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Abstract

Recent research has established sufficient conditions for finite mixture models to
be identifiable from grouped observations. These conditions allow the mixture
components to be nonparametric and have substantial (or even total) overlap. This
work proposes an algorithm that consistently estimates any identifiable mixture
model from grouped observations. Our analysis leverages an oracle inequality for
weighted kernel density estimators of the distribution on groups, together with
a general result showing that consistent estimation of the distribution on groups
implies consistent estimation of mixture components. A practical implementation
is provided for paired observations, and the approach is shown to outperform
existing methods, especially when mixture components overlap significantly.

1 Introduction

In statistics and machine learning, finite mixture models are often used to describe the distribution of
subpopulations within a larger population. A finite mixture model can be written

p =
M∑
m=1

w∗mp
∗
m, (1)

where w∗m > 0 are mixing weights such that
∑M
m=1 w

∗
m = 1, and p∗m are probability densities.

Without additional assumptions, the mixture model p is not identifiable from iid data. Typically,
identifiability is ensured by restricting the p∗m to some family of parametric distributions. Restricting
the p∗m to be Gaussian yields the Gaussian mixture model (GMM) which is identifiable [1, 2].

Most work on estimating mixture models assumes an iid sampling scheme. In this work we examine
an alternative sampling scheme where observations occur in iid groups. Each group is generated by
sampling a component m ∈ [M ] according to w∗m, and then drawing N iid observations from p∗m.

Recent work has shown that any finite mixture model is identifiable given grouped observations of
sufficient size [3]. In the worst case, any finite mixture model with M components is identifiable
given groups of size N ≥ 2M − 1. It was also shown that, if the underlying components of the
mixture model are jointly irreducible [4], then the mixture is identifiable given paired observations
(N = 2). This framework provides a setting where the potential exists to recover nonparametric and
highly overlapping mixture components. As of yet, however, no general theory or algorithms are
known for this estimation problem.

This work makes the following contributions. We introduce a novel variant of the kernel density
estimator that yields statistically consistent estimates of any identifiable nonparametric mixture

∗Equal contribution.
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model (NoMM) from grouped observations. To prove this result, we establish an oracle inequality
for weighted kernel density estimators. We also establish a general result showing that consistent
estimation (with an estimator possessing a natural factored form) of the distribution on groups
implies consistent estimates of the underlying components when the NoMM is identifiable. The only
additional condition imposed by our theory is that the p∗m be square integrable. In the case of N = 2,
we offer an efficient algorithm and demonstrate its effectiveness on several datasets.

We study two applications where paired observations naturally arise. The first is nuclear source
detection, where nuclear particles interact with a detector to produce some form of measurement.
A critical challenge in this application is to classify incoming particles as belonging to source or
background. Because of changing environments, training data are typically not available, and these
two classes also have substantial overlap. By positioning two detectors side-by-side, it is possible to
simultaneously measure two particles from the same (unknown) class.

We also apply our method to topic modeling of Twitter data. Since tweets usually express a small
set of very closely related ideas, words in tweets contain common underlying semantic information.
The pairing of words has the potential to encode this semantic information in a way that accounts for
context. The proposed method, which operates on continuous word embeddings, allows for flexible
modeling of the distributions of topics over words using static word embeddings [5]. Furthermore
our method does not require anchor words, allows for substantial overlap of topics without loss of
identifiability, and can be trained using documents with as few as two words without any document
aggregation [6, 7]. While other works have explored topic modeling with word embeddings, which
we call continuous topic modeling, most either impose parametric assumptions or are not suited for
very short texts. To our knowledge, this is the first work to consider a nonparametric approach to
continuous topic modeling of very short texts.

2 Background and Previous Work

Much of the literature concerning NoMMs falls in the category of Bayesian nonparametrics, a
thorough summary of which is given in [8]. Typically, mixture models in this setting do not assume
that the number of mixture components is known, and instead assume that the mixture components
are from a known parametric family of distributions. An in-depth treatment of Bayesian NoMMs
(BNoMMs) can be found in [9]. The parametric assumptions on the mixture components have been
relaxed in [10], but the identifiability results impose regularity and separation conditions on the
components. We mention BNoMMs only for completeness and emphasize that our work considers
an alternative setting where the number of mixture components is known, but few to no assumptions
are made on the mixture components themselves.

Mixture models are often utilized to solve the clustering problem. Parametric mixture models, such
as GMMs, are able to capture overlapping clusters. Most clustering algorithms, however, such as k-
means [11, 12], DBSCAN [13], and spectral clustering [14, 15], assume clusters are non-overlapping
and hence fail when clusters overlap. The grouped observation setting considered in this work
is known in the clustering literature as clustering with instance-level constraints [16, 17, 18]. A
survey of constrained clustering is given in [19]. Grouped observations correspond to so-called
must-link constraints, where two or more observations are known, through expert knowledge or some
other means, to belong to the same cluster. Most constrained clustering approaches cannot model
overlapping clusters effectively [20].

