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Abstract

Within the machine learning community, the
widely-used uniform convergence framework
has been used to answer the question of how
complex, over-parameterized models can gen-
eralize well to new data. This approach
bounds the test error of the worst-case model
one could have fit to the data, but it has
fundamental limitations. Inspired by the
statistical mechanics approach to learning,
we formally define and develop a methodol-
ogy to compute precisely the full distribution
of test errors among interpolating classifiers
from several model classes. We apply our
method to compute this distribution for sev-
eral real and synthetic datasets, with both
linear and random feature classification mod-
els. We find that test errors tend to concen-
trate around a small typical value ε∗, which
deviates substantially from the test error of
the worst-case interpolating model on the
same datasets, indicating that “bad” classi-
fiers are extremely rare. We provide theoret-
ical results in a simple setting in which we
characterize the full asymptotic distribution
of test errors, and we show that these indeed
concentrate around a value ε∗, which we also
identify exactly. We then formalize a more
general conjecture supported by our empiri-
cal findings. Our results show that the usual
style of analysis in statistical learning the-
ory may not be fine-grained enough to cap-
ture the good generalization performance ob-
served in practice, and that approaches based
on the statistical mechanics of learning may
offer a promising alternative.
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1 INTRODUCTION

The phenomenon of good generalization in highly over-
parameterized models, including neural networks, has
largely eluded theoretical understanding. Recently,
however, progress has been made towards understand-
ing over-parameterization in several simpler settings.
Important examples include the variety of results
demonstrating “double descent” phenomena in linear
regression (Belkin et al., 2019, Bartlett et al., 2020,
Hastie et al., 2019, Dereziński et al., 2019) (and, in
particular, how it is essentially a consequence
of a transition between two different phases of
learning (Liao et al., 2020)), nearest neighbors mod-
els (Xing et al., 2019), and binary classification
(Chatterji and Long, 2020, Deng et al., 2020). These
results are typically derived by defining a specific es-
timator (e.g., the least-norm estimator in linear re-
gression), and carefully examining its test risk. This
approach presents a challenge when extending these
analyses to the setting of neural networks, where no
such estimator can easily be defined. In these situa-
tions, almost all results rely, in one way or another, on
the framework of uniform convergence; that is, results
which bound a quantity of the form

εunif ∶= sup
f∈F

∣Ên(f) − E(f)∣ , (1)

where F is a given function class, Ên is the training
error on a dataset of n points, and E is the popula-
tion error.

Recently, it has been drawn into question whether
this approach is fine-grained enough to cap-
ture the good generalization properties observed
in deep learning (Martin and Mahoney, 2017,
Nagarajan and Kolter, 2019). One issue that arises
when using the uniform convergence framework is
that for any given training set {(x1, y1), . . . , (xn, yn)},
and a sufficiently complex function class F , the
worst-case estimator f ∈ F fitting the training data
may indeed perform quite poorly—thus dooming
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Figure 1: Test error distribution of MNIST 0 vs 1 in-
terpolating classifiers, using N = 1000 random ReLU
features, with n = 500 training samples, as well as test
error of worst-case interpolating classifier. Here, for
illustrative purposes, we plot the PDF (fit from a his-
togram using a kernel density estimate); in the remain-
der of the paper, we instead plot the CDFs, which can
be more accurately estimated.

quantities like (1)—even if we are extremely unlikely
to encounter such models in practice. One line of work
has attempted to tackle this problem by studying the
implicit biases of the algorithms used to train modern
machine learning models (Gunasekar et al., 2018,
Ma et al., 2020, Soudry et al., 2018) (by using what
may be called implicit regularization in non-exact
approximation algorithms (Mahoney, 2012)). Still,
such results are mostly limited to simplified set-
tings, and a comprehensive understanding of the
relationship between optimization and generalization
remains elusive.

