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Abstract. The structural connectome is often represented by fiber bun-
dles generated from various types of tractography. We propose a method
of analyzing connectomes by representing them as a Riemannian metric,
thereby viewing them as points in an infinite-dimensional manifold. After
equipping this space with a natural metric structure, the Ebin metric, we
apply object-oriented statistical analysis to define an atlas as the Fréchet
mean of a population of Riemannian metrics. We demonstrate connec-
tome registration and atlas formation using connectomes derived from
diffusion tensors estimated from a subset of subjects from the Human
Connectome Project.

1 Introduction

In this paper we develop for the first time statistical techniques on the infinite-
dimensional space of Riemannian metrics for analyzing the variability of the
architecture of the human brain. Diffusion-weighted MRI (DWMRI) allows us to
model an individual human brain as a Riemannian manifold with axonal connec-
tions that are geodesic curves of an appropriate metric. A Riemannian manifold
is a topological manifold with an inner product defined on the tangent space
at each point, the Riemannian metric. The Riemannian metric fundamentally
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defines the “shape” of the manifold and defines the distance measured intrinsi-
cally on the manifold via geodesic curves. It is our fundamental assumption that
the topology of the normal human brain is consistent across individuals, but the
difference in the connectomics is because of the individual variation in the local
Riemannian metric.

Several strategies have been used in previous work to construct white matter
atlases from a population of diffusion MRI. Mori et al. [21] construct a diffu-
sion tensor imaging (DTI) atlas by registering the diffusion-weighted MRI of
multiple subjects to a standardized anatomical template. They build the DTI
atlas by transforming the diffusion tensors for each subject [1] and then taking
the Euclidean average of the transformed diffusion tensors at each voxel. This
approach does not use the white matter directionality information encoded in
the diffusion images during the registration. It also suffers from the fact that the
Euclidean average of diffusion tensors does not take into account the direction-
ality and tends to be fatter (i.e., less anisotropic) than the input tensors [11].
Another approach by Yeh et al. [25] is to register q-space diffusion images into
an anatomical template and estimate the spin distribution function (SDF) at
each voxel in the template. Then the SDFs are averaged on a per-voxel basis.
While this method does take into account the directionality of the white matter
in a local neighborhood, it does not take into account consistency of long-range
white matter connections.

In this paper we develop a statistical groupwise atlas estimation algorithm
for structural connectomes. The proposed algorithm uses not only local diffusion
data but also long-range connectomics of the subjects as inferred by tractogra-
phy [6]. We do this by estimating a Riemannian metric of the brain manifold
whose geodesic curves coincide with the tractography.

2 Structural Connectomes as Riemannian Metrics

In the white matter of the brain, the diffusion of water is restricted perpendicular
to the direction of the axons. Diffusion-weighted MRI measures the microscopic
diffusion of water in multiple directions at every voxel in a 3D volume. Thus,
the directionality of connections in the brain can be locally inferred. Tradition-
ally, global connections of the white matter have been estimated by a procedure
called tractography, which numerically computes integral curves of the vector
field formed by the most likely direction of fiber tracts at each point. DTI mod-
els connection directions with a tensor, D(x), at each voxel whose principal
eigenvector is aligned with the direction of the strongest diffusion.

Riemannian metrics that represent connectomics of a subject have been
developed in diffusion imaging [23] and include the inverse-tensor metric g̃ =
D(x)−1. However, the geodesics associated with the inverse-tensor metric tend
to deviate from the principal eigenvector directions and take straighter paths
through areas of high curvature.

In this work we build on the algorithm developed by [16], which estimates
a spatially-varying function, α(x), that modulates the inverse-tensor metric to
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create a locally-adaptive Riemannian metric, gα = eα(x)g̃. We briefly describe
the method here for completeness but refer the reader to [16] for details. This
adaptive connectome metric, gα, is conformally equivalent to the inverse-tensor
metric and is better at capturing the global connectomics, particularly through
regions of high curvature. Figure 1 shows how well the geodesics of each metric
match the integral curve of the vector field. The connectome metric geodesics
are very closely aligned with the integral curves.