There is relatively little work on mixture modeling with nonparametric components, and to our
knowledge no prior work addresses the incorporation of instance-level constraints in the NoMM
setting. Mallapragada et al. [21] use a mixture of kernel density estimators to estimate a NoMM, but
do not address identifiability or provide statistical guarantees. Aragam et al. [10] prove identifiability
of NoMMs under regularity and separation conditions on the components. Schiebinger et al. [22]
study kernelized spectral clustering and characterize recoverability of components with small overlap.
Zheng and Wu [23] establish consistent estimation of NoMMs under the assumption that mixture
components have independent marginals. Bao et al. [24] consider the related problem of “similar-
unsupervised” binary classification, which assumes access to unlabeled data in addition to must-link
constraints.

In the grouped observation setting, previous works on multi-view models can be adapted to prove
identifiability results and give algorithms to recover mixture model components. When the mixture
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components are linearly independent it has been shown that three observations per group is sufficient
to yield identifiability as well as an algorithm to provably recover the components [25, 26]. We note
that these approaches require three observations per group, while the proposed method works with as
few as two observations per group. This difference amounts to performing kernel density estimation
in three times the ambient dimension versus two. With the instability of KDEs in high dimension, the
reduction to groups of size two can be very meaningful in practice. Furthermore, in applications like
nuclear particle classification, triples may be exceedingly rare or difficult to measure. For discrete
data, similar results from nonnegative matrix factorization exist under joint irreducibility with two
observations per group [27], and algorithms have been proposed to recover arbitrary mixture models
with M components given 2M − 1 observations per group [28, 3].

3 Problem Statement

Notation For 1 ≤ p <∞ denote ‖f‖p := (
∫
Rd |f(x)|pdx)1/p, and Lp := {f : Rd → R : ‖f‖p<

∞}. The transpose of a matrix A will be written A′. Random variables will be referred to by capital
letters, and instances of random variables will be referred to by the corresponding lowercase letter. We
represent the set of positive integers {1, 2, . . . ,M} by [M ]. We let ∆R be the probability simplex in
RR. We denote the M -fold Cartesian product of a set with a subscript, e.g., ∆R

M = ∆R × . . .×∆R︸ ︷︷ ︸
M

.

We precisely introduce the grouped observation setting, review known identifiability results, and
formalize the estimation problem. We assume M , the number of mixture components, is known.
While this may seem like a strong assumption, it runs counter to the assumptions used in BNoMMs,
where M is modeled nonparametrically but mixture components are assumed to be parametric
distributions. In practice, M can be estimated by looking for the knee in the scree plot of the
initialization we suggest. Alternatively, an approach based on the Bayesian information criterion or
minimum description length could be useful, but we leave this to future work.

The standard sampling procedure for a mixture model of the form p =
∑M
m=1 w

∗
mp
∗
m can be viewed

as a two step process wherein one samples a mixture component p∗m with probability w∗m and then
observes one draw from that distribution X ∼ p∗m. The grouped observation setting considers
an alternative sampling scheme where, after selecting a mixture component p∗m, instead of only
drawing a single observation, a group of observations X = (X1, . . . , XN ) are drawn iid from p∗m.
As in a standard mixture model, one does not know a priori from which mixture component a
grouped observation is sampled. Repeating this n times, one’s data consists of n groups of N
observations per group X1 = (X1,1, . . . , X1,N ) , . . . ,Xn = (Xn,1, . . . , Xn,N ). The distribution

on groups is X
iid∼
∑M
m=1 w

∗
mp
∗
m
×N , where p∗m

×N : RdN → R denotes the product density such
that p∗m

×N (y1, y2, . . . , yN ) = p∗m(y1)p∗m(y2) . . . p∗m(yN ). Note that when N = 1 this is simply a
standard mixture model.

Vandermeulen and Scott [3] characterized identifiability from grouped observations for mixtures
of general probability measures. A mixture model p =

∑M
m=1 w

∗
mp
∗
m is said to be N -identifiable

if p cannot be expressed p =
∑M ′

m=1 w
′
mp
′
m for some distinct mixture model such M ′ ≤ M and∑M

m=1 w
∗
mp
∗
m
×N =

∑M ′

m=1 w
′
mp
′
m
×N . In words, N -identifiability of p means there is no other

mixture model with M or fewer components that induces the same distribution on groups. They show
that a general mixture model is N -identifiable from grouped observations provided N ≥ 2M − 1,
and that this cannot be improved without imposing restrictions on the components. The result places
no assumptions whatsoever on the components.

