
Verifying Absence of Hardware-Software Data
Races using Counting Abstraction

Tuba Yavuz
ECE Department

University of Florida
Gainesville, FL, USA

tuba@ece.ufl.edu

Abstract—Device drivers are critical components of operating
systems. However, due to their interactions with the hardware
and being embedded in complex programming models imple-
mented by the operating system, ensuring reliability of device
drivers remains to be a challenge. In this paper, we focus on the
interaction of the driver with the device and present an approach
for modeling this interaction and verifying absence of hardware-
software data races. Specifically, we use the counting abstraction
technique to abstract dynamic process creation in response to I/O
acknowledgements sent by the device. We present the results of
our approach on the modeling and verification of several Linux
device driver models.

I. INTRODUCTION

Device drivers are critical components of operating systems
due to their role in interfacing with the hardware. Operating
systems are complex software systems that are designed to
meet various goals such as extensibility, reliability, high-
performance, and security. This yields a complicated pro-
gramming model in which the device drivers are subject to
operate. In addition to the rules of the programming model
that common kernel components are subject to, each driver
also needs to conform to a programming model that is imposed
by the underlying communication bus, e.g., USB, PCI, etc.

A recent study by Google [1] reports that kernel bugs are
on the rise and that %85 of the kernel bugs reported for
Android are within the driver code. Despite recent advances
in the decision procedures and program analysis, thorough
analysis of device driver code remains to be a challenge
due to complexity of device drivers. On the other hand,
lack of modeling languages that can support model-driven
development of device drivers is preventing early detection
of bugs during development.

In this paper, we introduce a modeling and verification
approach for verifying absence of hardware-software (hw-sw)
data races. We provide a modeling approach that does not
require a detailed model of the device for reasoning about
absence of hw-sw races. We use the counting abstraction
technique [2] to model potentially unbounded number of
completion handler instances and other driver threads that get
dynamically created. We have implemented our approach in a
tool, called RIOT, and performed case studies on several Linux
USB drivers. Our preliminary results suggest that absence of

hw-sw races can be proved on the models of Linux USB device
drivers.

The rest of the paper is organized as follows. In Section
II, we introduce a motivating example for the complexities
involved in device-driver interactions. In Section III, we in-
troduce our modeling and verification approach that uses the
counting abstraction technique. In Section IV, we explain our
implementation and present several case studies. Section V
compares our approach to the related work. Finally, Section
VI concludes with directions for future work.

II. MOTIVATION

write to new buffer
send ACK

read from leds
buffer

send ACK

K

L

usbkbd_irq

usbkbd_event

usbkbd_led

read from new buffer
update ledStatus
if led key pressed

if change in ledStatus &&
! request for leds submitted {

write to leds buffer

if change in ledStatus &&
! request for leds submitted {

write to leds buffer

request K

request L
}

request L
}

ACK

ACK

handle event

Fig. 1: Interaction between the driver and the keyboard.

We consider a programming model that involves three types
of processes: the server, the client, and the environment. A
server process, S, receives generic requests for input (output)
over some shared object m and responds by performing a
write (read) operation on m. The completion of a request
is signaled through an acknowledgement, which causes the
dynamic creation of a client process, C. Upon creation, the
client process accesses the shared object m for read and/or
write operations and terminates. The environment processes
model processes other than the client and the server processes.
We assume that all processes run concurrently. A process is
dynamic if it can be created and is static otherwise. Note that a
dynamic process may have potentially an unbounded number
of instances. A process is parameterized if there are unbounded
number of static instances for that process. A process is a
single instance if it is neither dynamic nor parameterized.
The environment may consist of parameterized, dynamic, and
single instance processes.978-1-7281-9148-5/20/$31.00 © 2020 IEEE

An example instantiation of this programming model occurs
in the Linux usbkbd driver [3] as shown in Figure 1. The
keyboard device defines two endpoints or I/O ports: 1) The K
endpoint represents requests for reporting of key events in the
last window, 2) The L endpoint represents a control endpoint
that can be used to send the led commands (turn on/off) if an
Led related key, e.g., CAPSLOCK, has been pressed in the
last window. When the device gets a K type request, it fills
the new buffer with the keys held down in the last window
and finally responds by sending an acknowledgement that
causes creation of a thread that runs the relevant completion
handler, e.g., the usbkbd_irq function. The first K type
request gets submitted by the usbkbd_open function (not
shown in Figure 1). All other K type requests get submitted
by usbkbd_irq.