The geodesic between two end-points, p, q, associated with the inverse-tensor
metric, g̃(x) = D(x)−1, minimizes the energy functional, Ẽ. While the geodesic
associated with the connectome metric, gα(x) = eα(x)D(x)−1, minimizes the
energy functional, Eα:

Ẽ(γ) =
∫ 1

0

〈T (t), T (t)〉g̃dt, Eα(γ) =
∫ 1

0

eα(x)〈T (t), T (t)〉g̃dt, (1)

where γ : [0, 1] → M , γ(0) = p, γ(1) = q, T = dγ
dt .

Analyzing the variation of Eα leads to the geodesic equation, grad α = 2∇T T ,
where the Riemannian gradient of α, gradα = g̃−1

(
∂α
∂x1 , ∂α

∂x2 , · · · , ∂α
∂xn

)
, and ∇T T

is the covariant derivative of T along its integral curve.
To enforce the desired condition where the tangent vectors, T , of the geodesic

match the vector field, V , of the unit principal eigenvectors of D(x), we mini-
mize the functional, F (α) =

∫
M

||grad α − 2∇V V ||2dx. The equation for α that
minimizes F (α) is

Δα = 2div(∇V V ), (2)

where div and Δ are the Riemannian divergence and Laplace-Beltrami oper-
ator. We discretize the Poisson equation in Eq. (2) using a second-order finite
difference scheme that satisfies both the Neumann boundary conditions ∂α

∂−→n =
〈grad α,−→n 〉 = 〈2∇V V,−→n 〉 and the governing equation on the boundary. We then
solve for α.

Note that we can use this method to match the geodesics of the connectome
metric to other vector fields defining the tractogram, e.g., from higher-order dif-
fusion models that can represent multiple fiber crossings in a voxel. In particular,
for tractography based on fiber orientation distributions (FODs), we can use the
techniques presented in [22] to generate the vector field V .

3 The Geometry of the Manifold of All Metrics

Once we have estimated a Riemannian metric for a human connectome, it is a
point in the infinite-dimensional manifold, Met(M), where M is the domain of
the image. We will equip the infinite-dimensional space of all Riemannian metrics
with a diffeomorphism-invariant Riemannian metric, called the Ebin or DeWitt
metric [9,10]. We base the statistical framework on this infinite-dimensional
geometric structure. The invariance of the infinite-dimensional metric under the
group of diffeomorphisms Diff(M) is a crucial property, as it guarantees the



294 K. M. Campbell et al.

Fig. 1. A geodesic of the inverse-tensor metric (blue) and adaptive metric (orange),
along with an integral curve (black) associated with the principal eigenvectors for
a synthetic tensor field (left) and a subject’s connectome metric from the Human
Connectome Project (center). Right shows a detailed view of the metric in the corpus
callosum. (Color figure online)

independence of an initial choice of coordinate system on the brain manifold. In
the following we will describe the details of our mathematical framework.

Let M be a smooth n-dimensional manifold; for our targeted applications n
will be two or three. We denote by Met(M) the space of all smooth Rieman-
nian metrics on M , i.e., each element g of the space Met(M) is a symmetric,
positive-definite

(
0
2

)
tensor field on M . It is convenient to think of the elements

of M as being point-wise positive-definite sections of the bundle of symmetric
two-tensors S2T ∗M , i.e., smooth maps from M with values in S2

+T ∗M . Thus,
the space Met(M) is an open subset of the linear space Γ (S2T ∗M) of all smooth
symmetric

(
0
2

)
tensor fields and hence itself a smooth Fréchet-manifold [10]. Fur-

thermore, let Diff(M) denote the infinite-dimensional Lie group of all smooth dif-
feomorphisms of the manifold M . Elements of Diff(M) act as coordinate changes
on the manifold M . This group acts on the space of metrics via pullback

Met(M) × Diff(M) → Met(M), (g, ϕ) �→ ϕ∗g = g(Tϕ·, Tϕ·) . (3)

It is important to note that the geometries of the metrics g and ϕ∗g are also
related via ϕ. In particular, geodesics with respect to g are mapped via ϕ to
geodesics with respect to ϕ∗g.

