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Abstract

We consider a max-min variation of the classical problem of maximizing a linear func-

tion over the base of a polymatroid. In our problem we assume that the vector of

coefficients of the linear function is not a known parameter of the problem but is some

vertex of a simplex, and we maximize the linear function in the worst case. Equiva-

lently, we view the problem as a zero-sum game between a maximizing player whose

mixed strategy set is the base of the polymatroid and a minimizing player whose mixed

strategy set is a simplex.We show how to efficiently obtain optimal strategies for both

players and an expression for the value of the game. Furthermore, we give a charac-

terization of the set of optimal strategies for the minimizing player. We consider four

versions of the game and discuss the implications of our results for problems in search,

sequential testing and queueing.

1 Introduction

A well understood problem in combinatorial optimization is that of maximizing a linear func-
tion over a polymatroid. As shown in Edmonds (1970), the solution of the problem is given
by a simple greedy algorithm whose output is some vertex of the base of the polymatroid.A
similar algorithm can be used to minimize a linear function over a contrapolymatroid.(All
concepts will be defined precisely in Section 2).

∗Department of Computer Science and Engineering, New York University Tandon School of Engineering,
New York, New York 11201, lisa.hellerstein@nyu.edu

†Department of Management Science and Information Systems, Rutgers Business School,Newark, NJ
07102, tlidbetter@business.rutgers.edu

1



Many optimization problems can be viewed as a special case of this problem.The general
approach is to associate some “performance vector” with each possible choice of policy for
the problem in question, then to show that the convex hull B of these vectors is the base of
a polymatroid or a contrapolymatroid. The objective function is then expressed as a linear
function over B, so that it can be optimized using the classic greedy algorithm.

One example of such a problem is the single machine scheduling problem 1 ||
P

wj Cj of
choosing what order to process a finite set of jobs with given processing times to minimize
their weighted sum of completion times. The solution to this problem is given by a simple
index rule known as Smith’s Rule (Smith, 1956). Queyranne (1993) later showed that this
solution can be derived by showing that the convex hull B of the vectors of completion times
of jobs is the base of a contrapolymatroid, and observing that the weighted sum of completion
times is a linear function over B. See also Queyranne and Schulz (1994).The problem is
equivalent to a search problem considered in Bellman (1957) [Chapter III, Exercise 3, p.90],
where a target in located in one of a finite number of boxes with search costs according to a
known probability distribution and the aim is to locate the target in minimal expected cost.

Stadje (1995) introduced a single machine scheduling problem where a finite set of jobs
each has a given reward and a given probability of being successfully processed.If the
machine fails to process a job it cannot process any further jobs.The problem is to choose
in which order to schedule the jobs to maximize the total expected reward. Like the first
scheduling problem described above,this problem is also solved by a simple index rule.
More recently, the same problem was studied independently under the nomenclature of
the unreliable jobs problem by Agnetis et al. (2009), who considered performance vectors
corresponding to the probabilities that the jobs are successfully processed under a given
schedule, and showed the convex hull of these vectors is the base of a polymatroid.Hence,
by writing the objective of the problem as a linear function over this polyhedron, the index
rule for this problem can also be derived from the greedy algorithm for optimizing a linear
function over a polymatroid.Kodialam (2001) had previously studied this same polymatroid
to solve a different, but related problem in sequential testing.

By considering so-called conservation laws,Federgruen and Groenevelt (1988) showed
that the performance space of several multiclass queueing systems have a polymatroid struc-
ture, and this was extended to many other queueing problems by Shanthikumar and Yao
(1992). Some cases of the well-known cµ priority rule for queueing can be derived by con-

2



sidering a linear optimization problem over the base of a polymatroid.
In this paper we introduce and solve a new max-min version of the classic problem of

maximizing a linear function over a polymatroid. It generalizes many problems on search
games, sequential testing and queueing; some known and some new.In particular, we solve
a case of the weighted search game introduced by Yolmeh and Baykal-G¨ursoy (2021), where
a Searcher aims to minimize a weighted time to find a target hidden among a finite number
of locations with varying weights and search times. We extend the weighted search game
to incorporate the variable speed search paradigm of Alpern and Lidbetter (2014), and give
a solution to this problem too. We show that the solution of a search and rescue game
introduced by Lidbetter (2020) also follows from a corollary of our main results; furthermore
we solve a more elaborate search and rescue game.

We show that our approach yields an alternative solution to a problem in sequential
testing previously solved by Kodialam (2001) and Condon et al. (2009), in which operators
sequentially perform tests on some tuples until obtaining a negative test, and the objective
is to find a randomized routing of tuples to maximize throughput.

Our main problem can also be used to address some max-min (or min-max) multiclass
queueing problems,which, as far as we know, have not previously been considered in the
literature. Although there are several possible applications, we consider one concrete example
of a multiclass queueing problem in which one server processes jobs with exponentially
distributed service times that arrive according to a Poisson process. The objective is to
choose a randomized priority rule to minimize the maximum expected holding cost of any
job class in the steady state of the system. A solution to this problem follows from our
results.

In Section 2 we review the notion of a polymatroid and the classic greedy algorithm of
Edmonds (1970). We then describe and solve our main problem,framing it as a zero-sum
game between a maximizer whose pure strategies are the set of vertices x of the base of a
polymatroid and a minimizer whose pure strategies are the coordinates i.The payoff of the
game is wi x i for some fixed positive weights w (in contrast to the classic problem where the
objective is wT x). We give optimal strategies for both players and an expression for the
value of the game. Furthermore, we give a complete characterization of the set of optimal
strategies for Player 2.The value of the game and optimal strategies for both players can be
found in strongly polynomial time (in the dimension of the polymatroid). We show that in
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some special cases, the value of the game can be found particularly quickly.In Section 3, we
consider some variations of our game involving contrapolymatroids and min-max objectives.

We apply our general result to several search games in Section 4,some of which have
known solutions and some of which do not. These are two-person zero-sum games,where
one player hides a “target”, which the other player must locate.See Alpern and Gal (2003)
or Hohzaki (2016) for an overview on the search games literature.We also make a link to a
problem in sequentialtesting in Section 5, showing that it is a special case of the problem
addressed in this paper. In Section 6, we discuss further implications of our results in the
field of queueing theory, giving an example of a min-max problem in queueing theory whose
solution follows from this work.