When the device gets an L type request, it reads the leds
buffer and updates the LEDs on the keyboard accordingly. It
also sends an acknowledgement to the driver, which causes
the creation of a thread that executes the usbkbd_led
function. L type requests can be submitted from two
different threads that run the usbkbd_event and the
usbkbd_led functions, respectively. In the usbkbd_irq
function, the driver calls an API function of the input layer,
input_report_key, to pass key events to the input layer.
For LED related keys, this function causes the creation of
a thread that executes the usbkbd_event callback of the
driver. If there has been a change in the led key presses and
there are no L type requests in flight, i.e., submitted but not
acknowledged yet, then it updates the leds buffer to reflect
which LEDs should be turned on or off and submits an L type
request. When a thread that runs the usbkbd_led function
gets created upon receipt of the acknowledgement, it also
checks if there is a need to submit an L type request and
whether there are no requests in flight at the time. If so, it
updates the leds buffer and submits an L type request. It
should be noted that Figure 1 abstracts a lot of the details.

A key property for the correct functioning of the driver is
the absence of data races between the driver and the keyboard.
So, the driver and the device should not access the shared
buffers new and leds at the same time and must employ
proper synchronization. Otherwise, hazards such as loss of key
events may happen. For instance, the device may overwrite
the new buffer before the driver gets a chance to read the key
events from the previous window or the driver may overwrite
the leds buffer before the device gets a chance to read the
commands for the previous window.

Synchronization primitives that are used for mutually exclu-
sive access to critical regions cannot help to prevent hardware-
software data races. Although the device can access the shared
memory (via Direct Memory Access (DMA) or exposing its
I/O ports), it cannot execute these synchronization primitives
on the host CPU. So, it is the responsibility of driver develop-
ers to realize a protocol for ensuring mutually exclusive access
to the shared memory. The above programming model helps
achieve such a protocol by accessing the memory shared with
the device only inside the completion handlers, which executes

after the device acknowledging the end of its access. However,
as it can be seen in Figure 1, it is possible to submit multiple
I/O requests from different contexts, usbkbd_event and
usbkbd_led, if software data races exist between these two
threads. So, to reason about absence of hardware-software data
races, we need to analyze the driver with all its components
including the dynamically created threads.

III. APPROACH

We present our modeling, abstraction, and verification ap-
proaches for reasoning about hardware-software (hw-sw) data
races in Sections III-A, III-B, and III-C, respectively.

A. Modeling the Device-Driver Interaction

We model the interaction of the driver and the device using
three types of processes: the environment, the server, and the
completion handlers. An environment process models an entry
point of a driver such as those accessed by the file system
layer (VFS) as in the Linux kernel, e.g., usblp_write
entry point for the usblp driver, or an entry point from
other kernel layers such as the usbkbd_event callback
instantiated by the Input layer for the usbkbd driver. In
Figure 2, event, keyboard, and irq&led, represent the
environment process, the server process, and the completion
handlers, respectively.

The server process is for modeling handling of the I/O re-
quests by the device, i.e., read and/or write actions performed
by the device on the relevant buffers and responding to the host
by dynamically creating an instance of the relevant completion
handler. Since each I/O request is associated with a specific
endpoint e, we model each endpoint by associating it with
two integer variables, req e and ack e, which represent the
number of requests received and the number of acknowledged
requests, respectively. These variables are typically initialized
to 0. However, it is also possible to start the system from a
state where some requests have been made, e.g., req K == 1
in the initial state of the usbkbd driver abstracting away the
usbkbd_open function, which submits the initial request for
keyboard events.