On the infinite-dimensional manifold Met(M), there exists a natural Rieman-
nian metric: the reparameterization-invariant L2-metric. To define the metric,
we need to first characterize the tangent space of the manifold of all metrics:
Met(M) is an open subset of Γ (S2T ∗M). Thus, every tangent vector h is a
smooth bilinear form h : TM ×M TM → R that can be equivalently interpreted
as a map TM → T ∗M . The L2-metric is given by

GE
g (h, k) =

∫
M

Tr
(
g−1hg−1k

)
vol(g), (4)
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with g ∈ Met(M), h, k ∈ Tg Met(M) and vol(g) the induced volume density of
the metric g. This metric, introduced in [10], is also known as the Ebin metric.
We call the metric natural as it requires no additional background structure and
is consequently invariant under the action of the diffeomorphism group, i.e.,

Gg(h, k) = Gϕ∗g(ϕ∗h, ϕ∗k) (5)

for all ϕ ∈ Diff(M), g ∈ Met(M) and h, k ∈ Tg Met(M). Note that the invariance
of the metric follows directly from the substitution formula for multi-dimensional
integrals.

The Ebin metric induces a particularly simple geometry on the space
Met(M), with explicit formulas for geodesics, geodesic distance and curvature.
In the following we will present the most important of these formulas, which will
be of importance for our proposed metric matching framework.

First we note that a metric g ∈ Met(M), in local coordinates, can be repre-
sented as a field of symmetric, positive-definite n×n matrices that vary smoothly
over M . Similarly, each tangent vector at g can be represented as a field of sym-
metric n × n matrices. By the results of [8,12,13], one can reduce the investi-
gations of the space of all Riemannian metrics to the study of the geometry of
the finite-dimensional space of symmetric, positive-definite n × n matrices: the
point wise nature of the Ebin metric allows one to solve the geodesic initial and
boundary value problem on Met(M) for each x ∈ M separately and thus the for-
mulas for geodesics, geodesic distance and curvature on the finite-dimensional
matrix space can be translated directly to results for the Ebin metric on the
infinite-dimensional space of Riemannian metrics.

Note that the space of Riemannian metrics, Met(M) with the Ebin met-
ric, is not metrically complete and not geodesically convex. Thus the minimal
geodesic between two Riemannian metrics may not exist in Met(M), but only
in a larger space; the metric completion Met(M), which consists of all possibly
degenerate Riemannian metrics. This construction has been worked out in detail
by Clarke [7] – including the existence of minimizing paths in Met(M). In the
following we will omit these details and refer the interested reader to the arti-
cle [7] for a more in-depth discussion. In the following theorem, we present an
explicit formula for the minimizing geodesic in Met(M) that connects two given
Riemannian metrics.

Theorem 1. For g0, g1 ∈ Met(M) we define

k(x) = log
(
g−1
0 (x)g1(x)

)
, k0(x) = k(x) − Tr(k(x))

n
Id (6)

a(x) = 4
√

det(g0(x)), b(x) = 4
√

det(g1(x)), κ(x) =

√
nTr(k0(x)2)

4
(7)

q(t, x) = 1 + t

(
b(x) cos(κ(x)) − a(x)

a(x)

)
, r(t, x) =

tb(x) sin(κ(x))
a(x)

, (8)
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Then the minimal path g(t, x) with respect to the Ebin metric in Met(M) that
connects g0 to g1 is given by

g =

⎧⎪⎪⎨
⎪⎪⎩

(
q2 + r2

) 2
n g0 exp

(
arctan(r/q)

κ k0

)
0 < κ < π,

q
4
n g0 κ = 0,(
1 − a+b

a t
) 4

n g01[0, a
a+b ] +

(
a+b

b t − a
b

) 4
n g11[ a

a+b ,1] κ ≥ π,

(9)

where 1 denotes the indicator function in the variable t. We suppressed the
functions’ dependence on t and x for better readability.