In another line of work (Wu and Zhu, 2017,
Choromanska et al., 2015), it has been observed
that, at least in practice for deep networks, it is not
particularly important which model we obtain at the
end of training; most models tend to have roughly
the same test error. Reconciling this phenomenon
with the worst-case theory must then require one of
a few things to be true: i) that most models have
nearly worst-case test error; ii) that models with
nearly worst-case error are very rare; or iii) that
worst-case bounds are simply too loose to capture the
actual worst-case error. In this paper, we investigate
these possibilities rigorously in the setting of linear
and random feature classification, and we find that
worst-case models with very high test error do in fact
exist, but that they are exceedingly rare.

Our approach builds conceptually on several old
ideas originating out of the statistical physics lit-
erature. (Such a perspective, while less common
in statistical learning theory today, has a long his-
tory (Martin and Mahoney, 2017, Seung et al., 1992,

Watkin et al., 1993, Haussler et al., 1996,
Engel and Van den Broeck, 2001).) Rather than
studying the worst-case estimator f ∈ F , the sta-
tistical mechanics approach seeks to understand
the behavior of the typical function f . This typ-
icality can be characterized in a number of ways.
A natural measure, from the statistical physics
perspective, would be the entropy (or log density
of states), which captures the number of models
at any given test error value. Analyses of learning
problems have been conducted using the entropy
method in a variety of simplified settings, including
the case of finite F as well as linear classification
under various simplifying assumptions on the data
(Haussler et al., 1996, Opper and Haussler, 1991,
Engel and Van den Broeck, 2001). Similar ap-
proaches have also been used to demonstrate the
existence of phase transitions in learning behavior in
logistic regression (Candes and Sur, 2018) and gen-
eralized linear models (Barbier et al., 2019). In the
deep learning literature, (Choromanska et al., 2015)
used the theory of spin glasses to argue that poor
local minima on the training surface are rare. While
insightful (and often technically impressive), many
of these theoretical results rely on very specific
assumptions on the data generating process, and hold
only in the asymptotic regime.

In this paper, we study the behavior of test errors
on real-world datasets used in practice, in a non-
asymptotic regime, and without any assumptions on
the data generating process. To do this, in Section 2,
we formally define and develop a methodology to com-
pute precisely the full distribution of test errors among
interpolating classifiers from several model classes. In
Sections 3 and 4, we then apply this methodology to
compute these distributions for several real and syn-
thetic datasets, and for both linear and random feature
classification models, respectively. We furthermore de-
velop a method to estimate the worst-case test errors
of these classification models on the same datasets.
Our investigation yields the following key insights:

1. Good classifiers are abundant: an overwhelm-
ing proportion of interpolating models have very
small test error, relative to the worst-case error.

2. Test errors tend to concentrate: as the size
of models grow, test errors concentrate sharply
around a critical value ε∗.

3. There exist worst-case classifiers that are very
poor: much worse than the typical classifier.

These findings are illustrated in Figure 1.

To understand these observations mathematically, in
Section 5, we provide theoretical results in a simple set-
ting in which we characterize the full (asymptotic) dis-
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tribution of test errors, and we show that these indeed
concentrate around a value ε∗, which we also identify
exactly. We then formalize a more general conjecture,
supported by our empirical findings, which we hope
will motivate further research. Finally, in Section 6,
we offer some concluding thoughts, and provide sev-
eral promising directions for future work. Proofs and
additional empirical results can be found in the techni-
cal report version of this paper (Theisen et al., 2020).

2 EFFICIENTLY COMPUTING
THE DISTRIBUTION OF TEST
ERRORS FOR INTERPOLATING
CLASSIFIERS

2.1 Notation and Setup

We begin with some notation that will be used
throughout the paper.