In practice, the bound of 2M −1 is probably pessimistic, and the most useful cases are likely whenN
is small, say two or three. The authors of [3] also show that if the p∗m are jointly irreducible (linearly
independent), then the mixture is N -identifiable for N = 2 (N = 3). A collection of probability
densities µ1, µ2, . . . , µM is said to be jointly irreducible (JI) if

∑M
m=1 cmµm is never a valid density

whenever some cm < 0. JI is satisfied, for example, if the support of each mixture component has
some subset of positive measure that does not intersect the supports of the other mixture components
(a continuous analogue of the anchor word assumption). This is not necessary, however; JI is still
possible if all densities have the same support. In the remainder of the paper we focus on the setting
of N = 2, not only because JI provides a flexible nonparametric condition where paired observations
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suffice, but also because the notation for our estimator becomes cumbersome when N > 2. Our
theory generalizes easily to N > 2, and these details our described in the supplemental material.

The paired observations X1, . . . ,Xn with Xi = (Xi,1, Xi,2) ∈ Rd × Rd are iid and have density

q(x, x′) :=
M∑
m=1

w∗mp
∗
m(x)p∗m(x′) x, x′ ∈ Rd.

We assume M is known. Our goal is to consistently estimate w∗m and p∗m when p is identifiable.

We now briefly motivate the grouped observation setting. Drawing a comparison to existing work, our
proposed method can be considered a continuous version of multinomial mixture modeling, which
is used in psychometrics where measurements over time are collected for a group of, for example,
bipolar disorder patients and used to identify subgroups within that population whose condition
is only evident with repeated temporal measurements [29]. Additionally, many mixture modeling
problems can be transformed to the grouped observation setting by adjusting the sampling procedure,
making simplifying assumptions on existing data, or by manual grouping based on domain expert
knowledge. For example, in the Twitter experiment we assume tweets usually have only a single topic,
suggesting grouped observations can be created by selecting words at random from a given tweet. In
a sensor network, assuming stationarity of the measured process, one could double sensors in each
location or sample twice in quick succession, rather than once, at the sampling interval. Much as iid
assumptions on non-grouped observations are used to simplify analysis and hold only approximately
in collected data, the same can be said about collecting grouped observations.

4 A Weighted Kernel Density Estimator

Our overall strategy is to first devise a consistent estimator of q, the density on pairs, where the
estimator has a factorized form reflecting the group sampling scheme. In the next section we prove
that if an estimator for q is consistent, and p is identifiable, then the components comprising our
estimator converge to the true components.

Let k : Rd → R be a function, called a kernel, such that k ≥ 0 and
∫
k(x)dx = 1. An example is the

Gaussian kernel k(x) = (2π)−1/2 exp(−‖x‖2/2). For σ > 0, define kσ(x, x′) := σ−dk((x−x′)/σ).
We refer to the second argument of kσ as the center of the kernel. A weighted kernel density estimator
(wKDE) for a density on Rd, but constructed from the paired observations Xi, has the form

p(x; θ) =
n∑
r=1

2∑
r′=1

θr,r′kσ(x,Xr,r′),

where θr,r′ is the element of θ = [θ1,1, θ1,2, . . . , θn,1, θn,2]′ corresponding to the weight of the kernel
centered at Xr,r′ . We propose to model the mixture components as wKDEs. Specifically, given n
paired observations, we consider estimators of q of the form

qw,α(x, x′) =
M∑
m=1

wmp(x;αm)p(x′;αm), (2)

where w = [w1, w2, . . . , wM ]′ ∈ ∆M , αm = [αm,1,1, αm,1,2, . . . , αm,n,1, αm,n,2]′ ∈ ∆2n for all
m ∈ [M ], with αm,r,r′ corresponding to the weight of the kernel centered at Xr,r′ in the estimate of
the mth mixture component, and α := (α1, α2, . . . , αM ) ∈ ∆2n

M .

To select the parameters (w,α), we propose to minimize the integrated square error (ISE) of qw,α
given by‖q − qw,a‖22 :=

∫
[q(x, x′)− qw,a(x, x′)]2dxdx′. Expanding the ISE gives

‖q − qw,a‖22 =

∫
q2
w,α(x, x′)dxdx′ − 2

∫
qw,α(x, x′)q(x, x′)dxdx′ +

���
���

��:const.∫
q2(x, x′)dxdx′ .