Proof. This theorem is essentially a reformulation of the minimal geodesic for-
mula given in [8, Theorem 4.16]. We obtain it by combining formulas for the
exponential mapping, inverse exponential mapping, and minimal geodesic in [8,
Theorem 4.4, 4.5, 4.16]. As these calculations are rather tedious we refrain from
presenting them.

We now recall that the geodesic distance of a Riemannian metric is defined as
the infimum of all paths connecting two given points,

distMet(g0, g1) = inf
∫ 1

0

√
Gg(∂tg, ∂tg)dt, (10)

where the infimum is taken over all paths g : [0, 1] → Met(M) with g(0) = g0 and
g(1) = g1. As a direct consequence of Theorem 1 we obtain an explicit formula
for this distance function:
Corollary 1. Let g0, g1 ∈ Met(M) and let k, k0, a, b and κ be as in Theorem1.
Let θ(x) = min {π, κ(x)} . Then the squared geodesic distance of the Ebin metric
is given by:

distMet(g0, g1)2 =
16
n

∫
M

(
a(x)2 − 2a(x)b(x) cos (θ(x)) + b(x)2

)
dx. (11)

Having equipped the space of Riemannian metric with the distance func-
tion (11), we can consider the Fréchet mean ĝ of a collection of metrics g1, . . . gN ,
which is defined as a minimizer of the sum of squared distances:

ĝ = argmin
g

N∑
i=1

dist2Met(g, gi). (12)

One could directly minimize this functional using a gradient-based optimiza-
tion procedure. As our distance function is the geodesic distance function of a
Riemannian metric and since we have access to an explicit formula for the mini-
mizing geodesics, we will instead use the iterative geodesic marching algorithm,
see e.g., [17], to approximate the Fréchet mean. Given N Riemannian metrics gi,
we approximate the Fréchet mean via ĝ = ĝN , where ĝi is recursively defined as
ĝ0 = g0, ĝi(x) = g(1/(i + 1), x) and where g(t, x) is the minimal path, as given
in Theorem 1, connecting ĝi−1 to the i-th data point gi. Thus one only has to
calculate N geodesics in total in the space of Riemannian metrics, whereas a
gradient-based algorithm would require one to calculate N geodesic distances in
each step of the gradient descent.
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3.1 The Induced Distance Function on the Diffeomorphism Group

We can use the geodesic distance function of the Ebin metric to induce a right-
invariant distance function on the group of diffeomorphisms. As we will be using
this distance function as a regularization term in our matching functional, we will
briefly describe this construction here. We fix a Riemannian metric g ∈ Met(M)
and define the “distance” of a diffeomorphism ϕ to the identity via

dist2Diff(id, ϕ) = dist2Met(g, ϕ∗g). (13)

To be more precise, this distance can be degenerate on the full diffeomorphism
group since the isometries of the Riemannian metric g form the kernel of distDiff .
For our purposes we will consider the Euclidean metric for the definition of
distDiff . Thus the only elements in the kernel are translations and rotations. The
right invariance of distDiff follows directly from the Diff(M)-invariance of the
Ebin metric. We note, however, that distDiff is not directly associated with a
Riemanian structure on the diffeomorphism group: the orbits of the diffeomor-
phism group in the space of metrics are not totally geodesic and thus distDiff

is not the geodesic distance of the pullback of the Ebin metric to the space of
diffeomorphisms. See also [20] where this construction has been studied in more
detail.

4 Computational Anatomy of the Human Connectome

Fundamental to the precise characterization and comparison of the human con-
nectome of an individual subject or a population as a whole is the ability to map
or register two different human connectomes. The framework of Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) is well developed for registering
points [19] curves [15] and surfaces [24] all modeled as sub-manifolds of R3 as well
as images modeled as an L2 function [5]. This framework has also been extended
to densities [4] modeled as volume forms. We now extend the diffeomorphic
mapping framework to the connectome modeled as Riemannian metrics. The
diffeomorphisms group acts naturally on the space of metrics, see Eq. (3). With
this action and a reparameterization-invariant metric, the problem of registering
two connectomes fits naturally into the framework of computational anatomy.
We register two connectomes by solving the following minimization problem:

