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Abstract

Healthcare programs such as Medicaid provide crucial ser-
vices to vulnerable populations, but due to limited resources,
many of the individuals who need these services the most lan-
guish on waiting lists. Survival models, e.g. the Cox propor-
tional hazards model, can potentially improve this situation
by predicting individuals’ levels of need, which can then be
used to prioritize the waiting lists. Providing care to those
in need can prevent institutionalization for those individuals,
which both improves quality of life and reduces overall costs.
While the benefits of such an approach are clear, care must
be taken to ensure that the prioritization process is fair or in-
dependent of demographic information-based harmful stereo-
types. In this work, we develop multiple fairness definitions
for survival models and corresponding fair Cox proportional
hazards models to ensure equitable allocation of healthcare
resources. We demonstrate the utility of our methods in terms
of fairness and predictive accuracy on two publicly available
survival datasets.

Introduction
Publicly funded healthcare programs such as Medicaid pro-
vide crucial services to vulnerable populations. Most states
have subprograms within their Medicaid programs meant to
serve specific target populations. These programs are known
as “waivers,” since each state must ask the federal govern-
ment to waive some portions of the original Medicaid statute
in order to better serve their population. With this expanded
authority, states can include coverage for services that are
not covered under traditional Medicaid programs (such as
home and community-based long-term care), expand the fi-
nancial eligibility requirements for participation, and limit
the enrollment of each program for cost containment pur-
poses. Many waivers are built to serve older adults or in-
dividuals with developmental/physical disabilities better by
keeping them out of institutional settings (such as nursing
homes). Participation in these programs with more services,
relaxed financial eligibility, and limited enrollment becomes
a necessarily scarce resource in need of allocation. The tra-
ditional method of allocating spots in these programs is a
“first in, first out” model, where the next individual to enter
the program is the one who has been waiting the longest.
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Artificial intelligence (AI) can potentially improve this
situation by predicting individuals’ risk of institutionaliza-
tion, which can then be used to prioritize the list of indi-
viduals who would like to participate in the program but for
whom a spot on the waiver is not available (also known as
the “waitlist”). On October 1, 2019, the Maryland Depart-
ment of Health deployed an AI system which performs a
needs-based prioritization of the Medicaid waitlist as a func-
tion of predicted time to institutionalization, i.e. admission
to a nursing home.1 While the benefits of such an approach
are clear, care must be taken to ensure that the prioritiza-
tion process is fair. AI models can have impacts with law-
ful, moral or ethical consequences when utilized to predict
outcomes in societal, governmental, and public sector ap-
plications. Structural and systemic processes, often unfair
and/or biased against certain groups of people, impact indi-
viduals’ lives and and hence their data (Barocas and Selbst
2016), for example based on age, race, gender, nationality,
class or sexual orientation. Since systemic bias is inherent
in data, machine learning models must account for this to
avoid creating discriminatory decisions. In recent years, the
machine learning (ML) community has conducted a notable
amount of research on algorithmic bias (Dwork et al. 2012;
Hardt, Price, and Srebro 2016; Kusner et al. 2017; Foulds et
al. 2020b) which aims to learn non-discriminatory predictive
models by enforcing constraints in the training phase (Goel,
Yaghini, and Faltings 2018; Chouldechova 2017; Kilbertus
et al. 2017; Bolukbasi et al. 2016; Zhao et al. 2017).

Like any data that involves individuals from different de-
mographics, health data is subject to bias in various man-
ners, and the expanding amount and types of data that are
accessible today can make it difficult to distinguish where
bias can emerge (Ferryman and Pitcan 2018). The goal of
this work is therefore to develop AI techniques for attenuat-
ing harmful bias in the allocation of healthcare resources.

To predict individuals’ risk of institutionalization, a nat-
ural approach is to use survival models. The Cox propor-
tional hazards (CPH) (Cox 1972) model is particularly ap-
propriate in this research, as the multiplicative relationship
between covariates and risk aids explainability. It is crucial
to ensure fairness in the risk prediction task to obtain fair
healthcare resource allocation with survival models such as

1https://tinyurl.com/yy3odnmq
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CPH. Though the fairness community has proposed various
fairness definitions (Feldman et al. 2015; Dwork et al. 2012;
Hardt, Price, and Srebro 2016; Kearns et al. 2018; Foulds
et al. 2020b) to measure different aspects of societal or de-
mographic biases in AI systems, to the best of our knowl-
edge there are currently no fairness definitions specific to
survival models. In this paper, we propose multiple fairness
definitions for survival models and develop corresponding
fair learning algorithms. The models’ risk scores can then
be used to fairly prioritize the Medicaid waitlist.

