
Plug-N-Pwned: Comprehensive Vulnerability Analysis of OBD-II Dongles as A
New Over-the-Air Attack Surface in Automotive IoT

Haohuang Wen
The Ohio State University

wen.423@osu.edu

Qi Alfred Chen
University of California, Irvine

alfchen@uci.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Abstract
With the growing trend of the Internet of Things, a large

number of wireless OBD-II dongles are developed, which can
be simply plugged into vehicles to enable remote functions
such as sophisticated vehicle control and status monitoring.
However, since these dongles are directly connected with
in-vehicle networks, they may open a new over-the-air attack
surface for vehicles. In this paper, we conduct the first com-
prehensive security analysis on all wireless OBD-II dongles
available on Amazon in the US in February 2019, which
were 77 in total. To systematically perform the analysis, we
design and implement an automated tool DONGLESCOPE
that dynamically tests these dongles from all possible attack
stages on a real automobile. With DONGLESCOPE, we have
identified 5 different types of vulnerabilities, with 4 being
newly discovered. Our results reveal that each of the 77
dongles exposes at least two types of these vulnerabilities,
which indicates a widespread vulnerability exposure among
wireless OBD-II dongles on the market today. To demonstrate
the severity, we further construct 4 classes of concrete attacks
with a variety of practical implications such as privacy
leakage, property theft, and even safety threat. We also
discuss the root causes and feasible countermeasures, and
have made corresponding responsible disclosure.

1 Introduction

On-Board Diagnostics (OBD) [1] is a standard widely adopted
for an automobile to self-diagnose and report its internal work-
ing status (such as voltage, fuel level, and speed). As the latest
and most popular OBD standard, OBD-II is universally de-
ployed in gasoline vehicles of US after 1996 for mandated
emission inspection [2]. With the growing trend of the Internet
of Things (IoT), a large number of wireless OBD-II dongles
are developed, enabling vehicle owners to conveniently per-
form remote vehicle functions from companion mobile apps,
like many other IoT devices, for simple status monitoring and
diagnosis to sophisticated vehicle control such as disabling
remote unlocking or seat-belt warnings.

While wireless OBD-II dongles do provide rich functions
and great convenience, their usage exposes a wireless entry to
the internal vehicle systems from the external world, which
thus inevitably brings security concerns. On one hand, OBD-
II dongles are connected with the in-vehicle Control Area Net-
work (CAN) buses to fetch diagnostic data through the OBD-
II port. On the other hand, they interact with external compan-
ion apps via wireless network to transfer data and commands.
If not properly designed with security principles and practices,
these dongles may enable a series of new over-the-air vehicle
attack vectors, compromising not only the user property and
privacy, but also the safety of drivers, passengers and pedestri-
ans. For example, in 2017 it was found that the vulnerabilities
on a Bosch Drivelog Connector OBD-II dongle enabled a
nearby attacker to remotely shut down the engine while the
vehicle was still in motion [3]. This dongle was soon removed
from the market. As of today, there are still a great number of
OBD-II dongles available on the market, which are popular
among drivers, repair technicians, and also auto insurance
companies. However, whether these dongles are vulnerable
to remote or nearby attacks remains unknown to the public.

To fill this knowledge gap, in this paper we conduct the
first comprehensive security analysis on all wireless OBD-II
dongles available on Amazon in the US in February 2019,
which were 77 in total. To systematically perform the analysis,
we first define the attack surface based on the stages of how
a remote or nearby attack could use the CAN bus through
wireless OBD-II dongles: broadcast, connection and com-
munication. Next, we design and implement an automated
tool DONGLESCOPE that is capable of dynamically testing
potential vulnerabilities at all these stages with a dongle under
test plugged into the OBD-II port on a real automobile, with
the assistance of companion mobile app analysis to reverse
engineer the intended messages to these dongles, which are
used to design test messages in the communication stage.

Through intensive experiments on these 77 dongles, we
have identified 5 different types of vulnerabilities across the
three attack stages, in which 4 are newly discovered. Among
the 77 dongles, we find each of them exposes at least two

USENIX Association 29th USENIX Security Symposium 949

types of these vulnerabilities across the three stages, which
indicates a widespread vulnerability exposure among wireless
OBD-II dongles on the market today. Specifically, we find that
around 85% of these dongles have neither connection-layer
nor application-layer authentication, which essentially pro-
vides a nearby attacker arbitrary access to the CAN bus once
they are discovered in the broadcast stage. We further discover
that 29 (37.66%) dongles are vulnerable to such malicious
access even when the vehicle owner’s mobile device is con-
nected with them. In the communication stage, we find that
52 (67.53%) dongles fail to filter out CAN bus messages with
functions unsupported in the dongles, meaning that attackers
can send safety-critical vehicle control commands, e.g., gear
shifting, even when the attacked dongle is originally designed
only for diagnostic purpose. Even worse, a few dongles are
vulnerable to over-the-air dongle firmware subverting or ex-
traction. Last but not least, the aforementioned vulnerability
can be fingerprinted using broadcast information for nearly
half (42.86%) of the dongles, which allows nearby attackers
to conveniently pinpoint which dongles to attack and how to
attack them over the air.

To demonstrate the severity of these vulnerabilities, we
further construct 4 classes of concrete attacks building upon
these vulnerabilities and validated them on our testing auto-
mobile. These attacks can lead to a wide range of practical
implications, including privacy leakage, property theft, and
even safety threats to drivers, passengers, and pedestrians.
Among the 77 dongles we collected, 84% of them are vul-
nerable to at least one of these four attack classes, and nearly
60% are vulnerable to at least three.

The analysis results in this paper evidently point out a
general and systematic lack of security protection in wireless
OBD-II dongles today, which is known for IoT devices in
home setting [4–9], but for the first time comprehensively
revealed and quantified for those in the vehicle setting. Since
the vehicle setting is safety-critical, one would expect that
its IoT devices have more scrutinized security practices.
However, based on our results, this is very unfortunately
not the case today. To proactively address this, we leverage
the insights in our analysis to discuss the root causes and
feasible countermeasures, and meanwhile we have also
already made responsible disclosure to the corresponding
dongle manufacturers. As IoT devices are increasingly used
in safety-critical domains such as automobiles, we expect
that our domain-specific findings and their security/safety
implications can send a strong and timely message to start
developing and deploying principled security designs in these
critical application domains for the IoT.

Contributions. In short, we make the following contributions
in this paper:
• Comprehensive vulnerability analysis. We conduct the

first comprehensive security analysis on all wireless OBD-
II dongles available on Amazon in the US in February

IdentifierSOF RTR IDE DLC Data Field CRC ACK

11 or 29 bit 0 - 8 Byte

EOF

Figure 1: Structure of a CAN Bus Message.

2019. Targeting the threat model of over-the-air vehicle
attacks, we systematically identify the attack surface as at-
tack vectors across three necessary attack stages: broadcast,
connection, and communication. We design and implement
an automated tool DONGLESCOPE that is capable of dy-
namically detecting potential vulnerabilities at these three
stages with a real automobile.
• Vulnerability discovery and quantification. With DON-

GLESCOPE, we have systematically analyzed the 77 don-
gles we collected and identified 5 types of vulnerabilities
across the three attack stages, in which 4 are newly discov-
ered. Our results show that each of the 77 dongles has at
least two vulnerabilities exposed across the three stages,
which indicates a widespread vulnerability exposure among
wireless OBD-II dongles on the market today.
• Attack case-study construction. To demonstrate the

severity of the identified vulnerabilities, we further con-
struct 4 classes of concrete attacks building upon these
vulnerabilities and validate them on a testing automobile.
These attacks can lead to a wide range of practical im-
plications, including privacy leakage, property theft, and
even safety threats to drivers, passengers, and pedestrians.
We also discuss the root causes and feasible countermea-
sures, and have also made responsible disclosure to the
corresponding dongle manufacturers.

Roadmap. The rest of this paper is organized as follows.
Necessary background related to the Control Area Network
and OBD-II dongles is introduced in §2. Next, we describe the
attack model in §3. Then, we present the detailed design and
implementation of DONGLESCOPE in §4. In §5, we present
the vulnerability analysis results, followed by the attack case
studies in §6 and discussions in §7. We review the related
works in §8, and finally conclude in §9.

2 Background

2.1 Control Area Network
Automobiles are no longer isolated mechanical devices. In-
stead, they are sophisticated computer systems with a great
number of Electronic Control Units (ECUs) responsible for
different capabilities such as steering, braking, and accelerat-
ing. These ECUs form a complicated network with massive
number of messages transferring back and forth at any time.
To make sure that such a complicated system works properly,

950 29th USENIX Security Symposium USENIX Association

an in-vehicle network is necessary to coordinate the transfer
of the messages between these ECU components.

Control Area Network (CAN) bus is the most ubiquitous
message-based protocol deployed in the modern vehicles to-
day [10]. In this network, ECUs are mutually connected with
a bus system, constantly broadcasting and listening to CAN
bus messages. The structure of a CAN bus message is shown
in Figure 1 [11]. The identifier and the data field in a CAN bus
message determine the function of a CAN bus message. The
identifier of a message consists of 11 or 29 bits, indicating the
sender ECU of this message (e.g., 0x191 represents the trans-
mission system ECU). The data field of a message contains
up to 8 bytes, storing the state parameters of the sender ECU
(e.g., the third byte of data represents the engine speed).

2.2 OBD-II Dongles and Companion Apps

OBD-II dongles. OBD-II is a high-level communication pro-
tocol (a “language”) on top of the CAN bus, offering diagnos-
tic capability for vehicle owners, repair technicians, and also
auto insurance companies, such as monitoring the speed and
fuel of an automobile. Since 1996, it has been mandated on
each gasoline automobile by the US government [2]. Nowa-
days, most of the vehicles have a diagnostic port installed
under the steering wheel, which connects to the CAN bus and
delivers CAN bus messages. As a message-based protocol,
special OBD-II messages are defined to convey diagnostic
information, which are known as the OBD-II Parameter IDs
(PIDs) [12]. Unlike the highly customized CAN bus messages
which are defined by specific vehicle manufacturers [13],
these OBD-II PIDs are standardized. Moreover, as a kind of
CAN bus message, PID has the similar structure as shown in
Figure 1. Each PID for query uses 0x7DF as identifier, and the
data field contains a service number and a PID number [14].
In addition to these universal PIDs, manufacturers may also
define private PIDs. Based on the OBD-II standard, a great
number of OBD-II dongles are developed for car diagnosis
such as monitoring the speed, fuel and engine status. After
plugged into the OBD-II port, these dongles can constantly
send CAN bus messages to query diagnostic data from the
CAN bus.