E(ϕ) = inf
ϕ∈Diff(M)

dist2Diff(id, ϕ) + λ dist2Met(g0, ϕ
∗g1) (14)

where distDiff is a right invariant distance on Diff and distMet is a
reparameterization-invariant distance on the space of all Riemannian metrics,
e.g., the geodesic distance of the metrics studied above. The first term measures
the deformation cost and the second term is a similarity measure between the
target and the deformed source connectome. The invariance of the two distances
is essential for the minimization problem to be independent of the choice of
coordinate system on the brain manifold.
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We use the distance function as introduced in Sect. 3.1 to measure the defor-
mation cost, i.e., distDiff(id, ϕ) = distMet(g, ϕ∗g) where g is the restriction of
the euclidean metric to the brain domain. This choice greatly increases com-
putational efficiency since we can now use the formulas from Sect. 3 as explicit
formulas for both terms of the energy functional. To minimize the energy func-
tional, we use a gradient flow approach described in Algorithm 1, where the gra-
dient on Diff(M) is calculated with respect to a right invariant Sobolev metric
of order one, called the information metric [4]. We choose this specific gradient
because of the relation of the information metric to both the Ebin metric on the
space of metrics and the Fisher-Rao metric on the space of probability densities.
See [4,20] for a precise description of the underlying geometric picture.

Note, that our framework allows for the immediate inclusion of points, curves,
surfaces and images in the registration problem, which we plan to incorporate in
future work. Image intensity information, for example, can be easily incorporated
in the registration problem by simply adding an appropriate similarity measure
for the image term (e.g., the standard L2 metric between the deformed source
image and the target image) to the energy functional.

Algorithm 1. Inexact Metric Matching Algorithm
Inputs:

source and target metric g0, g1
Initialize:

learning rate ε; weight parameter λ; max iteration times MaxIter
ϕ, E ← id, 0
for iteration = 0 : MaxIter do

ϕ∗g1 ← (dϕ)T (g1 ◦ ϕ)(dϕ) � Pullback of ϕ
E ← EbinEnergy(ϕ∗g1, g0, λ) � Calculate energy by Eq. (14)
v ← −Δ−1(E. grad) � Transfer gradient w.r.t. information metric to L2

ψ ← id +εv � Construct the approximation
ϕ ← ψ ◦ ϕ � Update the diffeomorphism

end for
return ϕ

4.1 Estimating the Atlas for a Population of Connectomes

Given a collection of connectomes modeled as points on an abstract Riemannian
manifold, we can directly apply least squared estimation to define the average
connectome. Thus the template estimation problem can be formulated as a joint
minimization problem:

ĝ = argmin
g,ϕi

N∑
i=1

dist2Diff(id, ϕi) + λ dist2Met(g, ϕ∗
i gi) (15)
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We use the iterative alternating algorithm proposed in [18] for solving the
above optimization problem: we alternate gradient steps between optimizing
with respect to each diffeomorphism, ϕ−1

i , i = 1, · · · , N , and minimizing with
respect to the metric average ĝ. In the metric optimization step we use the
Fréchet mean algorithm described in Sect. 3. See Algorithm 2 for details of this
process.

Algorithm 2. Atlas Building Algorithm
Inputs:

sample metric fields list G
Initialize:

max iteration times MaxIter
for iteration = 0 : MaxIter do

gmean ← FrechetMean(G) � Sect. 3
for i = 0 : len(G) do

ϕ ← MetricMatching(gmean, G[i]) � Algorithm 1
G[i] ← ϕ∗G[i] � Update G[i] by pullback of ϕ

end for
end for
return gmean

4.2 Implementation Details

As done in [16], we apply a mask to both the connectome metric estimation
process and the atlas building algorithm for two reasons. First, it is important
that we constrain the problem to biologically realistic white matter tracts by not
allowing tractography to flow through regions of CSF. Second, we avoid numeric
issues associated with processing air and other noisy regions outside the skull.
This also speeds up computation, as we only need to look at voxels inside the
masked region instead of the entire image volume. For the atlas building algo-
rithm, we deform each individual mask into atlas space at each outer iteration,
and apply the union of these deformed masks when computing the current atlas
estimate. For each iteration of the atlas building algorithm, we perform only 2
iterations inside the metric matching function to avoid overfitting the individual
metrics to early estimates of the Fréchet mean. In practice, we find the algorithm
behaves well when we update ε in Algorithm 1 such that 1/ε is approximately
equal to the energy (14).