An I/O request from the driver through the endpoint e
is modeled by incrementing req e by one in the process
performing the I/O request. Once the endpoint e performs the
actual I/O, it increments ack e by one and creates an instance
of the completion handler. Assuming that buf_e and comp_e
represent the I/O buffer and the completion handler associated
with endpoint e, respectively, a typical server process works
as follows:

1 check_request:
2 if (req_e > ack_e)
3 read/write buf_e
4 ack_e++
5 create comp_e
6 else
7 goto check_request

Instead of representing the content of the I/O buffer and the
updates explicitly, we model it using predicates, e.g., ledKey
as shown on line 14 in Figure 2. ledKey represents whether
a led key is reported in the new buffer in Figure 1. So our

1 module usbkbd
2 leds_lock: lock;
3 requestIrq, ackIrq: int;
4 changeInLed, ledSubmitted, ledKey: bool;
5 initial req_K == 1 && ack_K == 0;
6 restrict req_K >= 0 && ack_K >= 0;
7 initial req_L == 0 && ack_L == 0;
8 restrict req_L >= 0 && ack_L >= 0;
9 # syntax for absence of hw-sw data race property:

10 # ["i"|"o"]"hwswrace" device, req, ack, sharedPred;
11 ihwswrace keyboard, requestIrq, ackIrq, ledKey;
12 ...
13 proc irq()
14 if (ledKey == True) {
15 changeInLed := True;
16 create event;
17 }
18 req_K := req_K + 1;
19 endproc
20

21 proc event()
22 atomic leds_lock {
23 if (ledSubmitted == False) {
24 if (changeInLed == True) {
25 changeInLed := False;
26 req_L := req_L + 1;
27 ledSubmitted := True;
28 } } }
29 endproc
30

31 proc led()
32 atomic leds_lock {
33 if (changeInLed == False) {
34 ledSubmitted := False;
35 }
36 if (changeInLed == True) {
37 changeInLed := False;
38 req_L := req_L + 1;
39 } }
40 endproc
41

42 proc keyboard()
43 while (True) {
44 if (req_K > ack_K) {
45 ledKey := *;
46 ack_K := ack_K + 1 ˆ create irq;
47 }
48 if (req_L > ack_L) {
49 ack_L := ack_L + 1 ˆ create led;
50 } }
51 endproc
52 endmodule

Fig. 2: A model of the usbkbd driver, Linux version 4.12,
as specified using the input language of RIOT.

server model replaces a write operation as on line 3 in the
above code snippet with non-deterministic updates to such
predicates, denoted by pred=*, as shown on line 45 of Figure
2. Although we can use the program locations of the server
that update such predicates to refer to the states in which the
device has access to the I/O buffers, we will be utilizing the
constraint req_e > ack_e in the specification of hw-sw
race conditions to refer to such states.

The completion handlers can be potentially unbounded due
to potentially unbounded number of I/O requests, which, in
turn, leads to the creation of completion handlers with multiple
concurrently running instances. As an example, submission
of the I/O requests for the led endpoint shown in Figure 1
are modeled by the increment operations on lines 26 and 38
in Figure 2. Some of the environment processes, such as the
usbkbd_event thread in the usbkbd driver, may also be
unbounded due to dynamic thread creation as modeled by line
16 in Figure 2. Finally, the correctness property for absence

of hw-sw data races involving the input buffers is specified as
shown on line 11 in Figure 2.

