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Abstract

Video inpainting aims to fill spatio-temporal “cor-
rupted” regions with plausible content. To achieve this
goal, it is necessary to find correspondences from neigh-
bouring frames to faithfully hallucinate the unknown con-
tent. Current methods achieve this goal through attention,
flow-based warping, or 3D temporal convolution. However,
flow-based warping can create artifacts when optical flow
is not accurate, while temporal convolution may suffer from
spatial misalignment. We propose ‘Progressive Temporal
Feature Alignment Network’, which progressively enriches
features extracted from the current frame with the feature
warped from neighbouring frames using optical flow. Our
approach corrects the spatial misalignment in the temporal
feature propagation stage, greatly improving visual qual-
ity and temporal consistency of the inpainted videos. Us-
ing the proposed architecture, we achieve state-of-the-art
performance on the DAVIS and FVI datasets compared to
existing deep learning approaches. Code is available at
https://github.com/MaureenZ0U/TSAM.

1. Introduction

Video inpainting is a task that aims to fill missing regions
in video frames with plausible content [3]. It has a wide
range of applications including corrupted video restora-
tion, watermark/logo removal, object removal, etc. To fill
the “holes”, it is ideal to inpaint them with corresponding
known content from neighbouring frames, which can well
approximate the missing region. For any missing pixels that
lack good correspondence due to e.g., occlusion, the video
inpainting method must hallucinate reasonable content.

Existing state-of-the-art video inpainting methods rely
on extracting useful information from neighbouring frames,
and are based on three main directions: 3D temporal convo-
lution [6, 7, 14], optical flow [&, 37], and attention [39, 26].

The general structure of existing 3D convolution mod-
els for video inpainting consists of a fully convolutional
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generator to predict the inpainted result holistically and
a Temporal-Patch GAN discriminator to enforce temporal
smoothness and frame realism [7, 6]. However, these meth-
ods simply stack feature maps from neighboring frames
to encode 3D temporal information as an additional axis,
without considering the movement of objects across those
frames. This leads to spatial misalignment in the features,
which can cause issues for video inpaiting. For example,
as shown in the pink circle on the second row of Fig. 1,
the panda leg is not successfully inpainted when using 3D
convolutions [6]. In order to accurately predict structural
(i.e., edge/shape) details, video inpainting models require
spatially-aligned feature maps for each timestamp. This
motivates us to propose a feature alignment framework to
overcome these challenges, with inspirations from flow-
based approaches.

Recent flow-based approaches [8, 37] first compute op-
tical flow from the corrupted video frames, and then com-
plete the unknown regions using flow-based inpainting tech-
niques. Using the computed flow, pixels in corrupted re-
gions are propagated from adjacent frames. Further, im-
age inpainting techniques such as [38] are applied to com-
plete the remaining content. Although optical flow meth-
ods are good at spatial content alignment and are able to
inpaint video frames with higher resolution compared to at-
tention or 3D convolution models, any errors in optical flow
(especially in the missing regions) can prevent the mod-
els from capturing fine-grained structural details. For ex-
ample, as shown in Fig. 1, the telephone pole in the first
row using FGVC [8], a state-of-the-art optical flow based
approach, is not straight compared to 3D convolution ap-
proaches (FFVI [6] and ours). In addition, image inpainting
techniques might generate unwanted content that does not
match the ground truth content. As shown in the first row
of Fig. 1, the purple circle denotes an area that could not be
handled by propagated pixels. FGVC generates a car on the
grass that does not exist in the original video.

We hereby propose a novel framework called Progres-
sive Temporal Feature Alignment Network to combine the
advantages and offset the weaknesses of temporal con-
volution frameworks and optical flow based warping ap-
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Figure 1. This figure shows a qualitative comparison of our approach with flow-based method FGVC [8] and 3D convolution based method
FFVI [6]. We try to inpaint the gray regions shown in (d). The results show that our method generates content that is both more structure-

preserving and visually appealing.

proaches. Our method is an end-to-end deep network
with a novel temporal shift-and-aligned module (TSAM),
in which features between neighbouring frames are aligned
using optical flow. In order to extract aligned feature rep-
resentations across different scales, we progressively ap-
ply TSAM to feature maps in different scales at different
network depths in a coarse-to-fine manner. Fig. 1 shows
that our method produces satisfactory results in challenging
cases in terms of spatial alignment, resolution, and coarse to
fine-grained structures. Through extensive experiments, we
demonstrate that our method achieves state-of-the-art per-
formance on two video inpainting benchmarks FVI (subset
of YoutubeVOS) [6] and DAVIS [4].

