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Abstract

Video inpainting aims to fill spatio-temporal “cor-

rupted” regions with plausible content. To achieve this

goal, it is necessary to find correspondences from neigh-

bouring frames to faithfully hallucinate the unknown con-

tent. Current methods achieve this goal through attention,

flow-based warping, or 3D temporal convolution. However,

flow-based warping can create artifacts when optical flow

is not accurate, while temporal convolution may suffer from

spatial misalignment. We propose ‘Progressive Temporal

Feature Alignment Network’, which progressively enriches

features extracted from the current frame with the feature

warped from neighbouring frames using optical flow. Our

approach corrects the spatial misalignment in the temporal

feature propagation stage, greatly improving visual qual-

ity and temporal consistency of the inpainted videos. Us-

ing the proposed architecture, we achieve state-of-the-art

performance on the DAVIS and FVI datasets compared to

existing deep learning approaches. Code is available at

https://github.com/MaureenZOU/TSAM .

1. Introduction

Video inpainting is a task that aims to fill missing regions

in video frames with plausible content [3]. It has a wide

range of applications including corrupted video restora-

tion, watermark/logo removal, object removal, etc. To fill

the “holes”, it is ideal to inpaint them with corresponding

known content from neighbouring frames, which can well

approximate the missing region. For any missing pixels that

lack good correspondence due to e.g., occlusion, the video

inpainting method must hallucinate reasonable content.

Existing state-of-the-art video inpainting methods rely

on extracting useful information from neighbouring frames,

and are based on three main directions: 3D temporal convo-

lution [6, 7, 14], optical flow [8, 37], and attention [39, 26].

The general structure of existing 3D convolution mod-

els for video inpainting consists of a fully convolutional
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generator to predict the inpainted result holistically and

a Temporal-Patch GAN discriminator to enforce temporal

smoothness and frame realism [7, 6]. However, these meth-

ods simply stack feature maps from neighboring frames

to encode 3D temporal information as an additional axis,

without considering the movement of objects across those

frames. This leads to spatial misalignment in the features,

which can cause issues for video inpaiting. For example,

as shown in the pink circle on the second row of Fig. 1,

the panda leg is not successfully inpainted when using 3D

convolutions [6]. In order to accurately predict structural

(i.e., edge/shape) details, video inpainting models require

spatially-aligned feature maps for each timestamp. This

motivates us to propose a feature alignment framework to

overcome these challenges, with inspirations from flow-

based approaches.

Recent flow-based approaches [8, 37] first compute op-

tical flow from the corrupted video frames, and then com-

plete the unknown regions using flow-based inpainting tech-

niques. Using the computed flow, pixels in corrupted re-

gions are propagated from adjacent frames. Further, im-

age inpainting techniques such as [38] are applied to com-

plete the remaining content. Although optical flow meth-

ods are good at spatial content alignment and are able to

inpaint video frames with higher resolution compared to at-

tention or 3D convolution models, any errors in optical flow

(especially in the missing regions) can prevent the mod-

els from capturing fine-grained structural details. For ex-

ample, as shown in Fig. 1, the telephone pole in the first

row using FGVC [8], a state-of-the-art optical flow based

approach, is not straight compared to 3D convolution ap-

proaches (FFVI [6] and ours). In addition, image inpainting

techniques might generate unwanted content that does not

match the ground truth content. As shown in the first row

of Fig. 1, the purple circle denotes an area that could not be

handled by propagated pixels. FGVC generates a car on the

grass that does not exist in the original video.

We hereby propose a novel framework called Progres-

sive Temporal Feature Alignment Network to combine the

advantages and offset the weaknesses of temporal con-

volution frameworks and optical flow based warping ap-



(a) FGVC (b) FFVI (c) Ours (d) GT

Figure 1. This figure shows a qualitative comparison of our approach with flow-based method FGVC [8] and 3D convolution based method

FFVI [6]. We try to inpaint the gray regions shown in (d). The results show that our method generates content that is both more structure-

preserving and visually appealing.

proaches. Our method is an end-to-end deep network

with a novel temporal shift-and-aligned module (TSAM),

in which features between neighbouring frames are aligned

using optical flow. In order to extract aligned feature rep-

resentations across different scales, we progressively ap-

ply TSAM to feature maps in different scales at different

network depths in a coarse-to-fine manner. Fig. 1 shows

that our method produces satisfactory results in challenging

cases in terms of spatial alignment, resolution, and coarse to

fine-grained structures. Through extensive experiments, we

demonstrate that our method achieves state-of-the-art per-

formance on two video inpainting benchmarks FVI (subset

of YoutubeVOS) [6] and DAVIS [4].