We will consider the setting of binary classifica-
tion, and we denote a training dataset by Sn =
{(x1, y1), . . . , (xn, yn)}, with samples xi ∈ Rd and la-
bels yi ∈ {−1,1}. We let F be a class of functions
f ∶ Rd → {−1,1}, and we define the version space to be
the following subset of F :

VS(Sn) = {f ∈ F ∶ f(x1) = y1, . . . , f(xn) = yn}. (2)

That is, the version space is the set of “interpolating”
functions, i.e., those which perfectly fit the dataset Sn.
Note that if F is a linear family, then one element of
the version space is the max-margin solution. We also
use P to denote a probability measure defined over
F . We use Stest = {(xn+1, yn+1), . . . , (xn+m, yn+m)} to
denote a set of m testing points, and Prx,y to denote a
testing distribution over the data (x, y). Using these,
we define the empirical and population testing errors:

Em(f) = 1

m

m

∑
h=1

1(−yn+hf(xn+h) > 0), (3)

E(f) = Pr
x,y

(−yf(x) > 0). (4)

With these definitions in place, we can now formally
define the test error distribution of interpolating clas-
sifiers.

Definition 1. Given a function class F , a measure P
over F , and a training set Sn, let

Rn,m(ε) ∶= P({Em(f) ≤ ε} ∩VS(Sn))
P(VS(Sn))

, (5)

and

Rn(ε) ∶=
P({E(f) ≤ ε} ∩VS(Sn))

P(VS(Sn))
. (6)

That is, the quantities Rn,m(ε) and Rn(ε) are the cu-
mulative distribution functions (CDFs) of the errors
Em and E , conditioned on perfectly fitting the training
data. Intuitively, these quantities measure the frac-
tion of interpolating classifiers f ∈ VS(Sn) that have
test error at most ε.

2.2 Efficient Estimation of Rn,m

An advantage of our definition of Rn,m(ε) is that it is
defined only relative to fixed training and testing sets,
Sn and Stest. This means that, at least in principle,
Rn,m(ε) can be computed exactly (without explicit
knowledge of the training and testing distributions).
To do this näıvely would require computing the ratio
of two (in general very small) high-dimensional vol-
umes, which would be costly and also lead to issues
with numerical instability. Instead, a natural estima-
tor for Rn,m(ε) can be generated as follows: sample

f̂1, . . . , f̂M ∼ P(⋅ ∣ VS(Sn)), and compute

R̂n,m(ε) = 1

M

M

∑
j=1

1(Em(f̂j) ≤ ε).

Standard Gilvenko-Cantelli-type results can be used
to guarantee that supε ∣Rn,m(ε) − R̂n,m(ε)∣ = O( 1

√
M

).
Hence, assuming we have the ability to sample from
P(⋅ ∣ VS(Sn)), the distribution Rn,m(ε) can be esti-
mated to arbitrary precision.

For the remainder of this section, we show how we can
generate samples f̂ ∼ P(⋅ ∣ VS(Sn)) for any function
class of the form Fφ = {f(x) = sign(w⊺φ(x)) ∶ w ∈
RN}, where φ ∶ Rd → RN is any mapping. In this paper,
we will address the following important examples:

φ(x) = x, (linear classification)
φ(x) = σ(Ux). (random features)

Notice that for these classes of functions, a probability
measure P over F is simply a distribution over RN .
Throughout this paper, we will assume that P is the
uniform distribution on the sphere SN−1 = {w ∈ RN ∶
∥w∥ = 1}. This choice is made so as to obtain results
that are agnostic to the choice of optimization algo-
rithm: since any reasonable measure on the sphere
will be absolutely continuous with respect to P, we
do not expect our main conclusions to be qualitatively
changed by choosing a different base distribution. For
the sake of computation, it will be convenient to make
use of the equivalence (up to scaling) of the uniform
distribution with the Gaussian distribution N (0, I),
which is a consequence of the spherical symmetry of
the Gaussian.
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Figure 2: Estimated test error distribution R̂n,m(ε)
for interpolating linear classifiers on the mnist (0 vs
1) dataset (blue) and fashion-mnist (shirt vs pants)
dataset (red).