Among all available OBD-II dongles on the market today,
wireless dongle is the most dominant type, since they provide
great convenience while offering a decent price to users [15].
When in use, they serve as end points for nearby mobile
devices to connect and communicate via wireless network
such as Wi-Fi, Bluetooth Classic, and BLE. As a result, there
are also companion mobile apps for these dongles. In this
paper, our vulnerability analysis focuses on wireless dongles,
since they allow wireless access to the OBD-II port and thus
are more realistic targets for attackers. Figure 2 shows the 77
wireless dongles we purchased in this research.

Figure 2: All 77 OBD-II Dongles in Our Study.

Companion mobile apps. Since wireless OBD-II dongles do
not have user interfaces such as screen and keyboard, they rely
on external devices to make them usable and user-friendly.
As a result, their manufacturers or third-party developers have
developed corresponding companion mobile apps. With such
a companion app at hand, it is easy and convenient to monitor
the status of an automobile. First, a user plugs the dongle into
the OBD-II port locating under the steering wheel, and starts
the engine. Second, she opens the companion mobile app and
establishes a connection via the wireless network hosted by
the dongle. Afterwards, the user is able to monitor the vehicle
status from the app UI, and the app automatically interacts
with the dongle which queries the vehicle status data from the
CAN bus and delivers vehicle control commands if there is
any to the CAN bus.

3 Attack Model and Attack Surface

3.1 Attack Model
In this paper, the attacker’s goal we consider is to exploit
the new vehicle attack surface exposed by emerging wire-
less OBD-II dongles and thus achieves wireless attacks onto
the CAN bus of a victim vehicle. As introduced in §2, the
wireless OBD-II dongles operate as wireless end points for
surrounding devices to connect and communicate. As a result,
the attacker must be within the range of the wireless network
so that she is able to establish a connection with the target
dongle, which is usually up to 100 meters. However, with
an amplifier [16], an attacker can detect wireless signals at a
remote distance (e.g., up to 1,000 meters using the BLE An-
tenna as demonstrated in BleScope [17]), which thus enables
her to discover and approach the victim to perform attacks.
The general threat model is presented in Figure 3. Before the
attack, the first but very important step is to identify a nearby
OBD-II dongle in the air. Afterwards, she tries to initiate a
connection with it through wireless network. If the connection
is successfully established, she then attempts to attack the ve-

USENIX Association 29th USENIX Security Symposium 951

Broadcast Information

Connect

Inject Messages

Deliver Messages
to CAN Bus

1

2

3

Nearby Attacker OBD-II Dongle Target Vehicle

Figure 3: The General Threat Model.

hicle by injecting malicious messages to the CAN bus through
the OBD-II dongle, e.g., reading sensitive data or causing un-
safe vehicle driving behaviours. The attack is successful if the
messages are successfully delivered by the dongle to the CAN
bus and the corresponding attack consequences are triggered.

There is no specific constraint of when to conduct the attack.
For example, an attacker may compromise vehicles that are
still driving on the road with the driver and other passengers
on board. Moreover, since an OBD-II dongle can still receive
power supply from the OBD-II port even when the vehicle is
off [18], she can even target the vehicles parked in a parking
lot where she has a chance to sneak into the vehicle and
steals all belongings. Some CAN bus messages with more
direct safety consequences, e.g., stopping the engine, will be
disabled when the vehicle is moving at a high speed [19].
Thus, if these messages are required for achieving a certain
attack goal (which is not necessary for all potential attack
goals as discussed later in §6), the attacker can choose to
launch the attack during common low-speed driving scenarios
such as those when waiting at red light, in a traffic jam, or in
a drive-thru queue.

3.2 Attack Surface
Before we design our automated security analysis tool, it is
necessary to first comprehensively identify the attack surface
for these wireless OBD-II dongles. According to our attack
model in §3.1, a successful attack must have the following
three necessary stages: (I) Broadcast Stage, i.e., when the
attacker is scanning for victim dongles before connection,
(II) Connection Stage, i.e., when the attacker is connecting
with the dongle, and (III) Communication Stage, i.e., when
the attacker is injecting malicious messages after connection.
Thus, the attack surface considered in our analysis is defined
as attack vectors at each of these three stages:

(I) Broadcast Stage. Prior to connection, a wireless OBD-II
dongle broadcasts its connection information to nearby de-

vices to indicate its willingness. Therefore, nearby devices
can discover and recognize it, and try to establish a connec-
tion. As a nearby attacker, she is capable of collecting this
broadcast information, and her goal is to identify a victim
dongle and establish connection based on the information.

(II) Connection Stage. In this stage, the attacker’s task is to
successfully establish a network connection with the dongle in
order to send commands related to CAN bus message delivery
to the dongle. When the connection is establishing, she may
be required to provide sufficient credential before legitimately
connecting to the dongle, such as a password or a PIN code.
If no credential is needed, the attacker is able to arbitrarily
connect to the dongle.

(III) Communication Stage. After the connection is estab-
lished, the attacker is able to send unauthorized CAN bus
messages to communicate with the dongle and perform at-
tacks. Prior to that, she may need to first bypass the authenti-
cation step in the communication protocol between the app
and the dongle. After that, the attacker sends the attacker-
desired CAN bus messages to the dongle, requesting it to
relay the messages to the CAN bus to trigger corresponding
consequences. In this paper, we call the CAN bus messages
that perform the designed functions of a dongle predefined
messages and the others undefined messages. The former is
allowed by design, and thus should be directly relayed to the
CAN bus. However, the designed dongle functions can be
quite limited, e.g., only diagnostic functions. Therefore, for
certain attack goals, e.g., those that are safety related, it is
of interest to inject undefined messages (e.g., those interfere
the vehicle control). However, since these messages are not
allowed by design, whether the attack can succeed depends
on the message filtering process at the dongle side.

4 Analysis Methodology

Having identified the attack surface of OBD-II dongles, we
design and implement an automated tool, named DONGLE-
SCOPE1, to measure a few objectives that can lead to vulner-
abilities in wireless OBD-II dongles across broadcast, con-
nection and communication stages. In this section, we first
introduce the design overview, as well as the measurement
objectives for each stage in §4.1. We then detail the design
and implementation of our tool in §4.2.

4.1 Overview
Figure 4 presents the workflow of DONGLESCOPE. At a high
level, it dynamically tests an OBD-II dongle on a real auto-
mobile, and also takes the corresponding companion mobile
app for static analysis. The analysis is broken down into four
main components associated with the three attack stages. For

1The source code of DONGLESCOPE is available at https://
github.com/OSUSecLab/DongleScope.

952 29th USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/DongleScope
https://github.com/OSUSecLab/DongleScope

(1) Broadcast
Information Collection

(4) Predefined Message
Generation(2) Connection Setup (3) CAN Bus

Message Test

Static Analysis

OBD-II Dongle

Attack Surface

(I) Broadcast Stage (II) Connection Stage

Dynamic Analysis

Apps

(III) Communication Stage

Figure 4: Design Overview of DONGLESCOPE.

Component Measurement Objective(s)

(1) Broadcast Information Collection 1 Broadcast information

(2) Connection Setup 2 If connection can be successfully established.
3 If multiple access is allowed.

(3) CAN Bus Message Test 4 If predefined message is injected to CAN bus.
5 If undefined message is injected to CAN bus.

Table 1: Measurement Objectives of DONGLESCOPE.

each component in dynamic analysis, specific measurement
objectives are defined, as shown in Table 1. During the broad-
cast stage, DONGLESCOPE collects all broadcast information
from the wireless OBD-II dongle. Next, it tries to set up a con-
nection with the dongle at the connection stage. Note that the
tool also tests whether the connection is still successful while
another mobile device is connected with the dongle, which
simulates a real attack scenario (i.e., when the driver is still
inside the vehicle). In this stage, there are two measurement
objectives: if connection can be established and if multiple
connections are allowed. After a connection is established, it
tries to test with predefined and undefined CAN bus messages
at the communication stage. The objective is to check if the
predefined and undefined messages can be injected to the
CAN bus so that corresponding attack consequences can be
observed. Meanwhile, the predefined message generation step
produces predefined messages to help design the messages
for the CAN bus message test.

Prior to our design, there are a few challenges to be solved.
First, since OBD-II dongles can adopt various manufacture-
specific implementations (e.g., different message patterns and
protocols), it is hard to come up with a fully generic approach.
As a result, we assume all OBD-II dongles are ELM327-
based [20], which is a common implementation for interpret-
ing low-level CAN bus protocol and providing standardized
interfaces for programming. According to the experiment
results in §5.3, over 90% of the dongles in our study are
ELM327-based. To achieve dongle configuration and message
communication with the CAN bus, we leverage the ELM327
command set [20] to design the testing messages.

Second, it is necessary to find all predefined messages of
each dongle so that we can make sure that the undefined mes-
sages to be tested are not predefined in the dongle. Inspired
by previous IoT research which leverages companion mobile
app analysis to understand black box IoT devices [21,22], we
introduce a predefined message generation step using back-
ward program slicing to extract all predefined messages of
the tested dongles.

Third, we have to obtain undefined messages that are valid
to the CAN bus so that we are able to observe effects brought
by the injection of the messages. Intuitively, we should use the
control CAN bus messages, because OBD-II dongles should
not provide vehicle control capabilities by design. Therefore,
we need to reverse engineer the CAN bus protocol, which
has long been a tricky but valuable task for automotive re-
searchers since protocols across different manufactures are
highly customized but confidential [10, 13, 23]. The state-
of-the-art for reverse engineering the CAN bus protocol is
through CAN message fuzzing or manually triggering physi-
cal vehicle actions [10, 24]. Inspired by them, we also tried
to analyze the CAN bus protocol on our testing automobile.
Specifically, we first operated the vehicle with some physical
actions (e.g., step on the throttle, apply the brake), and then
observed the changes on the dynamic CAN bus traffic to see
which CAN bus message led to the behavior. Therefore, we
are able to obtain a number of control CAN bus messages on
our testing vehicle.