2. Related Work

2.1. Image Inpainting

Image inpainting aims to inpaint the missing region with

retrieved or synthesised content. Traditional methods either

retrieve or interpolate missing content from the image itself

[1, 22, 2] or a database of related images [12]. Recent deep

learning approaches achieve better results [19, 29], in par-

ticular, with the advent of Generative Adversarial Networks

(GAN) [10] which can make the inpainted images more re-

alistic [27, 16]. However, GANs can synthesize content that

is unrelated to the original image. Image inpainting algo-

rithms [38] have been applied to video inpainting methods

[37, 8]. All of the above methods share a same limitation:

the missing region is hallucinated from the surrounding re-

gion or from external image databases, which can be sub-

optimal for video which can exploit temporal redundancy

from neighboring frames.

2.2. Video Inpainting

In video inpainting, the information of the corrupted re-

gion can have the possibility to be retrieved from nearby

frames thanks to the temporal consistency of videos. Tradi-

tional methods are usually patch-based [11, 15, 25], which

can generate plausible results under certain conditions (e.g.

repetitive patterns, similar textures) but often come with a

high computational cost. Recent deep learning based video

inpainting methods propose more efficient and effective so-

lutions, and include three main directions: attention based

mechanisms [26, 39, 23], flow guided approaches [37, 8],

and 3D convolutional networks [6, 7, 14]. These meth-

ods use different techniques to borrow information from

neighbouring frames. Attention based methods retrieve in-

formation from neighboring frames using a weighted sum

that can lead to blurry results. Flow guided approaches are

able to generate higher resolution results but are sensitive

to errors in optical flow. 3D convolutional networks are

efficient with an end-to-end structure, but can suffer from

spatial misalignment and lower resolution in the inpainted

area. Combining the ideas of 3D convolutional networks

and flow-guided methods, our approach is an end-to-end 3D

convolutional framework with an embedded temporal shift-

and-align module, which enables accurate temporal feature

alignment and propagation.

2.3. Temporal Modeling

To handle temporal information, C3D [32] propose 3D

spatio-temporal CNNs. Later, I3D [5] propose to inflate all

the 2D convolution filters into 3D convolutions. In order

to improve the time efficiency of 3D convolutions, [33, 35]

propose to combine 2D and 3D convolution. The Tempo-

ral shift module (TSM) [24] combines 2D convolution and

channel shifting across temporal features to mimic 3D con-

volution, and shows performance gains on action recogni-

tion and video object detection as well as improved time

efficiency for video inpainting [7]. We regard the TSM net-

work as a type of 3D convolution in this paper as it uses
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Figure 2. The generator of our temporal feature alignment network. It consists of (a) a ResNet encoder with all the first Conv layer

in the bottleneck block replaced with our TSAM Conv (refer to (1)); and (b) a skip connected decoder that has 3 gated DeConv layers

and 5 TSAM Conv layers (only three are shown). As shown in (2), the TSAM Conv layer consists of three parts including a temporal

shift-and-align module and 2 conv layers. The temporal feature x is first aligned using optical flow. After going through a conv layer, the

temporal feature is passed through a gating signal (via a dot product) which is also computed using x through conv and sigmoid layers.

temporal information across frames in its basic blocks (e.g.

each bottleneck block in ResNet [13]). [7] applies TSM in

an end-to-end framework for video inpainting. However, di-

rectly shifting the features from adjacent frames introduces

semantic misalignment on the feature map. Our approach

introduces a spatially-aligned version of TSM to fix the mis-

alignment for video inpainting.

3. Method

In this section, we first give an overview of our model

design for video inpainting. We then introduce our tempo-

ral shift-and-align module, which builds upon the temporal

shift module [24]. Finally, we introduce the loss functions

used to train our model.

3.1. Overview

Problem Definition Video inpainting can be formulated

as a conditional pixel prediction task: given ordered input

video frames XT = [f1, f2, ..., fT ] with corrupted regions

M = [m1,m2, ...,mT ], the objective is to predict the origi-

nal video Y T = [F1, F2, ..., FT ]. Each mi is a binary mask

with the same resolution as the video frames where 0 indi-

cates the pixel is missing or corrupted and 1 indicates the

pixel is valid.

