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Abstract

Federated learning (FL) is a popular distributed learn-
ing framework that can reduce privacy risks by not ex-
plicitly sharing private data. However, recent works have
demonstrated that sharing model updates makes FL vulner-
able to inference attack. In this work, we show our key ob-
servation that the data representation leakage from gradi-
ents is the essential cause of privacy leakage in FL. We also
provide an analysis of this observation to explain how the
data presentation is leaked. Based on this observation, we
propose a defense called Soteria against model inversion
attack in FL. The key idea of our defense is learning to per-
turb data representation such that the quality of the recon-
structed data is severely degraded, while FL performance
is maintained. In addition, we derive a certified robustness
guarantee to FL and a convergence guarantee to FedAvg,
after applying our defense. To evaluate our defense, we
conduct experiments on MNIST and CIFARIO for defend-
ing against the DLG attack and GS attack. Without sacri-
ficing accuracy, the results demonstrate that our proposed
defense can increase the mean squared error between the
reconstructed data and the raw data by as much as 160x
for both DLG attack and GS attack, compared with base-
line defense methods. Therefore, the privacy of the FL sys-
tem is significantly improved. Our code can be found at
https://github.com/jeremy313/Soteria.

1. Introduction

Federated learning (FL) [16] is a popular distributed
learning approach that enables a number of devices to train
a shared model in a federated fashion without transferring
their local data. A central server coordinates the FL pro-
cess, where each participating device communicates only
the model parameters on the central server while keeping
local data private. Thus, FL becomes a natural choice for
developing mobile deep learning applications, such as next-
word prediction [10], emoji prediction [22], etc.

Privacy preservation is the major motivation for propos-

ing FL. However, recent works demonstrated that shar-
ing model updates or gradients also makes FL vulnera-
ble to inference attack, e.g., property inference attack [18]
and model inversion attack [5, 28, 7, 26]. Here prop-
erty inference attack infers sensitive properties of training
data using the model updates, and model inversion attack
reconstructs training data using model gradients. How-
ever, the essential causes of such privacy leakages have
not been thoroughly investigated or explained. Some de-
fense strategies have been presented to prevent the privacy
leakage and can be categorized into three types: differen-
tial privacy [21, 24,9, 17, 8], secure multi-party computa-
tion [4, 19, 3, 18], and data compression [28]. But these
defensive approaches incur either significant computational
overheads or unignorable accuracy loss. The reason is that
existing defenses are not specifically designed for the pri-
vacy leakage from the communicated local updates. The
privacy issues seriously hinder the development and deploy-
ment of FL. There is an urgent necessity to unveil the es-
sential cause of privacy leakage such that we can develop
effective defenses to tackle the privacy issue of FL.

In this work, we assume that the server in FL is malicious
and it aims to reconstruct the private training data from de-
vices. Our key observation is: the class-wise data repre-
sentations of each device’s data are embedded in shared
local model updates, and such data representations can
be inferred to perform model inversion attacks. There-
fore, the information can be severely leaked through the
model updates. In particular, we provide an analysis to
reveal how the data representations, e.g., in the fully con-
nected (FC) layer, are embedded in the model updates. We
then propose an algorithm to infer class-wise data represen-
tation to perform model inversion attacks. Our empirical
study demonstrates that the correlation between the inferred
data representations using our algorithm and the real data
representations is as high as 0.99 during local training, and
thus proves that the representations leakage is the essential
cause behind existing attacks. Note that the data is often
non-IID (identically and independently distributed) across
the devices in FL. We also show that the non-IID character-
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istic aggravates the representation leakage.

Based on our observation of the representation leakage
from local updates, we design a defense called Soteria.
Specifically, we present an algorithm to generate a perturba-
tion added to the data representations, such that: 1) the per-
turbed data representations are as similar as possible to the
true data representations to maintain the FL performance;
and 2) the reconstructed data using the perturbed data rep-
resentations are as dissimilar as possible to the raw data.
Importantly, we also derive certified robustness guarantee to
FL and convergence guarantee to FedAvg, a popular FL al-
gorithm, when applying our defense. To evaluate the effec-
tiveness of our defense, we conduct experiments on MNIST
and CIFARI10 for defending against the DLG attack [28]
and GS attack [7]. The results demonstrate that without sac-
rificing accuracy, our proposed defense can increase mean
squared error (MSE) between the reconstructed data and the
raw data for both DLG attack and GS attack by as much as
160x, compared with baseline defense methods. Therefore,
the privacy of the FL system is significantly improved.