B. Formalizing the Device and Driver Interaction

Given the fact that there can be potentially an unbounded
number of I/O requests in a device driver model, the interac-
tion between a device and the driver needs to be modeled as an
infinite-state transition system. We can represent each process
type with a transition system and define the composite system
as an asynchronous composition of the transition systems for
the instances of each process type. However, the unbounded
number of instances need to be represented using a finite
encoding, which can be done using infinite state variables.
Counter abstraction [2] technique achieves this in an elegant
way and provides strong guarantees about the correctness of
the original transition system for properties that involve global
variables only. In what follows, we explain the semantics
by using either the set theoretic or formula representation to
simplify the presentation. We use the notation ⟦f⟧ to denote
the set theoretic representation of a formula f .

Given a Kripke structure T = (S, I,R), we define the
counted abstracted version of T , denoted by T CA, in terms
of three types of transformations. 1) Each local state is
abstracted away by introducing a unique integer variable to
count the number of instances of T in that local state, i.e.,
T CA.⟦S⟧ ≡ ∏g∈VG

Dom(g) ×Zn, where G, Dom(v), and n
represent the set of global variables in T , the domain/type of a
variable v, and the number of counter variables, respectively.
2) Assume that the set of initial states of T is defined as
IG∧IL, where IG and IL define the initialization of the global
and local variables, respectively. Initial states are rewritten by
dropping the local variables and using the counter variables,
i.e., T CA.I ≡ IG ∧ ⋀s∈⟦∏l∈VL

Dom(l)⟧CR(s) = 0, where VL
and CR(s) denote the set of local variables in T and the
counter variable that maps to the local state s. So, we assume
that there are no dynamic processes in the initial state. 3)
Assume that T.R ≡ ⋁n

i=1 gg(ri) ∧ lg(ri) ∧ gu(ri) ∧ lu(ri),
where gg(r) and lg(r) denote the guard expressions on the
global and local variables for atomic transition r, respectively,
and gu(r) and lu(r) denote the update expressions on the
global and local variables for atomic transition r, respectively.
Each atomic transition in T is transformed to drop the local
variables and use the counter variables in the guard and update
parts of the transition formula.

T CA.R ≡
n

⋁
i=1

gg(ri) ∧ gu(ri) ∧ (⋁
s∈⟦lg(ri)⟧

CR(s) > 0)

∧ ⋁
s1∈⟦lg(ri)⟧,s2∈sl(ri)

(CA(s1, s2) ∧ ⋀
s/∈{s1,s2}

CR′(s) = CR(s))

(1)

and
● sl(r) denotes the local states that can be reached in one

step with transition r, i.e.,

sl(r) ≡ ⟦∃VG.POST (true, r)⟧

, where VG is the set of global variables in T .

● CA(s1, s2) represents the equation that simulates the
transition from local state s1 to local state s2:

CA(s1, s2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

CR(s1)′ = CR(s1) s1 = s2
CR(s2)′ = CR(s2) + 1 s1 /= s2
∧ CR(s1)′ = CR(s1) − 1)

Finally, we model the effect of dynamic creation of a pro-
cess defined by the transition system T using the atomic tran-
sition (⋁s∈⟦T.IL⟧CR

′(s) = CR(s) + 1) ∧⋀s/∈⟦T.IL⟧CR
′(s) =

CR(s).
In our modeling of the device and driver interaction, we

transform each dynamically created process using the counting
abstraction transformation as explained above. So, for the
usbkbd driver shown in Figure 2, we generate the Kripke
structures for the potentially unbounded number of instances
of the processes irq, event, and led using counting
abstraction and represent the single instance of the keyboard
using the original Kripke structure. Note that the local vari-
ables for the model in Figure 2 are implicit and consist of the
program counters of the dynamic processes.

Let the atomic transition pc = 15 ∧ changeInLed′ ∧
pc′ = 16 denote the execution of the statement on line 15 in
Figure 2 and let pc denote the program counter for the irq
process and primed variables denote the next state variables.
Let c15 and c16 denote the counter variables introduced to
represent the number of instances of the irq processes with
their program counters being at lines 15 and 16, respectively.
The counter abstracted version of this transition is c15 > 0 ∧
changeInLed′ ∧ c′15 = c15 − 1 ∧ c′16 = c′16 + 1.