Model Design As shown in Fig. 2, our model consists of

three parts: (1) A ResNet [13] encoder backbone, with the

first convolution layer of every bottleneck block replaced

with TSAM convolution. TSAM convolution takes both

feature maps and optical flow as input. It first shifts the

features of the neighbouring frames, and then uses optical

flow to warp the shifted features to the correct spatial loca-

tion at the current shifted time stamp. We use gated con-

volution to mitigate any side effects brought by missing re-

gions. The gating signal is computed using the original fea-

ture map through a convolution layer and a sigmoid layer.

The final output of TSAM Conv is the dot product between

the computed feature and gating signal. (2) A skip con-

nected decoder that contains 3 gated deconvolution layers

and 5 TSAM convolution layers with gating signal. There

are two convolution layers that are used for channel reduc-

tion, which are not shown in Fig. 2. The ResNet encoder

and skip connected decoder together make up the genera-

tor, which inpaints the corrupted pixels by borrowing infor-

mation from neighboring frames via 3D convolution [6, 7]

and hallucinating any remaining missing content with the

help of adversarial loss [10], perceptual loss and etc.. (3)

A temporal patch GAN discriminator to enforce the spatio-

temporal features to follow the ground truth target distribu-

tion.

3.2. Temporal Shift Module (TSM)

TSM [24] is a temporal feature shifting method to ex-

change information between neighboring frames on the

channel dimension. It is usually combined with 2D convo-

lution to mimic the effect of 3D convolutions with reduced

memory and latency. As shown in Fig. 3 (b), the channels

with index [0 : f ] are shifted downward, and channels with

index [f : 2f ] are shifted upward, so that the feature map

at t = i will be enriched with features from t = i + 1 and

t = i − 1. Each shift operation introduces a temporal win-

dow size of 3. As the network gets deeper and adopts more

TSM modules, the temporal receptive field increases lin-

early as 2n−1 with respect to the number of TSM modules

n inserted.

Although TSM module efficiently aggregates tempo-

ral information, the aggregated temporal features are not

spatially-aligned. As shown in Fig. 3 (b), the positions of

the person are at different locations in different frames due

to object motion. As a result, the aggregated TSM fea-

tures will be misaligned in terms of image content, which

can cause the inpainted frame to be blurry (Fig. 1 (b), cyan



Flow 

Warp

Flow 

Warp

Flow 

Warp

Flow 

Warp

(a) Original feature

Channel

(b) Temporal Shift Module (c) Temporal Shift-and-Align Module

Figure 3. This figure shows the comparison between the temporal shift module [24] and our temporal shift-and-align module. (a) The

original feature, which contains three feature maps at three different timestamps that are split into three channel groups. (b) The temporal

shift module shifts the first [0 : f ] channels downwards and [f : 2f ] channels upwards. In this way, the feature at time stamp t = i

also contains information from t = i − 1 and t = i + 1. (c) Our Temporal Shift-and-Align module warps the shifted features from the

neighboring frames to be spatially aligned with the features in the current timestamp.

square) or spatially-misaligned (Fig. 1 (b) pink circle). In

order to solve this problem, we propose the Temporal Shift-

and-Align module as follows.

3.3. Temporal Shift-and-Align module (TSAM)

Our Temporal Shift-And-Align module consists of three

steps: (1) Shift the features of neighboring frames. (2) Use

optical flow to warp the shifted features to the correct spa-

tial location at the current timestamp. (3) Aggregate the

spatially-aligned neighbour features with the current frame

features using a validity mask. We describe in detail each

step in the following sections.

Optical Flow Optical flow is defined as the offset be-

tween corresponding pixels in a pair of images (It, It+Δt)
within a small time interval Δt. The offset (Δx,Δy) gen-

erally follows:

It(x, y) = It+Δt(x+Δx, y +Δy). (1)

The collection of the offsets on an image is defined as a flow

map F . Although current optical flow methods [17, 30, 31]

can generate accurate results on real world videos, they still

struggle to produce accurate optical flow in difficult cases

such as occlusion and fast motion. Fig. 4 (a) shows a pair of

images and Fig. 4 (b) shows their forward and backward op-

tical flows. As an example, the first warped images in Fig. 4

(d) are computed using the reverse forward flow to warp the

pixels from the second image back to the first image. How-

ever, directly warping the image using optical flow gener-

ates ‘ghosting humans’ due to occlusion, since some pixels

in the first image do not have correspondences in the sec-

ond image. Thus, if we simply use the warped features for

feature aggregation, misaligned pixels will exist. To over-

come this issue, we calculate the validity mask to mark the

reliable pixels in the flow.