Our key contributions are summarized as follows:

e To the best of our knowledge, this is the first work to
explicitly reveal that data representations embedded in
the model updates are the essential cause of leaking
private information from the communicated local up-
dates in FL. In addition, we develop an algorithm to
effectively reconstruct the data from the local updates.

e We develop an effective defense by perturbing data
representations. We also derive certified robustness
guarantee to FL and convergence guarantee to FedAvg
when applying our defense.

e We empirically evaluate our defense on MNIST and
CIFAR10 against DLG and GS attacks. The results
show our defense can offer a significantly stronger pri-
vacy guarantee without sacrificing accuracy.

2. Related work

Privacy Leakage in Distributed Learning. There exist
several adversarial goals to infer private information: data
reconstruction, class representative inference, membership
inference, and attribute inference. Data reconstruction aims
to recover training samples that are used by participating
clients. The quality of the reconstructed samples can be as-
sessed by comparing the similarity with the original data.
Recently, Zhu et al. [28] present an algorithm named DLG
to reconstruct training samples by optimizing the input to
generate the same gradients for a particular client. Follow-
ing up DLG, iDLG [27] is proposed to improve the effi-
ciency and accuracy of DLG. Aono et al. [1] also show
that an honest-but-curious server can partially reconstruct
clients’ training inputs using their local updates. However,
such an attack is applicable only when the batch consists of

a single sample. Wang et al. [26] present a reconstruction
attack by incorporating a generative adversarial network
(GAN) with a multi-task discriminator. But this method
is only applicable to scenarios where data is mostly ho-
mogeneous across clients and auxiliary dataset is available.
Several approaches have been proposed to infer class fea-
tures or class representatives. Hitaj et al. [1 1] demonstrate
that an adversarial participant in the collaborative learning
can utilize GANs to construct class representatives. How-
ever, this technique is evaluated only when all samples of
the same class are virtually similar (e.g., handwritten dig-
its, faces, etc.). Membership inference attack (MIA) is per-
formed to accurately determine whether a given sample has
been used for the training. This type of attack is first pro-
posed by Shokriet al. [25], and it can be applied to any
types of machine learning models even under black-box set-
tings. Sablayrolles et al. [23] propose an optimal strategy
for MIA under the assumption that model parameters con-
form to certain distributions. Nasr et al. [20] extend MIA to
federated learning for quantifying the privacy leakage in the
distributed setting. Attribute inference attack [2, 6, 5, 11]
tries to identify some sensitive attributes of training data.
Fredrikson et al. [6] proposes a method to reveal genomic
information of patients using model outputs and other non-
sensitive attributes. More recently, Melis et al. [18] demon-
strate that an adversarial client can infer attributes that hold
only for a subset of the training data based on the exchanged
model updates in federated learning.

Privacy-preserving Distributed Learning. Existing
privacy-preserving distributed learning methods can be
categorized into three types: differential privacy (DP),
secure multi-party computation (MPC), and data com-
pression. Pathak et al. [21] present a distributed learning
method to compose a deferentially private global model
by aggregating locally trained models. Shokri et al. [24]
propose a collaborative learning method where the sparse
vector is adopted to achieve DP. Hamm et al. [9] design
a distributed learning approach to train a deferentially
private global model via transferring the knowledge of the
local model ensemble. Recently, participant-level defer-
entially private federated learning are proposed [17, 8] via
injecting Gaussian noise to local updates. However, these
DP-based methods require a large number of participants
in the training to converge and realize a desirable privacy-
performance tradeoff. In addition, MPC has also been
applied to develop privacy-preserving machine learning in a
distributed fashion. For example, Danner et al. [4] propose
a secure sum protocol using a tree topology. Another
example of the MPC-based approach is SecureML [19],
where participants distribute their private data among two
non-colluding servers, and then the two servers use MPC
to train a global model using the participants’ encrypted
joint data. Bonawitz et al. [3] propose a secure multi-party