2. Related Work
2.1. Image Inpainting

Image inpainting aims to inpaint the missing region with
retrieved or synthesised content. Traditional methods either
retrieve or interpolate missing content from the image itself
[1,22, 2] or a database of related images [12]. Recent deep
learning approaches achieve better results [19, 29], in par-
ticular, with the advent of Generative Adversarial Networks
(GAN) [10] which can make the inpainted images more re-
alistic [27, 16]. However, GANs can synthesize content that
is unrelated to the original image. Image inpainting algo-
rithms [38] have been applied to video inpainting methods
[37, 8]. All of the above methods share a same limitation:
the missing region is hallucinated from the surrounding re-
gion or from external image databases, which can be sub-
optimal for video which can exploit temporal redundancy
from neighboring frames.

2.2. Video Inpainting

In video inpainting, the information of the corrupted re-
gion can have the possibility to be retrieved from nearby

frames thanks to the temporal consistency of videos. Tradi-
tional methods are usually patch-based [11, 15, 25], which
can generate plausible results under certain conditions (e.g.
repetitive patterns, similar textures) but often come with a
high computational cost. Recent deep learning based video
inpainting methods propose more efficient and effective so-
lutions, and include three main directions: attention based
mechanisms [26, 39, 23], flow guided approaches [37, 8],
and 3D convolutional networks [6, 7, 14]. These meth-
ods use different techniques to borrow information from
neighbouring frames. Attention based methods retrieve in-
formation from neighboring frames using a weighted sum
that can lead to blurry results. Flow guided approaches are
able to generate higher resolution results but are sensitive
to errors in optical flow. 3D convolutional networks are
efficient with an end-to-end structure, but can suffer from
spatial misalignment and lower resolution in the inpainted
area. Combining the ideas of 3D convolutional networks
and flow-guided methods, our approach is an end-to-end 3D
convolutional framework with an embedded temporal shift-
and-align module, which enables accurate temporal feature
alignment and propagation.

2.3. Temporal Modeling

To handle temporal information, C3D [32] propose 3D
spatio-temporal CNNs. Later, I3D [5] propose to inflate all
the 2D convolution filters into 3D convolutions. In order
to improve the time efficiency of 3D convolutions, [33, 35]
propose to combine 2D and 3D convolution. The Tempo-
ral shift module (TSM) [24] combines 2D convolution and
channel shifting across temporal features to mimic 3D con-
volution, and shows performance gains on action recogni-
tion and video object detection as well as improved time
efficiency for video inpainting [7]. We regard the TSM net-
work as a type of 3D convolution in this paper as it uses
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Figure 2. The generator of our temporal feature alignment network. It consists of (a) a ResNet encoder with all the first Conv layer
in the bottleneck block replaced with our TSAM Conv (refer to (1)); and (b) a skip connected decoder that has 3 gated DeConv layers
and 5 TSAM Conv layers (only three are shown). As shown in (2), the TSAM Conv layer consists of three parts including a temporal
shift-and-align module and 2 conv layers. The temporal feature « is first aligned using optical flow. After going through a conv layer, the
temporal feature is passed through a gating signal (via a dot product) which is also computed using = through conv and sigmoid layers.

temporal information across frames in its basic blocks (e.g.
each bottleneck block in ResNet [13]). [7] applies TSM in
an end-to-end framework for video inpainting. However, di-
rectly shifting the features from adjacent frames introduces
semantic misalignment on the feature map. Our approach
introduces a spatially-aligned version of TSM to fix the mis-
alignment for video inpainting.

3. Method

In this section, we first give an overview of our model
design for video inpainting. We then introduce our tempo-
ral shift-and-align module, which builds upon the temporal
shift module [24]. Finally, we introduce the loss functions
used to train our model.

3.1. Overview

Problem Definition Video inpainting can be formulated
as a conditional pixel prediction task: given ordered input
video frames XT = [f1, fa, ..., fr] with corrupted regions
M = [my, ma, ..., m7], the objective is to predict the origi-
nal video Y7 = [Fy, F, ..., Fr]. Each m; is a binary mask
with the same resolution as the video frames where 0 indi-
cates the pixel is missing or corrupted and 1 indicates the
pixel is valid.

