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Abstract— Objective: The topological information hidden in
the EEG spectral dynamics is often ignored in the majority of
the existing brain-computer interface (BCI) systems. Moreover,
a systematic multimodal fusion of EEG with other informative
brain signals such as functional near-infrared spectroscopy
(fNIRS) towards enhancing the performance of the BCI systems
is not fully investigated. In this study, we present a robust
EEG-fNIRS data fusion framework utilizing a series of graph-
based EEG features to investigate their performance on a motor
imaginary (MI) classification task. Method: We first extract the
amplitude and phase sequences of users’ multi-channel EEG
signals based on the complex Morlet wavelet time-frequency
maps, and then convert them into an undirected graph to
extract EEG topological features. The graph-based features
from EEG are then selected by a thresholding method and
fused with the temporal features from fNIRS signals after each
being selected by the least absolute shrinkage and selection
operator (LASSO) algorithm. The fused features were then
classified as MI task vs. baseline by a linear support vector
machine (SVM) classifier. Results: The time-frequency graphs
of EEG signals improved the MI classification accuracy by
∼ 5% compared to the graphs built on the band-pass filtered
temporal EEG signals. Our proposed graph-based method also
showed comparable performance to the classical EEG features
based on power spectral density (PSD), however with a much
smaller standard deviation, showing its robustness for potential
use in a practical BCI system. Our fusion analysis revealed a
considerable improvement of ∼ 17% as opposed to the highest
average accuracy of EEG only and ∼ 3% compared with the
highest fNIRS only accuracy demonstrating an enhanced per-
formance when modality fusion is used relative to single modal
outcomes. Significance: Our findings indicate the potential use
of the proposed data fusion framework utilizing the graph-
based features in the hybrid BCI systems by making the motor
imaginary inference more accurate and more robust.

Keywords— Brain-computer interfaces (BCI), EEG-fNIRS
data fusion, Feature selection, Graph theory.

I. INTRODUCTION

Multimodal data fusion could be very impactful yet still is
under-developed for brain-computer interfaces (BCIs). Many
of the existing BCI systems are based on the electroen-
cephalography (EEG) to decode the user’s neural activities
noninvasively. However, often the features extracted from
the EEG signals ignores the topological information hidden
in the EEG spectral dynamics. Existing functional near-
infrared spectroscopy (fNIRS)-based BCI systems are also
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challenged by the slow nature of the hemodynamic responses
measured using fNIRS [1]. A few attempts have been made
to integrate EEG signals with other informative brain signals
such as fNIRS to develop more reliable BCI systems [2], [3],
[4], [5]. New generations of the EEG-fNIRS hybrid BCIs
however need to move beyond a simple concatenation of
the time- or frequency-domain features through exploring
novel feature extraction algorithms that puts the synergetic
spatio-temporal dynamics of both modalities into perspec-
tive. Extracting complementary features is crucial to increase
the performance of hybrid BCIs towards augmenting the
practicality of the current systems, and will be life-changing
for individuals with communication disability by providing
them with effective alternative communication systems.

A. Related Work

Hybrid BCIs – In the first hybrid (EEG-fNIRS) sensori-
motor rhythm (SMR)-BCIs study, conducted by Fazli et al.,
(2012), they found EEG and fNIRS data complement each
other in terms of information content, and thus are highly
suitable as a multimodal technique for hybrid BCIs [2]. Later
on, Tomita et al., (2014) showed that an integrated fNIRS-
EEG system could improve performance in a steady-state
visual evoked potential (SSVEP)-based BCI [3]. Putze et
al., (2014) showed combination of EEG and fNIRS signals
can increase the discriminability of auditory and visual
perceptual processes [4]. Another recent study demonstrated
a significant increase in BCI performance when multimodal
EEG-fNIRS recordings with deep learning was used [5].

Graph-Based Neural Features – Efforts have been made to
study the topological properties of the brain in neurological
disorders [6] and high cognitive functions including problem-
solving and attention [7]. The graph theory approach, which
is useful to illustrate a complex network architecture, has
been involved in the brain function network study in the last
decade. Its first application was conducted by Stam et al.
[8], who compared the functional brain network of control
individuals and patients with Alzheimer’s disease. Many
graph generation strategies has been applied. Gupta et al. [9]
succeeded in using the magnitude squared coherence graph
to characterize four affective states. Graph measurements
such as eigenvalues has been demonstrated to be related to
the graph structure and corresponding brain activities, such
as seizure [10]. Most graph methods are operated in the
temporal domain instead of frequency domain which usually
more useful when analysing the brain connectivity.
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Fig. 1. An overview of the proposed method. After the raw EEG signals are
bandpass filtered into Alpha and Beta bands, we calculate their instantaneous
amplitude and phase sequences using complex Morlet wavelets. Adjacency
matrices are then generated from the amplitude and phase sequences frame.
We stack the thresholded eigenvalues from all adjacency matrices noted as
FE . The stacked fNIRS features from both Oxy and deOxy fNIRS signal
frames are noted as FF . We train a SVM binary classifier with the stacked
FE and FF after they are LASSO selected, separately.