9312



T
i

J JAS

1
FIE_, oLk

\//

D

aw

=

Figure 1. Illustration of the gradient updates of class-wise data in a batch.

aggregation method for FL, where participants are required
to encrypt their local updates such that the central server
can only recover the aggregation of the updates. However,
these MPC-based approaches will incur unneglectable
computational overhead. It is even worse that attackers
can still successfully infer private information even if
the adversary only observes the aggregated updates [18].
Furthermore, Zhu et al. [28] show applying gradient
compression and sparsification can help defend against
privacy leakage from shared local updates. However, such
approaches require a high compression rate to achieve a
desirable defensive performance. In Section 6, given the
same compression rate, we show that our proposed method
can achieve better defense and inference performance than
that of the gradient compression approach.

3. Essential Cause of Privacy Leakage in FL

Existing works [28, 27, 1, 26] demonstrate that informa-
tion leakage is from communicated model updates between
the devices and server during FL training. However, they do
not provide a thorough explanation. To understand the es-
sential cause of information leakage in FL, we analyze the
privacy leakage in FL. Our key observation is that privacy
leakage is essentially caused by the data representations em-
bedded in the model updates.

3.1. Representation Leakage in FL.

Problem setup. In FL, there are multiple devices and
a central server. The server coordinates the FL process,
where each participating device communicates only the lo-
cal model parameters with the server while keeping their
local data private. We assume the server is malicious and
it only has access to the devices’ model parameters. The
server’s purpose is to infer the devices’ data through the de-
vices’ model parameters.

Key observations on representation leakage in FL: Data
representations are less entangled. For simplicity, we use
the fully connected (FC) layer as an instance and analyze
how data representation is leaked in FL. We note that such
an analysis can be naturally extended to other types of lay-
ers. Specifically, we denote a FC layer as b = Wr, where
r is the input to the FC layer (i.e., the learnt data represen-

tation by previous layers), W is the weight matrix, and b is
the output. Then, given a training batch B, the gradient of
the loss [ with respect to W is:

X or L%aﬁzi o 1 g‘: L
ow |B| <~ ob* oW~ |B| & 8bl ’
where I*, v, and b’ are the loss corresponding to the ith
sample, the input, and the output of the FC layer in this
batch, respectively. We observe that the gradient for a par-

ticular sample is the product of a column vector abl and

a row vector (r*)T. Suppose the training data has C' la-
bels. We can split the batch B into C sets, i.e., B =
{Bo,B1,...,Bc}, where By, denotes the data samples with
the k-th label. Then, Equ. (1) can be rewritten as:

|B| alk
\]B\ Zk 1 _ 1 alj
=2 <|IB% | - abj ZGMd

i=1

(2)
where Grad(B;) represents the gradient with respect to the
data samples in B;. Figure 1 illustrates the gradient updates
for a batch data in a FC layer. We observe that for data com-
ing from different classes, the corresponding data represen-
tations tend to be embedded in different rows of gradients.
If the number of classes is large in a batch, which is com-
mon in centralized training, the representations of differ-
ent classes will be entangled in the gradients of this whole
batch. In contrast to centralized training, the local data often
covers a small number of tasks on a participating device in
FL. Thus, the number of data classes C' within one training
batch may be very small compared to that of the centralized
training. In this case, the entanglement of data represen-
tations from different classes can be significantly reduced.
Such a low entanglement of data representations allows us
to explicitly reconstruct the input data of each class from
the gradients, because we can (almost) precisely locate the
rows of data representations in the gradients.

Note that in the above analysis, we only consider a single
batch during the FL training. In practice, FL is often trained
with multiple batches. In this case, the data representations
of different classes could be entangled, especially when the
number of batches is large. However, in practical FL appli-
cations, the devices often have insufficient data. During FL
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Figure 2. Illustration of our representation inference algorithm.

training, the numbers of batches and local training epochs of
each device are both small. In this case, the data represen-
tations could still be less entangled across classes through
inspecting the gradient updates in Equ. (2).