In the experiment, we select a representative from the unde-
fined messages for testing since it is unrealistic to test them all,
given there are at least 275 possible CAN bus messages in the-
ory. Additionally, we assume the filtering policy is based on
message format, since predefined OBD-II PIDs have distinct
identifiers compared with other messages. In other words,
if any message of a specific format can pass the filter, then
all messages with the same format can also pass the filter,
and vice versa. To verify this hypothesis, we conducted an
experiment on 26 dongles by injecting 10 different undefined
messages. We observed that these messages were all either
accepted or filtered by each dongle, which confirms our as-
sumption. Therefore, we can narrow the testing undefined

USENIX Association 29th USENIX Security Symposium 953

messages to just one representative. Furthermore, testing one
predefined message is sufficient since all predefined messages
should be accepted by design, which has also been verified
by similar experiments.

4.2 Detailed Design and Implementation

(1) Broadcast Information Collection. We categorize
the OBD-II dongles into three types: Wi-Fi, Bluetooth
Classic, and BLE, according to their connections. Since
broadcast information varies across different types of dongles,
DONGLESCOPE deals with them correspondingly. In this
step, we first manually plug the dongle into the OBD-II
port. Next, DONGLESCOPE starts to automatically collect
necessary broadcast information from it, and the information
is stored in a configuration JSON file. To summarize, all
sniffable broadcast information includes Wi-Fi service set
identifier (SSID), device name of Bluetooth Classic and BLE,
as well as the universally unique identifier (UUID) of BLE
dongles, etc. Note that to make sure the collected broadcast
information is from the dongle, there should be no other
broadcasting devices around when we perform the test.

(2) Connection Setup. After identifying an OBD-II dongle
in the broadcast stage, DONGLESCOPE tries to establish a
connection with it for further communication. During the con-
nection, we simulate a real attack scenario by setting up a
mobile device connected with the dongle, which acts as the
driver’s device. If DONGLESCOPE fails to connect with the
dongle, implying that multiple connections are not allowed,
we disconnect the driver’s device with the dongle and try a
single connection. When the system-layer connection is es-
tablished, DONGLESCOPE tries to set up a communication
channel on app-layer with the dongle. To achieve this, some
additional information from the specifications is needed (e.g.,
IP address, port number), which is pre-loaded into DONGLE-
SCOPE. For a Wi-Fi dongle, DONGLESCOPE follows the IP
address as well as the port number to build up a socket for
communication. For a Bluetooth Classic dongle, DONGLE-
SCOPE first queries the Bluetooth address and port number
from the dongle, and tries to setup a Bluetooth socket with it
based on the Radio Frequency Communication (RFCOMM)
protocol [25]. As for a BLE dongle, the process is more com-
plicated, since it requires DONGLESCOPE to obtain the read
and write characteristics which are necessary for communica-
tion with the dongle. These characteristics are the attributes in
BLE devices conveying concrete data and can be identified by
UUIDs [26]. Our solution is to inject an ELM327 command
AT E0 to each characteristic at a time to check which other
characteristic echos an OK back. These two characteristics are
regarded as the write and read characteristic respectively.

After the connection is established, DONGLESCOPE is able
to communicate with the dongle through the ELM327 in-
terface. We implement the communication process with the

Python socket library [27], PyBluez [28] and PyBLE [29].
Prior to that, DONGLESCOPE still needs to configure the don-
gle, otherwise it may not get a valid response. Specifically, it
injects the following ELM327 commands [20] to achieve the
corresponding configuration purposes:

• AT D. Restore the dongle to its default setting.
• AT E0. Stop the messages from echoing.
• AT AT0. Disable timeout.
• AT H1. Show the message header in response.
• AT CAF1. Turn off the auto formatting.
• AT SP 6. Set the ISO 15765-4 CAN protocol as default

(using 11-bit identifier).

(3) CAN Bus Message Test. When the connection is suc-
cessfully set up, DONGLESCOPE is able to send messages
to the CAN bus through the OBD-II dongle. In this step,
DONGLESCOPE tests two representatives from the predefined
and undefined CAN bus messages respectively, since test-
ing all the predefined and undefined messages is unnecessary
(discussed in §4.1). Specifically, DONGLESCOPE adopts a
standard PID 09 02 as the testing predefined message, which
is a diagnostic message to query the VIN. As for the undefined
message, a CAN bus message 191 04 00 00 is used which
sets the transmission gear to N in our testing vechicle. This
undefined message is obtained through reverse engineering
the CAN bus protocol. During the analysis, we used an ATMA
command to dump the CAN bus traffic, and shifted the gear
to different positions. During this process, we observed the
changes on the CAN bus and determined the message that
triggered the behaviour. After we obtained the undefined mes-
sage, we cross-checked it with our app analysis results and
made sure that it is not predefined for all dongles in our study.

Having obtained the messages of interest, DONGLESCOPE
starts to automatically test them on the dongle. Specifically,
DONGLESCOPE specifies the headers for the CAN bus mes-
sages to be sent with an AT SH command, and specifies the
respond message header with an AT CRA command. First,
DONGLESCOPE tests with the predefined message 09 02. A
successful query will return back a valid VIN number in hex-
adecimal form. Second, DONGLESCOPE sends an undefined
message 191 04 00 00. If successfully delivered by the don-
gle to the CAN bus, the ECU will echo a CAN bus message
with the same identifier 0x191 showing its status. Otherwise,
the message will be filtered by the dongle, and the tool will
get a NO DATA response.

(4) Predefined Message Generation. In order to design
the testing messages in the communication stage, DON-
GLESCOPE performs static analysis on the corresponding
companion mobile app to generate the predefined messages.
Specifically, it uses backward program slicing [30], which
is a technique to obtain the program slices that are necessary
for generating the target data. To start the analysis, we first

954 29th USENIX Security Symposium USENIX Association

Algorithm 1: Backward Slicing Algorithm
Input: G: Control flow graph of current function, V : Variable set of our interest
Output: P: A set of data generation paths

1 P← /0 ;
2 path← /0 ;
3 E← Sub-graph of G ending in the target APIs ;
4 for edge(i, j) ∈ backward DFS order of E do
5 l← left operand of i ;
6 if l ∈V then
7 V ←V∪ right variable operands of i ;
8 if i is a library function then
9 path← path∪ i ;

10 else
11 Dive into the implementation of i for further slicing;
12 end
13 end
14 if No descendent edge then
15 P← P∪ path ;
16 Restore path to the state of the latest branch point;
17 Restore V to the state of the latest branch point;
18 end
19 end

identify the low-level network target APIs, including the TCP
socket send function, as well as write functions of Bluetooth
Classic and BLE. According to our observation, they are
the only ways for a companion app to communicate with an
OBD-II dongle to perform the designed functions. As a result,
the variables in these APIs denote the messages sent to the
dongle. We then design a backward slicing algorithm which
starts from these identified APIs and iterates backward to
record the necessary instructions that generate the messages,
which is detailed in algorithm 1.

At a high level, the algorithm takes the control flow graph
of the program (G) as well as a set of variables of our interest
(V) as input, and produces a set of generation paths (P). First,
it initializes the set of generation paths (P) and the temporary
path (path) as empty (line 1-2). Next, it constructs E as a
sub-graph of G where all leave nodes are the target APIs,
and traverses E in backward DFS order (line 3-4). For each
edge (i, j) where each node of it indicates an instruction, the
algorithm detects if the left operand of node i is in V (line 6).
If it is, the algorithm adds all variable operands on the right
of i to V (line 7). Note that when i is not a library function,
the algorithm needs to dive into the implementation of i and
continue slicing; otherwise it adds the instruction i to the
temporary path path (line 8-12). Afterwards, when the cur-
rent path reaches the end, the algorithm adds path to P (line
14-15). Then, it starts traversing another path and restores
the current path and V to the state of the latest branch point
(line 16-18). Ultimately, the algorithm outputs a number of
data generation paths which contain instructions that generate
the data of our interest. Based on the generation paths, DON-
GLESCOPE performs forward computation to reconstruct the
actual value of the data being sent. The static analysis is built
atop Soot [31], which is a popular static analysis framework
for reverse engineering Android mobile apps.

Dongle Name Type App-specific? # Review Vulnerable?

BAFX OBD Reader Wi-Fi 11,523 X
BlueDriver Pro Bluetooth X 3,764 X
FIXD BLE X 3,229 X
VEEPEAK VP01 WIFI Wi-Fi 1,571 X
Veepeak Mini Wi-Fi 1,505 X
iSaddle WIFI OBD2 Wi-Fi 1,094 X
Carista BLE X 1,044 X
GXG-1987 OBD-II Mini Wi-Fi 799 X
wsilroon Car WIFI OBD 2 Wi-Fi 708 X
PLX Devices Kiwi 3 BLE 640 X

Table 2: Top 10 Popular Dongles in Our Study.

5 Vulnerability Analysis

5.1 OBD-II Dongle and App Collection

OBD-II dongles. To achieve high comprehensiveness of our
study, we bought all wireless OBD-II dongles available in
the US from Amazon by searching combinations of all possi-
ble related keywords (i.e., “OBD-II” or “OBD2” or “OBDII”
combining with “dongle” or “scanner” or “adapter”) in Febru-
ary 2019. In total, this collection ended up with 77 OBD-II
dongles (depicted in Figure 2). Among these 77 dongles, there
are 44 (57.14%) Wi-Fi dongles, 3 (3.90%) Bluetooth Classic
dongles and 30 (38.96%) BLE dongles, which shows Wi-Fi
and BLE based dongles are the most popular ones on the
market today.

The full list of dongles is shown in Table 3. To estimate the
popularity of these dongles, we measure their review counts
on Amazon. In Table 2, we present the top 10 most popu-
lar dongles based on the number of reviews in Amazon. As
shown, the most popular one is a Wi-Fi dongle with over
10,000 reviews. This dongle provides basic diagnostic func-
tions and are compatible with a large number of free third-
party companion mobile apps. Similar dongles such as VEEP-
EAK, iSaddle, and GXG, are also very popular. In addition,
some dongles such as BlueDriver, FIXD and Carista are app-
specific, which are also popular as advanced diagnostic func-
tions are provided. As shown in our experiment results later,
DONGLESCOPE discovers that all of the top 10 most popular
dongles contain at least two vulnerabilities, which suggests
that majority of the vehicles with OBD-II dongles today are
vulnerable to attacks.