B. Our Contributions
In this study, we propose a novel graph-based feature

extraction algorithm for a robust EEG-fNIRS data fusion
framework towards developing a hybrid BCI system. An
overview of our proposed method is shown in Figure. 1. The
contribution of this work is three-fold: First, introducing a
new prospective for graph generation in which both time-
frequency component of the signal are used to build the
corresponding graph. Second, extracting novel graph-based
features from multi-channel EEG signals that goes beyond
conventional spectral/temporal patterns and carry novel topo-
logical information of the EEG spectral dynamics. Third, the
EEG-fNIRS feature fusion and feature selection to maximize
the benefits of the complementary multimodal data in an
effective hybrid BCIs setup. The proposed framework has
been tested on the BCI dataset collected from 9 healthy
subjects, in which the motor imagery (MI) experiment was
performed and the EEG and fNIRS signals were collected,
synchronously. We will explore whether the features ex-
tracted from the graph that is based on time-frequency maps
of the EEG data have higher discrimination capability than
the ones extracted from the graph directly generated from
the raw temporal signals. Also, we will explore whether our
multimodal feature fusion scheme enhances the performance
of a motor imaginary (MI) classification task compared to
when modalities are used individually.

II. METHODOLOGY
A. Data and Preprocessing

To evaluate our algorithm, we employ the motor imagery
BCI datasets provided by the NeuralPC Lab at the University
of Rhode Island. The experiment of the dataset is the
left/right-hand motor imagery (MI) versus resting state [11]
from 9 healthy participants. The EEG and fNIRS activities is
recorded simultaneously using a mountage containing fNIRS
optodes and EEG electrodes on a single cap. EEG data are
bandpass filtered at Alpha band (8-12 Hz) and Beta band (13-
25 Hz), and fNIRS data are bandpass filtered at 0.01-0.09
Hz to mitigate physiological noises caused by respiratory and
cardiac activities [12]. The MI stimulation paradigm consists
of three runs, each of which consists of 20 trials. Each trial

performs a 10-second mental task recording and a 10-second
of rest recording. During the recording, 14 fNIRS channels
are monitored with a 15.6 Hz sampling rate and 13 EEG
channels with a 256 Hz sampling rate. All fNIRS signals
are upsampled into the same sampling rate as the EEG data.

B. Time–Frequency Processing of EEG Signals

The dynamical aspects of the EEG signals generally reveal
themselves better in the frequency domain than a pure time
domain analysis. Therefore, we use the complex Morlet
wavelets (CMW) [13] to extract the instantaneous frequency-
band–specific amplitude and phase from the multi-channel
EEG signals. The time-point-wise average of the amplitude
and phase series over all frequency bins (1 Hz wide) gives
the frequency representation for a channel. All channels
cascaded together are then considered as the time-varying
amplitude series A and phase series P for the corresponding
EEG signal under a given frequency band. A and P share
the same dimension as the corresponding EEG signal.

C. Graph-Based Dynamical Feature Extraction

XN×d =

x
1
1 · · · xd1
...

. . .
...

x1N · · · xdN


The recorded multi-channel raw or preprocessed EEG signals
can be represented as above, where d is the number of sensor
channels and N is the number of sample points in a given
trial. Here, X can be amplitude A, phase P , or the raw
EEG time-series. To extract a series of dynamical features
from the time-varying amplitude and phase series, a spectral
graph theoretical approach is applied to convert X into an
undirected graph to decode its topological information.