Since the final term is constant with respect to w and α, we focus on minimizing the first two terms
which we call the truncated ISE (TISE) and denote by J(w,α). Substituting the definition of qw,α in
the TISE yields

J(w,α) :=

∫
q2
w,α(x, x′)dxdx′ − 2

M∑
m=1

n∑
r=1

2∑
r′=1

n∑
s=1

2∑
s′=1

wmαm,r,r′αm,s,s′h(r, r′, s, s′), (3)
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where h(r, r′, s, s′) :=
∫
kσ(x,Xr,r′)kσ(x′, Xs,s′)q(x, x

′)dxdx′. Since q is unknown, the ISE and
therefore J(w, a) cannot be calculated directly. Noting that h(r, r′, s, s′) is an expectation, we
estimate this term using a hybrid leave-one-out/leave-two-out (LOO/LTO) estimator

ĥ(r, r′, s, s′) :=

{
1

n−2

∑
i∈[n]\{r,s} kσ(Xi,1, Xr,r′)kσ(Xi,2, Xs,s′) r 6= s

1
n−1

∑
i∈[n]\{r} kσ(Xi,1, Xr,r′)kσ(Xi,2, Xs,s′) r = s

.

In this manner we have the empirical TISE

Ĵ(w,α) :=

∫
q2
w,α(x, x′)dxdx′ − 2

M∑
m=1

n∑
r=1

2∑
r′=1

n∑
s=1

2∑
s′=1

wmαm,r,r′αm,s,s′ ĥ(r, r′, s, s′). (4)

With all the notation in place, our estimate of the nonparametric mixture model is determined by

(ŵ, α̂) := arg min
w∈∆M , α∈∆2n

M

Ĵ(w,α), (5)

where ŵm are the mixing weights and p(x; α̂m) are the mixture components for m ∈ [M ]. The
theoretical results presented in Section 5 concern the behavior of the minimizer of (5). We show
not only that the empirical TISE minimizing estimator q̂ := qŵ,α̂ consistently estimates q, but its
components also consistently estimate the underlying mixture model if it is identifiable.

5 Theoretical Results

In this section we state our assumptions and main results. Formal proofs are given in the supplemental
material. Our overall approach is to first show that the proposed q̂ is a consistent estimate of q
(Theorems 1 and 2). We then show that if p in (1) is identifiable, then the components p(x; α̂m)
defining q̂ are consistent estimates of p∗m, as are the ŵm for w∗m (Theorem 3).

We assume throughout this section that p∗m ∈ L2 for all m. We also require that the kernel k satisfy
two additional conditions: k ∈ L2 and k ≤ Ck for some constant Ck <∞.

We begin with an oracle inequality, which shows that our estimator selects an approximately optimal
member of our model class.

Theorem 1. Let ε > 0 and set δ = 8(n2 − n) exp{−σ
4d(n−2)ε2

8C4
k
} + 8n exp{−σ

4d(n−1)ε2

8C4
k
}. With

probability at least 1− δ the following holds: ‖q − qŵ,α̂‖22 ≤ infw∈∆M , α∈∆2n
M
‖q − qw,α‖22 + ε.

Proof Sketch. The estimators ĥ are constructed so that they are sums of independent random variables,
allowing us to apply Hoeffding’s inequality to show that each ĥ concentrates around its h. Then using
basic inequalities (triangle inequality, union bound) and the simplex constraints on w and α, we show
that Ĵ(w,α) concentrates around J(w,α) uniformly over the parameter space.

The next result uses Theorem 1 to establish that q̂ is a consistent estimate of q in the L1 norm.

Theorem 2. If σ → 0 and nσ4d

logn →∞ as n→∞, then ‖q − qŵ,α̂‖1
a.s.−−→ 0.

Proof Sketch. We appeal to a result of [30] showing that if
∫
q̂ = 1, which it does in our case, then

strong consistency (i.e., a.s. convergence) of a density estimator in L2 implies strong consistency in
L1. To show strong consistency in L2, from Theorem 1 it suffices to exhibit w ∈ ∆M and α ∈ ∆2n

M

such that ‖q − qw,α‖1
a.s.−−→ 0. For this we take w = w∗ and α = α∗ such that each α∗m is uniform

on the data points drawn from p∗m. This makes p(· ;α∗m) the usual (uniformly weighted) KDE for p∗m,
which is known to be a strongly consistent estimator. Strong consistency of q̂ then easily follows.