Let us define the function

Ln(w) =
n

∏
i=1

1(yiw⊺φ(xi) ≥ 0), (7)

and notice that P(⋅ ∣ VS(Sn)) = P(⋅ ∣ Ln = 1). There-
fore, we are interested in drawing samples from a lin-
early constrained Gaussian distribution. Fortunately,
the recent work (Gessner et al., 2020) developed the
lin-ess algorithm (an extension of Elliptical Slice
Sampling (Murray et al., 2010)) specifically for this
purpose. Using traditional Monte Carlo methods, this
task would be computationally infeasible in high di-
mensions, since if we näıvely drew samples from P and
rejected those not lying in the domain {Ln(w) = 1},
then drawing a reasonable number of samples could
take an exponential amount of time. In contrast, lin-
ess is able to exploit special properties of the linear
constraints yiw

⊺φ(xi) ≥ 0 to draw samples without re-
jection. In particular, in our setup, lin-ess can be
used to generate samples ŵ1, . . . , ŵM ∼ P(⋅ ∣ Ln = 1),
which we can then use to compute the estimator
R̂n,m(ε). As is the case with most MCMC algorithms,
lin-ess is only guaranteed to produce independent
samples from the posterior P(⋅ ∣ Ln = 1) asymptoti-
cally; we mitigate this issue in practice by using 1,000
warm-up samples, and keeping only every 10th sam-
ple thereafter.

3 LINEAR CLASSIFICATION

In this section, we compute the estimated test error
distributions R̂n,m(ε) and R̂n(ε) on both real bench-
mark data as well as illustrative synthetic data, for
the class FLIN = {f(x) = sign(w⊺x) ∶ w ∈ Rd} of lin-
ear classifiers.

Figure 3: Test errors of interpolating classifiers with fit
to n “good” training samples and nb = (d−1)−n “bad”
training samples. The classifiers constructed here have
extremely poor test set performance, in contrast to
results shown in Figure 2.

3.1 Evaluation on Image Datasets

For our first set of evaluations, we compute R̂n,m(ε)
for high-dimensional image datasets used in modern
machine learning. In particular, we focus on the mnist
and fashion-mnist datasets, which consist of images
in d = 784 dimensional space. Thus, throughout this
section, we only consider values of n < 784. Since we
are specialized to the binary classification setting, we
focus on the mnist 0 vs 1 task, and on the shirt vs
pants task for fashion-mnist. For both of these tasks,
the data has been centered and scaled, so as to have
mean 0 and variance 1.

In Figure 2, we plot the R̂n,m(ε) for various values
of n. For each of the plots in this section, estimators
R̂n,m(ε) are formed with M = 10,000 samples from
P(⋅ ∣ Ln = 1) using the lin-ess algorithm, and they
are evaluated on m = 5000 testing points.

Observation 1: Good classifiers are abundant.
Our first observation is that, for reasonable n, most in-
terpolating classifiers have good1 test set performance.
For example, for the mnist dataset, we see that at
n = 350, nearly 100% of the models that perfectly fit
the training data achieve at least 95% (ε = 0.05) test
accuracy. This indicates that, for this particular train-
ing set, bad classifiers (with error > 5%) make up a
set with very small measure. On the other hand, for
the fashion-mnist task, only about 60% of classifiers
perfectly fitting the training data get 95% test perfor-
mance at n = 350 samples, but nearly 100% of such
classifiers get 92% accuracy.

1Of course, one could fit a model from a more com-
plicated function class and obtain even better test perfor-
mance.
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Figure 4: Plotting R̂n(ε) for the Gaussian model (8) at various levels of d. Blue curves correspond to SNR = 5,
red curves correspond to SNR = 2.

Observation 2: Existence of bad classifiers. A
natural question that may arise out of these results is
whether or not bad interpolating classifiers even exist
for these tasks, at least for the parameter settings we
consider. Here, we demonstrate a simple method for
finding bad classifiers which, together with the previ-
ous results, shows that bad classifiers exist and con-
stitute a tiny fraction of the version space. Given a
dataset Sn, with n < d, we can append up to nb ≤
(d−1)−n “bad” samples, to form a new dataset S′n with
n′ = n+nb samples. Notice that any model w ∈ VS(S′n)
must also belong to VS(Sn), since VS(S′n) ⊆ VS(Sn).
Here, we construct nb = (d − 1) − n “bad” points lying
in the span of the set {−y1x1, . . . ,−ynxn}. In Figure 3,
we plot the test error of interpolating classifiers con-
structed in this manner, fit using gradient descent with
a logistic loss, for varying levels of n. We see that this
method finds classifiers with test error that is nearly 1
for all values of n considered.

