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Abstract

Multiclass extensions of the support vector machine (SVM) have been formulated
in a variety of ways. A recent empirical comparison of nine such formulations [1]
recommends the variant proposed by Weston and Watkins (WW), despite the fact
that the WW-hinge loss is not calibrated with respect to the 0-1 loss. In this work
we introduce a novel discrete loss function for multiclass classification, the ordered
partition loss, and prove that the WW-hinge loss is calibrated with respect to this
loss. We also argue that the ordered partition loss is minimally emblematic among
discrete losses satisfying this property. Finally, we apply our theory to justify the
empirical observation made by Doǧan et al. [1] that the WW-SVM can work well
even under massive label noise, a challenging setting for multiclass SVMs.

1 Introduction

Classification is the task of assigning labels to instances, and a common approach is to minimize
misclassification error corresponding to the 0-1 loss. However, the 0-1 loss is discrete and typically
cannot be optimized efficiently. To address this, the 0-1 loss is often replaced by a surrogate loss
during training. If the surrogate is calibrated with respect to the 0-1 loss, then a classifier minimizing
the expected surrogate loss will also minimize the expected 0-1 loss in the infinite sample limit.

For multiclass classification, several different multiclass extensions of the support vector machine
(SVM) have been proposed, including the Weston-Watkins (WW) [2], Crammer-Singer (CS) [3], and
Lee-Lin-Wahba (LLW) [4] SVMs. The pertinent difference between these multiclass SVMs is the
multiclass generalization of the hinge loss. Below, we refer to the hinge loss from WW-SVM as the
WW hinge loss and so on. It is well-known that the LLW-hinge is calibrated with respect to the 0-1
loss, while the WW- and CS-hinge losses are not [5, 6].

Despite this result, the LLW-SVM is not more widely accepted than the WW-, CS-, and other SVMs.
The first reason for this is that while the LLW-SVM is calibrated with respect to the 0-1 loss, this did
not lead to superior performance empirically. In particular, Doǧan et al. [1] found that the LLW-SVM
fails in low dimensional feature space even under the noiseless setting. On the other hand, Doǧan
et al. [1] observed that the WW-SVM is the only multiclass SVM that succeeded in both the noiseless
and noisy setting in their simulations. Indeed, Doǧan et al. [1] concluded that, among 9 different
competing multiclass SVMs, the WW-SVM offers the best overall performance when considering
accuracy and computation. The second reason is that the calibration framework is not limited to
the 0-1 loss. There could be other discrete losses with respect to which a surrogate is calibrated,
and which help to explain its performance. Indeed, Ramaswamy et al. [7] recently showed that the
CS-hinge loss is calibrated with respect to a discrete loss for classification with abstention.

In a vein similar to [7], we show that the WW-hinge loss is calibrated with respect to a novel discrete
loss that we call the ordered partition loss. Our results leverage the embedding framework for
analyzing discrete losses and convex piecewise linear surrogates, introduced recently by Finocchiaro
et al. [8]. We also give theoretical justification for the empirical performance of the WW-SVM
observed by Doǧan et al. [1].
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1.1 Related work

Cortes and Vapnik [9] introduced the support vector machine for learning a binary classifier, using the
hinge loss as a surrogate for the 0-1 loss. Steinwart [10] showed that the binary SVM is universally
consistent, a desirable property of a classification algorithm that ensures its convergence to the Bayes
optimal classifier in the large sample limit. Steinwart [11] later used calibration to give a more general
proof of SVM consistency with respect to the 0-1 loss. Around that time, more general theories
of when a loss is calibrated with respect to 0-1 loss, or “classification calibrated," began to emerge
[12, 13, 14], and since then a proliferation of papers have extended these ideas to a variety of learning
settings (see Bao et al. [15] for a recent review).