Finally, in Section 7, we consider a special case of our game in which the payoff function
satisfies a certain monotonicity property. For this case,we give an efficient procedure that
implements an optimal strategy for Player 1.The support of this strategy is of exponential
size,and the procedure does not output an explicit representation of it as a convex combi-
nation of pure strategies. Instead, the procedure can be used to efficiently generate a pure
strategy, drawn from the support of this optimal strategy with appropriate probability.

2 Problem Statement and Solution

In this section we define and solve our main problem, then consider some special cases and
variations. But first, we review the definition of polymatroids and some elementary facts
about them.

2.1 Review of Elementary Polymatroid Theory

Recall that a function f : 2 V → R is submodular if f (A) + f (B) ≥ f (A  B∪ ) + f (A ∩ B) for
all A, B  V⊆  and g : 2 V → R is supermodular if g(A) + g(B) ≤ g(A  B∪ ) + g(A ∩ B) for all
A, B  V⊆  .

For the rest of this section we assume that f : 2V → R+ is a non-negative, non-decreasing
(with respect to set inclusion) submodular function with f (∅) = 0, where V = [n] ≡

{1, . . . , n} for some positive integer n. (We set [n] = ∅ if n = 0.) We assume that the
values f (S) are given by an oracle. Let P(f ) be the polymatroid associated with f , given
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by
P(f) = {x ∈ R n

+ : x(S) ≤ f (S) for all S  V },⊆

where x(S) ≡
P

j S∈
x j . We first review the problem of maximizing a linear function w T x

over x  P∈ (f ), where w ∈ R n
+ is a constant. Let σ : V → V be a permutation (or bijection)

of V such that w σ(1) ≥ · · · ≥ w σ(n) . The classic solution to the problem, given in Edmonds
(1970) is the point xσ given by

xσ
σ(j) = f ({σ(1), . . . , σ(j)}) − f ({σ(1), . . . , σ(j − 1)}), j = 1, . . . , n. (1)

Notice that for any w and σ, we have xσ(V ) = f (V ), so an equivalent problem is to maximize
wT x over the base polyhedron B(f ) of f , given by

B(f ) = {x  P∈ (f ) : x(V ) = f (V )}.

The vertices of B(f ) are given by all points x σ defined by (1), as σ ranges over the set
Σ ≡ Σ(V ) of all possible permutations of V .

Later, we will use the following fact, which is easy to verify.

Lemma 1 If wi > w j , then for any x σ that maximizes wT x, there exists some σ̃ such that
xσ̃ = x σ and σ̃−1 (i) < ˜σ−1 (j) (that is, i precedes j in ˜ σ).

We note that in giving running times, we assume that it takes only constant time to
answer an oracle query.

2.2 The Main Problem

The problem we consider in this paper is that of finding some x  B∈ (f ) to maximize
minj wj x j . Equivalently, we consider a zero-sum game in which a pure strategy for Player 1
(the maximizer) is a permutation σ of V (or, equivalently, a vertex x σ of B(f )) and a pure
strategy for Player 2 (the minimizer) is a direction j  V∈  .For a given pair of pure strategies
σ and j, the payoff is given by

Pf,w (σ, j) ≡ w j x
σ
j .

We will usually drop the f and w from the subscript of P .We denote this game by Γmax (f, w).
(In Section 3 we will consider a version ofthe game where Player 1 is the minimizer.) A
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mixed strategy for Player 1 corresponds to a point x of B(f ) and the expected payoff of such
a strategy against a pure strategy j of Player 2 is wj x j .

A mixed strategy for Player 2 is a randomized choice of directions, where each  j  V∈  is
chosen with some probability θj ≥ 0, where

P n
j=1

θj = 1. For such a mixed strategy, the
payoff against a strategy x of Player 1 is

nX

j=1

θj wj x j = x T y,

where y =
P n

j=1
θj wj ej , and ej is the jth coordinate vector.

Equivalently, we may consider a mixed strategy for Player 2 as a point y of the simplex

C =
nX

j=1

θj wj ej :
nX

j=1

θj = 1 and θi ≥ 0 for all j = 1, . . . , n ,

so that a pure strategy for Player 2 is a vertex wj ej of C. In a small abuse of our notation,
we write P (x, y) for the expected payoff xT y when Player 1 uses strategy x and Player 2
uses strategy y.When one player uses a pure strategy and the other uses a mixed strategy,
we extend the use of P in the natural way.

Since each player has a finite number of pure strategies, the game has optimal mixed
strategies and a value v, by the minimax theorem for zero-sum games, where

v = max
x B∈ (f)

min
j

P (x, j) = min
y C∈

max
σ∈Σ

P (σ, y).

Note that for a given mixed strategy y of Player 2, the problem of finding a best response
for Player 1 is that of choosing x  B∈ (f ) to maximize x T y. This is the classical problem
solved in Edmonds (1970) of maximizing a linear function over B(f ).With this observation,
it follows that an optimal strategy for Player 1 can be computed in polynomial time using
the ellipsoid algorithm (see e.g., Hellerstein et al. (2019)).In what follows, we give a strongly

polynomial time algorithm.
Any given mixed strategy y of Player 2 can be expressed uniquely as a convex combination

of his pure strategies (that is, vertices of wj ej of C) simply by taking θ i = y j /w j . A given
mixed strategy x of Player 1 can be written as a convex combination of at most n of her
pure strategies xσ, by Carath´eodory’s Theorem.In general, as discussed in Hoeksma et al.
(2014), such a representation can be found in strongly polynomial time by combining the
generic approach of Gr¨otschel et al. (2012) with the algorithm of Fonlupt and Skoda (2009)
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for finding the intersection of a line with a polymatroid. The runtime of this algorithm is
O(n9). For particular problems it is possible to exploit the structure of B(f ) in order to find
a more efficient algorithm for representing a Player 1 mixed strategy as a convex combination
of at most n of her pure strategies.

For a subset S  V⊆  , S 6= ∅, denote
P

i S∈ 1/w i by w−1 (S). Consider the Player 2 mixed
strategy

yS =
X

i S∈

w−1
i

w−1 (S)
wi e

i =
1

w−1 (S)
X

i S∈

ei .

For a Player 1 strategy x  B∈ (f ), the expected payoff against yS is

P (x, yS) =
X

i S∈

x i
1

w−1 (S)
=

x(S)
w−1 (S)

≤ f (S)
w−1 (S)

,

by definition of B(f ). We summarize this in the following lemma.