The main contributions of this work include:

• To the best of our knowledge, this is the first investigation
on fairness for survival models to ensure equitable alloca-
tion of healthcare resources.

• We extend three categories of fairness definitions to mea-
sures bias in the survival analysis problem.

• We develop corresponding fair learning algorithms for
CPH models to ensure fair risk predictions.

• We perform extensive experiments validating our models
with regards to both fairness and accuracy on two publicly
available survival datasets.

Background and Related Work
In this section, we define survival data and the Cox propor-
tional hazards model, a popular method for survival analysis.
In addition, we discuss related work on fairness in AI.

Survival Data
Survival data (Katzman et al. 2018; Lee et al. 2018) contains
three pieces of information for each individual: 1) observed
covariates/features x, 2) actual time of the event T , and 3)
event indicator E. If an event, e.g. death, has occurred, T
corresponds to the elapsed time between when the covariates
were first collected and the time of the event occurring, and
the event indicator is E = 1. If an event is not observed, T
corresponds to the elapsed time between the collection of the
covariates and the last contact with the individual subject,
e.g. end of the study, and E becomes 0. In this scenario, the
individual subject is said to be right-censored. In standard
regression models missing data such as right-censored data
may typically be discarded. In survival analysis, however,
right-censored data (e.g. data on individuals who survive to
the end of the study) is important and cannot simply be ig-
nored without introducing substantial bias. Right-censored
data therefore requires special consideration in this context.

Cox Proportional Hazards Model (CPH)
The Cox proportional hazards (CPH) model (Cox 1972) is
the most widely used model for survival analysis (Lee et al.
2018). It is a semiparametric model often used in clinical
(and many other) settings for modeling and predicting the
time until a particular event occurs, e.g. death of a patient.

Let S(t) be the probability that the event does not occur
before time t (the survival function). The key concept to de-
fine these models is the hazard function, defined to be the

instantaneous rate that the event, e.g. death or institutional-
ization, occurs at time t, here supposing that time is contin-
uous. The hazard function is defined as

h(t) , lim
∆t→0+

Pr(t ≤ T < t+ ∆t|T ≥ t)
∆t

. (1)

The CPH model specifies the hazard function via

h(t) = h0(t) exp(βᵀx) , (2)

where h0, called the baseline hazard, is the hazard value
regardless of features x, and β is a parameter vector. The
survival function is determined from the hazard function via

S(x) = exp(−H(t)), H(t) =

∫ t

0

h(u)du . (3)

To perform Cox regression, the parameter β can be
learned by optimizing the Cox partial likelihood (Faraggi
and Simon 1995; Katzman et al. 2018). The partial likeli-
hood is the product of the probability at each event time Ti
that the event Ei has occurred to individual i, given the set
of individuals still at risk at time Ti and can be calculated as

Lc(β) =
∏

i:Ei=1

exp(βᵀxi)∑
j∈<(Ti)

exp(βᵀxj)
, (4)

where the product is defined over the set of patients with an
observable eventEi = 1 and the risk set<(t) = {i : Ti ≥ t}
is the set of patients still at risk of failure at time t.

The CPH model assumes that an individual’s risk of
an event occurring is a linear combination of the patient’s
covariates, referred to as the linear proportional hazards
condition. Since this assumption may be too simplistic in
many applications such as personalized treatment recom-
mendations (Katzman et al. 2018), recently deep neural
networks (Faraggi and Simon 1995; Katzman et al. 2018;
Lee et al. 2018; Huang et al. 2019) have been applied to CPH
models to solve the problem of nonlinear survival analysis.