The preceding results hold regardless of whether p in (1) is identifiable. The next result states that
if p is identifiable, then the estimates p(· ; α̂m) comprising q̂ are consistent estimates of the true
components p∗m, as are the ŵm of w∗m. The result is stated for N ≥ 2.
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Theorem 3. Let
∑M
m=1 wmpm be an N -identifiable mixture model, and

∑M
m=1 ŵm,j p̂m,j be a

sequence of mixture models such that
∥∥∥∑M

m=1 ŵm,j p̂
×N
m,j −

∑M
m=1 wmp

×N
m

∥∥∥
1
→ 0. Then there is a

sequence of permutations σj so that ŵσj(m),j → wm and
∥∥p̂σj(m),j − pm

∥∥
1
→ 0 for all m.

Proof Sketch. We show that if
∥∥∥∑M

m=1 ŵm,j p̂
×N
m,j −

∑M
m=1 wmp

×N
m

∥∥∥
1
→ 0 then the components

p̂m,j admit some convergent subsequence, and therefore so do p̂×Nm,j . If a subsequence p̂×Nm,j stays away
from the components p×Nm then some subsequence would converge to a component other than some
p×Nm . This allows us to construct a mixture model violating N -identifiability, a contradiction.

This result has been stated in terms of densities for readability, but the supplemental contains a
general measure-theoretic version. We may combine Theorems 2 and 3 to establish the following
(returning to the setting of N = 2). To our knowledge, this is the first result to establish consistent
estimation, under any sampling scheme, of NoMMs with substantial overlap.

Corollary 1. If σ → 0 and nσ4d

logn →∞ as n→∞, and p is 2-identifiable (e.g., the p∗m are jointly

irreducible), then ŵm
a.s.→ w∗m and ‖p(·; α̂m)− p∗m‖1

a.s.→ 0, up to a permutation.

The significance of the result is that joint irreducibility is both a flexible nonparametric assumption,
while ensuring identifiability in the case N = 2 for which a practical implementation of q̂ is possible.
We include an analogous result for all identifiable NoMMs in the supplement. Finally, we mention that
recent results on nonparametric estimation of densities which are convex combinations of separable
densities [31] suggest that it may be possible to remove the 4 in the σ4d term in our rates.

6 Optimization

In this section we suggest an approach for solving (5). We first consider the problem as presented
up to this point, which we call the full problem. We then consider an approach for speeding up
optimization by heuristically choosing a coreset as the kernel centers, which we call the coreset
approach. In what follows, we assume that k̃σ(zr, zu) :=

∫
kσ(x, zr)kσ(x, zu)dx has a closed-form

expression or can otherwise be computed efficiently. This assumption is satisfied by many common
kernels such as the Gaussian, Cauchy, and Laplacian kernels.

Form of the Optimization Problem. The optimization problem (5) can be written

min
w∈∆M , α∈∆R

M

M∑
k=1

M∑
`=1

wkw`

(
α′kGα`

)2

− 2

M∑
m=1

wm (α′mCαm) , (6)

where the matrices G,C ∈ RR×R will be defined shortly. Details are given in section S2.1 of the
supplementary material. In particular, both the full problem and the coreset approach can be written
in the form of (6), differing only in the definitions of R and G,C. We therefore propose to use the
same optimization approach for both problems. For the full problem, R = 2n and the matrices G
and C have the form

Ga,b = k̃σ

(
Xb a

2 c,a mod 2, Xb b
2c,b mod 2

)
Ca,b = ĥ

(⌊a
2

⌋
, a mod 2,

⌊
b

2

⌋
, b mod 2

)
.

Though the problem (6) is nonconvex, we observe that a properly initialized alternating projected
stochastic gradient descent (APSGD) procedure produces good solutions in practice. We do not make
any claims about the convergence of our algorithm. We do however note that the objective is a degree
six polynomial and that the constraint set is convex. Projected SGD is commonly used in practice to
solve large-scale constrained nonconvex maachine learning problems, and convergence to a stationary
point has been explored in the literature for various settings [32].

Pseudocode for the APSGD algorithm for solving (6) is given in the supplementary material. We
mention that the projections are onto the probability simplex, a decaying step size is used, and
stochasticity is introduced via the matrix C(t), which is a mini-batch version of C defined by
C

(t)
a,b = 1

|Ω(t)\{a,b}|
∑
i∈|Ω(t)\{a,b}| kσ(Xi,1, Xb a2 c,a mod 2)kσ(Xi,2, Xb b2 c,b mod 2), where Ω(t) is the

index set corresponding to the tth mini-batch.

6



Coreset Approach. KDEs traditionally center kernels at the location of each observation, i.e.,
kσ(·, xi,i′), where xi,i′ is the kernel center. Rather than constraining the wKDE to have kernels
centered at the observations, we can formulate the optimization problem with R kernel centers
zr ∈ Rd for some suitably chosen zr, which we take to be our coreset. Further details are given
in the supplementary material. We note the per-batch computational complexity for our APSGD
algorithm is dominated by the gradient calculations and calculating C(t). If we assume R > M , the
total complexity is O(nen(M + d)R2) where ne is the number of training epochs. Thus, choosing
R� 2n offers a substantial speed-up.