Lemma 2 If Player 2 uses the strategy yS for some S 6= ∅,the expected payoff is at most
f (S)/w −1 (S).

We will show in Theorem 4 that the strategy yS is optimal for Player 2, where S is chosen
to minimize f (S)/w −1 (S). A minimizing set S can be found in strongly polynomial time,
using a parametric search (see Iwata et al.(1997) [Section 6]for a parametric search algo-
rithm for minimizing the ratio of a submodular function to a non-negative supermodular
function). This relies on an algorithm for minimizing a submodular function. The fastest
known strongly polynomial algorithm for submodular function minimization is that of Orlin
(2009), whose runtime is O(n6), so that the minimization of f (S)/w −1 (S) takes time O(n7).

Before stating and proving the theorem,we define a strategy which will be optimal for
Player 1. To do this, we recursively define a partition of V into subsets S1, . . . , Sr .

Definition 3 (f -w decomposition) Set S0 = ∅ and suppose S0, . . . , Sj have already been
defined for some j ≥ 0. Then if S j ≡ S 1  ∪ · · ·  S∪ j is equal to V , set r = j. If not, we define
Sj+1 to be any set S  V \ S⊆

j that minimizes hSj (S), where

hT (S) ≡
f (T  S∪ ) − f (T )

w−1 (S)
.

We call S ≡ (S1, . . . , Sr ) an f -w decomposition of V .
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Note that the function hT is the ratio of a submodular function and a modular function,
therefore, as remarked earlier, it can be minimized in strongly polynomial time.Since hT is
defined in terms of f and w, a more informative notation is h

f,w
T , but we omit the superscripts

in general when they are clear from the context.
We now define the Player 1 strategy xS by

xS
i = w −1

i hSj−1 (Sj ) for all i  S∈ j , j = 1, . . . , r.

To show that xS it is indeed a strategy, we need to prove that it lies in B(f ).Let T  V⊆  be
arbitrary and let T j = T ∩ Sj for j = 0, 1, . . . , r.Also set Tj = ∪ i≤j Ti . Then

xS(T ) =
rX

j=1

X

i T∈ j

w−1
i hSj−1 (Sj ) =

rX

j=1

w−1 (Tj )hSj−1 (Sj ) ≤
rX

j=1

f (S j−1  ∪ Tj ) − f (S j−1 ),

by definition of Sj . Since f is submodular, f (Sj−1  ∪ Tj ) + f (T j−1 ) ≤ f (S j−1 ) + f (T j ), so

xS(T ) ≤
rX

j=1

f (T j ) − f (T j−1 ) = f (T ).

Hence, xS  ∈ P(f ). It is also easy to see that xS(V ) = f (V ), so that x S  ∈ B(f ).

Theorem 4 Suppose S∗ is a non-empty set that minimizes f (S)/w −1 (S). Then the value
of the game Γmax (f, w) is equal to f (S ∗)/w −1 (S∗). An optimal strategy for Player 2 is yS∗

.
An optimal strategy for Player 1 is xS, where S = (S1, . . . , Sr ) is any f -w decomposition.

Proof. By Lemma 2, the value of the game is at most f (S∗)/w −1 (S∗). To complete the proof,
we will show that xS ensures a payoff at least f (S∗)/w −1 (S∗) = h ∅(S1) against any Player 2
strategy. Note that for a pure strategy i of Player 2 with i  S∈ j , the expected payoff against
xS is

P (xS, i) = w i x
S
i = h Sj−1 (Sj ).

So it is sufficient to show that hSj−1 (Sj ) is non-decreasing in j. By definition of Sj , we have

f (S j ) − f (S j−1 )
w−1 (Sj )

≤ f (S j+1 ) − f (S j−1 )
w−1 (Sj  ∪ Sj+1 )

, (2)

for j = 1, . . . , r − 1. Writing w −1 (Sj  ∪ Sj+1 ) = w −1 (Sj ) + w−1 (Sj+1 ) and rearranging yields

w−1 (Sj )(f (S j+1 ) − f (S j )) ≥ w −1 (Sj+1 )(f (S j ) − f (S j−1 )).
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This is equivalent to hS j (Sj+1 ) ≥ h Sj−1 (Sj ), and the proof is complete. 2

In general, both players have multiple optimal strategies. For Player 2, we can charac-
terize these strategies.

Let F = F (f ) be the family of sets S 6= ∅ that minimize f (S)/w−1 (S), so that the value v

of the game is equal to f (S)/w−1 (S) for any S  F∈  . We also set f (∅)/w−1 (∅) to be equal to
v, so that   F∅ ∈  . It is useful to note that F is a lattice. Indeed, suppose S, T  F∈  .In the
following calculation, we use the observation that for any a, b, c, d > 0,if a/b, c/d ≥ v then
(a + c)/(b + d) ≥ v, where the second inequality is tight if the first is also tight. We have

v = f (S) + f (T )
w−1 (S) + w −1 (T )

≥ f (S  T∪  ) + f (S ∩ T )
w−1 (S  T∪  ) + w−1 (S ∩ T )

≥ v,

where the equality and second inequality follow from our observation and the first inequality
follows from the submodularity of f . Therefore, the two inequalities hold with equality, and
S  T, S ∩ T  F∪ ∈ .

Theorem 5 A Player 2 strategy y is optimal if and only if it is in the convex hull of
{y S : S  F∈  (f )}.

Proof. By Theorem 4, each element of {yS : S  F }∈  is optimal, so any convex combination
of such points is also optimal.