Fairness in AI
The increasing impact of artificial intelligence (AI) and ma-
chine learning technologies on many facets of life, from
commonplace movie recommendations to consequential
criminal justice sentencing decisions, has prompted con-
cerns that these systems may behave in an unfair or discrim-
inatory manner (Barocas and Selbst 2016; Munoz, Smith,
and Patil 2016; Noble 2018). A number of studies have
subsequently demonstrated that bias and fairness issues in
AI are both harmful and pervasive (Angwin et al. 2016;
Buolamwini and Gebru 2018; Bolukbasi et al. 2016). The
AI community has responded by developing a broad array
of mathematical formulations of fairness and learning al-
gorithms which aim to satisfy them (Dwork et al. 2012;
Hardt, Price, and Srebro 2016; Berk et al. 2017; Zhao et al.
2017). An overview of fair AI is given by (Berk et al. 2018).

While a number of fairness definitions have been pro-
posed in the literature, at the highest level there are three
broad categories of fairness measures. Individual fairness
definitions aim to ensure that similar individuals obtain
similar outcomes under the algorithm in question. Group



fairness definitions aim to preserve fairness at the level of
groups of individuals, e.g. women, the elderly, or African
Americans. Finally, intersectional fairness definitions are
those for which fairness is to be ensured for a specified set
of subgroups defined by the protected attributes (Kearns et
al. 2018; Hebert-Johnson et al. 2018; Foulds et al. 2020b).
These fairness definitions can be slightly modified to form a
fairness penalty that can be added as a constraint or a regu-
larization term to the existing optimization objective to en-
force fairness in the algorithm (Calders and Verwer 2010;
Zafar et al. 2017b; Zafar et al. 2017a; Foulds et al. 2020b).

(Angwin et al. 2016) applied Cox models to the problem
of criminal recidivism prediction, in order to detect racial
bias in the offender’s risk score prediction. However, there
is no prior work that introduces and enforces formal fairness
definitions for the fair survival analysis problem.

Methods
In this section, we describe our methodology to ensure fair
risk predictions with survival models. First, we extend the
three broad categories of fairness measures to precise ap-
plication of fairness in survival analysis problems. We then
develop a simple learning algorithm for fair survival models.

Fairness Definitions for Survival Models
Fairness in healthcare is a multi-stakeholder issue, and so we
cannot simply settle it with a single solution. We instead pro-
vide stakeholders with three different proposed implementa-
tions of fairness for survival models.

Individual fairness: Individual fairness (Dwork et al.
2012) aims to ensure that a system or model produces sim-
ilar outcomes to similar individuals. In the context of sur-
vival models, we define individual fairness (Fi) inspired by
(Dwork et al. 2012) as follows:

Fi =

N(test)∑
i=1

N(test)∑
j=i+1

max(0, |h̄β(xi)− h̄β(xj)| −D(xi,xj)) ,

(5)

where h̄β(x) = exp(βᵀx), the hazard function where
the base hazard h0(t), which is not individual-specific, is
dropped, and D(xi, xj) is a distance metric (e.g. Euclidean
distance) between xi and xj encoding fair similarity, on the
same scale as |h̄β(xi)−h̄β(xj)|. Note that this penalizes dif-
ferences in predicted hazard scores that exceed the distance
between the data points. Here, we can make use of knowl-
edge of the individuals who are to be in the test set such as
the individuals on the waitlist for care (a transductive ap-
proach to fairness).

Group fairness: In group fairness definitions, e.g. demo-
graphic parity (Dwork et al. 2012), a system is fair if out-
comes are distributed fairly across different demographic
groups, e.g. different genders or races. We define the group
fairness (Fg) measures for survival models as

Fg = max
a∈A
|h̄β(a)− E[h̄β(x)]| , (6)

h̄β(a) ,
∫
x

exp(βᵀx)p(x|a) , (7)

the worst-case deviation of the per-group expected hazard
function h̄β(a) from the population average hazard where A
is the set of values in the protected attribute. We estimate the
above integral via an average over the empirical data.