Model Design As shown in Fig. 2, our model consists of
three parts: (1) A ResNet [13] encoder backbone, with the
first convolution layer of every bottleneck block replaced
with TSAM convolution. TSAM convolution takes both
feature maps and optical flow as input. It first shifts the
features of the neighbouring frames, and then uses optical
flow to warp the shifted features to the correct spatial loca-
tion at the current shifted time stamp. We use gated con-
volution to mitigate any side effects brought by missing re-
gions. The gating signal is computed using the original fea-
ture map through a convolution layer and a sigmoid layer.

The final output of TSAM Conv is the dot product between
the computed feature and gating signal. (2) A skip con-
nected decoder that contains 3 gated deconvolution layers
and 5 TSAM convolution layers with gating signal. There
are two convolution layers that are used for channel reduc-
tion, which are not shown in Fig. 2. The ResNet encoder
and skip connected decoder together make up the genera-
tor, which inpaints the corrupted pixels by borrowing infor-
mation from neighboring frames via 3D convolution [0, 7]
and hallucinating any remaining missing content with the
help of adversarial loss [10], perceptual loss and etc.. (3)
A temporal patch GAN discriminator to enforce the spatio-
temporal features to follow the ground truth target distribu-
tion.

3.2. Temporal Shift Module (TSM)

TSM [24] is a temporal feature shifting method to ex-
change information between neighboring frames on the
channel dimension. It is usually combined with 2D convo-
lution to mimic the effect of 3D convolutions with reduced
memory and latency. As shown in Fig. 3 (b), the channels
with index [0 : f] are shifted downward, and channels with
index [f : 2f] are shifted upward, so that the feature map
at t = ¢ will be enriched with features from ¢ = ¢ + 1 and
t = i — 1. Each shift operation introduces a temporal win-
dow size of 3. As the network gets deeper and adopts more
TSM modules, the temporal receptive field increases lin-
early as 2n — 1 with respect to the number of TSM modules
n inserted.

Although TSM module efficiently aggregates tempo-
ral information, the aggregated temporal features are not
spatially-aligned. As shown in Fig. 3 (b), the positions of
the person are at different locations in different frames due
to object motion. As a result, the aggregated TSM fea-
tures will be misaligned in terms of image content, which
can cause the inpainted frame to be blurry (Fig. 1 (b), cyan
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Figure 3. This figure shows the comparison between the temporal shift module [24] and our temporal shift-and-align module. (a) The
original feature, which contains three feature maps at three different timestamps that are split into three channel groups. (b) The temporal
shift module shifts the first [0 : f] channels downwards and [f : 2f] channels upwards. In this way, the feature at time stamp ¢ = ¢
also contains information from ¢t = ¢ — 1 and ¢ = i + 1. (c) Our Temporal Shift-and-Align module warps the shifted features from the
neighboring frames to be spatially aligned with the features in the current timestamp.

square) or spatially-misaligned (Fig. 1 (b) pink circle). In
order to solve this problem, we propose the Temporal Shift-
and-Align module as follows.

3.3. Temporal Shift-and-Align module (TSAM)

Our Temporal Shift-And-Align module consists of three
steps: (1) Shift the features of neighboring frames. (2) Use
optical flow to warp the shifted features to the correct spa-
tial location at the current timestamp. (3) Aggregate the
spatially-aligned neighbour features with the current frame
features using a validity mask. We describe in detail each
step in the following sections.

Optical Flow Optical flow is defined as the offset be-
tween corresponding pixels in a pair of images (¢, I'*T4%)
within a small time interval A¢. The offset (Axz, Ay) gen-
erally follows:

I'(z,y) = I'"™(z + Az, y + Ay). (1)

The collection of the offsets on an image is defined as a flow
map F'. Although current optical flow methods [17, 30, 31]
can generate accurate results on real world videos, they still
struggle to produce accurate optical flow in difficult cases
such as occlusion and fast motion. Fig. 4 (a) shows a pair of
images and Fig. 4 (b) shows their forward and backward op-
tical flows. As an example, the first warped images in Fig. 4
(d) are computed using the reverse forward flow to warp the
pixels from the second image back to the first image. How-
ever, directly warping the image using optical flow gener-
ates ‘ghosting humans’ due to occlusion, since some pixels
in the first image do not have correspondences in the sec-
ond image. Thus, if we simply use the warped features for
feature aggregation, misaligned pixels will exist. To over-

come this issue, we calculate the validity mask to mark the
reliable pixels in the flow.