Since the large number of samples (N ) in a given trial
would increase the computational burden of feature extrac-
tion, we generate the graph from data in a window-based
manner. To do so, only the first K data point, which can be
considered as a windows of K data points, in each trial are
utilized. The segmented signal is denoted as XK×d. First,
pairwise similarity comparison between two rows of XK×d,
~xi and ~xj , is calculated as follows:

wij = Ω(~xi, ~xj) = e(−
‖~xi−~xj‖

2

2σ2
), ∀i, j ∈ {1 . . .K}, (1)

where Ω is a radial basis kernel function with σ2 as the
overall statistical variation between rows of matrix XK×d.
Then, a threshold function Θ is applied to convert wij into a
binary form, such that Θ(wij) = 1 if wij ≤ r, else Θ(wij) =

0 where r = (
∑K

i=1

∑K
j=1 wij)/K

2.

SK×K =

Θ(wi=1,j=1) · · · Θ(wi=1,j=K)
...

. . .
...

Θ(wi=K,j=1) · · · Θ(wi=K,j=K)

 . (2)

The sparse similarity matrix SK×K represented in (2) is
an unweighted and undirected network graph G ≡ (V,E).
The index of rows and columns of S represent the vertex V
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of the graph G, and wij = 1 indicates the existence of the
edge E between vertex i and j, otherwise wij = 0.

Once the graph G is generated, the topological information
is extracted in the following process to measure the system
dynamics. The degree di of a vertex i is calculated as the
number of edges connected from i to other vertices, which is
defined as: di =

∑K
j=1 wij ,∀j = {1 . . .K}, and the degree

matrix is defined as: DK×K def
= diag(d1, . . . , dK).

The normalized Laplacian L of the graph G is defined as:

LK×K def
= D−

1
2 × (D − S)×D− 1

2 , (3)

where S is the sparse similarity matrix of graph G with all
weights wij . Thereafter, the eigenvalues λ of L are computed
as Lv = λv where v represents eigenvectors. We cascade all
K eigenvalues of L into a feature vector fK×1 and consider
it as the dynamic feature of the signal in the corresponding
window of size K samples.

In addition, we apply the same sampling window strategy
on fNIRS signals YN ′×d′ which has N ′ sample points and
d′ channels in each trial. The window size however is K ′ >
K, since due to fNIRS inherent response latency and the
fact that it is a signal with slower dynamics compared to
the EEG. For each channel j of fNIRS, 7 features [14] are
extracted from the selected window, including slop, mean,
max, variance, skewness, kurtosis, and difference between
the mean and the minimum. Then, we cascade these features
from all d′ channels to generate the feature vector fF 7d′×1

of fNIRS signal in that given window.

D. Power Spectral Density Feature

To compare our method with the classical feature ex-
traction approach, we calculate the signal’s power spectral
density (PSD) as the classical features via Welch’s transform
[15]. For each channel, we cascade the PSD from α and
β band separately, then we squeeze those features into one
vector as the PSD feature for a trial.

E. Feature Selection and Mid-Level Feature Fusion

L is symmetric positive semidefinite whose eigenvalues
are nonnegative and bounded between 0 and 2. As Figure. 2
(Left) shows most of the eigenvalues are concentrated at 1
and only the ones far from 1 have separability as discrim-
inative features. For each training fold, we only select the
eigenvalues smaller than 0.9 or greater than 1.1 and keep
the same eigenvalue indexes for the testing set. We cascade
the thresholded eigenvalues from α and β band as FE .

Since BCI data are usually rare and the dimension of
feature vector FE is relatively high, we apply the LASSO
(least absolute shrinkage and selection operator) algorithm
to perform feature selection on the FE feature vector [16].
The LASSO selection is also applied on fNIRS features and
the shrank FF is generated. We cascade FE and FF and
then use the fused features to perform the classification of
different mental state.

The PSD features are selected using LASSO as the same
as our graph features. Our proposed EEG-fNIRS data fusion
framework can fuse the LASSO selected PSD feature with

Fig. 2. Demonstration of the thresholding process to select EEG eigenvalue
features and the class separability improvement based on that. (Left) The
distribution of all 1024 eigenvalues generated form the 4-sec window of the
MI vs. baseline trials of subject H-1. (Right) The distribution of threshold-
selected eigenvalues of the same subject data.

the fNIRS feaures in the same way as the graph feature fused
with the fNIRS features.

F. Inference Models

Our classification models in this study are trained and
tested subject specifically assuming subject specific brain
responses with 5-fold cross-validation. We employ a linear
support vector machine (SVM) model as our main classifier,
where its parameters including the kernel scale are automat-
ically optimized while training.