We are therefore left with an insightful contrast: in
Figure 2, we observe that, for example, at n = 350, the
set of interpolating mnist classifiers with test accuracy
≥ 95% comprise a set of measure essentially 1; while
in Figure 3, we have demonstrated that there exist in-
terpolating classifiers for this task with test accuracy
nearly 0%. Thus, we see that the performance of the
worst-case classifier gives basically no insight into the
performance of the typical classifier, indicating that
a uniform convergence-type analysis is not appropri-
ate in this setting. This is also information that can-
not be gleaned by looking at a summary statistic, like
the expected test error of interpolating classifiers, i.e.,
E[Em(w) ∣ VS(Sn)], alone—it is necessary to consider
the full distribution.

3.2 Evaluation on Synthetic Datasets

For our next set of evaluations, we compute Rn(ε) for
synthetic data generated from the Gaussian mixture
distribution

(x, y) ∼ 1

2
(N+,1) +

1

2
(N−,−1)., (8)

where N+ ∼ N (µ,Σ), N− ∼ N (−µ,Σ) and µ ∈ Rd,
Σ ∈ Sd+. The purpose of this synthetic model is twofold.
First, it allows us to demonstrate the ubiquity of
the phenomena observed on the mnist and fashion-
mnist tasks. Second, it allows us to investigate the
effect of varying the dimension d, which we could not
do on the datasets studied in the previous section, as
this was fixed at d = 784. This reveals that test errors
begin to concentrate around a value ε∗ as the dimen-
sion d increases.

For this model, we have that yx ∼N (µ,Σ), so we can
characterize the set {w ∶ E(w) ≤ ε} with the condition

E(w) ≤ ε ⇐⇒ w⊺µ√
w⊺Σw

≥ −Φ−1(ε), (9)

where Φ(⋅) is the CDF of aN (0,1) distribution. Given
a training set Sn and samples ŵ1, . . . , ŵM ∼ P(⋅ ∣
VS(Sn)), this expression allows us to compute an es-
timate R̂n(ε) = 1

M ∑
M
j=1 1(E(ŵj) ≤ ε) in a straightfor-

ward manner.

As with many Gaussian models, the signal-to-noise
ratio (SNR), which we define as

√
µ⊺Σ−1µ (or sim-

ply ∥µ∥/σ when Σ = σ2I), controls much of the com-
plexity of this task. In Figure 4, we plot R̂n(ε)
for d = 50,100,500,1000, and with SNR = 2,5. For
these experiments, we take Σ = I and, to keep the
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Figure 5: Plotting R̂n,m(ε) for the random ReLU feature models on mnist (0 vs 1) dataset (blue) and fashion-
mnist (shirt vs pants) dataset (red).

SNR constant as we vary the dimension, we set µ =
(SNR/

√
d, . . . ,SNR/

√
d)⊺.

Observation 3: Concentration at critical value
ε∗. Our main observation here is the existence of a
critical value ε∗ around which test errors eventually
concentrate. Indeed, we see in Figure 4 that as d
grows, the distributions Rn(ε) seem to approach the
threshold function 1(ε ≥ ε∗) at a critical value ε∗,
which depends on the aspect ratio α = n/d. There-
fore, in the large d regime, almost all interpolating
classifiers have test error exactly ε∗, and so this crit-
ical value almost completely characterizes the distri-
bution of test errors for interpolating classifiers. We
also observe that this value is largely determined by
the value of the SNR. In fact, we can derive a simple
lower bound on the value of ε∗:

ε∗ ≥ Φ(−
√
µ⊺Σ−1µ). (10)

This corresponds to the error of the optimal Bayes
classifier w⋆ = Σ−1µ. In the next section, we observe a
similar phenomenon for image classification tasks with
random feature models.