Initialization. We adopt a spectral initialization scheme. We focus on the full problem for concision,
but the coreset approach is similar; further details for both are provided in the supplementary material.
By Lemmas 5.1 and 8.2 of Vandermeulen and Scott [3], one can view the standard KDE on the full
sample as a symmetric linear operator T : L2(Rd)→ L2(Rd). We use the eigenvectors of T , which
are wKDEs on Rd, to form a low-rank approximation of the standard KDE initialize our algorithm.
This initialization is a low-rank approximation of the standard KDE. Further details for both the full
problem and the coreset approach are provided in the supplementary material.

7 Experiments

In this section we compare our coreset approach against several competing methods on a number of
real and highly overlapping synthetic datasets. Datasets are described in Table 1. We call the proposed
method Nonparametric Density estimation of Identifiable mixture models from Grouped Observations
(NDIGO). All code and synthetic datasets are publicly available.2 The MAGIC gamma ray detection
dataset [33] is publicly available via the UCI machine learning repository. The Russian-troll-tweets
Twitter dataset is publicly available through FiveThirtyEight.3 For NDIGO and MVLVM, we used
a Gaussian kernel in all experiments and Scott’s rule [34] was used for bandwidth selection. For
synthetic experiments, R was selected to yield the initialization with the lowest empirical TISE. R
was chosen from {10, 20, 30, 40, 50} for both moons datasets, and from {60, 70, 80, 90, 100} for the
Olympic rings and half-disks datasets. We used R = 200 for the MAGIC and Twitter datasets.

Several of the methods we compare against do not produce density estimates, so we evaluate
the clustering induced by each method. For constrained clustering methods, we compare against
constrained spectral clustering (CSC) [35], and constrained GMM (CGMM) [36]. We also compare
against the NoMM methods NPMIX of Aragam et al. [10] and MVLVM of Song et al. [37]. MVLVM
is our most similar competitor as it considers groups of size three. Each constrained clustering
algorithm was given access to all pair information. MVLVM was supplied triplets from the training
data. NPMIX does not utilize the pair information in any way. Following the literature, we report the
clustering results for the training sample. Out-of-sample results are provided in the supplementary
material, but we mention NDIGO is the best performer. Parameters for CSC and NPMIX were
optimized w.r.t. a separately generated holdout dataset. Average results over ten runs on the synthetic
datasets are shown in Figure 1. NDIGO outperforms all methods considered. The synthetic datasets
were constructed to have clusters that are non-ellipsoidal in shape with substantial overlap between
clusters. The clusterings induced by each method are shown in Figure 1. Performance is measured in
terms of the adjusted Rand index (ARI) [38]. We observe that NDIGO gives superior performance
across all experiments, especially when clusters have substantial overlap. Density estimates produced
by our method for synthetic datasets are shown in Figure 2.

Results on the MAGIC dataset are shown in Figure 3. The task is to detect gamma radiation events
among background radiation. When detecting rare events, the proper performance indicator is given
by the receiver operating characteristic (ROC) curve, which plots the true positive rate vs. the false
positive rate, parameterized by the threshold of a likelihood ratio test (LRT). Each method was trained
using 80% of the available data, and the ROC curve was generated from the remaining 20%. CSC
was excluded from this test because it does not produce a density estimate, so a LRT cannot be
applied. As an upper bound on possible unsupervised performance, we trained KDEs on each class
and plugged the resulting density estimates into an LRT. Previous studies concluded this method,
which we call KDE-plugin, is the best approach [33]. We find NDIGO and CGMM perform very
similarly in this experiment, outperforming other methods and approaching KDE-plugin.

2Authors’ GitHub link to go here in final version.
3available online: https://github.com/fivethirtyeight/russian-troll-tweets
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Figure 1: Example cluster assignments of three synthetic datasets by each method. Mean ARI
(standard deviation) over 10 runs is shown at the bottom left of each clustering (larger is better).The
datasets are overlapping moons (top), Olympic rings (middle), and half-disks (bottom). Half-disks
has been annotated to show the true components.

Figure 2: Component density estimate contours produced
NDIGO. From left to right: overlapping moons, Olympic rings,
half-disks

Table 1: Description of datasets.
∗Quantities after preprocessing.