Flow Validity Mask We regard the flow at location (x, y)
to be invalid in two cases: (1) we cannot find a mapping

from the reference image; or (2) the flow calculated is inac-

curate due to occlusion, fast motion, etc. We take advantage

of the cycle consistency of optical flow (e.g., [20]) to detect

the invalid pixels in both cases. As shown in Fig. 4 (a), flow

computed at location A is valid if and only if:

||A− Ff (Fb(A))|| < δ (2)

where Ff and Fb are forward and backward flow maps, re-

spectively. A validity mask can be computed for both for-

ward and backward flow due to the cycle structure of optical

flow between two images. We show validity masks of the

optical flow in Fig. 4 (c) where grey regions denote the in-

valid pixels calculated under cases (1) and (2). To better

understand the validity mask, Fig. 4 (d) show the images

warped using optical flow computed by flownet2 [17]. By

multiplying the validity mask with the warped image, we

get the masked warped images in Fig. 4 (e), in which the

inaccurate warped pixels have been masked out.

Shift-and-Align for Feature Aggregation After comput-

ing the optical flow maps and the corresponding validity

masks, we use them in our TSAM module. As shown in

Fig. 3 (c), the TSAM module consists of three operations:

(1) Shifting the feature channels of neighboring frames (as

done in TSM); (2) Warping the shifted features to align

with the current frame’s features using optical flow; and (3)

Combining the shifted feature maps with the original (un-

warped) feature maps using the validity mask. Specifically,

given feature map Xt, Xt−1 and Xt+1 at neighboring time
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Figure 4. This figure shows the optical flow computed on a pair of images. (a) The input image pair. (b) Computed optical flow. The first

row is the forward flow and the second row is the backward flow. (c) Computed validity mask for forward and backward flow. (d) Warped

image without validity mask. (e) Warped image with validity mask. We can see that if we simply use the reverse forward flow to warp the

first image to the second image, an extra person is hallucinated in the warped image (d). This is because the background region to the left

of the human does not have corresponding pixels in the second image as it is occluded by the human.

stamps, we warp the first f channels from Xt−1 to Xt and

the next f channels from Xt+1 to Xt using predicted flow:

X ′

t[0 : f ] = F(t−1)→t(X(t−1)[0 : f ]),

X ′

t[f : 2f ] = F(t+1)→t(X(t+1)[f : 2f ])
(3)

where F∗→∗ denotes the predicted optical flow and X ′

∗
de-

notes the aligned feature map.

After obtaining the shift-and-aligned feature map, we

combine the shifted and original (unwarped) features on the

modified channels using the validity mask v:

Xt[0 : 2f ] = v X ′

t[0 : 2f ] + (1− v) Xt[0 : 2f ] (4)

The intuition is to borrow as much information as possi-

ble from neighboring frames as long as the optical flow is

valid. After combining the feature maps from channels 0
to 2f , we concatenate all the feature maps along the chan-

nel dimension and pass it as input to the ensuing layer. We

insert the TSAM module into every bottleneck block in the

encoding stage of the network, and also insert it into the

convolution layers in the decoding stage, as shown in Fig. 2.

3.4. Loss Functions

The loss functions of our model consist of a reconstruc-

tion loss Lr, perceptual loss Lp, style loss Ls, and temporal

patchGAN [6] loss LG:

Ltotal = Lr + λpLp + λsLs + λGLG (5)

where λp, λs, λG are coefficients for the loss terms.

Reconstruction Loss. Following most video inpainting

works [6, 7, 39], our reconstruction loss has two parts. An

L1 loss to constraint the overall reconstruction of the entire

image and another L1 loss to focus the pixel reconstruction

accuracy of the corrupted region:

Lr = λa

∑

t,i,j

|Y ′t,i,j − Yt,i,j |+ λc

∑

(t,i,j)∈C

|Y ′t,i,j − Yt,i,j |

(6)

where Y ′ and Y are the predicted video and ground truth

video, respectively. C is the set of pixels in the corrupted

region, and λa and λc are coefficients.