4 RANDOM RELU FEATURES

In this section, we consider the class of random ReLU
feature classifiers FRRF = {f(x) = sign(w⊺φ(x)) ∶ w ∈
RN}, where φ(x) = σ(Ux) ∶ Rd ↦ RN . Here the rows
u1, . . . ,uN of U are drawn from the uniform distribu-
tion on the sphere Sd−1 and σ(z) = max(z,0) is the
ReLU activation function. These can be viewed as
one-layer ReLU networks with the weights of the first
layer fixed, and they are known to enjoy universal ap-
proximation properties (Sun et al., 2019).

The benefit in studying such a model is that we can

examine the behavior of the test error distributions as
the number of hidden features N grows large, with α =
n/N fixed. This allows us to observe the critical value
behavior seen in linear classification with the Gaussian
model (8), but this time with the image datasets mnist
and fashion-mnist.

In Figure 5, we plot the test error distributions for in-
terpolating random ReLU classifiers on the mnist and
fashion-mnist tasks, for various number of hidden
features N and ratios α = n/N . Our main observation
from these experiments is that, similar to the Gaussian
model, as the number of features N grows, the test er-
rors begin to concentrate around values ε∗ ≡ ε∗(α).
Like in the Gaussian model, the critical value de-
pends on i) the difficulty of the task (it is larger for
fashion-mnist than for mnist) and ii) the aspect ra-
tio α = n/N . This finding indicates that the concen-
tration phenomenon observed in Section 3.2 is quite
general, and holds for both real and synthetic datasets.

We remark that the same technique used in Section
3.1 demonstrates that very poor classifiers also exist
for the random ReLU classification models, and hence
again verifies that the worst-case analysis of test errors
is inappropriate for these models and datasets.

5 CHARACTERIZING THE
DISTRIBUTION OF TEST
ERRORS IN A SIMPLE MODEL

In this section, we present a simple model, and we
prove that it exhibits the main qualitative properties
we observed in Sections 3 and 4.

A full mathematical characterization of Rn,m(ε)
and/or Rn(ε) is a challenging task. To see why,
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let us define the random variables ζi = yiw
⊺φ(xi)

for (xi, yi) ∈ Sn and ζn+h = yn+hw
⊺φ(xn+h) for

(xn+h, yn+h) ∈ Stest (where we emphasize that the ran-
domness is due to w). Then, for example, the normal-
ization term P(VS(Sn)) can be expressed as

P(VS(Sn)) = ∫
n

∏
i=1

1(yiw⊺φ(xi) ≥ 0)P(dw)

= P(ζ1 ≥ 0, ζ2 ≥ 0, . . . , ζn ≥ 0).
(11)

That is, P(VS(Sn)) can be seen as an orthant prob-
ability under the distribution P. When P = N (0, I),
we find that ζ = (ζ1, ζ2, . . . , ζn) ∼ N (0,AA⊺), where
A is the n×N matrix whose ith row is (yiφ(xi))⊺ and
whose (i, j)th entry is yiyjφ(xi)⊺φ(xj). Computing
such a Gaussian orthant probability for a general co-
variance matrix is a classical problem, and explicit for-
mulae for them are known only in dimensions ≤ 5 and
in a few other special cases (Dunnett and Sobel, 1955,
Steck, 1962, Abrahamson, 1964).

Hence, to present a model we can analyze, here we con-
sider a simplified setting where the testing and train-
ing samples have a fixed positive correlation with each
other, i.e., for fixed ρ ∈ (0,1],

(AA⊺)ij = yiyjφ(xi)⊺φ(xj) = ρ, (12)

for each pair of indices i ≠ j in Sn ∪ Stest (where here
we assume φ(xi) are normalized to have unit `2 norm,
without loss of generality).2 Under this assumption,
we can leverage implicit expressions for the normaliz-
ing term P(VS(Sn)), which makes the problem more
amenable to analysis.