III. RESULTS AND DISCUSSION

A. Classification details and Results

We test each subject specifically and use the first 4-second
window for EEG and first 5-seconds window for fNIRS
in each trial. The dimension of graph-based features are
shrunk into into 7 after thresholding and LASSO for the
EEG signals, same dimension for fNIRS feature by LASSO
selection. The dimension for EEG-fNIRS mid-level fused
feature are 14. We enumerate several choices of feature
dimensions and the selected one is the best-performed set.
The 1-D dimension-shrunk feature vectors from EEG signals,
fNIRS signals, or the fusion of features from both modalities
are then used as the input of the classifiers. Our results
shows in Table. I. For EEG only case, our graph-based
method and PSD both performs reach over 70% with 1.7%
higher by the PSD feature. Yet the graph-based method has
smaller standard deviation by 7.2%. Same situation happens
in the fusion case in which the difference is 0.2%, yet
the standard deviation of our graph-based method is only
8.5%, 4% smaller than the one of PSD features. Our fusion
analysis revealed a considerable improvement of ∼ 17%
as opposed to the highest average accuracy of EEG only
and ∼ 3% compared with the highest fNIRS only accuracy
demonstrating an enhanced performance in the fusion model
relative to single modal outcomes.

B. Discussion

Our results show that the graphs generated using time-
varying frequency-based amplitude and phase sequences
separately perform better than the graph directly generated
from the raw temporal EEG signals. Cascading the features
from amplitude and phase graph together further improves
the performance. While using the graph-based features, the
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TABLE I
LINEAR SVM ACCURACY RESULTS (%) FOR EEG ONLY, FNIRS ONLY, AND EEG-FNIRS FUSION FROM 9 HEALTHY PARTICIPANTS CONDUCTING THE

MI TASK. THE AP-BASED GRAPH REPRESENTS USING THE CONCATENATED EIGENVALUES FROM AMPLITUDE- AND PHASE-BASED GRAPH.

Results of EEG Only
Subject Index H-1 H-2 H-3 H-4 H-5 H-6 H-7 H-8 H-9 avg std

Raw EEG-based Graph 68.9 93.3 57.8 63.3 71.1 52.5 60.0 57.1 54.0 64.2 12.6

Amplitude-based Graph 75.6 46.7 66.7 80.0 75.6 60.0 65.0 54.3 82.0 67.3 12.1

Phase-based Graph 77.8 100.0 57.8 76.7 46.7 52.5 70.0 37.1 70.0 65.4 19.0

AP-based Graph 71.1 100.0 64.4 76.7 66.7 55.0 70.0 62.9 74.0 71.2 12.6

PSD Features 82.2 100.0 75.6 93.3 62.2 57.5 35.0 77.1 82.0 73.9 19.8
Results of fNIRS Only

fNIRS Features 93.3 100.0 100.0 83.3 68.9 100.0 65.0 91.4 94.0 88.4 13.3
Results of EEG-fNIRS Fusion

AP-based Graph Fused
with fNIRS Features 91.1 100.0 100.0 90.0 82.2 100.0 75.0 91.4 92.0 91.3 8.5

PSD Features Fused
with fNIRS Features 95.6 100.0 100.0 96.7 75.6 100.0 65.0 94.3 96.0 91.5 12.5

standard deviations of accuracy are lower than using the PSD
features in all cases, which indicates the graph-based feature
could improve the robustness of the BCI system. The mid-
level fusion of features from EEG and fNIRS improves the
accuracy compared to using features from each modality,
separately, which demonstrates the value of multimodal
EEG+fNIRS data fusion in BCI systems. Our graph-based
method reaches to very close accuracies as the PSD features
in both cases, showing its potential for further improvement.
Also, we consider the timepoint as the node of our graph,
which causes a rather large graph and plenty eigenvalues.
This inevitably introduces computational inaccuracies that
could compromise the performance of the graph. Future work
will address these issues for further improvement.

IV. CONCLUSION

This study focused on extracting the graph-based dynamic
features from EEG signals, and evaluating its performance
in an EEG-fNIRS fusion framework for classifying MI-BCI
tasks. We tested our proposing graph-based EEG features
both alone and fused with features form fNIRS signals using
a linear SVM classifier. The framework using the graph-
based on amplitude and phase features reached comparable
performance to the classical PSD features, while having
smaller standard deviation demonstrating the robustness of
our proposed algorithm. Compared to using features from
each input modality separately, the fusion strategy could
considerably improve the performance of our framework. We
can draw the conclusion that the proposed framework, which
applies the fusion of graph-based EEG and fNIRS features,
has potential value for improving the performance of hybrid
BCI system with higher robustness.
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