3.2. Inferring Class-wise Data Representations

We develop an algorithm to identify the training classes
and infer the data representations of each class embedded
in each FC layer from the model updates. The representa-
tion inference algorithm is in a back propagation fashion.
Specifically, we first identify the classes using the gradients
of the last (L—th) layer. We denote the gradients of the L-th
layer as VW L. We notice that the gradient vector VW[,
which is the ith row in VWL, shows significantly larger
magnitudes than gradient vectors in other rows if the data
from ¢-th class are involved in training. Then, we can infer
the data representation of the ¢-th class in the last layer, be-
cause it linearly scales VWX, If data representation of the
i-th class in layer WL is inferred, we can use their element
values to identify the corresponding row from the (L —1)-th
layer’s gradients, i.e., W%~1!, which embeds the data repre-
sentation of the i-th class in the (L —1)-th layer. In this way,
we can iteratively infer data representations of the i-th class
in all FC layers. The inference process for one FC layer is
illustrated in figure 2 and the details of our representation
inference algorithm are described in Appendix A.

We conduct experiments on CIFARI0 [13] to evaluate
the effectiveness of our algorithm. We consider the prac-
tical non-IID settings in FL, and follow the 2-class & bal-
anced configuration in [14] to construct non-IID datasets:
100 devices in total and 10 devices are randomly sampled to
participate in training in each communication round. Each
device holds 2 classes of data and each class has 20 samples.

As local training configurations can affect the perfor-
mance of inferred representation. In this experiment, we
vary the number of local training epochs E € {1,5,10}
and local batch size B € {8, 16, 32}. We adopt SGD as the
optimizer with a learning rate = 0.01. The model archi-
tecture is shown in Appendix B. We also consider a baseline
in the IID setting, where we set E to be 1 and B to be 32.

We use the correlation coefficient cor between the true
representation F]%;i and our inferred f‘]%; to quantify the ef-
fectiveness of our proposed algorithm. We calculate cor for

Table 1. Average cor across 200 communication rounds for differ-
ent layers under different settings.

Local Training Configurations FClI FC2 FC3
E=1,B=32 098 0.99 0.99
E=5, B=32 0.82 090 092
E=10, B=32 070 0.78 0.82
E=1,B=16 0.82 093 099
E=1, B=8 085 0.89 092
E=1, B=32 (IID) 048 031 0.18

Rep

- _:‘-'.

Figure 3. DLG attack results utilizing different parts of gradients.

each class on each participating device. We extract data rep-
resentations from all the FC layers in each of 200 commu-
nication rounds between the devices and the server, and the
average cor across all communication rounds and devices is
shown in Table 2. As Table 2 presents, the correlation cor is
as high as 0.99, indicating a serious representation leakage
in FL. cor decreases with B or a larger number of batches
in one epoch and increases as E goes lower, which validate
our claim in Section 3.1. However, cor is still higher than
0.8 in almost all cases. We note that cor is much lower
in the IID-setting. This is because each device has more
classes of data for training than those in non-IID setting,
making the representations entangled. Our results validate
that the practical non-IID setting in FL dramatically wors-
ens the representation leakage.

3.3. Unveiling Representation Leakage

In this section, we investigate whether the representa-
tion leakage is the essential cause of information leakage
in FL. Particularly, we conduct experiments on CIFAR10
to reconstruct the input based on the existing DLG at-
tack [28]. DLG attack requires the gradient information,
and we consider three different portions of the gradients:
the whole model gradients (WG), the gradients of convolu-
tional layers only (CLG), and inferred representations using
our method (Rep). The experiment settings are presented
in Appendix B. As figure 3 shows, only utilizing gradi-
ents of convolutional layers cannot successfully reconstruct
the input data, but using the representation inferred by our
method can reconstruct the input data as effectively as uti-
lizing the whole gradients in terms of visual quality. This
result validates that representation leakage is the essential
cause of privacy leakage in FL.
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Figure 4. Illustration of our representation perturbation defense.