For the opposite direction, suppose that y∗ is an optimal Player 2 strategy.By relabeling,
let us assume that y∗1 ≥ · · · ≥ y∗

n . Then recalling that yS = (
P

i S∈
ei )/w −1 (S) for S  V⊆  and

setting y∗
n+1 = 0, we can write y∗ as

y∗ =
nX

i=1

y∗
i ei =

nX

i=1

ei
nX

j=i

(y∗
j − y ∗

j+1 ) =
nX

j=1

(y∗
j − y ∗

j+1 )
jX

i=1

ei =
nX

j=1

λ j y[j] ,

where λj = (y ∗
j − y ∗

j+1 )w−1 ([j]). Note that

nX

j=1

λ j =
nX

j=1

(y∗
j − y ∗

j+1 )
jX

i=1

w−1
i =

nX

i=1

w−1
i

nX

j=i

(y∗
j − y ∗

j+1 ) =
nX

j=1

y∗
j /w j = 1,

where the final equality follows from the fact that y ∗  ∈ C. So y∗ is a convex combination
of the strategies y[j] . We claim that if λ k > 0 for some k then [k]  F∈  , so that y ∗ is in fact
a convex combination of strategies yS with S  F∈ . Indeed, suppose that λk > 0, so that
y∗

k > y ∗
k+1 . Since any pure strategy best response x to y∗ maximizes xT y∗, by Lemma 1, we
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can express x as a point xσ such that the first k terms of σ are [k] in some order. So by
definition of xσ,

kX

i=1

x i = f ([k]). (3)

Equation (3) also holds for any mixed strategy x which is a best response to y∗ (since x must
be a mixture of pure best responses to y∗). In particular, it holds for x = x S, where S is any
f -w decomposition of V whose first element S1 is the maximal element ∪S F∈ S of F .

We claim that [k]  ⊆ S 1. Let i ∈ [k] and suppose i  ∈ S j for some j > 1. Since
y∗

i ≥ y ∗
k > y ∗

k+1 ≥ 0 and any Player 2 pure strategy in the support of y∗ that is played with
positive probability must be a best response to xS , it follows that strategy i is a best response
to xS. But by the maximality of S1, inequality (2) with j = 1 is strict, and rearranging gives
h∅(S1) < h S1 (S2). Since h∅(Sj−1 (Sj )) is non-decreasing, for any i0  ∈ S1,

P (xS, i0) = h ∅(S1) < h Sj−1 (Sj ) = P (x S , i),

so i cannot be a best response to xS, a contradiction. Hence, i  S∈ 1 so [k]  S⊆ 1.
Now, by definition of xS,

kX

i=1

xS
i =

kX

i=1

w−1
i f (S1)

w−1 (S1)
= w −1 ([k])v,

where v is the value of the game. Combining this with (3) yields f ([k])/w −1 ([k]) = v, so
[k]  F∈  . This completes the proof. 2

2.3 Special Cases

To find optimal strategies in the game Γmax (f, w), it is necessary to minimize the function
hT (S) = (f (T  S∪ ) − f (T ))/w −1 (S). As previously remarked, there is a strongly polynomial
time algorithm for this problem with runtime O(n 7). To calculate an optimal Player 1
strategy, this algorithm must be run at most n times, so the overall runtime is O(n 8).
For some functions f , this minimization can be performed much faster, as we show in the
remainder of this section.

Definition 6 We say that the payoff P = Pf,w is ζ-decreasing if there exists ζ ∈ Rn
+ such
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that for any σ ∈ Σ(V ) and any i, j  V∈  with σ −1 (i) < σ −1 (j),

P (σ, i)
P (σ, j)

≥
ζi

ζj
. (4)

If P (σ,i)
P (σ,j)

≤ ζi
ζj

we say P is ζ-increasing. If ζ i = 1 for all i, then we say P is decreasing (or
respectively increasing).

If the payoff is ζ-decreasing (or increasing) we assume that the values ζi are given as part of
the input of the problem.

Lemma 7 Suppose P = Pf,w is ζ-decreasing.Then S∗ ≡ ∪ S F∈ S is equal to {i  V∈  : ζ i ≤ r}

for some r > 0.

Proof. It is sufficient to show that if P is ζ-decreasing and i  S∈
∗ and j /  ∈ S∗, then ζi < ζ j .

Let x S be any optimal Player 1 strategy such that the first set in the partition S is S∗, and
write x S =

P
σ∈Σ

θσxσ as a convex combination ofpure strategies. Since yS∗

i > 0 = y S∗

j ,
for any best response σ to yS

∗

, we can write xσ = x σ̃, where σ̃−1 (i) < ˜σ−1 (j), by Lemma 1.
Since every pure strategy in the support of xS must be a best response to yS∗

, we can assume
that if θ σ > 0 then σ −1 (i) < σ −1 (j). It follows from (4) that if i  S∈

∗ and j /  ∈ S∗, then

P (xS, i)
ζi

=
X

σ∈Σ

θσP (xσ, i)
ζi

≥
X

σ∈Σ

θσP (xσ, j)
ζj

=
P (xS, j)

ζj
. (5)

By Theorem 5, every element of S∗ (in particular, i) is in the support of some optimal
Player 2 strategy and j cannot be in the support of any Player 2 strategy.Therefore, i must
be a best response to xS and j cannot be a best response, so that

P (xS , i) < P (x S, j). (6)

Combining (5) and (6) yields ζi < ζ j . 2

It is worth pointing out that although the definition of ζ-decreasing and the proof of
Lemma 7 are given in game theoretic terms, the lemma is not exactly a game theoretic
result, and could be stated without reference to the game Γ(f, w). Indeed, it is easy to see
that P f,w is ζ-decreasing if and only if there exists ζ0 ∈ Rn

+ such that

f (S  {i}∪ ) − f (S)
f (T  {j}∪ ) − f (T )

≥
ζ0

i

ζ0
j

, (7)
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for any S  T⊂  with i /  ∈ S, j /  ∈ T .
Lemma 7 implies that for games Γmax (f, w) with a ζ-decreasing payoff function, the set

S∗ = ∪ S F∈ S can be found in time O(n log n), simply by relabeling the the elements of
V so that they are in non-decreasing order of the index ζ i , computing f ([k])/w −1 ([k]) for
each k ∈ [n] and choosing the largest k that minimizes this function. (Note that these n

computations can done in time O(n) by keeping a record of w−1 ([k]) each time and adding
w−1

k+1 to obtain w−1 ([k+1]).) Therefore the value of the game f (S∗)/w −1 (S∗) and the optimal
Player 2 strategy yS∗

can be found in time O(n log n).
In order to compute the optimal Player 1 strategy xS it is necessary to calculate an f -w

decomposition S, which involves at most n minimizations of functions of the form hT (S). It
is easy to check that if P (f, w) is ζ-decreasing, then so is the function P (fT , w), where

f T (S) = f (T  S∪ ) − f (S).

It follows that an f -w decomposition can be found in time O(n 2). (However, expressing
xS as a convex combination ofat most n pure strategies takes additional computation in
general.)

We conclude this section by showing that when the payoff is decreasing, the solution of
the game is particularly simple.