Perceptual Loss. Perceptual Loss [18] is widely used in

image or video inpainting tasks to improve the visual qual-

ity of the generated images:

Lp =
n∑

t=1

∑

p∈P

||φY ′

t

p − φYt

p ||
Np

(7)

where φ
Y ′

t

p and φYt

p denote the activation from the pth se-

lected layer of a pre-trained network for the predicted (Y ′t )

and ground truth (Yt) video frame at time t, respectively.

Np is the number of elements in the pth layer, P is the set

of layers used to compute the perceptual loss; specifically,

we use the feature maps at the end of four convolutional

stages from VGG network pre-trained on ImageNet. The

loss is accumulated over all frames in the generated video.

Style Loss We also apply the Style Loss [9], which is also

widely applied in image/video inpainting tasks. It enforces

that the predicted image and ground truth image have simi-

lar texture information (as measured by feature correlation).

The style loss is also accumulated over all frames between

the generated video and the ground truth video.

4. Experiments

In this section, we first provide implementation details of

our model. We then introduce the datasets used to evaluate

our model, and provide training details for each dataset to

reproduce our results. To demonstrate the effectiveness of

our approach we compare our method with recent video in-

painting methods both quantitatively and qualitatively. Fi-

nally, we ablate our model with various baseline compo-

nents.



Table 1. This table shows quantitative results on the FVI and DAVIS datasets. We compare our method with 6 different baselines under

three different metrics using object mask, curve mask and stationary mask. Our model achieves state-of-the-art results.

FVI DAVIS

Object Mask Curve Mask Stationary Mask Object Mask Curve Mask Stationary Mask

PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID

OPN [26] 33.53 0.8844 0.7618 34.16 0.9125 0.6602 36.15 0.9540 0.4004 32.91 0.8635 0.3664 33.78 0.9105 0.2701 36.33 0.9596 0.1281

CPN [21] 33.18 0.8764 0.8257 32.88 0.8676 0.8841 35.86 0.9485 0.4606 32.60 0.8452 0.4331 32.47 0.8496 0.4802 36.55 0.9547 0.1637

FFVI [6] 34.74 0.8899 0.6946 36.84 0.9470 0.4099 35.23 0.9375 0.4543 33.45 0.8469 0.3809 35.76 0.9374 0.1843 41.18 0.9679 0.1313

DFGVI [37] 33.33 0.8519 0.9122 32.22 0.8007 1.2020 37.46 0.9508 0.4838 32.78 0.8171 0.5169 32.02 0.7688 0.7337 38.20 0.9470 0.1894

FGVC [8] 33.13 0.8832 0.7640 34.14 0.9212 0.640 35.09 0.9422 0.4017 31.95 0.8323 0.4010 32.84 0.8841 0.3432 33.92 0.9212 0.1734

STTN [39] 34.86 0.9047 0.7276 36.07 0.9411 0.6136 39.60 0.9716 0.3132 33.60 0.8708 0.3831 34.83 0.9251 0.2882 38.78 0.9690 0.1197

Ours 35.48 0.9160 0.6129 37.43 0.9566 0.3661 41.41 0.9738 0.2893 34.23 0.8798 0.3526 36.54 0.9508 0.1933 42.05 0.9737 0.1303

(a) Object (b) Curve (c) Stationary

Figure 5. Examples of the three types of corruption masks that we

use for training and evaluation.

4.1. Implementation Details

Our network structure is shown in Fig. 2 and discussed

in Section 3. We set f in Fig. 3 to be 1/8 of the total fea-

ture channels. During training we use the optical flow that

is computed by [17] on ground truth image pairs. During

evaluation, where ground truth flow is not available on the

corrupted regions, we use FGVC [8] to complete the optical

flow within the missing regions. All flow maps are down-

sampled to the same resolution of the corresponding feature

maps before feeding into the TSAM convolution.

4.2. Datasets

FVI [6] samples data from the Youtube-VOS [36] video

object segmentation dataset . It contains 1940 videos for

training, and 100 videos for testing. We use 100 additional

videos that are not included in these videos for validation.

The original FVI dataset also contains 12600 videos from

the YTBB [28] dataset. However, we do not include them

for training since [6] showed that they do not lead to any

performance improvement.