4. Defense Design
4.1. Defense Formulation

Our aforementioned observation shows that the privacy
leakage in FL mainly comes from the representation leak-
age (e.g., in the FC layer). In this section, we propose a
defense against such privacy leakage called Soteria. In par-
ticular, we propose to perturb the data representation in a
single layer (e.g., a FC layer), which we call the defended
layer, to satisfy the following two goals:

e Goal 1: To reduce the privacy information leakage, the
reconstructed input through the perturbed data repre-
sentations and the raw input should be dissimilar.

e Goal 2: To maintain the FL performance, the perturbed
data representation and the true data representations
without perturbation should be similar.

Let r and 7’ represent the clean data representation and
perturbed data representation on the defended layer, respec-
tively. We also define X and X" as the raw input and the re-
constructed input via the perturbed data representation. To
achieve Goal 1, we require that the distance between X and
X', in terms of L, norm, should be as large as possible; To
reach Goal 2, we require that the distance between 7 and 7/,
in terms of L, norm, should be bounded. Formally, we have
the following constrained objective function with respect to

r'

Achieving Goal 1: max || X — X'||,, 3)
T./
Achieving Goal 2: s.t., ||r —7'|[; <€, “4)

where ¢ is a predetermined threshold. Note that X’ depends
on r’. Next, we design a solution to obtain v’ and derive the
certified robustness.

4.2. Defense Solution

Let f : X — r be the feature extractor before the de-
fended layer. Prior to obtaining our solution, we make the
following assumption and use the inverse function theorem.

Assumption 1. The inverse of f, i.e., {1, exists on r and
' Vr =1l <e

Algorithm 1 Learning perturbed representation 7’ with ¢ =
Oandp = 2.

Input: Training data X € RM XN Feature extractor f : RM*N
RL before the defended layer; Clean data representation r € RL;
Perturbation bound: €;

Output: Perturbed data representation ' € R%;

1: function PERTURB_REP(X, f, 7, €)

2: Compute ||r;(Vx f(ri)) " |2 fori =0,1,...,L — 1;

3: Find the set S which contains the indices of € largest elements in
{llri(Vx f(ri) " Hl2d ey

7

4

5 Setr, =0fori € S;
6: return r’;

7: end function

Lemmal. ForVf: X —rand f~':r — X, V,.f~ ! =
-1
(Vxf) .
Then, our object function can be reduced as follows:

’

r = argmﬁxHX — X'|p, st|r—7'||q <€ 5)

= &rgijHf*l(?“) — s stllr =7llg < e (6
A arg max IV (r=1)lps stllr—7']]lg<e (D)

= argmax [|(Vx /)™ - (= )llp, sitllr—1'lla < e, ®)
where we use Assumption 1 in Equ. (6), use the first-order
Taylor expansion in Equ. (7), and use Lemma | in Equ. (8).

Note that, with different choices of ||.||, and ||.||4, we
have different defense solutions and thus have different de-
fense effects. In this work, we set p = 2, i.e., we aim to
maximize the MSE between the reconstructed input and the
raw input. Meanwhile, we set ¢ = 0 due to two reasons:
our defense has an analytical solution and is communication
efficient. Specifically, our solution is to find the € largest
elements in the set {||r;(Vx f(r:))"!||l2}. Moreover, the
learnt perturbed representation is relatively sparse and thus
improves the communication efficiency. Algorithm 1 de-
tails the solution to obtain the perturbed presentation r’ with
¢ = 0 and p = 2. Algorithm 2 details the local training pro-
cess with our defense on a local device.

4.3. Certified Robustness Guarantee

We define our certified robustness guarantee as the cer-
tified minimal distance (in terms of L,-norm) between the
raw input and the reconstructed input. A larger defense
bound indicates that our defense is more effective. Specifi-
cally, we have the following theorem on our defense bound:

Theorem 1. Assuming Assumption I holds. Given a data
input X, its representation v and any perturbed data repre-
sentation ', we have:
!/
[l = "Il

X—Xx'|,> "= "llp )
I =Xl 2 1,

Proof. See our proof in Appendix C. O
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Algorithm 2 Local training process with our defense on a

local device.