Lemma 8 If P = P f,w is decreasing then f (S)/w−1 (S) is non-increasing in S and the value
of the game is f (V )/w−1 (V ). The strategy xS is optimal for Player 1, where S consists only
of the set V , and yV is optimal for Player 2.

Proof. Let S 6= ∅ be a proper subset of V , and without loss of generality, assume that
S = {1, . . . , k} for some k. Let j /  ∈ S and let σ be any permutation of V that starts with
(1, 2, . . . , k, j).Since P is decreasing, for any i  S∈ ,

wj (f (S  {j}∪ ) − f (S)) = P (σ, j) ≤ P (σ, i) = w i (f ([i]) − f ([i − 1])).
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Then setting θi = w −1
i /w −1 (S), we obtain

f (S)
w−1 (S)

=
kX

i=1

θi wi (f ([i]) − f ([i − 1]))

≥
kX

i=1

θi wj (f (S  {j}∪ ) − f (S))

= w j (f (S  {j}∪ ) − f (S)).

Rearranging yields
f (S  {j}∪ )w −1 (S) ≤ f (S)w −1 (S  {j}∪ ),

or equivalently,
f (S  {j}∪ )

w−1 (S  {j}∪ )
≤ f (S)

w−1 (S)
.

This proves that f (S)/w−1 (S) is non-increasing in S, so the value of the game is minS V⊆ f (S)/w −1 (S) =
f (V )/w −1 (V ).

The optimality of the stated strategies is immediate from Theorem 4. 2

3 Other Variations of the Game

Now let g be an arbitrary non-decreasing,supermodular function with g(∅) = 0. The con-
trapolymatroid Q(g) associated with g is defined by

Q(g) ≡ {x ∈ R n : x(S) ≥ g(S) for all S  V }.⊆

The base of Q(g) is given by

B(g) = {x ∈ R n : x(S) ≥ g(S) for all S  V⊆  and x(V ) = g(V )}. (8)

Consider the game Γmax (g, w) where a mixed strategy for Player 1 (the maximizer) is some
x  B∈ (g), a mixed strategy for Player 2 (the minimizer) is some y  C∈  and the payoff is
Pg,w(x, y) ≡ x T y. Let g# be the dual of g, given by g# (S) = g(V )−g(V \S). It is easy to show
that g # is submodular and non-decreasing with g# (∅) = 0 and B(g) = B(g # ). Moreover,
Pg,w is ζ-increasing if and only if P g# ,w is ζ-decreasing. Therefore, the game Γmax (g, w) is
equivalent to Γ max (g# , w), and the solution follows immediately from Theorems 4 and 5.
Versions of Lemmas 7 and 8 also hold.
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So far, we have considered two equivalent zero-sum games where Player 1 is the maximizer
and Player 2 is the minimizer. We now consider an alternative game with Player 1 as
minimizer and Player 2 as maximizer. Let g be a non-decreasing,supermodular function
with g(∅) = 0, and let Γ min (g, w) be the game which is the same as Γmax (g, w) except that
Player 1 is the minimizer and Player 2 is the maximizer. Similarly, for a non-decreasing,
submodular function f with f (∅) = 0, we define Γmin (f, w) to be the same as Γ max (f, w)
except that Player 1 is the minimizer and Player 2 is the maximizer.

Although the games Γmin (g, w) and Γmin (f, w) do not seem to be equivalent to the games
of the previous section, the solutions and analysis are almost identical.We briefly describe
the solutions here and leave the proofs as an exercise.

Analogously to an f -w decomposition, we define a g-w max-decomposition S = (S1, . . . , Sr )
as follows. Set S0 = ∅ and suppose S0, . . . , Sj have already been defined for some j ≥ 0.
Then if Sj ≡ S 1  ∪ · · ·  S∪ j is equal to V , set r = j. If not, we define Sj+1 to be any set
S  V \ S⊆ j that maximizes h

g,w
Sj (S). This time, the function h

g,w
T is the ratio of a super-

modular function and a modular function and can be maximized by using the procedure of
Iwata et al. (1997) to minimize the inverse ratio. Then the Player 1 strategy xS is defined
in precisely the same way as in the original version of the game.

Theorem 9 Let f be a non-decreasing submodular function with f (∅) = 0 and let g be
a non-decreasing supermodular function with g(∅) = 0. Then the solutions to the games
Γmax (f, w), Γmax (g, w), Γmin (f, w) and Γ min (g, w) are given in Table 1. The value and an
optimal Player 1 strategy are indicated in the second and third columns of the table. In
each case, the set of optimal Player 2 strategies is the convex hull of the set of  yS∗

where S∗

ranges over all possible values as given in the second column of the table.The fourth column
gives a condition on the payoff for the set S∗ to have the form given in the fifth column.The
sixth column gives a condition for S∗ to be equal to V .

4 Applications to Search Games

In this section we apply our results to a number of search games between a Searcher (Player 1)
and a Hider (Player 2), where V corresponds to a set of hiding locations.In each example, a
Searcher pure strategy is a permutation σ of V , where σ(i) is the location that is in position i

14



Table 1: Solutions to four version of the game with submodular f and supermodular g
S for optimal Condition S∗, if condi- Condition on

Game Value Player 1 on payoff tion on payoff payoff for
strategy xS holds S∗ = V

Γmax (f, w) f (S ∗ )
w−1 (S ∗ ) = f -w ζ-decreasing {i : ζ i ≤ r} decreasing

minS V⊆
f (S)

w−1 (S) decomposition

Γmax (g, w) g# (S ∗ )
w−1 (S ∗ ) = g# -w ζ-increasing {i : ζ i ≤ r} increasing

minS V⊆
g# (S)

w−1 (S) decomposition

Γmin (g, w) g(S∗ )
w−1 (S ∗ ) = g-w ζ-increasing {i : ζ i ≥ r} increasing

maxS V⊆
g(S)

w−1 (S) max-decomposition

Γmin (f, w) f # (S ∗ )
w−1 (S ∗ ) = f # -w ζ-decreasing {i : ζ i ≥ r} decreasing

maxS V⊆
f # (S)

w−1 (S) max-decomposition

in the order of search and a Hider pure strategy is a location i  V∈  at which a target is
hidden.

4.1 A Weighted Search Game

Consider a game where the time to search location i is given by ti > 0 and each location i

has a weight di , corresponding to the rate of damage incurred at location i while the target
has not been found.The payoff is given by P (σ, i) = di Cσ

i , for a permutation σ and i  V∈  ,
where

Cσ
i =

X

σ−1 (j)≤σ −1 (i)

t j .