Companion mobile app. Since DONGLESCOPE also in-
volves the analysis of the companion apps, we also collect
them from Google Play according to the dongles’ specifica-
tions. In total, we collected 21 companion apps that can be
mapped to all 77 OBD-II dongles in our experiment. We show
all these 21 apps in Table 4. As indicated, the top six compan-
ion apps are downloaded over millions of times on Google
Play, which implies their popularity among mobile app users.
Moreover, we investigate whether these apps are designed for
specific dongles, or dongle-specific. As shown in the table,
over half of the companion apps are dongle-specific such as

USENIX Association 29th USENIX Security Symposium 955

Dongle Name Type Companion Mobile App App-specific? Vulnerability Special Message
V1.1 V1.2 V2 V3 V4 V5

OBDLink MX Wi-Fi OBDLink X X X
Automatic Pro BLE Automatic X X X ­ ®
Innova 3211aDrive BLE RepairSolutions X X X X X ­ ®
BlueDriver Pro Bluetooth BlueDriver X G# X X X ­ ®
HaulGauge OBD-II Connector BLE HaulGauge X X X X ­
PLX Devices Kiwi3 BLE Kiwi OBD X X X X
Carly WiFi GEN2 Wi-Fi Carly for Toyota X X X X X X ®
OBDLink MX+ Bluetooth OBDLink X X X
JDiag AutoCar BLE FastLink M2 X X X X X
TT TOPDON Scanner Artibox BLE ArtiBox X X X X X
nonda ZUS Smart Vehicle Health Monitor BLE ZUS-Smart Driving Assistant X X X X X
JDiag Faslink M2 OBD2 Scanner BLE ArtiBox X X X X X
JDIAG Bluetooth OBD2 Scanner BLE FastLink M2 X X X X X
Joaruy OBD2 Scanner Wi-Fi ArtiBox X X X X
OBD2 Scanner Bluetooth 4.0 BLE OBD Fusion X X X
JDIAG Bluetooth Car Scanner BLE FastLink M2 X X X X X
LELink Bluetooth Low Energy BLE OBD-II BLE CarScanner X X X X
Veepeak OBDCheck BLE OBD2 Scanner BLE OBD Fusion X X X
Vgate iCar Pro BLE OBD2 BLE OBD Auto Doctor X X X X
OHP WiFi ELM327 Forscan OBD2 Adapter Wi-Fi Torque Lite X X X X
DODYMPS OBD-II Scanner BLE DODYMPS X X X X ­
TONWON Car Bluetooth 4.0 OBD Code Readers BLE OBD Auto Doctor X X X X
IKKEGOL iCar2 Mini OBD2 Wi-Fi OBD Auto Doctor X X X X X
BAFX OBD Reader Wi-Fi OBD Fusion X X X X X
Vgate iCar 3 Wi-Fi Wi-Fi OBD Auto Doctor X X X X X
Vgate iCar 2 Wi-Fi Wi-Fi OBD Auto Doctor X X X X X
Washinglee WiFi OBD2 Scanner Wi-Fi EOBD Facile X X X X
OBD2 Scanner OBD2 WiFi Adapter Wi-Fi OBD Auto Doctor X X X
TONWON Car Bluetooth OBD2 Scan Tool BLE OBD Auto Doctor X X X X
Juta α-Driver Bluetooth 4.0 OBD2 Scanner BLE Torque Lite X X X X
iSaddle WiFi OBD2 Wi-Fi Dash Command X X X
X-ELM Elm327 Diagnostic Scanner BLE Car Scanner X X X X
Vgate Wifi Auto Sleep Wi-Fi Dash Command X X X X X
TOPDON Automate WiFi OBD2 Scanner Wi-Fi Automate X X X X
TekkPerry Bluetooth OBD2 Scanner BLE Torque Lite X X X
Keenso ELM327 WiFi OBDII Scanner Wi-Fi Dash Command X X
FOXWELL FW601 Obd2 Scanner Wi-Fi Torque Lite X X X X
XTOOL iOBD2 Mini Auto Scanner BLE iOBD2 X X X X X
Bluetooth 4.0 OBD2 Scanner BLE Dash Command X X X X
Oummit OBD2 Scanner Wi-Fi Torque Lite X X X
K-Cliffs OBD2 Car Code Reader Wi-Fi Dash Command X X X
Auwell WiFi OBD2 Scanner Wi-Fi Dash Command X X
AquaNine OBD2 Car Diagnostic Scanner Wi-Fi Dash Command X X X X
KINGBOLEN WiFi OBD2 Scanner Wi-Fi Car Scanner X X X X
NiceAndGreat OBD2 Car Code Reader Wi-Fi Dash Command X X
TOPDON Auto Mate BLE Automate X X
Launchh OBDII Auto Diagnostic Scanner Wi-Fi OBD Fusion X X
Rapify OBD2 Scanner Wi-Fi OBD Auto Doctor X X X
Kitbest OBD2 Scanner Wi-Fi OBD Fusion X X X
Cllena Car WiFi OBD2 Scan Tool Wi-Fi OBD Auto Doctor X X X
SaiDent KW903 OBDII Fault Code Scanner BLE Dash Command X X X X
Veepeak Mini WiFi OBD2 Scanner Wi-Fi OBD Fusion X X X X
V COOL OBD2 Scanner Wi-Fi OBD Auto Doctor X X X X
Panlong WiFi OBD2 Scanner Wi-Fi OBD Fusion X X X X
LJPXHHU Bluetooth OBD2 Diagnostic Scanner BLE OBD Auto Doctor X X X
OBDII Scanner TOPDON BLE Torque Lite X X
wsilroon Car WiFi OBD2 Scan Tool Wi-Fi OBD Auto Doctor X X X X
Tu2Codez OBD Car Scanner Wi-Fi Dash Command X X X
LJPXHHU Car WiFi OBD2 Scan Tool Wi-Fi Torque Lite X X
GXG-1987 OBD-II Mini Wi-Fi Torque Lite X X
RoverOne Super MINI v2.1 OBD2 Scanner Bluetooth Torque Lite X X X
TOPTON Automate Code Reader BLE Automate X X
Joaruy WiFi OBD2 Scanner Wi-Fi Dash Command X X X X
Elm327 WiFi OBDII Interface OBD2 Scanner Wi-Fi Dash Command X X X
ATDIAG Car WiFi OBD2 Scanner Wi-Fi OBD Auto Doctor X X X
ZENHOX WiFi OBD2 Scanner Wi-Fi Torque Lite X X X
Friencity Car WiFi OBD2 Scanner Wi-Fi OBD Fusion X X
Car ELM327 Wifi OBD2 Code Reader Wi-Fi Torque Lite X X
Audew Car WiFi OBDII Reader Wi-Fi Torque Lite X X X X
Best OBD2 Scanner Wi-Fi Torque Lite X X
EDIAG WiFi OBD2 Diagnostic Scanner Wi-Fi OBD Auto Doctor X X X X
Jevogh V01HW OBD2 Scanner Wi-Fi Dash Command X X X X
Giveet Car WiFi Wi-Fi Torque Lite X X X X
Carista BLE Carista X X X X X ¬
FIXD BLE FIXD X X X X X
VEEPEAK VP01 WiFi Wi-Fi Torque Lite X X X
VEEPEAK BLE BLE Torque Lite X X

Table 3: Vulnerability Analysis Results and Special Messages of 77 OBD-II Dongles (Note that ¬ Non-diagnostic CAN bus
message, ­ Private command, ® Firmware image of dongle, G# means vulnerable but with tight constraint for exploitation).

956 29th USENIX Security Symposium USENIX Association

BlueDriver, Carly for Toyota and FIXD, providing advanced
diagnostic and even remote-control functions. However, the
most popular apps (e.g. Torque Lite) are developed by third
parties for ELM327-based dongles, and thus they are compat-
ible with most of the dongles we purchased.

5.2 Experiment Setup
Our dynamic analysis is conducted on a 2015 Honda Civic
automobile in an empty parking lot to avoid unpredictable
accident. It has a standard OBD-II port locating under the
steering wheel, which allows us to plug in an OBD-II dongle
for testing. The dynamic analysis part of DONGLESCOPE is
implemented and deployed on a MacBook Pro laptop, with six
Intel Core i7-8850H CPUs (2.6 GHz) and 16 GB RAM, run-
ning 10.14.5 macOS Mojave. Our static companion app anal-
ysis ran on a Linux server running Ubuntu 16.04 equipped by
twelve Intel Core i7-8700 (3.2 GHz) CPUs and 32 GB RAM.

5.3 Vulnerability Analysis Results
After properly setting up our experiment environment, we ap-
plied DONGLESCOPE to the 77 OBD-II dongles as well as 21
companion mobile apps. Although previous security analysis
on OBD-II dongles has revealed insufficient application-layer
authentication vulnerability and security holes in message
filtering [3], our analysis is more comprehensive in that we
not only discover new vulnerabilities but also quantify them
among the dongles on the market. The complete assessment
results of all the dongles and companion apps are presented
in Table 3 and Table 4. In summary, we discover 5 types of
general vulnerabilities (with 4 being newly discovered) across
broadcast, connection and communication stages, and find
that all the dongles are vulnerable to at least two of these vul-
nerabilities, which shows a widespread vulnerability exposure
in this new over-the-air vehicle attack surface today. In the
following, we present the detailed results based on each stage
of the analysis.

5.3.1 Connection Stage

V1. The majority (84.16%) of the dongles has nei-
ther connection-layer nor application-layer authentica-
tion. Our experiment results show that lack of authentication
at the connection stage widely exists among OBD-II dongles,
which can be further classified to the lack of authentication
at the connection layer and the application layer. The former
leads to arbitrary nearby connection since one can establish a
connection without providing any credentials. Based on the
established connection, the latter further enables any unautho-
rized users to communicate with the dongle, which essentially
allows unauthorized access to the CAN bus. In summary,
we find that 84.16% of the dongles have neither connection-
layer or application-layer authentication, which provides an

attacker arbitrary access to the CAN bus once discovered by
the attacker in the broadcast stage.

V1.1. Nearly all (92.21%) dongles have no connection-
layer authentication by default. At the connection stage,
our tool reported that 71 (92.21%) dongles can be arbitrarily
connected by nearby devices while only 6 (7.79%) dongles
require authentication before connection, which implies weak
protections on the connection layer among these dongles.
With this vulnerability, an attacker can perform denial-of-
service attack by simply keeping connected with the target
dongle. We further discovered that there are two ways for
these 6 dongles to implement connection-layer authentication,
which is summarized in Table 5. As shown, OBDLink MX
adopts WPA2-PSK to authenticate their connection, which
requires users to enter a password. The entered credential
then generates a cryptographic key to establish a secure
communication channel to prevent eavesdropping attack. The
other way to implement authentication is through button.
Specifically, a user needs to press a physical button on the
dongle to let it enter a discoverable mode so that external
devices can scan and connect to it. This mode can last for
approximately a few minutes only and the time window
for connection is quite narrow. Among the 6 dongles, 5 of
them have applied this implementation. Interestingly, we also
discover one special case that the BlueDriver dongle will force
itself to sleep after 60 seconds if no connection is established,
which significantly narrows the time window for attacks.