Several natural extensions of the binary SVM exist, including the Weston-Watkins (WW) [2],
Crammer-Singer (CS) [3], and Lee-Lin-Wahba (LLW) [4] SVMs. Tewari and Bartlett [6] extended
the definition of calibration with respect to the 0-1 loss to the multiclass setting. Liu [5] and Tewari
and Bartlett [6] analyzed these hinge losses and showed that WW and CS hinge losses are not
calibrated with respect to the 0-1 loss while the LLW hinge loss is. Doǧan et al. [1] introduced a
framework that unified existing multiclass SVMs, proved the 0-1 loss consistency of several multiclass
SVMs when the kernel is allowed to change, and also conducted extensive experiments. Despite
not being calibrated with respect to the 0-1 loss, Zhang [12] showed that the Crammer-Singer SVM
is consistent given the “majority assumption”, i.e., the most probable class has greater than 1/2
probability. When the majority assumption is violated, experiments conducted by Doǧan et al. [1]
suggested that the CS-SVM fails, while the WW-SVM continues to perform well.

The LLW-hinge loss is calibrated with respect to the 0-1 loss while the WW-hinge loss is not [5].
Nevertheless, the WW-SVM often outperforms the LLW-SVM in experiments [1] which ostensibly
undermines using calibration be as a justification for performance. To reconcile this, we refer the
reader to the discussion in Doǧan et al. [1, Section 3.3] on relative and absolute margin losses.
Doǧan et al. [1] argued that the poorer performance of losses based on absolute margin, including
the LLW-hinge, is due to the issue of the absolute margin being incompatible the decision function.
On the other hand, the CS and WW-hinge losses are relative margin based and do not suffer the
same issue. We remark that Fathony et al. [16] proposed a relative margin hinge loss which is
calibrated with respect to the 0-1 loss that outperforms the WW-hinge loss at the expense of greater
computational complexity.

Ramaswamy and Agarwal [17] extended the notion of calibration to an arbitrary discrete loss used
in general multiclass learning. The general multiclass learning framework unifies several learning
problems, including cost-sensitive classification [18], classification with abstain option [7], ranking
[19], and partial label learning [20]. Furthermore, Ramaswamy and Agarwal [17] introduced the
concept of convex calibration dimension which is defined for a discrete loss to be the minimum
dimension required for the domain of a convex surrogate loss to be calibrated with respect to the given
discrete loss. Ramaswamy et al. [7] proved the consistency of CS-SVM with respect to the abstention
loss where the cost of abstaining is 1/2 by showing that the CS hinge is calibrated with respect to this
abstention loss. They also proposed a new calibrated convex surrogate loss in dimension dlog2 ke for
the abstention loss, implying that the CS hinge is suboptimal from the CC-dimension perspective.

Recently, several new multiclass hinge-like losses have been proposed, as well as frameworks for
constructing convex losses. Doǧan et al. [1] used their framework to devise two new multiclass hinge
losses, and using ideas from adversarial multiclass classification, Fathony et al. [16] proposed a new
multiclass hinge-like loss; all three are calibrated with respect to the 0-1 loss. Blondel et al. [21]
introduced a class of losses known as Fenchel-Young losses which contains non-smooth losses such as
the CS hinge loss as well as smooth losses such as the logistic loss. Tan and Zhang [22] proposed an
approach for constructing hinge-like losses using generalized entropies. Finocchiaro et al. [8] studied
the calibration properties of polyhedral losses using the embedding framework that they developed.
They analyzed several polyhedral losses in the literature including the CS hinge, the Lovász hinge
[23], and the top-n loss [24].

1.2 Our contributions

We introduce a novel discrete loss `, the ordered partition loss. We show in Theorem 3.1 that the
Weston-Watkins hinge loss L embeds the ordered partition loss `. Our embedding result together
with results of [8] imply that L is calibrated with respect to ` (Corollary 3.2). To the best of our
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knowledge, this is the first calibration-theoretic result for the WW-hinge loss. We also introduce
the notion of the minimally emblematic discrete loss that a polyhedral loss can embed and argue
that the ordered partition loss is minimally emblematic for the WW-hinge loss. In Section 5, we use
properties of the ordered partition loss to give theoretical support for the empirical observations made
by Doǧan et al. [1] on the success of WW-SVM in the massive label noise setting.