This payoff is the total time to find the Hider multiplied by the rate of damage. The
Searcher is the minimizer and the Hider is the maximizer. This game was considered by
Yolmeh and Baykal-Gürsoy (2021), who solved the special case when the search times ti are
all equal to 1, using a polyhedral approach.(Yolmeh and Baykal-Gürsoy (2021) also applied
a column and row generation approach to the game in a more general network setting, with
multiple searchers and targets.)

Condon et al. (2009) studied the special case of this game for di = 1/c i , which they called
the game theoretic multiplicative regret game.This case was also studied by Angelopoulos
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et al. (2019). Implicit in the results of Condon et al. (2009) is an optimal Player 1 (Searcher)
strategy and the value of the game for the general weighted search game with arbitrary  di .

Here we give an alternative solution using the framework presented in Sections 2 and 3.
The searching of locations is analogous to the processing of jobs in single machine scheduling,
and in the language of scheduling theory, we can interpret the time ti as the processing time

of job i and the time C σ
i as the completion time of job i under the schedule σ.We associate

a Searcher pure strategy σ with a point xσ given by xσ
i = t i Cσ

i , i  V∈  . It is well known from
scheduling theory (see Queyranne and Schulz (1994)) that the set of feasible vectors  xσ are
the vertices of B(g), where g is the supermodular function given by

g(S) =
1
2

(t(S) 2 + t 2(S)),

and t 2(S) =
P

i S∈
t2
i . The polyhedron B(g) is known as the scheduling polyhedron and

corresponds to the set of Searcher mixed strategies in the search game.Let wi = d i /t i . Then
for a Hider pure strategy i, the expected payoff against a Searcher mixed strategy given by x

is x i wi . Hence,this is the game Γ min (g, w) and its solution follows from Theorem 9. The
value of the game is

max
S V⊆

g(S)
w−1 (S)

= max
S V⊆

(t(S) 2 + t 2(S))/2P
i S∈

t i /d i
.

It is easy to see that the payoff P (σ, i) is ζ-increasing where ζ = d.Hence, by Theorem 9, the
value and optimal strategies can be found in time O(n log n).To express the optimal Searcher
strategy as a mixture of at most n pure strategies, one can use the strongly polynomial time
decomposition algorithm of Hoeksma et al. (2014).

We note that two different solutions of the special case when the rates of damage di

are all equal to 1 were given by Lidbetter (2013) and Alpern and Lidbetter (2013), though
in each solution the size of the support of the optimal Searcher strategy was exponential
in n. Condon et al. (2009) also considered this specialcase,calling it the game theoretic

total cost problem. They found an optimal Searcher strategy of support size n.Theorem 9
implies an alternative polynomial time algorithm for finding an optimal Searcher strategy
with support size n. Furthermore, the payoff is increasing in this case, so Theorem 9 implies
that the optimal Hider strategy given by Lidbetter (2013) and Alpern and Lidbetter (2013)
is unique.
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4.2 A Weighted Search Game with Variable Speeds

We can extend the model of the previous subsection by adopting the variable speed network
model, as considering by Alpern and Lidbetter (2014). Suppose that we think of the set
of locations V as endpoints of n arcs, whose other endpoint is a common point O. The
Searcher successively travels from O to the end of each arc and back again, where the time
to travel from O to the end of arc i is ai > 0 and the time to travel back again is bi > 0. Let
t i = a i + bi be the tour time of arc i. Similarly to the previous subsection, the vectorC̃σ is
defined as

C̃σ
i = a i +

X

σ−1 (j)<σ −1 (i)

t j = C σ
i − bi ,

and corresponds to the times the Searcher reaches each location under σ.
We consider a weighted search game with a minimizing Searcher and a maximizing Hider,

whose payoff for a permutation σ and i  V∈  is given by di C̃σ
i . If bi = 0 for all i, then C̃σ = C σ

and this is equivalent to the model of the previous subsection.
The special case when the rates ofdamage di are all equal to 1 was solved by Alpern

and Lidbetter (2014) in the more general setting of tree networks, but the optimal Searcher
strategy given had exponentialsupport size even in the case of no network structure.The
case of arbitrary di has not been considered before.

Let x̃σ
i = t i C̃σ

i and let wi = d i /t i , so that the payoff for a Searcher strategy σ and a Hider
strategy i is wi x̃ i . Note that we can write x̃σ = x σ − c, where xσ is defined as in the previous
subsection and c is given by ci = b i t i . Therefore, the convex hull of the vectors x̃σ is equal
to B(g) − c = B(˜g), where g̃ is the non-decreasing supermodular function given by

g̃(S) = g(S) − c(S) =
1
2

(t(S) 2 +
X

j S∈

(aj − bj )t j ).

Therefore, this is the game Γmin (g̃, w), and its solution follows from Theorem 9. The value
of the game is

max
S V⊆

g(S)
w−1 (S)

= max
S V⊆

(t(S) 2 +
P

j S∈ (aj − bj )t j )/2
P

i S∈
t i /d i

.

Again, the payoff function here is ζ-increasing for ζ = d, so the value and optimal strategies
can be found in time O(n log n). Also, since B(g̃) is simply a translation of B(g) by −c,
we can again use the decomposition theorem ofHoeksma et al. (2014) for B(g) to write
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an optimal mixed Searcher strategy x  B∈ (g̃) as a convex combination of at most n pure
strategies.

Similarly to the previous subsection, for the special case considered in Alpern and Lid-
better (2014) where di = 1 for all i, our solution here improves upon the optimalSearcher
strategy of exponential support size.Also, since the payoff is increasing, Theorem 9 implies
that the optimal Hider strategy is unique.

4.3 Application to a Search and Rescue Game

We now introduce a new search game in which we independently associate to every  i  V∈

a probability p i that the Searcher does not get captured when searching location i and a
probability qi that a target located at i is found if location i is searched. The payoff of the
game is the probability the Searcher finds the target without getting captured herself.

More precisely, for a given permutation σ and a given i  V∈  , the payoff is qi πσ
i , where

πσ
i =

Y

σ−1 (j)≤σ −1 (i)

pj .