5 Results

Simulated Data: We verified our method by generating vector fields whose cen-
tral integral curves are a family of parameterized cubic functions. We used the
method of parallel curves to add vectors for additional integral curves parallel
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to the central curve with a distance k ∈ [−0.2, 0.2] from the central curve. We
then constructed tensors whose principal eigenvectors align with the generated
vector fields and that have a specified major axis to minor axis ratio of 6:1.

We first estimated the adaptive metric conformal to the inverse-tensor metric
such that the geodesics of the adaptive metrics align with the integral curves of
the simulated vector fields. After finding the connectome metric for each subject,
we ran 400 iterations of the atlas building Algorithm2 to estimate the atlas in
Fig. 2. To help the diffeomorphisms update smoothly, we set λ = 100 in Eq. (14)
and the learning rate ε = 5 in Algorithm 1.

We compared a geodesic of the atlas starting from a particular seed point with
geodesics of the 4 connectome metrics starting from the atlas seed point mapped
into individual space. Figure 2 shows these individual geodesics in atlas space
before and after applying the diffeomorphisms. We see that the atlas geodesic is
nicely centered in the middle of the undeformed individual geodesics as expected.
Also, the deformed individual geodesics align well with the atlas geodesic.

Fig. 2. Left: geodesics of 4 synthetic metrics starting from the atlas seed point (X)
mapped into each metric’s space. Second from right: estimated atlas with geodesic
(orange) starting from the seed point (X) overlaid on non-deformed geodesics from each
of the 4 metrics. Right: estimated atlas with geodesic (orange) overlaid on geodesics
from the 4 metrics deformed into atlas space. (Color figure online)

Real Data: We used a subset of subjects from the Human Connectome Project
Young Adult (HCP) dataset [14]. For each subject, we fit a diffusion tensor
model to the images with a b-value of 1000 using dtifit from FSL [2] and
generated a white-matter mask based on fractional isotropy values. We estimated
the adaptive connectome metric from the inverse-tensor metric associated with
the diffusion tensors.

To generate the atlas shown in Fig. 3, we ran atlas building for 5000 iterations
with λ = 100, ε = 1, which took 50 min on an Intel Xeon Silver 4108 CPU. The
regularization term, λ, balances the magnitudes of the diffeomorphisms from
each subject’s connectome metric to the atlas. To ensure that the final geodesics
in the atlas also follow the major eigenvectors of the atlas tensors, we solve for
the α conformal factor for the atlas as described in Sect. 2.
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Fig. 3. Left: diffeomorphism from HCP subjects (103818, 111312) to the atlas. Center:
each subject’s connectome metric and a geodesic (blue, red) starting from the atlas
seed (X) mapped to subject space. Right: atlas and a geodesic (orange) starting at the
seed (X). Subject geodesics are mapped to atlas space (blue, red). Bottom: detailed
view of corpus callosum. (Color figure online)

6 Conclusions

In this paper, we introduce a novel framework for statistically analyzing struc-
tural connectomes by representing them as a point on the manifold of Rieman-
nian metrics, enabling us to perform geometric statistics. Using this represen-
tation, we build a framework for connectome atlas construction based on the
action of the diffeomorphism group and the natural Ebin metric on the space
of all Riemannian metrics. Although the Ebin metric is canonical, it is not the
only diffeomorphism-invariant metric available on the space of all Riemannian
metrics, c.f. [3]. Our framework allows for other choices of metrics and regular-
ization terms, which we will explore more fully in future work. We also plan to
investigate in more detail the convergence properties of the proposed algorithms,
the impact of the parameter choice on results, and comparisons to other existing
methods. We expect this new methodology to open up opportunities for a deeper
understanding of structural connectomes and their variabilities.
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