Input: Training data X € RMXN; Local objective function F :
RMx*N _, R; Feature extractor f : W; € RMxN _y RL pe-
fore the defended layer; The defended layer g : W, € RL — RE;
Feature extractor after the defended layer h : W3, € RX — R; Local
model parameters W = { W, W, W}, }; Learning rate 7).

Output: Learnt model parameter W with our defense.

1: Initialize W,

2: for B in local training batches do

3: for X € B do

4: l+ F(X;W);

5: < f(X;Wy);

6: b g(r; Wy); // e.g., b = Wyr for FC layers
7: 1 < h(b; Wy);

8: {VW;, VW, VW, } « Vi F(X; W),
9: 1’ Perturb_rep(X, f(; Ws),7,¢€);

10: VW, (1, b7, Wy): ll eg.. VW, = ZLp'T in FC
11: VW = {VW;, VW, VW}, };

12: W W —nVW;

13: end for

14: end for

5. Convergence Guarantee

In this section, we derive the convergence guarantee of
FedAvg [ 16]—the most popular FL algorithm, with our pro-
posed defense. We first describe the FedAvg algorithm with
our defense and then present our theorem on the conver-
gence guarantee.

5.1. FedAvg with Our Defense

In classical FedAvg, the objective function is defined as:
N
W = min{F(W) £ kZ_l P (W)}, (10)

where py is the weight of the k-th device, p, > 0 and
Zgzl pr = 1. I}, is the local objective in the k-th device.
Equation 10 is solved via an iterative server-devices
communication as follows: Suppose the server has learnt
the global model W; in a specific communication round,
and randomly selects K devices S; with replacement ac-
cording to the sampling probabilities p1, ..., py for the next
training round. Then FedAvg is performed as follows: First,
the server sends the global model W to all devices. Then,
all devices set their local model to be W;, i.e., Wtk =
W, Vk € [1 : NJ, and each device performs [ iterations
of local updates. Specifically, for the ¢-th iteration, the local
model in the k-th device applying our defense is updated as:

VE(Wii &) = T(VE(WE, 64)) - (1)
Wi « Wl — e VE(WH, 60), (1)
where 7;4; is the learning rate and &F " ; 1s a data sample
uniformly chosen from the k-th device. 7 (-) is our defense

scheme. Finally, the server averages the local models of the
selected K devices and updates the global model as follows:

N
Wierr & k; pWE. (13)
t

5.2. Convergence Analysis

Our convergence analysis is inspired by [15]. Without
loss of generality, we derive the convergence guarantee by
applying our defense to a single layer. However, our results
can be naturally generalized to multiple layers. We denote
the input representation, parameters, and output of a single
(e.g. s-th) layer in the k-th device and in the ¢-th round as
7F, w,k and bf, respectively.

Before presenting our theoretical results, we first make
the following Assumptions 2-5 same as [15] and an extra
Assumption 6 on bounding the squared norm of stochastic
gradients with respect to the single s-th layer.

Assumption 2. Fy, F5,...,Fy are L-smooth: YV ,W,
Fi(V) < F(W)+(V=W)TVE(W)+ £V - W|[3.

Assumption 3. Fy, Fy, ... Fy are p-strongly convex:
YV, W, F(V) > Fy(W) + (V - W)TVEF,(W) +
SV — W3

Assumption 4. Let £F be sampled from the k-th device’s
local data uniformly at random. The variance of stochastic
gradients in each device is bounded: E||VF, (W[ ¢F) —
VE(WH|? <olfork=1,..,N.

Assumption 5. The expected squared norm of stochastic
gradients is uniformly bounded, i.e., B||V Fx (W}, £F)||? <
G?forallk=1,..,Nandt=0,...,T — 1.

Assumption 6. For the single s-th layer, the squared norm
of stochastic gradients on the output of each device is
bounded: ||Vb;ch(wsf,§f)||2 < Agforallk =1,..,N
andt=0,...,T — 1.

We define F'* and F}} as the minimum value of F' and Fj,

N

andletI' = F* — " pF}’. We assume each device has I
k=1

local updates and the total number of iterations is 7". Then,

we have the following convergence guarantee on FedAvg
with our defense.