The Searcher is the maximizer and the Hider is the minimizer. Let x σ
i = 1−p i

pi
πσ

i . It was
shown by Kodialam (2001) and independently by Agnetis et al. (2009) that the set of feasible
vectors xσ are the vertices of B(f ) where f is the non-decreasing submodular function given
by

f(S) = 1 −
Y

i S∈

pi . (9)

Setting wi to be equal to qi pi /(1 − p i ), we see that this is the game Γmax (f, w). Therefore,
by Theorem 4, the value of the game is

min
S V⊆

f (S)
w−1 (S)

= min
S V⊆

1 −
Q

i S∈
piP

i S∈ (1 − pi )/(q i pi )
.

The payoff is easily seen to be ζ-decreasing where ζi = q i (or indeed where ζi = q i /p i ). It
follows from Theorem 9 that the value and optimal strategies can be found in time  O(n log n).

Kodialam (2001) gave a strongly polynomial algorithm with runtime O(n3 log n) for rep-
resenting a point in B(f ) as a convex combination of at most n vertices, and we can use this
to express the optimal Searcher strategy as a mixture of at most n pure strategies.
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In the case that q i = 1 for all i, the game reduces to the one considered in Lidbetter
(2020), where a solution was given but the size of the support of the optimal Searcher strategy
was exponentialin n. This approach gives an optimalstrategy with support size n. Since
the payoff is decreasing in this case, the optimal Hider strategy given in Lidbetter (2020) is
unique.

5 Relation to Sequential Testing

In this section we show that a sequential testing problem studied in Condon et al. (2009)
and Kodialam (2001) is equivalent to the “minimization” version of the game considered in
Subsection 4.3.

Suppose some items, or tuples must be routed in some order through a set V of operators,
each of which tests whether the tuple satisfies some predicate (or filter) of a conjunction.To
spread the load on the operators,different tuples may be routed in different orders. There
is a known probability pi that a tuple will fail the test of operator i, and the tuple is routed
through the operators until it fails one of the tests (and is eliminated) or it passes all of them.
The problem here is to maximize the rate of flow of tuples routed through the operators,
subject to the constraint that operator i has a maximum flow rate of ri . More precisely, the
problem is given by the following linear program, where we denote that set of permutations
of V by Σ(V ).

max
X

σ∈Σ(V )

λσ s.t.
X

σ∈Σ(V )

λσ

Y

σ−1 (j)<σ −1 (i)

pj ≤ r i for all i  V,∈

λσ ≥ 0 for all σ ∈ Σ(V ).

The variables λσ here can be interpreted as the rate that tuples are routed through the
operators in the order given by the permutation σ. We adopt the terminology of Condon
et al. (2009) and call this the max-throughput problem. The problem was solved in both
Condon et al. (2009) and Kodialam (2001), the latter paper exploiting the polymatroid
structure of a space associated with the problem and the former giving a more efficient
combinatorial algorithm with no reference to polymatroids.

Let qi = 1/(p i r i ) and recall the notation πσ
i =

Q
σ−1 (j)≤σ −1 (i)

pj of the previous section.
Let v = 1/(

P
σ∈Σ(V )

λσ) and let θσ = vλ σ. Then the max-throughput problem is equivalent
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to the following LP

min v s.t.
X

σ∈Σ(V )

θσqi π
σ
i ≤ v for all i  V,∈

X

σ∈Σ(V )

θσ = 1,

θσ ≥ 0 for all σ ∈ Σ(V ).

This is the problem of finding an optimal strategy for Player 1 in the game Γmin (f, w), where
f is given by (9) and w i = q i pi /(1 − p i ) = r i /(1 − p i ). Therefore, the solution follows from
Theorem 9. The algorithm of Kodialam (2001) is essentially a special case of the algorithm
given in the proof of Theorem 4.

The derivation of the equivalence of these two problems closely follows the derivation in
Condon et al. (2009) of the equivalence of the game theoretic multiplicative regret problem
and an artificial problem they called the cumulative cost limit problem.

6 Applications to Queueing Theory

As mentioned in the Introduction, the performance space of severalmulticlass queueing
systems have been shown in Federgruen and Groenevelt (1988) and Shanthikumar and Yao
(1992) to have a polymatroid structure. Possible performance measures of interest include
the expected delay of the first m jobs, the expected number of type i jobs in the system
at time t or the expected number of job completions by time t. Depending on the context,
the objective may be to maximize or minimize the performance measure and many such
problems can be regarded as a specialcase of maximizing or minimizing a linear function
over the base of a polymatroid.

For every maximization or minimization problem of this type we can consider a max-min
or min-max variant. If we have an oracle for the submodular or supermodular function that
defines the polymatroid or contrapolymatroid associated with a problem (in particular, if
the function can be expressed in closed form), then the solution of the max-min or min-max
problem follows from the results of this paper. We discuss one such problem here as an
example rather than giving an exhaustive list of problems.

Coffman Jr and Mitrani (1980) consider a queueing system with a single server with n

classes V of jobs whose arrivaltimes follow a Poisson process and whose service times are

20



exponentially distributed (that is, a M/M/1 system). Jobs in class i arrive at rate λ i and
are serviced at rate µi . The traffic intensity of jobs of class i is ρ i = λ i /µ i . It is assumed
that ρ(V ) ≡

P n
i=1

ρi < 1, which ensures the existence ofa stationary distribution for the
number of jobs in the system.The expected time that jobs of class i spend in the system in
the steady state is denoted Wi , and depends on the scheduling strategy chosen.

Let x ∈ R n be defined by x i = ρ i Wi . It is shown in Coffman Jr and Mitrani (1980)
that the space of feasible vectors x is the base B(g) of the contrapolymatroid given by the
supermodular function

g(S) =
P

i S∈
ρi /µ i

1 − ρ(S)
.

Each vertex xσ of B(g) corresponds to a priority rule that assigns jobs to the server based on
some fixed priority ordering of the job classes (given by the permutation σ). A non-vertex
point x =

P
σ∈Σ(V )

θσxσ  ∈ B(g) can be interpreted as a randomized priority rule where in
each busy period the priority rule σ is chosen with probability θσ.

A well known consequence is that if the objective is to minimize some weighted sum
P n

i=1
ci Wi of expected number of jobs in the system (where ci may correspond to the holding

cost per unit time of jobs of class i), we can simply use the greedy algorithms of Edmonds
(1970) to minimize wT x with w i = c i /ρ i . The solution is a priority rule that corresponds to
some vertex of B(g).