DAVIS [4] consists of 150 videos in total, in which 90

videos are densely annotated for training and 60 videos for

validation are only annotated with the first frame. We follow

[39] and use the 60 original validation videos for training

and the 90 original training videos for validation.

Mask Types Real-world applications of video inpainting

include corrupted video restoration, object removal, water-

mark removal, etc. To mimic these applications, we train

and evaluate our model on three kinds of masks including

moving object-like mask, moving curve mask, and station-

ary mask as shown in Fig. 5. The image regions within

masks (black areas) are used as the corrupted regions in our

task. The object-like/curve masks contain moving masks

that occupy 0− 10% to 60− 70% of the overall frame area.

Note that the object mask and curve mask are moving in

both the evaluation and training stages. The stationary mask

is static in evaluation but moving with a probability of 0.5

during training for data augmentation purposes. The gener-

ation process of these masks follows previous work [39, 6].

Training Details On FVI and DAVIS datasets, we use

slightly different training strategies. On the large-scale FVI

dataset, we train our model in two stages. In the first stage,

we only train the encoder and decoder network with im-

age reconstruction loss, perceptual loss, and style loss with

weights 1, 1, 2 respectively. We train the network for 200

epochs. During the second stage, we add the image recon-

struction loss in the corrupted region and temporal patch

GAN loss to the loss function with weight 6 and 0.1 re-

spectively. The model is further finetuned for 200 epochs.

As DAVIS only contains 60 videos for training, which is

not sufficient to train the network from scratch, we use the

model trained on FVI dataset as a pretrained model and fine-

tune it on DAVIS. We train with reconstruction loss, style

loss, perceptual loss, and temporal patch GAN loss, which

use the same weights as on FVI. We finetune the model for

200 epochs on DAVIS.

4.3. Baselines and Evaluation Metrics

Baselines We compare our method with recent video in-

painting algorithms including two attention-based meth-

ods OPN [26] and STTN [39], two flow-based approaches

DFGVI [37] and FGVC [8], one 3D convolution method

FFVI [6], and one affine alignment method CPN [21].

Evaluation Metrics We evaluate video inpainting quality

using PSNR, SSIM and VFID.

Peak signal-to-noise ratio (PSNR) is a metric that mea-

sures the pixel similarity between the predicted and ground

truth frames:

PSNR = 20log10 max(I)− 10log10(MSE) (8)

where max(I) is the maximum possible pixel value of the

image, and MSE is the mean square error between the result



Table 2. This table shows ablation study results of our Temporal Feature Alignment Network. We first compare our full method (third

row) with an ablated baseline that does not use optical flow (first row). We also compare to a baseline that uses ground truth optical flow

(second row). The result shows that using optical flow generally increases performance while using ground truth flow can further boost

performance compared to using flow computed by [8]. Here Flow* denotes predicted flow and Mask* denotes the validity mask.

Object Mask Curve Mask Stationary Mask

TSM Flow GT Flow* Mask* PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID

X 35.06 0.9047 0.6294 37.12 0.9510 0.3827 41.11 0.9694 0.2961

X X X 35.76 0.9269 0.5404 37.82 0.9648 0.3660 41.61 0.9765 0.2549

X X X 35.48 0.9160 0.6129 37.43 0.9566 0.3661 41.41 0.9738 0.2893

and ground truth image.

Structure Similarity (SSIM) measures the patch similar-

ity between two images:

SSIM(p, q) =
(2µpµq + ε1)(2σpq + ε2)

(µ2
p + µ2

q + ε1)(σ2
p + σ2

q + ε2)
(9)

where µp, µq are the average of patch p and q, σp, σq are the

variance of patch p and q, and σpq is the covariance of patch

p and q. ε1, ε2 are two small constants to prevent division

by 0.

Video Frechet Inception Distance (VFID) [34] calculates

the distance between features predicted by I3D [5] models

pretrained on an action recognition task:

FID = ||µ− µ′||+ Tr(Σ + Σ′ − 2
√
ΣΣ′) (10)

where µ and Σ are the mean and covariance of ground truth

feature map and µ′ and Σ′ are the mean and variance of the

predicted feature map.

4.4. Quantitative Results

We report quantitative results on two datasets (DAVIS,

FVI) and three different masks (object-like, curve, and sta-

tionary).