Theorem 2. Let Assumptions 2-6 hold and L, i, oy, G, A
be defined therein. Choose k = % ~v = max{8k, I} and

the learning rate n; = ﬁ Then FedAvg with our de-
fense satisfies
. 2k Q+C oy 2
E[F - < —— —E -
PWn)] = P < (5 BT W - W),
where
N
Q=) pe(As-e+07)+6L0 +8(1 — 1)*(Ay - e+ G?)
k=1
C = iIQ(AS e+ G?).
K
Proof. See our proof in Appendix D. O
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6. Experiments
6.1. Experimental Setup

In our experiments, we evaluate our defense against two
different model inversion attacks under non-IID settings.
Experiments are conducted on a server with two Intel Xeon
E5-2687W CPUs and four Nvidia TITAN RTX GPUs.

Attack methods. We evaluate our defense method against
two model inversion attacks in FL. (1) DLG attack [28]
assumes that a malicious server aims to reconstruct de-
vices’ data using their uploaded gradients. In DLG at-
tack, the server optimizes reconstructed data to minimize
the Euclidean distance between the raw gradients and the
gradients that are generated by the reconstructed data in
back propagation. (2) Gradient Similarity (GS) attack [7]
shares the similar idea with DLG. Different from using Eu-
clidean distance in DLG, GS attack utilizes cosine similar-
ity between the raw gradients and the dummy gradients to
optimize the reconstructed data during local updates.

Defense baselines. We compare our proposed defense
with two existing defense methods: (1) Gradient compres-
sion (GC) [28] prunes gradients that are below a threshold
magnitude, such that only a part of local updates will be
communicated between devices and the server. (2) Differ-
ential privacy (DP) [|7] protects privacy with a theoretical
guarantee by injecting noise to the gradients uploaded to
the server. In the experiments, we separately apply Gaus-
sian and Laplacian noise to develop two DP baselines, i.e.,
DP-Gaussian and DP-Laplace.

Datasets. To evaluate our defense under more realistic
FL settings, we use MNIST and CIFAR10 datasets and
construct non-IID datasets by following the configurations
in [16]. For each dataset, the data is distributed across 100
devices. Each device holds 2 random classes of data with
100 samples per class. By default, we perform training on
CIFAR10 and MNIST non-IID dataset with 1000 and 200
communication rounds, respectively.

Hyperparameter configurations. In training, we set lo-
cal epoch E as 1 and batch size B as 32. We apply SGD
optimizer and set the learning rate 7 to 0.01. In each com-
munication round, there are 10 devices which are randomly
sampled to participate in the training. For model inver-
sion attacks, the ideal case for the adversary is that there
is only one sample in each batch, where the quality of re-
constructed data will be very high [28]. We evaluate our
defense in such an extreme case, but it should show much
better performance in other general cases (i.e., more than
one sample in each batch). With regard to DLG attack, we
apply L — BFGS optimizer and conduct 300 iterations of
optimization to reconstruct the raw data. For GS attack, we
utilize Adam optimizer with a learning rate of 0.1 and re-
port the reconstructed results after 120 iterations. The base

Table 2. Parameter configurations of different defense methods.

Configured Parameters DLG GS
GC: proder (%) [1, 80] [1,90]
DP-Gaussian: 0caussian || 116~ 51e ] [le=%,1le 1]
DP-Laplace: o apiace [le=%1le 1] [le %1le 1]
Ours: py.(%) [1, 40] (1, 80]

model architectures for two attacks are presented in Ap-
pendix B. For defense, the configurations of our method
and the compared baselines are displayed in Tab. 2, where
DPmodel In GC stands for the pruning rate of the local mod-
els” gradients, p ¢, of our method represents the pruning rate
of the the fully connected layer’s gradients. Regarding DP-
Gaussian and DP-Laplace, we set the mean and variance of
the noise distribution as 0 and o, respectively.

Evaluation metrics. (1) Privacy metric (MSE): We use
the mean-square-error (MSE) between the reconstructed
image and raw image to quantify the effectiveness of de-
fenses. A smaller MSE indicates a server privacy informa-
tion leakage. (2) Utility metric (Accuracy): We use the
accuracy of the global model on the testing set to measure
the effectiveness of FL algorithms (i.e., FedAvg [16]). A
smaller accuracy means a less practical utility.