Definition 1 An atomic predicate is called counting-
abstraction preserving (CAP) in the context of a composite
transition system with counter abstracted components if
it does not involve any local variables of the counting
abstracted processes and it involves the counter variables
in the form of the guard formulas, i.e., CR(s) > 0, that are
generated as part of the counting abstraction transformation
of atomic transitions.

Theorem 1 There exists a simulation relation between a com-
posite transition system with counter abstracted components
and the original composite transition system with dynamic
components with respect to a state labelling function on
any predicate set that contains only counting abstraction
preserving predicates.

The proof for Theorem 1 follows from our construction
of T CA and from Definition 1. The simulation relation for
predicates that involve the global variables follows from the
bisimulation equivalence with respect to the global variables.
The predicates that involve the counter variables yield a sim-
ulation relation due to being in restricted form and satisfying
⟦f⟧ ⊆ γ(α(⟦f⟧)), where α is the counting abstraction of a
set of states represented by formula f and γ is the mapping
of a state described in terms of the counter variables to a
state described in terms of the local variables of the original
transition system.

Algorithm 1 An algorithm for checking absence of hw-sw
data races for a given dynamic composite transition system, T ,
a specific I/O port, req and ack, the direction of I/O, isInput,
and the shared buffers, shared.
1: CheckHWSWRaces(T = (Env,Server,Client): Composite Trans.

Sys., req: V , ack: V , isInput: Boolean, shared: 2V)
2: TCA = (S, I,R)← CountingAbstract(T)
3: prop← False
4: for each ⟦r⟧ ∈ ⟦R⟧ not executed by processes in Server do
5: Let r ≡ cg(r) ∧ dg(r) ∧ du(r) ∧ cu(r)
6: for each v in shared do
7: if isInput and v ∈ V ar(dg(r)) then ▷ Identify read accesses
8: prop← prop ∨ cg(r) ▷ Record the control guard
9: end if

10: if v ∈ V ar(du(r)) then ▷ Identify write accesses
11: prop← prop ∨ (cg(r) ∧ dg(r)) ▷ Record the control and

data guard
12: end if
13: end for
14: end for
15: prop← ¬(prop ∧ req > ack)
16: return TCA ⊧ prop

C. Checking Absence of HW-SW Races

A data race is a condition when two threads access a shared
variable in a way that at least one of the accesses is a write and
there is no proper synchronization between the two threads,
i.e., the result depends on who executes first.

In a hw-sw race, the two threads run in different execution
environments: one inside the driver and the other on the device.
In the context of our modeling approach, each type of thread
is modeled as a process. For checking the absence of hw-sw
races, it is sufficient to have an abstract model of the device
that 1) creates a completion process when there is a new
I/O request and 2) nondeterministically updates any control
relevant predicate on the shared variables.

To specify the absence of a hw-sw race as a safety property,
we should also specify the states in which the driver is
accessing the shared buffers. Here, we need to incorporate the
direction of I/O as it determines which accesses are conflicting.
If the request is an input request, i.e., the device is writing to
the shared buffers, then both the read and the write accesses
performed by the driver would yield a data race. However,
if the request is an output request, i.e., the device reads the
shared buffers, then only the write accesses performed by the
driver constitute a data race.

Algorithm 1 takes as input a transition system, T , a specific
I/O port represented by the pair of I/O requests, req, and
completed I/O requests, ack, the direction of I/O, isInput,
and the set of shared buffers/predicates over such I/O requests.
It first generates a counting abstracted [2] version, T CA, of
the transition system (line 2). Then, it constructs the safety
property prop that specifies the absence of hw-sw races on
the given I/O port and the shared buffers.