Dataset (2n) M /d

Ovlp. Moons (400) 2/2
Olympic Rings (2000) 5/2
Half-disks (1200) 3/2
MAGIC (19, 020) 2/10
Twitter (3, 382, 162∗) -/10∗

We applied NDIGO to topic modeling on the Twitter dataset. Results are shown in Tables 2 and 3.
Details of data preprocessing are deferred to the supplementary material. After preprocessing, the
dataset consisted of 1, 691, 081 pairs of 10-dimensional embedded words where each element in a
pair comes from the same tweet. Algorithms for competing methods, as described by their respective
authors, could not scale to this experiment. Therefore, we compare to recent methods designed for
continuous topic modeling of short texts: LF-DMM [39], and GPU-DMM[40] as implemented by

Figure 3: Receiver operating
characteristic for MAGIC gamma
ray detection dataset.

Table 2: Russian-troll talking points learned from Twitter
dataset. ∗ Censored (racial epithet)

Topic Selected Top 10 Words

1 dead, man, kill, missing, families, young
2 make, good, better, enough, yet, even, get
3 politics, inside, news, local, police, new, state
4 trial, a∗, gentrified, wk, deport, b∗
5 businesses, competitive, strength, people, white

Table 3: Mean and standard deviation of topic coherence on
Twitter dataset over five experiments.

NDIGO LF-DMM GPU-DMM

0.521± 0.084 0.493± 0.018 0.435± 0.009
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Qiang et al. [41].4 A selection of the top 10 words of topics uncovered by NDIGO is given in Table 2.
We find that the discovered topics correspond well to other analyses of the dataset [42]. Using topic
coherence (pointwise mutual information) as an evaluation metric [43], we observe that NDIGO is
competitive with the competing methods.

8 Conclusion

In this work we introduced a novel variant of the kernel density estimator that yields consistent
estimates of any identifiable nonparametric mixture model from grouped observations. We established
an oracle inequality for weighted kernel density estimators, and a general consistency result for
estimators of the form qw,α. Namely, consistent estimation of q implies consistent estimates of the
underlying components when the NoMM is identifiable. In the case of N = 2, we offer an efficient
algorithm and demonstrate its effectiveness on several datasets where traditional approaches fail.
Additionally, we show our approach has practical applications in topic modeling with very small
documents and nuclear source detection.

Broader Impact

Our work could be applied to many problems for which labeling data is prohibitive, but groups
of similar data points can be collected easily. We have explored two such applications: nuclear
source detection and topic modeling. These applications, as we have interpreted them, have potential
for positive societal impact. Since our work is mostly theoretical and centered around a relatively
unexplored sampling scheme, there are likely applications we have not anticipated. We note that topic
modeling, in general, has potential surveillance applications, but this is not unique to the proposed
method.

Funding in direct support of this work: AR and CS were supported in part by the National
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Science. RV acknowledges support by the Berlin Institute for the Foundations of Learning and Data
(BIFOLD) sponsored by the German Federal Ministry of Education and Research (BMBF).

References

[1] J. Anderson, M. Belkin, N. Goyal, L. Rademacher, and J. Voss, “The more, the merrier: the
blessing of dimensionality for learning large Gaussian mixtures,” in Conference on Learning
Theory, 2014, pp. 1135–1164.

[2] S. J. Yakowitz and J. D. Spragins, “On the identifiability of finite mixtures,” The Annals of
Mathematical Statistics, pp. 209–214, 1968.

[3] R. A. Vandermeulen and C. D. Scott, “An operator theoretic approach to nonparametric mixture
models,” The Annals of Statistics, vol. 47, no. 5, pp. 2704–2733, Oct. 2019. [Online]. Available:
https://projecteuclid.org/euclid.aos/1564797861

[4] G. Blanchard and C. Scott, “Decontamination of mutually contaminated models,” in Artificial
Intelligence and Statistics, 2014, pp. 1–9.

[5] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,”
in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543.
[Online]. Available: http://www.aclweb.org/anthology/D14-1162

[6] W. Gao, M. Peng, H. Wang, Y. Zhang, Q. Xie, and G. Tian, “Incorporating word embeddings
into topic modeling of short text,” Knowledge and Information Systems, vol. 61, no. 2, pp.
1123–1145, 2019.

[7] J. Qiang, P. Chen, T. Wang, and X. Wu, “Topic modeling over short texts by incorporating word
embeddings,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,
2017, pp. 363–374.

4available online: https://github.com/qiang2100/STTM

9

https://projecteuclid.org/euclid.aos/1564797861
http://www.aclweb.org/anthology/D14-1162
https://github.com/qiang2100/STTM


[8] J. Xuan, J. Lu, and G. Zhang, “A survey on Bayesian nonparametric learning,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, pp. 1–36, 2019.