We remark that to derive asymptotically valid expres-
sions for Rn(ε) and Rn,m(ε), one may be tempted to
approximate (11) using off-the-shelf techniques for ap-
proximating high-dimensional integrals, e.g., Laplace’s
method. However, there are a number of pitfalls with
this approach. First, it is difficult to quantify the ap-
proximation errors, and results that do exist are not
precise enough for our purposes. Second, certain con-
ditions for Laplace’s method or other standard integral
expansions do not hold in our setting.3 Nevertheless,
we can leverage special properties of the Gaussian dis-
tribution and quantile functions to prove several non-
trivial results. Henceforth, for sequences {an} and
{bn}, the notation an ∼ bn means an = bn(1 + o(1))
as n→∞.4

Our first result considers the setting of a single testing
point (xn+1, yn+1), and it demonstrates the effect of

2By correlation between data points, we mean
yiyjφ(xi)

⊺φ(xj) for i ≠ j.
3For example, the maximum of the function in the ex-

ponent of the integrand occurs at infinity.
4That is, it should not be confused with “has the prob-

ability distribution of” which uses the same notation.

a larger correlation ρ on the probability of correctly
classifying a new test point. Furthermore, it shows
that, at least for this simple setting, we can expect
the probability of correctly classifying a testing point
to converge to 1 at a O(1/n) rate.

Theorem 1. Suppose we have a single testing point
(xn+1, yn+1), which together with the training data sat-
isfies the correlation structure (12). Then, as nρ→∞,

P(yn+1 = sign(w⊺φ(xn+1)) ∣ VS(Sn)) ∼ 1− 1 − ρ
nρ

. (13)

The proof of Theorem 1 relies mainly on a new asymp-
totic formula for the orthant probability of equicorre-
lated Gaussian random variables. To the best of our
knowledge, this is the first of its kind, and it may be
of independent interest. We state this result below in
the following Lemma.

Lemma 1. Let ρ ∈ [0,1) and (X1, ...,Xn) ∼ N (0,Σ)
with Σij = ρ for i ≠ j and Σii = 1 for all i. Then as
nρ→∞,

P(X1 ≥ 0,X2 ≥ 0, . . . ,Xn ≥ 0) ∼
√

1 − ρ
ρ

Γ(1 − ρ
ρ

) (4π log(n)) 1
2 (

1−ρ
ρ −1)n−

1−ρ
ρ .

Theorem 1 then follows by carefully evaluating the ra-
tio of the above expression at n + 1 and n.

Before stating our next result, we provide a formal
definition of a critical value ε∗ which we will refer-
ence therein.

Definition 2. We say that ε∗ is a critical value if,
for each c > 0, Rn(ε∗ − c) = 0 and Rn(ε∗ + c) → 1 as
n→∞.

Our next result provides a connection between the crit-
ical value ε∗, the number of training samples, and the
correlation ρ.

Theorem 2. Suppose the testing and training data
satisfies the correlation structure (12). Let U be
a gamma random variable with shape and scale pa-
rameters (1 − ρ)/ρ and 1, respectively, i.e., U ∼
Gamma(1−ρ

ρ
,1). Then, as nρ→∞,

Rn(ε) ∼ P(U ≤ nε). (14)

In particular, as nρ→∞,

ε∗ = 1 − ρ
nρ

(15)

is a critical value.

In this simple setting, n and ρ completely determine
the distribution Rn(ε): if ρ is close to 1, then the
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data points are nearly parallel, and we will have that
the test errors sharply concentrate around the criti-
cal value ε∗, even for n small. Of course, in practice,
there will be a more subtle and complicated relation-
ship between the correlations and the full distribution
Rn(ε), which will likely be difficult to characterize pre-
cisely. Nonetheless, we believe that it may be possible
to prove concentration in the general case, without ex-
plicitly characterizing the full distribution Rn(ε). This
is captured by the following conjecture.

Conjecture 1. For any model class Fφ, datasets
Sn, testing distribution Prx,y (each potentially sat-
isfying some regularity conditions) and scaling 0 <
α < 1, there exists a critical value ε∗(α) such that
limn,N→∞,n/N→αRn(ε) = 1(ε ≥ ε∗(α)) almost surely.