V1.2. Only 1 out of 77 dongles has application-layer au-
thentication by default. After connection is established,
DONGLESCOPE tried to directly inject CAN bus messages
to communicate with the dongle, and successfully queried
the VIN from 71 (92.21%) dongles, which indicates that they
have no application-layer authentication by default. We fur-
ther manually investigated the companion apps of the remain-
ing 6 dongles to understand the root cause of the injection
failure. Surprisingly, we find that only 1 dongle (namely Auto-
matic Pro) has implemented application-layer authentication.
The rest 5 dongles, including BlueDriver, HaulGauge, Innova,
DODYMPS, and OHP Forscan, also have no application-layer
authentication, since they are not ELM327-based and only
accept private manufacture-specific commands to perform ve-
hicle diagnosis. In this paper we call these commands private
commands, which can be found in the results of the predefined
message generation from their companion apps. Interestingly,
we also discover that the developers of Automatic Pro have de-
fined private commands to query VIN or read parameters from
the vehicle. The detailed content of these commands is pre-
sented in Table 6. Our results reveal that the private commands
are usually human-readable strings or numbers, as shown in
the last column of the table. These private commands are
then interpreted by the dongles into CAN bus messages and
relayed to the CAN bus. Note that these 5 dongles also lack
connection-layer authentication, and thus nearby attackers can

USENIX Association 29th USENIX Security Symposium 957

App Name Category # Download Dongle-specific? Analysis Result

Torque Lite (OBD2 & Car) Communication 5,000,000 ¬
DashCommand (OBD ELM App) Communication 1,000,000 ¬
EOBD Facile - OBD 2 Car Diagstic for elm327 Wifi Auto & Vehicles 1,000,000 ¬
ScanMaster for ELM327 OBD-2 ScanTool Communication 1,000,000 ¬
Car Scanner ELM OBD2 Auto & Vehicles 1,000,000 ¬
OBDLink (OBD car diagstics) Communication 1,000,000 X ¬
BlueDriver OBD2 Scan Tool Auto & Vehicles 500,000 X ¬ ® ¯
OBD Auto Doctor Auto & Vehicles 500,000 ¬
Carly for Toyota Auto & Vehicles 100,000 X ¬ ¯
FIXD - Vehicle Health Monitor Auto & Vehicles 100,000 X ¬
Carista OBD2 Auto & Vehicles 100,000 X ¬ ­ ¯
ZUS - Smart Driving Assistant Liftstyle 100,000 X ¬
Automatic Liftstyle 50,000 X ®
RepairSolutions Auto & Vehicles 10,000 X ® ¯
OBD Fusion Communication 10,000 ¬
Kiwi OBD Tools 5,000 X ¬
Automate Tools 1,000 X ¬
HaulGauge Auto & Vehicles 500 X ®
ArtiBox Tools 500 X ¬
JDiag FasLink M2 Auto & Vehicles 100 X ¬
DODYMPS Tools 100 X ¬

Table 4: Measurement and Analysis Results of 21 Companion Mobile Apps. (¬ Standard diagnostic PID, ­ Non-diagnostic
CAN bus message, ® Private command, ¯ Firmware image of dongle)

Dongle Name Type Authentication

OBDLink MX Wi-Fi Password
Oummit OBD2 Scanner Wi-Fi Button
OBDLink MX+ Bluetooth Button
TOPDON Auto Mate BLE Button
OBDII Scanner TOPDON BLE Button
TOPDON AutoMate Code Reader BLE Button

Table 5: Connection Layer Authentication on Dongles.

still leverage these private commands to launch attacks. In
summary, for all but one dongle, attackers can directly get ac-
cess to the CAN bus right after the connection is established.

The only dongle, Automatic Pro, has demonstrated a way to
implement authentication on application-layer. Specifically,
prior to the communication stage, it requires users to
manually enter a PIN code which is a random 6-digit length
string printed on the dongle. However, one can still break the
PIN code with a brute-force attack. Afterwards, it validates
the PIN and leverages it to create a cryptographic key for
communicating with the authorized user. When a message is
transferred, it must be encrypted by the key and sent through
the secure channel.

V2. 29 (37.66%) dongles can allow unauthorized access
even when the vehicle owner’s mobile device is connected.
For most dongles, they only allow one mobile device to
be connected at a time, which is expected since the most
popular usage for these dongles is to exclusively connect
with the companion app on the vehicle owner’s smartphone.
Surprisingly, we find that some Wi-Fi dongles are configured
to allow multiple device connections and accesses. These
multiple connected devices are treated equally at the
communication stage, which implies that an attacker can

attack these dongles even when the vehicle owner’s device
is connected. Among the 49 Wi-Fi dongles in our study, 29
(37.66%) of them are found to allow multiple device accesses.
Additionally, only 1 out of these 29 dongles has implemented
authentication, which means that over half (i.e., 28) of the
Wi-Fi dongles can be attacked even when the vehicle owner’s
smartphone is connected.

5.3.2 Communication Stage

V3. The majority (67.53%) of the dongles fails to filter out
undefined CAN bus messages (known but not quantified
before [3]). At the communication stage, DONGLESCOPE
tried to send an undefined CAN bus message which should
not be accepted by the dongle and delivered to the CAN bus.
However, our result reveals that 52 (67.53%) dongles fail to
filter out this undefined CAN bus message, which implies that
they are vulnerable to undefined CAN bus message injection.
An instance of such lack of filter has been discovered before
on a Bosch dongle that is not available on the market today [3],
and our study is the first to measure the prevalence of such
vulnerability among a comprehensive set of dongles available
today. On the contrary, DONGLESCOPE confirms that only
24 (31.17%) dongles (including 5 dongles that use private
commands) recognize the undefined message and prevent it
from being delivered to the CAN bus. As for the remaining 1
dongle (i.e., Automatic Pro), our tool is unable to determine
whether it can filter the undefined CAN bus message or not
due to the application-layer authentication.

We also discovered from the set of predefined messages
that 2 dongles (i.e., Carista and Automatic Pro) also support
non-diagnostic capabilities in addition to diagnostic functions.

958 29th USENIX Security Symposium USENIX Association

Dongle Name Type Connection Auth.? Implementation Private Commands

Automatic Pro BLE No PIN, Private commands IGN, VIN_STRING, DEVID, obd_protocol
BlueDriver Pro BLE No Private commands LMIF0, LMIF1, ATIF1, LMH0
HaulGauge OBD-II Connector BLE No Private commands 4 (checkHardwareVersion)
Innova 3211a Drive BLE No Private commands 16557 (readVIN), -1895767379 (BootLoader)
DODYMPS OBD-II Scanner BLE No Private commands AA000B5000010001000A00005155
OHP Forscan OBD2 Adapter Wi-Fi No Private commands 020000, 020300, 020400, 020600

Table 6: Application Layer Authentication and Private Commands on Dongles.

Dongle Name Companion App Vulnerable? Firmware
Available?

Automatic Pro Automatic
Carly WiFi GEN2 Carly for Toyota X X
BlueDriver Pro OBDII BlueDriver X
Innova 3211a Drive RepairSolutions X X

Table 7: OTA Firmware Subverting and Extraction Vuln.

For example, Carista provides remote control functions such
as disable remote door locking, removing seat belt warning,
and modifying parking sensor, which affects the control be-
haviour of an automobile. Since this dongle also does not have
any authentication, an attacker is able to extract these valid
non-diagnostic CAN bus messages by reverse engineering
the companion app and then inject them to launch attack. The
other dongle, Automatic Pro, allows tracking of current GPS
location with a private command gps_location. Fortunately,
this dongle has implemented authentication on application
layer so that nearby attackers cannot easily inject the corre-
sponding private commands.

V4. Some (3) dongles are vulnerable to over-the-air
firmware subverting or extraction. In addition to prede-
fined messages of the OBD-II dongles, we surprisingly found
that the outputs of the predefined message generation step
also include large blocks of data that are apparently not
CAN bus messages. Based on heuristic clues such as key-
words “firmware” and “upgrade”, we found that these are
the firmware images of the OBD-II dongles. Since OBD-II
dongles usually do not have cellular network, they rely on the
companion mobile apps as gateway to download and trans-
fer their firmware packet over the air to achieve upgrade. In
general, a dongle needs to enter a BootLoader mode prior to
the upgrade, which is done by sending a specific command
from the app to the dongle, such as AT∧ and AT@BL. Next,
the companion app transfers the firmware packet via wireless
network channel to the dongle. Since the upgrade process is
initiated by the mobile app, it is possible for an attacker to
spoof the dongle and subvert its firmware by transferring a
malicious one. As indicated in Table 7, we discover that 4
OBD-II dongles have firmware upgrade capability. Therefore,
we further investigated their upgrade process by manually
analyzing their companion apps. Our analysis reveals that 3
(75%) of the 4 dongles are vulnerable to firmware subverting
or extraction.

Since subverting the firmware of a dongle requires one
to first have access to it, we eliminate those that have au-
thentication. Among the 4 dongles, only Automatic Pro has
application-layer authentication and thus is not subjective to
the attack. For the rest 3 dongles without any authentication,
their firmware is at risk of being subverted. In order to subvert
the dongle’s firmware, it is necessary to make sure that there
is no integrity check on the dongle side. Therefore, we tried
to perform the attack by injecting a modified firmware, in
which we found that the upgrade process of Carly and Innova
accepts arbitrary firmware image. Though the Innova dongle
verifies integrity by validating the checksum appended after
each message, the algorithm of calculating the checksum can
be easily obtained through analyzing the companion apps,
which thus enables an attacker to construct a spoofed upgrade
message to achieve the attack.

Furthermore, the firmware images of three dongles can
even be extracted from their companion apps through reverse
engineering. For instance, the BlueDriver app exposes the
download URL and authentication credentials of its firmware
image. Thus, we successfully downloaded its firmware images
of all available versions. Even worse, some apps directly hard-
code the firmware images in the app code, including Carly for
Toyota and RepairSolutions. Having the access to the dongle
firmware, an attacker is then able to discover more vulnera-
bilities with them such as whether containing any backdoors.