Intersectional fairness: Intersectional fairness (Kearns et
al. 2018; Hebert-Johnson et al. 2018; Foulds et al. 2020b)
definitions consider subgroups of protected groups, usu-
ally defined to be their intersecting subgroups. This can
be used to enforce fairness metrics that encode the princi-
ple of intersectionality (Crenshaw 1989), namely that indi-
viduals at the intersections of protected groups, e.g. along
lines of race and gender, are vulnerable to additional harms
and should be protected (Foulds et al. 2020b). In this case,
A = S1 × S2 × . . . SK is a space of multi-dimensional pro-
tected attributes. Building on our earlier work on the differ-
ential fairness metric (Foulds et al. 2020b), intersectional
fairness (Fε) for survival models can be extended as

Fε = max
si∈A,sj∈A

| log h̄β(si)− log h̄β(sj)| , (8)

a worst case of log-ratios of “per-group hazard functions”
over pairs of intersectional subgroups si, sj (e.g. men over
70, women between 20 - 30). In this formulation, fairness for
intersectional subgroups provably guarantees fairness for the
higher-level groups (Foulds et al. 2020b).

Fair Cox Proportional Hazards Models (FCPH)
We develop simple and practical Fair Cox Proportional Haz-
ards (FCPH) models which balance fairness and accuracy.
FCPH models allow us to fair prediction of the time until a
particular event occurs, for example, institutionalization into
a nursing home. Therefore, the FCPH models’ risk scores
can be used to prioritize the “waitlist” of patients for fair al-
location of healthcare resources, independent of the patient’s
demographics, e.g. age, gender, race etc.

The linear Cox model estimates the hazard function ĥ(t)
parameterized by the weight vector β. Following (Faraggi
and Simon 1995; Katzman et al. 2018), the loss function to
learn β can be formulated with the negative log partial like-
lihood of Equation 4:

−LX(β) = −
∑
i:Ei=1

(βᵀxi− log
∑

j∈<(Ti)

exp(βᵀxj)) . (9)

Our FCPH models are developed upon a general frame-
work for solving fairness in linear Cox models using a penal-
ized maximum likelihood estimation approach. The general
learning objective function for our FCPH models is

−LX(β) + λR(β) , (10)

where LX(β) is the log-likelihood for the linear Cox model,
RX(β) is a fairness penality, which also doubles as a reg-
ularizer, and λ > 0 is a trade-off parameter which strikes
a balance between predictive accuracy and fairness. We set
RX(β) to Fi, Fg , and Fε fairness measures to learn individ-
ual, group, and intersectional FCPH models, respectively.
We optimize the objective function in Equation 10 via gradi-
ent descent algorithm (Ruder 2016) to learn models’ param-
eter vector β. This approach is applicable to training deep
Cox models as well, which we will study in future work.



Experiments
In this section, we validate and compare our fair Cox
(FCPH) models with the typical Cox (CPH) model on the
survival datasets for fair risk predictions which can be used
to perform sensitive tasks such as prioritizing the waiting list
for institutionalization in the healthcare programs.

Datasets
Data for the allocation of healthcare resources, e.g. priori-
tizing the wait list of patients for institutionalization, is not
publicly available. Therefore, we validate our models on
representative proxy datasets. We performed all experiments
on two publicly available survival datasets:

• COMPAS Data: The COMPAS dataset regarding a sys-
tem that is used to predict criminal recidivism, and which
has been criticized as potentially biased (Angwin et
al. 2016). Angwin et al. applied a Cox model to test
the performance of the COMPAS system on offender’s
risk prediction and demonstrated that the system over-
predicts African-American defendant’s future recidivism.
The company that developed COMPAS system and mar-
kets it to Law Enforcement, also used a Cox model in their
validation study (Brennan, Dieterich, and Ehret 2009).
Although the COMPAS system is used for bail and sen-
tencing, it could potentially be used to allocate social
work resources. Therefore, it is a useful example dataset
in our study to show the effectiveness of our methods
to fair risk prediction. The COMPAS dataset consists of
10, 314 offenders and 6 features including demographic
attributes, while the task is to predict risk scores of a con-
victed criminal to reoffend. A total of 26.75% of subjects
reoffended during the survey for data collection with a
median event time of 173 days. We used binary-coded
race (white, and African-American) and gender (men,
and women) as protected attributes in our study.

• FLC Data: This dataset is taken from a study that inves-
tigated to which extent the serum immunoglobulin free
light chain (FLC) assay can be used predict overall sur-
vival (Dispenzieri et al. 2012). Dispenzieri et al. as-
sayed FLC levels on the patients with permission from
a previous study for the prevalence of monoclonal gam-
mopathy of undetermined significance (Kyle et al. 2006)
and found that elevated FLC levels were indeed associ-
ated with higher death rates. The FLC Dataset consists of
7, 874 patients with 6 features such as age, gender, serum
creatinine, FLC group for the patients, kappa and lambda
portion for serum free light chain, while the task is to pre-
dict the risk score for death. A total of 27.55% of patients
died during the survey with a median death time of 2, 165
days. We used binary-coded age (age≤ 65, and age> 65)
and gender (men, and women) as protected attributes in
our fairness analysis.