Flow Validity Mask We regard the flow at location (z, y)
to be invalid in two cases: (1) we cannot find a mapping
from the reference image; or (2) the flow calculated is inac-
curate due to occlusion, fast motion, etc. We take advantage
of the cycle consistency of optical flow (e.g., [20]) to detect
the invalid pixels in both cases. As shown in Fig. 4 (a), flow
computed at location A is valid if and only if:

|A = Fy(Fy(A))]] <6 2)

where F'y and F;, are forward and backward flow maps, re-
spectively. A validity mask can be computed for both for-
ward and backward flow due to the cycle structure of optical
flow between two images. We show validity masks of the
optical flow in Fig. 4 (c) where grey regions denote the in-
valid pixels calculated under cases (1) and (2). To better
understand the validity mask, Fig. 4 (d) show the images
warped using optical flow computed by flownet2 [17]. By
multiplying the validity mask with the warped image, we
get the masked warped images in Fig. 4 (e), in which the
inaccurate warped pixels have been masked out.

Shift-and-Align for Feature Aggregation After comput-
ing the optical flow maps and the corresponding validity
masks, we use them in our TSAM module. As shown in
Fig. 3 (c), the TSAM module consists of three operations:
(1) Shifting the feature channels of neighboring frames (as
done in TSM); (2) Warping the shifted features to align
with the current frame’s features using optical flow; and (3)
Combining the shifted feature maps with the original (un-
warped) feature maps using the validity mask. Specifically,
given feature map X;, X;_; and X, at neighboring time
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Figure 4. This figure shows the optical flow computed on a pair of images. (a) The input image pair. (b) Computed optical flow. The first
row is the forward flow and the second row is the backward flow. (c) Computed validity mask for forward and backward flow. (d) Warped
image without validity mask. (e) Warped image with validity mask. We can see that if we simply use the reverse forward flow to warp the
first image to the second image, an extra person is hallucinated in the warped image (d). This is because the background region to the left
of the human does not have corresponding pixels in the second image as it is occluded by the human.

stamps, we warp the first f channels from X;_; to X; and
the next f channels from X, to X; using predicted flow:

/[O’f] = F- I)Ht(X(tfl)[O = fD),
X{[f:2f]= w+nlf :2f])

where F,_,, denotes the predicted optical flow and X/ de-
notes the aligned feature map.

After obtaining the shift-and-aligned feature map, we
combine the shifted and original (unwarped) features on the
modified channels using the validity mask v:

X 0:2f] =0 XJ[0:2f] + (1 —v) X,[0:2f] (4

The intuition is to borrow as much information as possi-
ble from neighboring frames as long as the optical flow is
valid. After combining the feature maps from channels 0
to 2f, we concatenate all the feature maps along the chan-
nel dimension and pass it as input to the ensuing layer. We
insert the TSAM module into every bottleneck block in the
encoding stage of the network, and also insert it into the
convolution layers in the decoding stage, as shown in Fig. 2.

3
Fliqn (X )

3.4. Loss Functions

The loss functions of our model consist of a reconstruc-
tion loss L, perceptual loss L, style loss L, and temporal
patchGAN [6] loss Lg:

Ltotal - Lr + )\pr + >\sLs + AGLG (5)
where A\, As, A are coefficients for the loss terms.

Reconstruction Loss. Following most video inpainting
works [6, 7, 39], our reconstruction loss has two parts. An
L1 loss to constraint the overall reconstruction of the entire
image and another L1 loss to focus the pixel reconstruction
accuracy of the corrupted region:

> Y=Yl

Ly =Xa Z| Vi — Yeigl+ A
(t,i,5)eC
(6)

where Y’ and Y are the predicted video and ground truth
video, respectively. C'is the set of pixels in the corrupted
region, and A, and \. are coefficients.

