 0.065 13.4 0.851 0.048 17.7 98.10
Saber FireSaber-KEM 1.376 0.077 17.9 1.354 0.055 24.6 98.41
NTRU LPRime kem/ntrulpr653 1.856 0.071 26.2 1.817 0.032 56.7 97.91
NTRU LPRime kem/ntrulpr761 2.289 0.084 27.2 2.244 0.039 58.1 98.02
NTRU LPRime kem/ntrulpr857 2.787 0.098 28.6 2.736 0.047 57.8 98.20
NTRU-HPS ntruhps2048677 8.175 0.095 85.8 8.114 0.034 238.0 99.25
NTRU-HPS ntruhps4096821 11.982 0.107 111.9 11.912 0.037 318.6 99.42
NTRU-HRSS ntruhrss701 8.790 0.136 64.8 8.700 0.046 187.7 98.98
Str NTRU Prime kem/sntrup653 1.643 0.067 24.6 1.599 0.023 68.2 97.36
Str NTRU Prime kem/sntrup761 2.090 0.079 26.5 2.039 0.029 71.5 97.59
Str NTRU Prime kem/sntrup857 2.585 0.087 29.8 2.529 0.031 82.0 97.84

	Introduction
	Previous Work
	Choice of Algorithms to Implement
	Methodology
	Assumptions
	Choice of Benchmarking Platforms for Round 2
	Benchmarking Setup for Software/Hardware Co-design
	Interface and Communication Protocol
	Porting Software Implementations to ARM Cortex-A53
	Software Profiling, C Source Code Analysis, and Software/Hardware Partitioning
	RTL Design Methodology
	Potential Software Optimizations
	Verification and Generation of Results

	Results
	Results for Hardware Implementations
	Profiling the best available software implementations in C
	Results for Software/Hardware Implementations
	Use of High-Level Synthesis
	Results for Software Implementations Optimized Using NEON Instructions of ARM

	Comparison with performance of the AVX2-optimized software implementations
	Conclusions
	Future Work
	Results of Profiling
	Pseudocode of Implemented Algorithms
	FrodoKEM
	LAC
	Kyber
	NewHope
	NTRU-HPS and NTRU-HRSS
	Streamlined NTRU Prime and NTRULPRime
	Round5
	Saber

	Speed-ups Compared to the Best Portable Implementations in C