Experimental Settings
All the models were trained via the adaptive gradient descent
optimization (Adam) algorithm (Kingma and Ba 2014) with
learning rate 0.01 using PyTorch. There is no requirement

of protected attributes to learn the Individual FCPH model
since the individual fairness depends on each individual sub-
ject rather than any group/subgroup of peoples. We consid-
ered race for COMPAS, and age for FLC datasets as pro-
tected attributes in the Group FCPH model, while we con-
sidered all the pre-selected protected attributes (race, gender
for COMPAS, and age, gender for FLC datasets) in the In-
tersectional FCPH model.

We held out 20% of each dataset as the test set, using
the remainder for training. We further held out 20% from
each training dataset as the development set for each dataset.
Since it is challenging to estimate group and intersectional
fairness reliably on mini-batches due to data sparsity (Foulds
et al. 2020a), we trained all the models, except the Individ-
ual FCPH model, in a batch setting for 500 iterations. It
becomes very expensive to measure individual fairness on
the whole training set in each iteration when training Indi-
vidual FCPH models in a batch setting. Furthermore, we
found that data sparsity is not a serious issue for individual
fairness measures, unlike group and intersectional fairness.
Therefore, to address the bottleneck we trained the Individ-
ual FCPH models in a mini-batch setting for 50 epochs with
a mini-batch size of 128.

Evaluation Protocols
In addition to the fairness measures we proposed (Equations
5, 7, and 8), in our evaluation we also included traditional
accuracy measures for the predictive performance of the sur-
vival models: Concordance Index (C-index), Brier Score,
Time-dependent AUC, and Log Partial Likelihood. The C-
index (Raykar et al. 2007; H. Uno 2011; Brentnall and Cuz-
ick 2018) is a rank order statistic for predictions against true
outcomes, thus highly relevant for waitlists. It is a general-
ization of the Area Under the ROC Curve (AUC) for con-
tinuous response and censored data that reflects a measure
of how well a model predicts the ordering of individual’s
event time. The C-index is based on the assumption that pa-
tients who lived longer should have been assigned a lower
risk than patients who lived less long (Harrell et al. 1982).
A high C-index means that there is a high likelihood that for
two random samples, the order of their predicted response
matches the order of their observed response.

The Brier Score (E. Graf and Schumacher 1999) mea-
sures the accuracy of probabilistic predictions. Given a set
of N predictions, the empirical Brier Score measures the
weighted mean squared difference between the predicted
probability assigned to possible outcomes for sample i and
the actual outcome. The weight for sample i can be esti-
mated by considering the Kaplan-Meier estimator (Kaplan
and Meier 1958) of the censoring distribution on the dataset.

The Time-dependent AUC (Chambless and Diao 2006) is
a function of time that extends the ROC curve to continuous
outcomes, in particular survival time, assuming a subject’s
event status is typically not fixed and changes over time, e.g.
patients who are disease-free earlier may develop the dis-
ease later due to longer study follow-up. It reflects the area
under the cumulative/dynamic ROC at time t to determine
how well a model can distinguish subjects that experienced
an event prior to or at time t (cumulative cases) from sub-



Figure 1: Fairness and accuracy trade-off plots for the development set of the COMPAS dataset. Shows the impact of tuning parameter λ on
the FCPH models’ C-index and corresponding fairness measures. Black circles correspond to different λ values (larger to smaller from left to
right), while blue square indicates the selected FCPH model for a specific λ value. Red square: typical CPH model without fairness penalty.
Dotted line represents 5% degraded C-index from the typical CPH model. C-index: higher is better. Fairness measures: lower is better.

Figure 2: Fairness and accuracy trade-off plots for the development set of the FLC dataset. Shows the impact of tuning parameter λ on the
FCPH models’ C-index and corresponding fairness measures. Black circles correspond to different λ values (larger to smaller from left to
right), while blue square indicates the selected FCPH model for a specific λ value. Red square: typical CPH model without fairness penalty.
Dotted line represents 5% degraded C-index from the typical CPH model. C-index: higher is better. Fairness measures: lower is better.

jects that experienced an event after this time point (dynamic
controls).