5.3.3 Broadcast Stage

V5. Vulnerability status of nearly half (42.86%) of the
dongles can be uniquely identified using broadcast
information. Having identified the various vulnerabilities
for exploitation, we then analyze whether it is possible to
fingerprint the vulnerabilities of these OBD-II dongles in
the broadcast stage. This can help an attacker pinpoint which
dongles to attack and then attack correspondingly, and such
fingerprinting can significantly improve the attack success
rate. As shown in Table 8, we aggregate all the dongles
by their connection name and show those with the same
vulnerability status. In total, we find that using such broadcast
information, 33 (42.86%) dongles can be uniquely finger-
printed for their vulnerability status. Among these 33 dongles,
each of them contains at least one vulnerability, which indi-
cates that they can be uniquely fingerprinted in the broadcast
stage and exploited with the vulnerabilities discovered earlier

USENIX Association 29th USENIX Security Symposium 959

Connection Name Type # Dongle Vulnerability

V1.1 V1.2 V2 V3 V4

V-Link Wi-Fi 4 X X X X
FastLink M2 BLE 4 X X X
OBDBLE BLE 3 X X X
V-checker BLE 2 X X X
OBDII SCANNER Wi-Fi 1 X X X X
OBDLink MX Wi-Fi 1 X X
Carly Adapter Wi-Fi 1 X X X X
BlueDriver 2.39-B350 Bluetooth 1 X X
OBDII Bluetooth 1 X X
OBDLink MX+ 38611 Bluetooth 1 X X
7Q-Automatic Pro (LE) BLE 1 X
Carista BLE 1 X X X
DODYMPS OBD2 BLE 1 X
Dongle BLE 1 X X
FIXD BLE 1 X X X
HGC BLE 1 X
iOBD2 mini BLE 1 X X X
IOS-Vlink BLE 3 X X X
JUTA OBD II IOS BLE 1 X X X
Kiwi 3A BLE 1 X X X
TOPDON_760110 BLE 1 X X X
Viecar BLE 1 X X

Table 8: Dongle Vulnerability Status by Connection Name.

(V1 to V4). The dongles with duplicated connection names
possibly share the same development model, and thus it is
likely that they also share the same vulnerability status.

6 Attack Case Studies

To demonstrate the severity of the vulnerabilities discovered
in §5, we construct 4 classes of concrete attacks building
up these vulnerabilities and validated them on our testing
vehicle. These 4 attacks can lead to a wide range of security
implications, including privacy, property theft, and even the
safety of the drivers, passengers and pedestrians.

Prior to launching these attacks, an attacker first sniffs
broadcast connection information from surrounding wireless
network. Based on the sniffed information, she can identify
a vulnerable OBD-II dongle by leveraging V5, or arbitrarily
tries to connect to a nearby dongle for attacks. Next, lack of
connection-level authentication vulnerability (V1.1) allows
the attacker to establish a connection. Note that multiple
device access vulnerability (V2) can enable such a malicious
connection even when the dongle is connected with the
vehicle owner’s mobile device, which significantly increases
the attack flexibility. Having established the connection, if
lack of application-level authentication vulnerability (V1.2)
exists, the attacker can conduct at least 4 attacks on the
victim vehicle including vehicle-related data leakage (A1),
property theft (A2), vehicle control interference (A3), and
in-vehicle network infiltration (A4). Each attack needs one
or more identified vulnerabilities as precondition, which
is summarized in Table 9. We also present the number of
dongles vulnerable to each attack, including the statistics
with or without two optional preconditions (V2 or V5). When
either V2 or V5 exists, the flexibility or success rate of the
attack is much higher. Next, we describe each attack in detail.

A1. Vehicle-related Data Leakage. This attack only requires
V1 to enable a nearby attacker to connect and read private data
from the vulnerable OBD-II dongle with OBD-II PIDs [14].
We have demonstrated a few cases which can harvest location,
vehicle diagnostic data, and CAN bus traffic from a victim
vehicle through a vulnerable dongle, which endangers user
privacy or assists other complicated attacks. As indicated
in the table, 65 (84.42%) OBD-II dongles in our study are
vulnerable to this attack.

• A1.1. Location Leakage. Using the diagnostic PID 09 02,
an attacker is able to get the vehicle identification number
(VIN) which uniquely identifies an automobile. Since the
VIN is also printed on the dashboard on the driver side and
can be seen from outside, the attacker is capable of locating
the target vehicle where a vulnerable dongle is installed,
and performs further attacks.
• A1.2. Diagnostic Data Leakage. In addition to the VIN,

an attacker is also able to read diagnostic data from the
vehicle with the PIDs, including odometer, fuel rate, engine
RPM, etc., which invades the privacy of the vehicle owner.
Additionally, she can also analyze the driving behaviour
and fingerprint drivers with the leaked data such as vehicle
speed and throttle position [32, 33].
• A1.3. CAN Bus Traffic Leakage. Reverse engineering of

the CAN bus protocol is non-trivial but of great value [10,
13, 23]. We discover that by injecting an ATMA command to
an ELM327-based OBD-II dongle, one is able to dump the
CAN bus traffic to analyze the CAN bus protocol. There-
fore, an attacker is able to harvest safety related CAN bus
control messages (e.g., applying brake) to perform arbitrary
CAN bus message injection attack when V3 exists.

A2. Property Theft. To achieve this attack, V1 and V3 are
required. Therefore, 46 (59.74%) dongles are vulnerable to
property theft. During the experiment, we found one CAN bus
message that is able to disable the wireless locking capability
of our testing vehicle. Using this message, we construct a
property theft attack. First, an attacker locates a target vehicle
as mentioned in A1.1. Next, she injects the message and dis-
ables the wireless locking capability, and waits for the owner
on the vehicle to leave. When the driver exits the vehicle and
locks the vehicle remotely with his key as usual, he or she may
not know the locking is unsuccessful and thus leaves without
any concern. Afterwards, the attacker has the opportunity to
sneak into the vehicle and steal all the belongings.

A3. Vehicle Control Interference. Fuzzing is a technique
widely used in software testing, which can help find bugs by
sending random inputs to a computer program [34]. Similarly,
attackers can fuzz diagnostic CAN bus messages to a vehicle
through a vulnerable dongle with V1 for denial-of-service
(DoS) purpose. Moreover, fuzzing with control related CAN
bus messages to a dongle with V3 can even cause interference
on the vehicle control, which threatens the safety of drivers,

960 29th USENIX Security Symposium USENIX Association

Attack Case Precondition # Vulnerable Dongle (%)

V1.1 V1.2 V2 V3 V4 V5 w/o V2,V5 w/ V2 w/ V5

A1.1 Location Leakage X X © © 65 (84.42%) 27 (35.06%) 26 (33.77%)
A1.2 Diagnostic Data Leakage X X © © 65 (84.42%) 27 (35.06%) 26 (33.77%)
A1.3 CAN Bus Traffic Leakage X X © © 65 (84.42%) 27 (35.06%) 26 (33.77%)
A2 Property Theft X X © X © 46 (59.74%) 20 (25.97%) 24 (31.17%)
A3 Vehicle Control Interference X X © X © 46 (59.74%) 20 (25.97%) 24 (31.17%)
A4 In-vehicle Network Infiltration X X © X © 2 (2.60%) 0 2 (2.60%)

Table 9: Proposed Attack Cases and Vulnerable Dongle Statistics. Xindicates mandatory precondition,© indicates optional
precondition that are not necessary but can increase the attack flexibility (e.g., with V2) or attack success rate (e.g., with V5).

passengers, and pedestrians. Previous research has confirmed
the serious consequences caused by the fuzzing attack, which
can affect the engine, instrumentation panel, and brake
system [10, 35]. Among the collected dongles, 46 (59.74%)
are vulnerable to this attack. Note that to trigger the actual
effects on the vehicle, one must fuzz with high frequency to
overwrite the normal messages. To validate this attack, we
wrote a Python script that injects random CAN bus messages
every 10 milliseconds to a vulnerable dongle with V3, which
resulted in abnormal behaviour on our testing vehicle since
its alert system went on. We had to stop it before the fuzzing
caused permanent damage to the vehicle.

A4. In-vehicle Network Infiltration. V1 and V4 allow an
unauthorized attacker to send a malicious firmware packet
to subvert the dongle’s firmware. Since OBD-II dongles are
directly connected with CAN bus, the attacker is able to in-
filtrate the in-vehicle network by replacing the firmware to
achieve malicious purposes such as spoofing and eavesdrop-
ping attacks. Among all the OBD-II dongles in our study, 2
(2.60%) (including 2 false negatives due to private messages)
dongles are vulnerable to this attack.

7 Discussion and Future Works

7.1 Tool Effectiveness
First, we discuss the effectiveness of DONGLESCOPE in
terms of its false positives and false negatives in correctly
achieving the measurement objectives summarized in Table 1.

False positives. In the design and implementation of DON-
GLESCOPE, the measurement objectives across all the three
attack stages are tested dynamically with the dongle under
test plugged into a real automobile. As a result, the analysis re-
sults do not have false positives. The vulnerabilities identified
are true vulnerabilities and confirmed with dynamic analysis.

False negatives. False negatives may exist in both our
dynamic dongle analysis and static mobile app analysis. In
the broadcast and connection stage, DONGLESCOPE follows
the default configuration to collect broadcast information and
sets up connection, which does not result in false negatives,
otherwise the dongle is also not usable for normal users. The

analysis in communication stage can bring false negatives in
our results. For example, one source of false negative is our
design assumption that all the dongles are ELM327-based
(described in §4.2). However, among the dongles we
collected (detailed in §5.1), we find that a small portion of
dongles has their own implementations of the communication
protocol between the dongle and the app. For these dongles,
DONGLESCOPE failed to get responses by testing with
standard ELM327 commands. We discover these cases using
app analysis results and manual confirmation, which results in
5 false negatives during the connection stage analysis in §5.3.
Since the implementations for each of these dongles may be
different, it is non-trivial to design a generic approach to cover
these cases, which is thus left as future work. As for our static
app analysis results, false negatives may exist due to code
obfuscation which confuses the control flow of the program.
As a result, the set of messages we can identify through static
analysis is a subset of all messages supported by the dongle.

To summarize, DONGLESCOPE does not have false posi-
tives but may have false negatives. Thus, the analysis results
in the paper present a lower bound of the vulnerability status
of the dongles in our experiments.

7.2 Root Causes and Countermeasures
In this paper, we have uncovered 5 general vulnerabilities on
wireless OBD-II dongles that lead to remote or nearby attacks.
To summarize, there are two root causes. On one hand, OBD-
II dongles have direct access to the CAN bus through the
OBD-II port. On the other hand, unauthorized access allows
a nearby attacker to write malicious messages to OBD-II
dongles. To eliminate these vulnerabilities, countermeasures
can be deployed on any of the three entities: the CAN bus,
the OBD-II port, or OBD-II dongles, which are detailed as
follows.