6.2. Defense Results: Utility-Privacy Tradeoff

We compare our defense with the baselines against the
two attack methods in terms of model accuracy and MSE.
Ideally, we want to maintain high model accuracy while
achieving high MSE. The results are shown in figure 5.

We have the following two key observations. First, when
achieving the MSE such that the reconstructed image is not
recognizable by humans, our method shows no drop in ac-
curacy while the other baselines sacrifice as high as 6% and
9% accuracy under the DLG and GS attacks, respectively.

Second, without sacrificing accuracy, our defense can
achieve 160x MSE than the baseline defenses. The accu-
racy can be maintained by our defense until MSE being 0.8,
while the baselines show significant accuracy drop with a
much smaller MSE. The reason is two folded: 1) our de-
fense does not perturb parameters in the feature extractor
(i.e., convolutional layers), which preserves the descriptive
power of the model; and 2) the representations embedded
in the gradients that are pruned by our defense are mostly
inference-irrelevant, and hence pruning these parameters
would be less harmful to the global model performance.

To perceptually demonstrate the effectiveness of our de-
fense, we also visualize the reconstructed images. We com-
pare our defense with GC, which is the defense baseline that
also utilizes pruning. To save the space, we only show the
results using the GS attack but we have a similar observa-
tion in the DLG attack. Figure 6 shows the reconstructed
image of a random sample in CIFAR10: the reconstructed
image generated by our defense becomes unrecognizable
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Figure 5. Compared defenses on model accuracy and MSE between reconstructed image and raw image for different attack baselines and
datasets. The pink vertical line is the boundary that the reconstructed image is unrecognizable by human eyes if MSE is higher.
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Figure 6. Comparing our defense with GC under the same pruning

rate on model accuracy and MSE on a random image in CIFAR10.

when pruning only 50% — 60% parameters in the FC layer.
However, when applying the GC defense, the reconstructed
image is still recognizable even when 80% parameters of
the whole model are pruned. Note that being unrecogniz-
able to humans is not the ultimate goal of defense, as the
private information might still reside in the image though
the image is not perceptually recognizable [12]. Nonethe-
less, a MSE higher than the threshold that makes the image
recognizable still serves as a meaningful indicator of pri-
vacy defense.

6.3. Convergence Results

Following the experimental setup in [15], we use a lo-
gistic regression (LR) to examine our convergence results
on FedAvg using our defense. We distribute the MNIST
dataset among N = 100 devices in a non-IID setting where
each device contains samples of 2 digits. Here, € in Equ. (4)
is set to be 50, local batch size B 32, local epoch
E = {5,10}, number of sampled devices K in each com-
munication round is selected from {5, 10}.

Figure 7 shows the results of loss vs. communication
rounds. We observe that LR+FedAvg with our defense con-
verges well, which validates our theoretical analysis.

7. Conclusions and Future Work

In this work, we present our key observation that the data
representation leakage from gradients is the essential cause
of privacy leakage in FL. We also provide an analysis of this
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Figure 7. Convergence of LR+FedAvg with our defense.

observation to explain how the data presentation is leaked.
Based on this observation, we propose a defense against
model inversion attack in FL. This is done by perturbing
data representation such that the quality of the reconstructed
data is severely degraded, while FL performance is main-
tained. In addition, we derive certified robustness guarantee
to FL and convergence guarantee to Fed Avg—the most pop-
ular FL algorithm, when applying our defense. We conduct
extensive experiments to evaluate the effectiveness of our
defense, and the results demonstrate that our proposed de-
fense can offer a much stronger privacy guarantee without
sacrificing accuracy compared with baseline defenses.

Our further research include: 1) Investigating the impact
of various p-norm and ¢g-norm on both defense and accu-
racy, as well as designing norms that consider structural
information in the data; 2) Extending our analysis of data
representation leakage to other types of layers, e.g., convo-
lutional layer, to have a more comprehensive understanding
of privacy leakage in FL.
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