Finally, we used the Log Partial Likelihood from Equa-
tion 9 (dropping the minus sign) as a performance measure.
The effect of the covariates can be estimated using the Log
Partial Likelihood without the need to model the change of
the hazard over time and it measures the goodness of fit of
models to a sample of data for learned parameter β.

Trade-off Between Fairness and Accuracy
Since fairness may hurt accuracy because it diverts a sys-
tem’s learning objective from accuracy only to both accu-
racy and fairness, we will assess each proposed model based
on this trade-off. Figure 1 and Figure 2 show the fairness and
accuracy trade-off plots for the FCPH models on the devel-
opment set of the COMPAS and FLC datasets, respectively.
The C-index is selected as the accuracy-based performance
measure in this experiment. The impact of the tuning param-
eter λ on the C-index and corresponding fairness measures
for the proposed FCPH models are demonstrated in these
figures. Larger λ values allow us to learn more fair, but less
accurate FCPH models, while smaller λ values have the op-

posite impact on the FCPH models.
The tuning parameter λ needs to be chosen as a trade-off

between the C-index and fairness. We chose λ for all FCPH
models via grid search on the development set based on a
pre-defined rule: select the λ that provides the fairest (under
the corresponding fairness metric, e.g. Fi, Fg , and Fε for
individual, group, and intersectional FCPH models, respec-
tively ) Cox model on the development set, allowing up to
5% degradation in C-index from the typical CPH model. In
Figure 1 and Figure 2, the red square represents the typical
CPH model without fairness penalty and the black circles
(correspond to different λ values) above the dotted line are
FCPH models that degrade the C-index but not over 5%. Fi-
nally, blue squares indicate the selected fairest FCPH model
for a specific λ value that complies with the pre-defined rule.

Performance for FCPH Models
We evaluated the performance for FCPH models on the test
data in terms of accuracy-based performance measures and
proposed fairness measures, and compare our fair models
with the typical CPH model. The goals of our experiments
were to demonstrate the practicality of our FCPH models.



Models Typical CPH Individual FCPH Group FCPH Intersectional FCPH
Tuning λ X 25 1 1

Performance

C-index 0.6648 0.6341 0.6577 0.6445
Brier Score 0.1877 0.1823 0.1808 0.1787
Time-dependent AUC 0.6872 0.6584 0.6890 0.6745
Log Partial Likelihood -7.0954 -7.1664 -7.1167 -7.1542

Fairness

Fi-Fairness 0.0968 0 0.0090 0.0004
Fg-Fairness 0.4198 0.1999 0.0765 0.0418
Fε-Fairness 1.0821 0.7291 0.2421 0.1067

Table 1: Comparison of FCPH models with typical CPH model on the COMPAS dataset. Higher is better for accuracy-based perfor-
mance measures; lower is better for fairness measures. FCPH models outperform typical CPH model in terms of all fairness measures.

Models Typical CPH Individual FCPH Group FCPH Intersectional FCPH
Tuning λ X 5 0.7 0.4

Performance

C-index 0.8030 0.7898 0.7768 0.7885
Brier Score 0.2244 0.1911 0.1951 0.1976
Time-dependent AUC 0.8015 0.8173 0.8147 0.8155
Log Partial Likelihood -6.3737 -6.9207 -6.7963 -6.7299

Fairness

Fi-Fairness 1.4073 0.0009 0.0243 0.0343
Fg-Fairness 3.0027 0.1466 0.2879 0.3959
Fε-Fairness 2.8334 0.3761 0.7468 0.6610

Table 2: Comparison of FCPH models with typical CPH model on the FLC dataset. Higher is better for accuracy-based performance
measures; lower is better for fairness measures. FCPH models outperform typical CPH model in terms of all fairness measures.