We assume that each atomic transition, r, in T CA can be
represented by a conjunction of four formulas: the guards on
the control variables, cg(r), and the global variables, dg(r),
and the updates on the global variables, du(r), and the con-
trol variables, cu(r). For processes that are not dynamically

created in T and, hence, are not replaced by their counting ab-
stracted versions in T CA, cg(r) corresponds to lg(r)∧gg(r).
For counting abstracted processes, cg(r) corresponds to a
formula of the form c > 0, where c represents the counter
variable for the local state of the process at which r is enabled.

So, the algorithm analyzes the guard and the update of each
atomic transition executed by any non-server process (line 4),
i.e., the driver threads, to identify conflicting operations by
the driver for a possible hw-sw data race1. As we mentioned
above, the read accesses by the driver are relevant for input
type requests only. In such cases, read accesses are identified
for any shared variable that appears on the guard on the global
variables. Write accesses are relevant for both types of I/O
requests and are identified for any shared variable that appears
on the part of the transition that updates the global variables.

For conflicting read accesses, the constructed property in-
cludes the constraint for the control guard (line 8) as this is
sufficient for the driver to read the variables in dg(r), even
though dg(r) may turn out to be false, in which case the
update part of the transition would not take effect. We assume
that the data guards that check the availability of mutual
exclusion locks are not mixed with the guards on other types
of global variables. More details about our system construction
are provided in Section IV-A. However, for the write accesses
to be feasible both the control guard and the guard on the
global variables need to hold and, hence, the property includes
their conjunction (line 11). An example formula for the hw-
sw data race absence property regarding the shared variable,
ledKey, related to the K endpoint (input) from Figure 1 is
¬(c14 > 0∧req K > ack K), where c14 represents the counter
that was introduced to represent the program counter of the
irq process referring to the if statement on line 14 in Figure
2. The property regarding the shared variable, changeInLed,
related to the L endpoint (output) from Figure 1 is ¬(((c14 >
0 ∧ ledKey == True) ∨ (c24 > 0 ∧ changeInLed == True) ∨
(c36 > 0∧changeInLed == True))∧ req L > ack L), where
c24 and c36 are the counters for the program counters of the
event and led processes referring to the if statements at
lines 24 and 36 in Figure 2, respectively. Note that the model
does not show that the shared predicate changeInLed get
explicitly accessed, i.e., read, by the Keyboard process as we
abstract away the side-effect of turning on/off the leds in our
model. This does not affect the correctness of the constructed
property formula as the server processes are not used to derive
the property as indicated in line 4 of Algorithm 1.

Since hw-sw races can be specified using counting-
abstraction preserving predicates, the soundness of our ver-
ification approach follows from Theorem 1.

IV. PRELIMINARY RESULTS

A. Implementation

We have implemented our approach for detecting hw-sw
data races on the counting abstracted versions of dynamic

1We assume that each server process represents a device and each port on
every device works on a mutually exclusive set of I/O buffers.

composite systems in a tool called RIOT2 We use a simple
while-language with additional features: 1) atomic blocks
that specify a mutual exclusion lock name to model blocks
that are enclosed between the acquire and release operations
on the specified lock, 2) parallel assignment and dynamic
process creation using the ˆ operator, 3) nondeterministic
assignment for boolean variables using the * operator, 4) proc
declarations modeling a process/thread, 5) dynamic process
creation using the create operator, and 6) specifications
for the initial states, state space restrictions, and correctness
properties including the hw-sw race freedom. Each process
is interpreted as a modular transition system and the system
behavior is described in terms of their asynchronous com-
position. Each basic statement and conditional checks are
interpreted as atomic transitions, e.g., an if statement such
as if (a) { b := True } translates to a single transition
while if (a) { b := True; c := True; } translates
to multiple transitions. Each atomic transition is identified with
a unique location and each process instance except those that
are dynamically created is assigned its own program counter.