Perceptual Loss. Perceptual Loss [18] is widely used in
image or video inpainting tasks to improve the visual qual-
ity of the generated images:

||
I M:

Yy
Sy 1 o’ — oyl 0
P

10

where (/);/"l and ¢)* denote the activation from the p” se-
lected layer of a pre-trained network for the predicted (V)
and ground truth (Y;) video frame at time ¢, respectively.
N, is the number of elements in the pth layer, P is the set
of layers used to compute the perceptual loss; specifically,
we use the feature maps at the end of four convolutional
stages from VGG network pre-trained on ImageNet. The
loss is accumulated over all frames in the generated video.

Style Loss We also apply the Style Loss [9], which is also
widely applied in image/video inpainting tasks. It enforces
that the predicted image and ground truth image have simi-
lar texture information (as measured by feature correlation).
The style loss is also accumulated over all frames between
the generated video and the ground truth video.

4. Experiments

In this section, we first provide implementation details of
our model. We then introduce the datasets used to evaluate
our model, and provide training details for each dataset to
reproduce our results. To demonstrate the effectiveness of
our approach we compare our method with recent video in-
painting methods both quantitatively and qualitatively. Fi-
nally, we ablate our model with various baseline compo-
nents.



Table 1. This table shows quantitative results on the FVI and DAVIS datasets. We compare our method with 6 different baselines under
three different metrics using object mask, curve mask and stationary mask. Our model achieves state-of-the-art results.

FVI DAVIS
Object Mask Curve Mask Stationary Mask Object Mask Curve Mask Stationary Mask

PSNR SSIM VFID [PSNR SSIM VFID [PSNR SSIM VFID [PSNR SSIM VFID |[PSNR SSIM VFID [PSNR SSIM VFID

OPN [26] |33.53 0.8844 0.7618| 34.16 0.9125 0.6602| 36.15 0.9540 0.4004|32.91 0.8635 0.3664|33.78 0.9105 0.2701| 36.33 0.9596 0.1281
CPN [21] |33.18 0.8764 0.8257|32.88 0.8676 0.8841|35.86 0.9485 0.4606|32.60 0.8452 0.4331|32.47 0.8496 0.4802|36.55 0.9547 0.1637
FFVI[6] |34.74 0.8899 0.6946 | 36.84 0.9470 0.4099|35.23 0.9375 0.4543|33.45 0.8469 0.3809 | 35.76 0.9374 0.1843|41.18 0.9679 0.1313
DFGVI [37]] 33.33 0.8519 0.9122|32.22 0.8007 1.2020| 37.46 0.9508 0.4838|32.78 0.8171 0.5169 |32.02 0.7688 0.7337|38.20 0.9470 0.1894
FGVC [8] |33.13 0.8832 0.7640| 34.14 0.9212 0.640 | 35.09 0.9422 0.4017|31.95 0.8323 0.4010|32.84 0.8841 0.3432|33.92 0.9212 0.1734
STTN [39] | 34.86 0.9047 0.7276| 36.07 0.9411 0.6136|39.60 0.9716 0.3132|33.60 0.8708 0.3831|34.83 0.9251 0.2882|38.78 0.9690 0.1197
Ours 35.48 0.9160 0.6129| 37.43 0.9566 0.3661 | 41.41 0.9738 0.2893 | 34.23 0.8798 0.3526 | 36.54 0.9508 0.1933 | 42.05 0.9737 0.1303

-

w2 O%

(a) Object (b) Curve

(c) Stationary

Figure 5. Examples of the three types of corruption masks that we
use for training and evaluation.

4.1. Implementation Details

Our network structure is shown in Fig. 2 and discussed
in Section 3. We set f in Fig. 3 to be 1/8 of the total fea-
ture channels. During training we use the optical flow that
is computed by [17] on ground truth image pairs. During
evaluation, where ground truth flow is not available on the
corrupted regions, we use FGVC [8] to complete the optical
flow within the missing regions. All flow maps are down-
sampled to the same resolution of the corresponding feature
maps before feeding into the TSAM convolution.

4.2. Datasets

FVI [6] samples data from the Youtube-VOS [36] video
object segmentation dataset . It contains 1940 videos for
training, and 100 videos for testing. We use 100 additional
videos that are not included in these videos for validation.
The original FVI dataset also contains 12600 videos from
the YTBB [28] dataset. However, we do not include them
for training since [0] showed that they do not lead to any
performance improvement.