In Table 1 and Table 2, we show detailed results for COM-
PAS and FLC datasets, respectively. All FCPH models out-
perform typical CPH models in terms of all three fairness
measures for both datasets. Note that the λ values for FCPH
models in Table 1 and Table 2 represent the blue square
from Figure 1 and Figure 2, respectively. In the COMPAS
dataset, the Individual FCPH model was the most fair model
in terms of Fi measures, while intersectional FCPH model
was the most fair model in terms of Fg and Fε measures. The
Individual FCPH model shows superior performance on the
FLC dataset that outperforms all models in terms of all three
fairness measures. The Group FCPH model gives middling
performance, and cannot win over the Individual and inter-
sectional FCPH models in terms of fairness. This is pre-
sumably due to the fact that ensuring fairness for individuals
or intersectional subgroups imposes a harder constraint to
the objective function that automatically ensures fairness for
groups. As expected, typical CPH performed best in terms
of C-index and Log Partial Likelihood. However, surpris-
ingly, we found that FCPH models also outperform typical
CPH models in accuracy-based performance measures such
as Brier Score and AUC (see group and intersectional FCPH
models in Table 1, and individual FCPH model in Table 2).

Do Fair Models Reduce Overfitting?
The improved performance of FCPH models over typical
CPH models is counter-intuitive. We further study this re-
sult in this section by comparing the generalization of the
models. Table 3 and Table 4 compare the accuracy-based
predictive performances for FCPH models with typical CPH
models on the train and test set of both datasets.

The typical CPH model was the best model for both

datasets in all predictive measures on the training set, but
FCPH models performed better than typical CPH models
on the test set for both datasets in most of the cases. In the
COMPAS dataset, group and intersectional FCPH models
were the best models on the held-out data in terms of AUC
and Brier Score, respectively. Similarly, individual FCPH
models showed the best Brier Score and AUC measures on
the held-out FLC data. We also found that FCPH models de-
crease the corresponding gap between accuracy-based pre-
dictive measures on train and test data due to the regulariza-
tion behavior of the fairness constraints. Thus, FCPH models
reduce overfitting of the typical Cox model to some extent.

Discussion and Future Work

In this work, we investigated fairness for survival models
and developed methods to ensure fair risk scores. Balance
between accuracy and fairness is an important decision to
make prior to learning fair models, and this depends on the
stakeholders. To validate our proposed fair models, we per-
formed all the experiments on two public proxy datasets.

In future, we plan to apply our proposed methods on the
data from healthcare programs such as Medicaid to ensure
fair risk prediction in ranking the waitlist for individuals
to receive care. We further plan to study the impact of an
intervention to the prioritization process on each individ-
ual which determines the waiting time to receive home and
community-based healthcare services. The successful appli-
cation and deployment of our methods to the healthcare pro-
gram is the eventual goal of this research.



Models Train Set Test Set
C-index Brier Score AUC C-index Brier Score AUC

Typical CPH 0.6859 0.1530 0.7178 0.6648 0.1877 0.6872
Individual FCPH 0.6609 0.1646 0.6962 0.6341 0.1823 0.6584
Group FCPH 0.6654 0.1610 0.7031 0.6577 0.1808 0.6890
Intersectional FCPH 0.6593 0.1648 0.6964 0.6445 0.1787 0.6745

Table 3: Comparison of the accuracy-based predictive performances for typical CPH and FCPH models on the train and test set of
the COMPAS dataset. FCPH models reduce overfitting.

Models Train Set Test Set
C-index Brier Score AUC C-index Brier Score AUC

Typical CPH 0.7944 0.1298 0.8149 0.8030 0.2244 0.8015
Individual FCPH 0.7740 0.1719 0.8089 0.7898 0.1911 0.8173
Group FCPH 0.7581 0.1613 0.7961 0.7768 0.1951 0.8147
Intersectional FCPH 0.7680 0.1555 0.8012 0.7885 0.1976 0.8155

Table 4: Comparison of the accuracy-based predictive performances for typical CPH and FCPH models on the train and test set of
the FLC dataset. FCPH models reduce overfitting.

Conclusion
We developed three fairness definitions for survival mod-
els and corresponding learning algorithms to ensure equi-
table allocation of healthcare resources. In extensive exper-
iments on publicly available datasets, we demonstrated that
our methods are practical and effective. The proposed meth-
ods for fair prioritization of healthcare have the potential to
prevent avoidable institutionalization of elderly and disabled
individuals, thereby improving quality of life and saving tax-
payer dollars, while ensuring fair and equitable allocation.
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