Driver ∣C∣ ∣U ∣ Property R Time (secs)
usbkbd 2 3 I, {ledKey} ✓ 27.09

O, {changeInLed} ✓ 6.95
usblp 2 4 I, {wactual length} ✓ 14.95

O, {writebuf} ✓ 211.71
I, {ractual length} - > 3753.75

onetouch 1 1 I, {data} ✓ 1.62
airspy 1 1 I, {buf list[i]} ✓ 30.85
tiusb 3 5 I, {transf buf1} ✓ 13.39

I, {trans buf2, - > 4901.77
actual length}

O, {trans buf3} ✓ 5694.74
legousb 2 4 I, {in urb} ✓ 1500.27

I, {actual length} - > 2362.47
O, {out urb} - > 6748.29

TABLE I: Verification results for checking the absence of
hw-sw data races in Linux USB driver models. ∣C ∣ and
∣U ∣ represent the number of I/O completion processes and
dynamically created processes, respectively. Property specifies
the type of I/O (I or O) and the shared buffer (predicates).
R and Time presents the verification result and time in secs,
respectively. − means the analysis could not finish due to the
verification engine running out of memory.

Our tool automatically translates the transition system into
its counted abstracted version and then encodes it into Horn
clauses. Given a hw-sw race property specification that con-
sists of the server process (the device), the request and
acknowledgement counters, and the shared buffers/predicates,
it analyzes the transition system as in Algorithm 1 to generate
a safety property and uses the fixedpoint engine of the Z3 SMT
solver [4] to check reachability of a hw-sw race. We use the
monolithic translation of transition systems into Horn clauses
as explained in [5]. Although our tool can use any of the

2The tool (the compiler for the simple while language, the count-
ing abstraction transformer, and the verification engine that uses Z3)
and the benchmarks can be found at https://drive.google.com/file/d/
1wmeEVDOlQDyK63IQ0Zh9et9H1MmNjjXk/view?usp=sharing.

https://drive.google.com/file/d/1wmeEVDOlQDyK63IQ0Zh9et9H1MmNjjXk/view?usp=sharing
https://drive.google.com/file/d/1wmeEVDOlQDyK63IQ0Zh9et9H1MmNjjXk/view?usp=sharing

backend solvers of Z3 that support linear integer arithmetic, we
used Spacer [6] in our experiments. We ran our experiments
on an Intel Xeon 3.20GHz CPU with an 8GB RAM. Table
I shows that verification time takes longer as the number of
dynamically created processes increase.

V. RELATEDWORK

A formalization for hw-sw interfaces is presented in [7].
Similar to our approach, their formalization allows composi-
tion of driver and device models at a customizable abstraction
level. Our approach focuses on the specific problem of hw-
sw race detection. We use counting abstraction to transform
the combined system model which may potentially involve an
unbounded number of completion handlers/interrupt service
routines (ISRs).

In [8] virtual device prototypes are analyzed using symbolic
execution and conformance checking for the driver and the
device is performed to detect DMA interface bugs. Our
approach can pinpoint hw-sw races that may not involve
DMA. Guardrail [9] monitors execution of a driver at run-
time to detect hw-sw data races due to DMA faults. This
work is complementary to our approach as it analyzes the
original driver code. However, it can only detect bugs that
are manifested during execution. Our model-based approach
can provide formal guarantees as long as the model faithfully
represents the driver-device interactions.

In [10] a fixed number of parallel thread instances are
modeled using on-the-fly counting abstraction to tame the local
state explosion problem. The BFC tool [11] uses counting-
abstraction to represent multi-threaded software models with
an unbounded number of threads with finite local states. While
BFC leverages search algorithms for solving the coverability
problem [12], our approach handles multiple types of un-
bounded processes using interpolation-based fixpoint solvers.

In [13] a modular approach for generating local invariants
of a multi-threaded program is presented. The program is
represented in terms of a data-flow graph that encodes the
data flows between the statements in a program. The reachable
states are discovered in an iterative fashion and a separate
interference analysis is guided by the discovered incomplete
invariants. User provided assertions can be checked when the
iterative process terminates. In our approach, we automatically
generate the property to be checked based on the user input
that describes the shared buffer, the direction of I/O, and the
specific port. Our approach is property directed and it avoids
computing an invariant for each program location.