Authentication on the CAN bus. Deploying secure authen-
tication on the CAN bus is a fundamental solution, since it
eliminates all unauthorized messages regardless of the secu-
rity of the OBD-II port and OBD-II dongles. This has been
well studied in the literature (e.g., [36–40]). However, due
to the insecure nature of the CAN bus protocol design as well

USENIX Association 29th USENIX Security Symposium 961

as the high demand on performance (e.g., low latency), there
is no effective and practically deployable solution so far [41].

Firewall on the OBD-II port. Another countermeasure is
to build a firewall on the OBD-II port to prevent malicious
message injection. For example, a physical gateway module
is developed for Chrysler models, which has deployed cloud
authentication for access control [42]. Specifically, unautho-
rized devices only have limited harmless capabilities such as
read operations to the diagnostic CAN bus. The drawback
of this countermeasure is that it requires vehicle owners to
purchase an additional gateway to protect the OBD-II port.
Moreover, the existing gateway device is only compatible
with a few car models, which is apparently not a universal
solution. Therefore, the design and development of such a
generic gateway is left to another future work.

Authentication on OBD-II dongles. As demonstrated in our
paper, lack of authentication on connection layer and applica-
tion layer of OBD-II dongles are the necessary preconditions
for any nearby attacks to a vehicle. Therefore, deploying se-
cure authentication is also an effective way to prevent the
attacks. However, it is a non-trivial task for two reasons. First,
since OBD-II dongles usually neither have cellular network
nor user interface such as a display or keyboard, they require
an external device (e.g., a mobile app) to first authenticate
itself by sending specific credentials before communication,
which can introduce a new attack surface. For example, the
hardcoded credentials are discovered in the Bosch dongle app.
Therefore, the developers also need to spend a significant
amount of effort to secure the authentication process in apps
(e.g., by using sophisticated algorithms or involving cloud).
Second, deploying secure authentication is costly. On one
hand, infrastructure such as cloud needs to be involved. On
the other hand, additional effort may be needed to customize
the dongle firmware, such as hardcoding a random PIN in
each dongle. Possibly due to these reasons, a majority of don-
gles available on the market today is still vulnerable to attacks.
In our future work, we plan to design and develop a secure
authentication protocol between OBD-II dongles and mobile
apps atop some well-known platforms such as OpenXC [43].

7.3 Responsible Disclosure
On August 7, 2019, we reported the discovered vulnerabilities
via email to 29 vendors, which covers 47 (61%) OBD-II
dongles in our study. For the remaining 30 (39%) dongles, we
were not able to find the contact information of their vendors.
As of November 19, 2019, which is over 3 months after our
disclosure, we have received responses only from a handful
vendors in total. Among them, 2 vendors have decided to
deploy authentication in the future versions of their dongles,
while the other are still discussing our reported problems.

We believe the reasons for such a low response rate may
be two-fold. First, most of these OBD-II dongles are quite

cheap, e.g., 75% of them are actually less than $30. Such
a low price can increase their product competitiveness on
the market, but this also means that the vendors may not be
able to afford adding extra security features. As discussed
in §7.2, deploying authentication in these dongles requires
significant efforts, which thus will inevitably increase the
dongle cost. Second, we find that there is a lack of security
awareness among some vendors. In particular, among the
responses we received, some vendors did not consider the
leakage of some CAN bus data, e.g., speed and VIN, as privacy
leakage. However, as discussed in §6 and shown by previous
work [32, 33], these data can indeed lead to privacy breaches
such as leaking the driver’s identity.

Based on our experience above, it is actually both
ineffective and inefficient to address the OBD-II dongle
vulnerabilities by contacting the vendors directly, since it
is not only difficult to find their contact information, but
also hard to convince them to take security enhancement
actions. Thus, we have already reported all the vulnerabilities
discovered in this paper to CVE in order to ensure enough
public disclosure of this class of security problems. As of
November 27, 2019, our findings have been acknowledged
by a set of CVEs 2. At the same time, we also hope our work
can raise immediate attention in the community, and make
joint efforts to secure the products in automotive IoT.

8 Related Work

Attack and defense on the CAN bus. As the core of a mod-
ern automobile, CAN bus has long been an important target
for security research. It is often regarded as a fragile pro-
tocol vulnerable to a significant number of attacks because
of its design-level flaws. As a broadcast protocol, CAN bus
does not support authentication, and thus it is not capable
of distinguishing spoofed CAN bus messages from normal
messages [36], which leads to unauthorized external access.
According to previous research, one kind of common attack is
to inject CAN bus messages through the OBD-II port which
directly connects to the internal CAN bus, which ultimately
affects the behaviour of the vehicle. Prior efforts have demon-
strated the attack on real automobiles (e.g., a Chevy Impala, a
Ford Escape, or a Toyota Prius) as well as eavesdropping the
CAN bus protocol through the OBD-II port [10,13,19,44,45].
The injection attack can also lead to serious consequences
such as engine shut down and sudden braking, which brings
severe safety concerns.

In addition to the OBD-II port, a large body of efforts
has focused on analyzing other attack surfaces of modern
vehicles including IVI system, radio system, sensors, LiDAR,
connected vehicle device, etc [44,46–53]. Most recently, with
the massive growing popularity of the IVI system, it becomes

2The complete list of CVEs is available at https://github.com/
OSUSecLab/DongleScope/blob/master/ResponsibleDisclosure.md
where we will also update the progress of our responsible disclosure.

962 29th USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/DongleScope/blob/master/ResponsibleDisclosure.md
https://github.com/OSUSecLab/DongleScope/blob/master/ResponsibleDisclosure.md

a great target since it has direct access to the CAN bus. For
instance, Mazloom et al. discover the security holes of the
MirrorLink protocol in an IVI system allowing injecting ma-
licious messages to the CAN bus [54]. Mandal et al. conduct
static program analysis on the IVI Android apps and reveal
tens of vulnerabilities such as poor access control [55]. Miller
et al. uncover a software vulnerability on the Uconnect sys-
tem on a Jeep Cherokee that allows remote attack via cellular
network [44].

While prior efforts have revealed novel vulnerabilities and
demonstrated attacks on automobiles, most of them are ad-
hoc and the vulnerability analysis is not comprehensive. In
addition, most of the attacks require direct physical access to
the vehicle [13, 19], which narrows the flexibility of attacks.
Compared to these works, we are the first to conduct a com-
prehensive vulnerability study on a large number of OBD-II
dongles on the market, and our uncovered vulnerabilities can
lead to wireless attacks on nearby vehicles.

In order to counter attacks on the CAN bus, novel defenses
have also been proposed overtime. It is non-trivial to make
harmful impacts to the vehicle by directly injecting CAN bus
messages since there are complicated defensive approaches
deployed by the car manufacturers. One common defense
countering the CAN bus message injection attack is conflict
detection. As the ECUs are always broadcasting CAN bus
messages at a fixed frequency, it is possible to detect anoma-
lous messages from malicious senders [19]. Consequently,
many attacks become impractical in reality, such as directly
injecting CAN bus message to operate the vehicle. In addition,
there are also other defensive approaches such as intrusion
detection [56–58] and data authentication [36–40].

Mobile app based vulnerability discovery. With the mas-
sive growth of the mobile app market today, mobile app anal-
ysis has been widely used to uncover various vulnerabilities.
One particular analysis is the data flow analysis that has been
used to track the data flow, trace the data of interest and iden-
tify vulnerabilities in the phone (e.g., [59–63], remote servers
(e.g., vulnerable authentication [64], authorization [65], and
cloud leakage [66]). Inspired by these efforts, DONGLESCOPE
adopts static analysis to extract predefined messages from the
companion apps to study the security of OBD-II dongles.

9 Conclusion

In this paper, we perform the first comprehensive security
analysis on 77 wireless OBD-II dongles available on Amazon
in the US in February 2019. To systematically perform the
analysis, we design and implement an automated analysis tool
DONGLESCOPE, and use it to identify 5 different types of
vulnerabilities, with 4 being newly discovered. Our results
show that each of these 77 dongles exposes at least two types
of these vulnerabilities, which indicates a widespread vulnera-
bility exposure among wireless OBD-II dongles on the market

today. To demonstrate the severity, we construct 4 classes of
concrete attacks that can cause privacy leakage, property theft,
and safety threat. We also discuss the root causes and feasible
countermeasures, and have performed responsible disclosure.

Finally, as IoT devices are increasingly used in safety-
critical domains such as vehicles, we expect that our
domain-specific findings and their security/safety implica-
tions can send a strong and timely message to start developing
and deploying principled security designs in these highly
critical application domains such as automotive IoT.

Acknowledgment

We thank our shepherd Nils Ole Tippenhauer as well as the
anonymous reviewers for their insightful comments. This re-
search was supported in part by National Science Foundation
(NSF) Awards 1834215 and 1850533. Any opinions, findings,
conclusions, or recommendations expressed are those of the
authors and not necessarily of the NSF.

References

[1] “Obd-ii - on-board diagnostic system,” http://www.obdii.com/.

[2] D. S. Eisinger and P. Wathern, “Policy evolution and clean
air: The case of us motor vehicle inspection and maintenance,”
Transportation Research Part D: Transport and Environment,
vol. 13, no. 6, pp. 359–368, 2008.

[3] A. Kovelman, “A Remote Attack on the Bosch Drivelog Con-
nector Dongle,” https://argus-sec.com/remote-attack-bosch-
drivelog-connector-dongle, 2017.

[4] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-
man, L. Invernizzi, M. Kallitsis et al., “Understanding the
mirai botnet,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 1093–1110.

[5] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes,
and B. Ur, “Rethinking access control and authentication for
the home internet of things (iot),” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 255–272.

[6] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 636–654.

[7] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, and A. Prakash, “ContexIoT: Towards Providing Contex-
tual Integrity to Appified IoT Platforms,” in NDSS, 2017.

[8] J. Erickson, Q. A. Chen, X. Yu, E. Lin, R. Levy, and Z. M. Mao,
“No One In The Middle: Enabling Network Access Control Via
Transparent Attribution,” in ACM AsiaCCS, 2018.

[9] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen,
and J. Yang, “Understanding Fileless Attacks on Linux-based
IoT Devices with HoneyCloud,” in ACM MobiSys, 2019.

USENIX Association 29th USENIX Security Symposium 963

http://www.obdii.com/
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle

[10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham et al., “Experimental security analysis of a
modern automobile,” in 2010 IEEE Symposium on Security
and Privacy. IEEE, 2010, pp. 447–462.