Now suppose we wish to minimize the (weighted) maximum expected holding cost of
any class of jobs. That is, we wish to find a performance vector x  B∈ (g) that minimizes
maxi wi x i . A solution is given by Theorem 9 of this paper, and the value of the min-max
expected holding cost is

max
S V⊆

g(S)
w−1 (S)

= max
S V⊆

P
i S∈

ρi /µ i

(1 − ρ(S))
P

i S∈
ρi /c i

.

7 Finding Optimal Strategies when the Payoff is Mono-

tone

As mentioned in Section 2, expressing an optimal Player 1 strategy xS as a convex com-
bination of pure strategies relies on an algorithm whose runtime is O(n9), in general. We
have also seen that for particular polymatroids, this runtime can be reduced.In this section
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we show that if f is submodular and P f,w is decreasing,then an optimal Player 1 strategy
can be efficiently implemented.More particularly, we show that a random pure strategy can
be drawn from the (exponentially-sized) support of this optimal strategy,with appropriate
probability, in time O(n).

Theorem 10 Suppose f is submodular and Pf,w is decreasing. Then there is an optimal
Player 1 strategy x for Γmax (f, w) such that a random pure strategy xσ for Player 1, drawn
from the distribution on pure strategies defined by x, can be generated in O(n) time. An
analogous result holds for Γmin (g, w) if g is supermodular and Pg,w is increasing.

Proof. First, we introduce some notation. For A  V⊆  , let f A : 2V \A → R + be given by
f A (S) = f (S  A∪ ) − f (A). We also write f |A for the function f restricted to subsets of A
and w|A for the vector w restricted to elements in A. It is easy to show that fA and f |A are
submodular and the payoffs Pf | A ,w| A and Pf A ,w| A are decreasing.

We begin by constructing an optimal strategy for P f,w . We construct the strategy re-
cursively. If n = 1, only one strategy is available, which is optimal. Suppose n ≥ 2 and we
have a construction for games such that the number of Player 2 strategies is  n − 1 and let
V 0 = V \ {n}. Define

(i) Γ 1 ≡ Γ min (f |V 0, w|V 0),

(ii) Γ 2 ≡ Γ min (f {n} , w|V 0),

whose values are V1 ≡ f(V 0)/w −1 (V 0) and V2 ≡ (f (V ) − f ({n}))/w −1 (V 0), respectively,by
Lemma 8. By induction, we have a construction for an optimal strategy for both of these
games. Denote these optimal strategies x1 and x2, respectively. We now define two new
strategies x̃1 and x̃2 for Γ min (f, w) as follows. The strategy x̃1 is obtained by replacing
each pure strategy xσ in x 1 with x σ0

, where σ0 is σ followed by element n. The strategy x̃2

is obtained by replacing each pure strategy xσ in x 2 with x σ00
, where σ00 is σ preceded by

element n.
Table 2 displays the payoff of the strategies ˜x1 and x̃2 against the element n and against

any element of V0.
The function f (S)/w −1 (S) is non-increasing, by Lemma 8.Hence,

wn f ({n}) = f ({n})
w−1

n

≥ f (V )
w−1 (V )

= f (V )
w−1 (V 0) + w−1

n

.
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Table 2: Expected payoffs P (˜x1, i) and P (x̃2, i) for i = n and i  V∈
0.

i = n i  V∈ 0

x̃1 wn(f (V ) − f (V 0)) V1

x̃2 wn f ({n}) V2

Rearranging, we obtain
wn f ({n}) ≥

f (V ) − f ({n})
w−1 (V 0)

= V2.

Also,
f (V 0)

w−1 (V 0)
≥ f (V )

w−1 (V )
=

f (V )
1/w n + w −1 (V 0)

.

Rearranging gives
wn (f (V ) − f (V 0)) ≤ f (V 0)/w −1 (V 0) = V 1.

It follows that by mixing appropriately between strategies ˜x1 and x̃2, Player 1 can construct
a strategy x whose expected payoff against against any pure strategy (and therefore also
any mixed strategy) of Player 2 is equal to some constant c.Therefore, by definition of the
optimal Player 2 strategy, yV ,

c = P (x, yV ) =
f (V )

w−1 (V )
,

so c is the value f (v)/w−1 (V ) of the game and x is optimal.
We note that, because each recursive callmixes between two strategies,the support of

the final constructed strategy x has size 2n .
We now describe how to generate a random pure strategy xσ from the distribution on

pure strategies defined by x, without actually constructing x.The procedure is similar to the
recursive construction above.However, in each recursive call, we do not recursively generate
optimal strategies for both Γ 1 and Γ 2. Instead, we first generate the payoffs in Table 2
and calculate the mixing probabilities for x1 and x2, call them p0 and p00(=1 − p0). We then
randomly choose between recursively generating a pure strategy for Γ1 or for Γ2, choosing the
first with probability p 0 and the second with probability p00. Denote by xσ the pure strategy
that is generated. If it was generated for Γ1, we return xσ0

, where σ0 is produced from σ by
appending element n.If it was generated for Γ2, we return xσ00

where σ00is produced from σ

by prepending element n. It is clear that this procedure generates a random pure strategy
with the appropriate probability.
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It remains to verify that this procedure can be implemented to run in time O(n). Recall
that we assume that each oracle query can be answered in constant time.The procedure
makes O(n) recursive calls.The only non-trivial part of the analysis is the computation of
the mixing probailities p0 and p00in a recursive call.These are computed from the four entries
in Table 2. The entries in the first column of the table can be computed in constant time.
The entries in the second column, V1 and V2, are equal to f (V0)/w −1 (V 0) and f (V )/w −1 (V 0)
respectively. Computing these values from scratch in each recursive callwould take linear
time per recursive call.However, using the fact that w−1 (V ) = 1/w n +w −1 (V 0), we can easily
reduce the computation in each recursive call to take constant time, by taking advantage of
the computation done in the previous recursive call.Thus the runtime is O(n).

An analogous result for Γmax (g, w) can be proved similarly. 2

8 Conclusion

We have provided a unifying framework under which we can understand and analyze a
number of natural games that arise in different research areas, gaining new insight into
existing results and proving new results.There are many related problems in search theory
and sequentialtesting that do not fall under this framework, including problems involving
networks and multiple targets. A promising avenue for future research could be to explore
polyhedral approaches to such problems.
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