Counting abstraction has been applied to the verification
of Smack models for the absence of software data races in
[14]. In this paper, we explicitly model the interaction with
the device while also modeling multiple driver threads.

VI. CONCLUSION

In this paper, we have presented a modeling and verification
approach for checking the absence of hardware-software data
races. We have shown the effectiveness of our approach on the
verification of several Linux USB driver models. Our approach

does not require a detailed hardware model. However, once
verified for the absence of hardware-software data races, the
model can be refined to incorporate more detailed models of
hardware and driver components. In future work, we would
like to explore semi-automatic generation of device driver
models and optimization of the verification performance.

VII. ACKNOWLEDGEMENTS

This work was partially funded by the US National Science
Foundation under grant CNS-1942235.

REFERENCES

[1] J. V. Stoep, “Android: protecting the kernel,” In Linux Security Summit.
Linux Foundation, 2016.

[2] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” J. ACM, vol. 39, no. 3, Jul. 1992.

[3] “Linux usbkbd driver,” https://elixir.bootlin.com/linux/v4.12/source/
drivers/hid/usbhid/usbkbd.c.

[4] K. Hoder, N. Bjørner, and L. M. de Moura, “µZ- an efficient engine
for fixed points with constraints,” in Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, 2011, pp. 457–462.

[5] A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-
based verifier for multi-threaded programs,” in Computer Aided Verifi-
cation - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, 2011, pp. 412–417.

[6] A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model checking
for recursive programs,” Formal Methods in System Design, vol. 48,
no. 3, pp. 175–205, 2016.

[7] J. Li, F. Xie, T. Ball, V. Levin, and C. McGarvey, “Formalizing hard-
ware/software interface specifications,” in 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence,
KS, USA, November 6-10, 2011, 2011, pp. 143–152.

[8] L. Lei, K. Cong, Z. Yang, and F. Xie, “Validating direct memory access
interfaces with conformance checking,” in The IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2014, San Jose, CA,
USA, November 3-6, 2014, 2014, pp. 9–16.

[9] O. Ruwase, M. A. Kozuch, P. B. Gibbons, and T. C. Mowry, “Guardrail:
A high fidelity approach to protecting hardware devices from buggy
drivers,” in Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’14, 2014.

[10] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Symbolic counter
abstraction for concurrent software,” in Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 -
July 2, 2009. Proceedings, 2009, pp. 64–78.

[11] “Bfc - A Widening Approach to Multi-Threaded Program Verification,”
http://www.cprover.org/bfc/.

[12] A. Kaiser, D. Kroening, and T. Wahl, “A widening approach to mul-
tithreaded program verification,” ACM Trans. Program. Lang. Syst.,
vol. 36, no. 4, pp. 14:1–14:29, 2014.

[13] A. Farzan and Z. Kincaid, “Verification of Parameterized Concurrent
Programs by Modular Reasoning about Data and Control,” ser. POPL
’12, 2012, p. 297–308.

[14] F. Fowze and T. Yavuz, “Specification, verification, and synthesis using
extended state machines with callbacks,” in 2016 ACM/IEEE Interna-
tional Conference on Formal Methods and Models for System Design,
MEMOCODE 2016, Kanpur, India, November 18-20, 2016, 2016, pp.
95–104.

https://elixir.bootlin.com/linux/v4.12/source/drivers/hid/usbhid/usbkbd.c
https://elixir.bootlin.com/linux/v4.12/source/drivers/hid/usbhid/usbkbd.c
http://www.cprover.org/bfc/

	Introduction
	Motivation
	Approach
	Modeling the Device-Driver Interaction
	Formalizing the Device and Driver Interaction
	Checking Absence of HW-SW Races

	Preliminary Results
	Implementation

	RelatedWork
	Conclusion
	Acknowledgements
	References