[9] B. G. Lindsay, “Mixture models: theory, geometry and applications,” in NSF-CBMS regional
conference series in probability and statistics. JSTOR, 1995, pp. i–163.

[10] B. Aragam, C. Dan, P. Ravikumar, and E. P. Xing, “Identifiability of nonparametric mixture
models and Bayes optimal clustering,” arXiv preprint arXiv:1802.04397, 2018.

[11] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretability of classifi-
cations,” biometrics, vol. 21, pp. 768–769, 1965.

[12] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on information theory,
vol. 28, no. 2, pp. 129–137, 1982.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise.” in KDD, vol. 96, no. 34, 1996, pp. 226–231.

[14] Jianbo Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[15] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, p.
395–416, Dec. 2007. [Online]. Available: https://doi.org/10.1007/s11222-007-9033-z

[16] K. Wagstaff and C. Cardie, “Clustering with instance-level constraints,” AAAI/IAAI, vol. 1097,
pp. 577–584, 2000.

[17] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained k-means clustering with
background knowledge,” in ICML, vol. 1, 2001, pp. 577–584.

[18] K. L. Wagstaff, S. Basu, and I. Davidson, “When is constrained clustering beneficial, and why?”
Ionosphere, vol. 58, no. 60.1, pp. 62–63, 2006.

[19] P. Gançarski, B. Crémilleux, G. Forestier, and T. Lampert, “Constrained clustering: Current and
new trends,” A Guided Tour of AI Research, In press. hal-02548212, 2020.

[20] J. Scripps and P.-N. Tan, “Constrained overlapping clusters: minimizing the negative effects of
bridge-nodes,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 3,
no. 1, pp. 20–37, 2010.

[21] P. K. Mallapragada, R. Jin, and A. Jain, “Non-parametric mixture models for clustering,” in
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR). Springer, 2010, pp. 334–343.

[22] G. Schiebinger, M. J. Wainwright, and B. Yu, “The geometry of kernelized spectral clustering,”
The Annals of Statistics, vol. 43, no. 2, pp. 819–846, 2015.

[23] C. Zheng and Y. Wu, “Nonparametric estimation of multivariate mixtures,” Journal of the
American Statistical Association, pp. 1–16, 2019.

[24] H. Bao, G. Niu, and M. Sugiyama, “Classification from pairwise similarity and unlabeled data,”
in International Conference on Machine Learning, 2018, pp. 452–461.

[25] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decompositions
for learning latent variable models,” Journal of Machine Learning Research, vol. 15, pp.
2773–2832, 2014. [Online]. Available: http://jmlr.org/papers/v15/anandkumar14b.html

[26] E. S. Allman, C. Matias, and J. A. Rhodes, “Identifiability of parameters in latent structure
models with many observed variables,” Ann. Statist., vol. 37, no. 6A, pp. 3099–3132, 12 2009.
[Online]. Available: http://dx.doi.org/10.1214/09-AOS689

[27] S. Arora, R. Ge, R. Kannan, and A. Moitra, “Computing a nonnegative matrix factorization –
provably,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
ser. STOC ’12. New York, NY, USA: ACM, 2012, pp. 145–162. [Online]. Available:
http://doi.acm.org/10.1145/2213977.2213994

[28] Y. Rabani, L. J. Schulman, and C. Swamy, “Learning mixtures of arbitrary distributions over
large discrete domains,” in Proceedings of the 5th Conference on Innovations in Theoretical
Computer Science, ser. ITCS ’14. New York, NY, USA: ACM, 2014, pp. 207–224. [Online].
Available: http://doi.acm.org/10.1145/2554797.2554818

[29] J. Allik, “A mixed-binomial model for likert-type personality measures,” Frontiers in psychology,
vol. 5, p. 371, 2014.

10

https://doi.org/10.1007/s11222-007-9033-z
http://jmlr.org/papers/v15/anandkumar14b.html
http://dx.doi.org/10.1214/09-AOS689
http://doi.acm.org/10.1145/2213977.2213994
http://doi.acm.org/10.1145/2554797.2554818


[30] L. Gyorfi and E. Masry, “The L1 and L2 strong consistency of recursive kernel density estima-
tion from dependent samples,” IEEE Transactions on Information Theory, vol. 36, no. 3, pp.
531–539, 1990.

[31] R. A. Vandermeulen, “Improving nonparametric density estimation with tensor decompositions,”
2020.

[32] S. Liu, X. Li, P.-Y. Chen, J. Haupt, and L. Amini, “Zeroth-order stochastic projected gradient de-
scent for nonconvex optimization,” in 2018 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). IEEE, 2018, pp. 1179–1183.

[33] R. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka, E. Kotrč,
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