[11] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understand-
ing and using the controller area network communication pro-
tocol: theory and practice. Springer Science & Business
Media, 2012.

[12] M. Ruta, F. Scioscia, F. Gramegna, and E. Di Sciascio, “A mo-
bile knowledge-based system for on-board diagnostics and car
driving assistance,” in UBICOMM 2010, The Fourth Interna-
tional Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies. Citeseer, 2010, pp. 91–96.

[13] C. Miller and C. Valasek, “Adventures in automotive networks
and control units,” Def Con, vol. 21, pp. 260–264, 2013.

[14] “OBD-II PIDs,” http://obdcon.sourceforge.net/2010/06/obd-ii-
pids/.

[15] “Top-5 best obd2 scanners worth buying in 2019 |
buyer’s guide,” https://gadgets-reviews.com/review/735-top-
best-obd2-scanner.html.

[16] “Parani-ud100 bluetooth 4.0 class1 usb adapter,” http://
www.senanetworks.com/ud100-g03.html, 2019.

[17] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprint-
ing of vulnerable ble iot devices with static uuids from mobile
apps,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2019, pp.
1469–1483.

[18] R. Malekian, N. R. Moloisane, L. Nair, B. T. Maharaj, and
U. A. Chude-Okonkwo, “Design and implementation of a wire-
less obd ii fleet management system,” IEEE Sensors Journal,
vol. 17, no. 4, pp. 1154–1164, 2016.

[19] C. Miller and C. Valasek, “Can message injection,” OG Dyna-
mite Edition, 2016.

[20] “Elm327dsk,” https://www.elmelectronics.com/wp-content/
uploads/2017/01/ELM327DS.pdf.

[21] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering mem-
ory corruptions in iot through app-based fuzzing.” in NDSS,
2018.

[22] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter,
X. Zhou, and M. Grace, “Hanguard: Sdn-driven protection
of smart home wifi devices from malicious mobile apps,” in
Proceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks. ACM, 2017, pp.
122–133.

[23] K. Kuchera, “How to Hack a Car - A Quick Crash
Course,” https://www.freecodecamp.org/news/hacking-cars-
a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec, 2017.

[24] “How to Hack a Car - A Quick Crash Course,”
https://medium.freecodecamp.org/hacking-cars-a-guide-
tutorial-on-how-to-hack-a-car-5eafcfbbb7ec.

[25] Bisdikian and Chatschik, “An overview of the bluetooth wire-
less technology,” IEEE Commun Mag, vol. 39, no. 12, pp. 86–
94, 2001.

[26] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation
of bluetooth low energy: An emerging low-power wireless
technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[27] “socket - low-level networking interface,” https:
//docs.python.org/3/library/socket.html.

[28] “Pybluez,” https://github.com/pybluez/pybluez.

[29] “Pyble,” https://github.com/jesstess/PyBLE.

[30] M. Weiser, “Program slicing,” in Proceedings of the 5th inter-
national conference on Software engineering. IEEE Press,
1981, pp. 439–449.

[31] “Sable/soot: Soot - a java optimization framework,” https://
github.com/Sable/soot.

[32] S.-H. Chen, J.-S. Pan, and K. Lu, “Driving behavior analysis
based on vehicle obd information and adaboost algorithms,” in
Proceedings of the International MultiConference of Engineers
and Computer Scientists, vol. 1, 2015, pp. 18–20.

[33] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automo-
bile driver fingerprinting,” Proceedings on Privacy Enhancing
Technologies, vol. 2016, no. 1, pp. 34–50, 2016.

[34] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vul-
nerability discovery. Pearson Education, 2007.

[35] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing
can packets into automobiles,” in 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and
Applications. IEEE, 2015, pp. 817–821.

[36] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “Canauth-
a simple, backward compatible broadcast authentication proto-
col for can bus,” in ECRYPT Workshop on Lightweight Cryp-
tography, vol. 2011, 2011.

[37] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-
vehicle delayed data authentication based on compound mes-
sage authentication codes,” in 2008 IEEE 68th Vehicular Tech-
nology Conference. IEEE, 2008, pp. 1–5.

[38] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede,
“Libra-can: a lightweight broadcast authentication protocol
for controller area networks,” in International Conference on
Cryptology and Network Security. Springer, 2012, pp. 185–
200.

[39] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita,
and S. Horihata, “Cacan-centralized authentication system in
can (controller area network),” in 14th Int. Conf. on Embedded
Security in Cars (ESCAR 2014), 2014.

[40] A.-I. Radu and F. D. Garcia, “Leia: A lightweight authentica-
tion protocol for can,” in European Symposium on Research in
Computer Security. Springer, 2016, pp. 283–300.

[41] M. Bozdal, M. Samie, and I. Jennions, “A survey on can bus
protocol: Attacks, challenges, and potential solutions,” in 2018
International Conference on Computing, Electronics & Com-
munications Engineering (iCCECE). IEEE, 2018, pp. 201–
205.

[42] “Fca secure gateway module,” https://diag.net/msg/
m1fsoznwl3nndqti9pxq9k4nz0.

[43] “openxc-android,” https://github.com/openxc/openxc-android,
2019.

964 29th USENIX Security Symposium USENIX Association

http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
https://gadgets-reviews.com/review/735-top-best-obd2-scanner.html
https://gadgets-reviews.com/review/735-top-best-obd2-scanner.html
http://www.senanetworks.com/ud100-g03.html
http://www.senanetworks.com/ud100-g03.html
https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://github.com/pybluez/pybluez
https://github.com/jesstess/PyBLE
https://github.com/Sable/soot
https://github.com/Sable/soot
https://diag.net/msg/m1fsoznwl3nndqti9pxq9k4nz0
https://diag.net/msg/m1fsoznwl3nndqti9pxq9k4nz0
https://github.com/openxc/openxc-android

[44] C. Miller and C. Valasek, “Remote exploitation of an unaltered
passenger vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[45] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast
and vulnerable: A story of telematic failures,” in 9th USENIX
Workshop on Offensive Technologies (WOOT 15), 2015.

[46] C. Miller and C. Valasek, “A survey of remote automotive
attack surfaces,” black hat USA, vol. 2014, p. 94, 2014.

[47] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner,
T. Kohno et al., “Comprehensive experimental analyses of
automotive attack surfaces.” in USENIX Security Symposium,
vol. 4. San Francisco, 2011, pp. 447–462.

[48] J. Petit and S. E. Shladover, “Potential cyberattacks on auto-
mated vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 16, no. 2, pp. 546–556, 2014.

[49] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A.
Chen, K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on
LiDAR-based Perception in Autonomous Driving,” in ACM
CCS, 2019.

[50] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu, “Ex-
posing Congestion Attack on Emerging Connected Vehicle
based Traffic Signal Control,” in NDSS, 2018.

[51] Y. Feng, S. Huang, Q. A. Chen, H. X. Liu, and Z. M. Mao, “Vul-
nerability of Traffic Control System Under Cyber-Attacks Us-
ing Falsified Data,” in Transportation Research Board (TRB),
2018.

[52] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: fab-
ricating implicit control over actuation systems by spoofing in-
ertial sensors,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1545–1562.

[53] Y. Feng, S. Huang, Q. A. Chen, H. X. Liu, and Z. M. Mao,
“Vulnerability of Traffic Control System Under Cyberattacks
with Falsified Data,” Transportation Research Record (TRR),
vol. 2672, no. 1, pp. 1–11, 2018.

[54] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A se-
curity analysis of an in-vehicle infotainment and app platform,”
in 10th USENIX Workshop on Offensive Technologies (WOOT
16), 2016.

[55] A. K. Mandal, A. Cortesi, P. Ferrara, F. Panarotto, and F. Spoto,
“Vulnerability analysis of android auto infotainment apps,” in
Proceedings of the 15th ACM International Conference on
Computing Frontiers. ACM, 2018, pp. 183–190.

[56] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control
Units for Vehicle Intrusion Detection,” in USENIX Security
Symposium, 2016.

[57] M. Müter, A. Groll, and F. C. Freiling, “A structured approach
to anomaly detection for in-vehicle networks,” in 2010 Sixth In-
ternational Conference on Information Assurance and Security.
IEEE, 2010, pp. 92–98.

[58] W. Wong, S. Huang, Y. Feng, Q. A. Chen, H. X. Liu, and
Z. M. Mao, “Trajectory-Based Hierarchical Defense Model
to Detect Cyber-Attacks on Transportation Infrastructure,” in
Transportation Research Board (TRB), 2019.

[59] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An
information-flow tracking system for realtime privacy monitor-
ing on smartphones,” ACM Transaction on Computer Systems
(TOCS), 2014.

[60] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Acm Sigplan Notices, vol. 49,
no. 6. ACM, 2014, pp. 259–269.

[61] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static
Detection of Packet Injection Vulnerabilities: A Case for Iden-
tifying Attacker-Controlled Implicit Information Leaks,” in
ACM CCS, 2015.

[62] Y. Shao, Q. A. Chen, Z. M. Mao, J. Ott, and Z. Qian, “Kratos:
Discovering Inconsistent Security Policy Enforcement in the
Android Framework,” in NDSS, 2016.

[63] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao, “Open
Doors for Bob and Mallory: Open Port Usage in Android Apps
and Security Implications,” in IEEE Euro S&P, 2017.

[64] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery
of cryptographically consistent messages to identify security
vulnerabilities in mobile services,” in Proceedings of the 23rd
Annual Network and Distributed System Security Symposium
(NDSS’16), San Diego, CA, February 2016.

[65] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic
discovery of vulnerable authorizations in online services,” in
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS’17), Dallas, TX, November
2017.

[66] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak?
uncovering the data leakage in cloud from mobile apps,” in
Proc. IEEE Symposium on Security and Privacy, 2019.

USENIX Association 29th USENIX Security Symposium 965

	Introduction
	Background
	Control Area Network
	OBD-II Dongles and Companion Apps

	Attack Model and Attack Surface
	Attack Model
	Attack Surface

	Analysis Methodology
	Overview
	Detailed Design and Implementation

	Vulnerability Analysis
	OBD-II Dongle and App Collection
	Experiment Setup
	Vulnerability Analysis Results
	Connection Stage
	Communication Stage
	Broadcast Stage

	Attack Case Studies
	Discussion and Future Works
	Tool Effectiveness
	Root Causes and Countermeasures
	Responsible Disclosure

	Related Work
	Conclusion