Theorem 2 provides such a result in the case when
the data is equicorrelated. Previous work using the
statistical mechanics framework also prove similar re-
sults under different simplifying assumptions, namely

when the features xik
i.i.d.∼ Unif({−1,1}), k = 1, . . . , d,

and the labels yi are generated via a teacher model
w⋆ s.t. yi = sign(w⊺

⋆xi) (see, e.g., Chapter 2 of
(Engel and Van den Broeck, 2001)). However, these
results typically only focus on the n > d case, which is
less relevant to the modern machine learning regime.

6 DISCUSSION AND
CONCLUSION

In this paper, we built on previous literature on the
statistical mechanics of learning to develop a frame-
work to study the typical test error of a classifier, and
we propose this as an alternative to the more standard
uniform convergence approach. We formally define the
full distribution of test errors among interpolating clas-
sifiers and introduce a method to compute this distri-
bution accurately on real datasets. One of the most
important findings of our investigation is that, given
a particular training and testing setup, there exists a
critical value ε∗ around which almost all interpolat-
ing classifiers’ test errors eventually concentrate. This
will not come as a surprise to the statistical physicist:
such typical values commonly appear in physical sys-
tems. However, as we have demonstrated, this critical
value can differ significantly from the error εunif, which
one would obtain via a uniform convergence analy-
sis, especially in the interpolating/over-parameterized
regime, and which may be more familiar to the ma-
chine learner.

Our results should motivate further research into al-
ternatives to the uniform convergence framework, ei-
ther through the lens of statistical physics or some
other (likely related) perspective, and they should ul-
timately help resolve questions surrounding the good

performance of over-parameterized machine learning
models. As a first step, we state a few potential di-
rections for future work building off of the results pre-
sented here.

More general function classes. While encompass-
ing many models of interest, the function classes Fφ
of course do not include general neural network ar-
chitectures. In this paper, we studied random fea-
ture models, which can be interpreted as neural net-
works with internal weights fixed at a random ini-
tialization. Another interesting setting which may be
more tractable to study would be that of linearized
networks of the form

f(x) = sign(w⊺∇F (x;w0)) (16)

where F is an arbitrary neural network with random
initialization w0. A variety of results have shown
that these models coincide with neural networks in
the large-width limit via the neural tangent kernel
(Jacot et al., 2018, Arora et al., 2019). While our ap-
proach would, in theory, work out-of-the-box for these
models, in practice, these involve a very large number
of features (approximately O(LN2), where L is the
number of layers, andN is the width of each layer). We
found that even with the lin-ess algorithm, sampling
from P(⋅ ∣ VS(Sn)) was impractical for these models.
However, developing other methods for computation
in this setting could yield interesting insights into the
advantages (and disadvantages) of various network ar-
chitectures.

Beyond the interpolating regime. The motiva-
tion for our studying interpolating classifiers compris-
ing the version space VS(Sn) was previous work in the
statistical mechanics literature, as well as the well-
known worst-case results for these models given by,
e.g., Vapnik–Chervonenkis theory. However, this is
not the only method one could use to study the distri-
bution of test errors. A promising alternative would
be to consider the distribution over weights w induced
by some optimization algorithm, such as stochastic
gradient descent (SGD). Indeed, previous work has
shown that under various assumptions, SGD produces
a Gaussian stationary distribution over weights w
(Mandt et al., 2017). Under other (probably more re-
alistic) assumptions, it leads to heavy-tailed struc-
ture in the weights (Hodgkinson and Mahoney, 2020,
Gurbuzbalaban et al., 2020). An intriguing direction
for future work would be to study the distribution over
test errors E(w) induced by such a stationary distri-
bution. It is possible that this may even simplify the
theoretical investigation: whereas we studied weights
drawn from P(⋅ ∣ VS(Sn)) (a rather complicated distri-
bution), it may be easier to study weights drawn from
a Gaussian (or some other tractable) distribution.
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