DAVIS [4] consists of 150 videos in total, in which 90
videos are densely annotated for training and 60 videos for
validation are only annotated with the first frame. We follow
[39] and use the 60 original validation videos for training
and the 90 original training videos for validation.

Mask Types Real-world applications of video inpainting
include corrupted video restoration, object removal, water-
mark removal, etc. To mimic these applications, we train
and evaluate our model on three kinds of masks including
moving object-like mask, moving curve mask, and station-
ary mask as shown in Fig. 5. The image regions within
masks (black areas) are used as the corrupted regions in our

task. The object-like/curve masks contain moving masks
that occupy 0 — 10% to 60 — 70% of the overall frame area.
Note that the object mask and curve mask are moving in
both the evaluation and training stages. The stationary mask
is static in evaluation but moving with a probability of 0.5
during training for data augmentation purposes. The gener-
ation process of these masks follows previous work [39, 6].

Training Details On FVI and DAVIS datasets, we use
slightly different training strategies. On the large-scale FVI
dataset, we train our model in two stages. In the first stage,
we only train the encoder and decoder network with im-
age reconstruction loss, perceptual loss, and style loss with
weights 1,1, 2 respectively. We train the network for 200
epochs. During the second stage, we add the image recon-
struction loss in the corrupted region and temporal patch
GAN loss to the loss function with weight 6 and 0.1 re-
spectively. The model is further finetuned for 200 epochs.
As DAVIS only contains 60 videos for training, which is
not sufficient to train the network from scratch, we use the
model trained on FVI dataset as a pretrained model and fine-
tune it on DAVIS. We train with reconstruction loss, style
loss, perceptual loss, and temporal patch GAN loss, which
use the same weights as on FVI. We finetune the model for
200 epochs on DAVIS.

4.3. Baselines and Evaluation Metrics

Baselines We compare our method with recent video in-
painting algorithms including two attention-based meth-
ods OPN [26] and STTN [39], two flow-based approaches
DFGVI [37] and FGVC [£], one 3D convolution method
FFVI [6], and one affine alignment method CPN [21].

Evaluation Metrics We evaluate video inpainting quality
using PSNR, SSIM and VFID.

Peak signal-to-noise ratio (PSNR) is a metric that mea-
sures the pixel similarity between the predicted and ground
truth frames:

PSNR = 20log1o max(I) — 10log1o(MSE)  (8)

where max([) is the maximum possible pixel value of the
image, and MSE is the mean square error between the result



Table 2. This table shows ablation study results of our Temporal Feature Alignment Network. We first compare our full method (third
row) with an ablated baseline that does not use optical flow (first row). We also compare to a baseline that uses ground truth optical flow
(second row). The result shows that using optical flow generally increases performance while using ground truth flow can further boost
performance compared to using flow computed by [8]. Here Flow* denotes predicted flow and Mask* denotes the validity mask.

Object Mask Curve Mask Stationary Mask
TSM  Flow GT Flow* Mask* | PSNR SSIM  VFID | PSNR SSIM  VFID | PSNR SSIM  VFID
v 35.06 09047 0.6294 | 37.12 0.9510 0.3827 | 41.11 0.9694 0.2961
v v v 3576 0.9269 0.5404 | 37.82 0.9648 0.3660 | 41.61 0.9765 0.2549
v v v 3548 09160 0.6129 | 3743 0.9566 0.3661 | 41.41 09738 0.2893

and ground truth image.
Structure Similarity (SSIM) measures the patch similar-
ity between two images:

_ (2pppq +21)(20p9 + €2)
(2 + 12 F 202 + 07 + )

SSIM (p,q)

€))

where 11, 114 are the average of patch p and ¢, o), 04 are the
variance of patch p and ¢, and o, is the covariance of patch
p and q. €1, are two small constants to prevent division
by 0.

Video Frechet Inception Distance (VFID) [34] calculates
the distance between features predicted by I3D [5] models
pretrained on an action recognition task:

FID = ||p—y||+Tr(E+% —2vVEY) (10)
where p and X are the mean and covariance of ground truth
feature map and p’ and X’ are the mean and variance of the
predicted feature map.

4.4. Quantitative Results

We report quantitative results on two datasets (DAVIS,
FVI) and three different masks (object-like, curve, and sta-
tionary).