FVI Table 1 (left) shows quantitative results on the FVI

dataset. Our model outperforms all existing methods under

the three different mask settings. In particular, our method

outperforms FFVI, which uses 3D convolution to aggre-

gate temporal features across frames but does not perform

alignment. This indicates that the proposed temporal fea-

ture alignment is critical to improve the visual quality of

the inpainted videos. Our method also outperforms FGVC

with a large margin for all three evaluation metrics, espe-

cially on curve masks with a 42% improvement. Although

we use the same optical flow completion method as FGVC,

our approach applies the inpainted flow at the feature level

and uses the 3D convolution network to fill the hole in an

end-to-end manner. STTN achieves the second best perfor-

mance overall. STTN is an attention based approach that

also iteratively fills the content through transformers. How-

ever, its attention modules are applied after feature encod-

ing, whereas we progressively align feature maps during

feature encoding across different feature scales. This en-

ables the network to borrow both low and high level infor-

mation from neighboring frames.

DAVIS Table 1 (right) shows quantitative results on the

DAVIS dataset. Overall, our model achieves the best per-

formance on all three tasks. Compared to the previous best

method STTN, our method produces better results on both

object-like mask and curve mask. On stationary mask, our

approach is significantly better on PSNR and SSIM, while

being slightly worse on VFID score. We can see that flow-

based methods have lower FID scores on curve masks than

3D convolution based approaches ([6] and ours). This is be-

cause the curve mask is usually thin and moving, so there

is sufficient surrounding (spatial and temporal) information

for 3D convolution approaches to effectively hallucinate

missing content, while FGVC [8] suffers when the predicted

flow is inaccurate.

4.5. Ablation Study

With/out Optical Flow In Table 2, we first compare the

video inpainting results using temporal shift module (first

row) and our temporal shift-and-align module using ground

truth optical flow (second row). Both approaches share ex-

actly the same architecture shown in Fig. 2. We see that us-

ing our temporal shift-and-align module with ground truth

flow increases performance by around 5% on PSRN, 4.6%

on SSIM, and 3.2% on VFID. This demonstrates the impor-

tance of aligning features from neighboring frames.

Ground Truth Flow vs. Completed Flow In Table 2 sec-

ond and third rows, we compare our temporal shift-and-

align module using ground truth flow versus optical flow

completed by [8] for the corrupted regions. Although using

completed flow decreases performance compared to using

ground truth flow, it still leads to a performance gain com-

pared to the baseline method of using temporal shift module

without any optical flow alignment (first row in Table 2).

4.6. Qualitative Results

Fig. 6 shows three sample video inpainting results for

object removal, curve mask, and stationary mask corrup-

tion. We compare our approach with FGVC [8], STTN



(a) Input Frame (b) FGVC (c) STTN (d) FFVI (e) Ours

Figure 6. Qualitative comparison of our method with FGVC [8], STTN [39] and FFVI [6]. The boxing video shows that our approach has

higher resolution on the inpainted area compared to STTN, and has better structure on the boxing fence compared to FGVC. The second

video shows that our approach accurately inpaints the missing curve area. For the third example with a stationary mask, our approach fills

the missing stroller area with plausible content. In general, our approach fills the missing regions with more accurate content and higher

resolution.

[39] and FFVI [6]. In general, FGVC suffers from struc-

ture misalignment in all three cases (e.g. the boxing fence

is misaligned, the man’s legs are incorrectly inpainted, and

the wall around the stroller also suffers from incorrect struc-

ture). Although STTN can inpaint plausible content, it tends

to generate blurry results in most cases. Lastly, FFVI gener-

ates artifacts in some cases (e.g. yellow color around boxing

fence, white blob on jeans). Compared to these methods,

our approach generates more accurate content and structure

in all three cases.

Finally, we also conduct a user study on the visual qual-

ity of different methods. Please refer to supplementary ma-

terial for the results.

5. Conclusion

In this paper, we proposed the progressive temporal fea-

ture alignment network for video inpainting, which fills the

missing regions by making use of both temporal convolu-

tion and optical flow. We adopted the temporal shift module

as our video backbone and used optical flow to align the fea-

tures from neighboring frames on the shifted channels. This

technique leads to inpainting results that have better image

structure and higher resolution, which were limitations of

prior approaches. We demonstrated state-of-the-art results

on the FVI and DAVIS benchmark datasets, and the benefits

of our novel model components through ablation studies.
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