FVI Table 1 (left) shows quantitative results on the FVI
dataset. Our model outperforms all existing methods under
the three different mask settings. In particular, our method
outperforms FFVI, which uses 3D convolution to aggre-
gate temporal features across frames but does not perform
alignment. This indicates that the proposed temporal fea-
ture alignment is critical to improve the visual quality of
the inpainted videos. Our method also outperforms FGVC
with a large margin for all three evaluation metrics, espe-
cially on curve masks with a 42% improvement. Although
we use the same optical flow completion method as FGVC,
our approach applies the inpainted flow at the feature level
and uses the 3D convolution network to fill the hole in an
end-to-end manner. STTN achieves the second best perfor-
mance overall. STTN is an attention based approach that
also iteratively fills the content through transformers. How-
ever, its attention modules are applied after feature encod-
ing, whereas we progressively align feature maps during

feature encoding across different feature scales. This en-
ables the network to borrow both low and high level infor-
mation from neighboring frames.

DAVIS Table 1 (right) shows quantitative results on the
DAVIS dataset. Overall, our model achieves the best per-
formance on all three tasks. Compared to the previous best
method STTN, our method produces better results on both
object-like mask and curve mask. On stationary mask, our
approach is significantly better on PSNR and SSIM, while
being slightly worse on VFID score. We can see that flow-
based methods have lower FID scores on curve masks than
3D convolution based approaches ([0] and ours). This is be-
cause the curve mask is usually thin and moving, so there
is sufficient surrounding (spatial and temporal) information
for 3D convolution approaches to effectively hallucinate
missing content, while FGVC [&] suffers when the predicted
flow is inaccurate.

4.5. Ablation Study

With/out Optical Flow In Table 2, we first compare the
video inpainting results using temporal shift module (first
row) and our temporal shift-and-align module using ground
truth optical flow (second row). Both approaches share ex-
actly the same architecture shown in Fig. 2. We see that us-
ing our temporal shift-and-align module with ground truth
flow increases performance by around 5% on PSRN, 4.6%
on SSIM, and 3.2% on VFID. This demonstrates the impor-
tance of aligning features from neighboring frames.

Ground Truth Flow vs. Completed Flow In Table 2 sec-
ond and third rows, we compare our temporal shift-and-
align module using ground truth flow versus optical flow
completed by [8] for the corrupted regions. Although using
completed flow decreases performance compared to using
ground truth flow, it still leads to a performance gain com-
pared to the baseline method of using temporal shift module
without any optical flow alignment (first row in Table 2).

4.6. Qualitative Results

Fig. 6 shows three sample video inpainting results for
object removal, curve mask, and stationary mask corrup-
tion. We compare our approach with FGVC [8], STTN



(b) FGVC

(a) Input Frame

(c) STTN

(d) FFVI (e) Ours

Figure 6. Qualitative comparison of our method with FGVC [8], STTN [39] and FFVI [6]. The boxing video shows that our approach has
higher resolution on the inpainted area compared to STTN, and has better structure on the boxing fence compared to FGVC. The second
video shows that our approach accurately inpaints the missing curve area. For the third example with a stationary mask, our approach fills
the missing stroller area with plausible content. In general, our approach fills the missing regions with more accurate content and higher

resolution.

[39] and FFVI [6]. In general, FGVC suffers from struc-
ture misalignment in all three cases (e.g. the boxing fence
is misaligned, the man’s legs are incorrectly inpainted, and
the wall around the stroller also suffers from incorrect struc-
ture). Although STTN can inpaint plausible content, it tends
to generate blurry results in most cases. Lastly, FFVI gener-
ates artifacts in some cases (e.g. yellow color around boxing
fence, white blob on jeans). Compared to these methods,
our approach generates more accurate content and structure
in all three cases.

Finally, we also conduct a user study on the visual qual-
ity of different methods. Please refer to supplementary ma-
terial for the results.

5. Conclusion

In this paper, we proposed the progressive temporal fea-
ture alignment network for video inpainting, which fills the

missing regions by making use of both temporal convolu-
tion and optical flow. We adopted the temporal shift module
as our video backbone and used optical flow to align the fea-
tures from neighboring frames on the shifted channels. This
technique leads to inpainting results that have better image
structure and higher resolution, which were limitations of
prior approaches. We demonstrated state-of-the-art results
on the FVI and DAVIS benchmark datasets, and the benefits
of our novel model components through ablation studies.
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