1.3 Notations

Let k ≥ 3 be an integer which denotes the number of classes. For a positive integer n, we let
[n] = {1, . . . , n}. If v = (v1, . . . , vk) ∈ Rk and i ∈ [k] is an index, then let [v]i := vi. Define
max v = maxi∈[k] vi and arg max v = {i ∈ [k] : vi = max v}.

Let Sk denote the set of permutations on [k], i.e., elements of Sk are bijections σ : [k]→ [k]. Given
σ ∈ Sk and v ∈ Rk, the vector σv ∈ Rk is defined entrywise where the i-th entry is [σv]i = vσ(i).
Equivalently, we view Sk as the set of permutation matrices in Rk×k.

Let R+ denote the set of nonnegative reals. Denote ∆k = {(p1, . . . , pk) ∈ Rk+ : p1 + · · ·+ pk = 1}
the probability simplex. For p ∈ ∆k, we write Y ∼ p to denote a discrete random variable Y ∈ [k]
whose probability mass function is p. Let 〈·, ·〉 be the usual dot-product between vectors. Denote by
I{input} the indicator function which returns 1 if input is true and 0 otherwise.

1.4 Background

Recall the general multiclass learning framework as described in [17]: X is a sample space and P is
a joint distribution over X × [k]. A multiclass classification loss is a function ` : R → Rk+ whereR
is called the prediction space and [`(r)]y ∈ R+ is the penalty incurred for predicting r ∈ R when the
label is y ∈ [k]. If R is finite, we refer to ` as a discrete loss. For example, a common setting for
classification isR = [k] and ` is the 0-1 loss. The `-risk of a hypothesis function f : X → R is

er`P (f) := EX,Y∼P {[`(f(X))]Y } . (1)

The goal is to design `-consistent algorithms, i.e., procedures that output a hypothesis fn based on an
input of n training samples sampled i.i.d from P such that er`P (fn)→ er`,∗P = inff :X→R er`P (f) as
n→∞. Since ` is discrete, eq. (1) is difficult to directly minimize. To circumvent this difficulty, we
consider a convex surrogate loss L : Rd → Rk for some positive integer d. The following property
relates the surrogate loss L and the discrete loss `.
Definition 1.1 (Calibration). For each p ∈ ∆k, define γ`(p) := arg minr∈R〈p, `(r)〉. We say that L
is calibrated with respect to ` if there exists a function ψ : Rd → R such that for all p ∈ ∆k

inf
u∈Rd:ψ(u) 6∈γ`(p)

〈p, L(u)〉 > inf
v∈Rd
〈p, L(v)〉.

By Ramaswamy and Agarwal [17, Theorem 3], L being calibrated with respect to ` is equivalent
to the following: there exists ψ : Rd → R such that for all joint distributions P on X × [k] and all
sequences of functions gn : X → Rd, we have

erLP (gn)→ erL,∗P implies er`P (ψ ◦ gn)→ er`,∗P

where erL,∗P = infg:X→Rd erLP (g). Thus, the calibration property allows us to focus on finding
L-consistent algorithms. In general it can be difficult to check that a given L is calibrated with respect
to `. Finocchiaro et al. [8] introduced the following definition:
Definition 1.2 (Finocchiaro et al. [8]). The loss L : Rd → Rk embeds ` : R → Rk if there exists an
injection ϕ : R → Rd called an embedding such that

1. L(ϕ(r)) = `(r) for all r ∈ R

2. r ∈ arg minr∈R〈p, `(r)〉 if and only if ϕ(r) ∈ arg minv∈Rd〈p, L(v)〉.

The notion of embedding is important due to the following result from [8, Theorem 3]:
Theorem 1.3 (Finocchiaro et al. [8]). Let L be convex piecewise-linear and ` be discrete. If L
embeds `, then L is calibrated with respect to `.
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Figure 1: The gray triangle represents the prob-
ability simplex ∆3, where (p1, p2, p3) ∈ ∆3

is plotted as (p2, p3) in the plane. The interior
of each polygonal region contains p ∈ ∆3 such
that minS∈OPk

〈p, `(S)〉 has a unique minimizer.
For the derivations, see supplementary material.
Ordered partitions are represented as follows:

({1}, {2, 3}) 7→ 1|23,
({1}, {2}, {3}) 7→ 1|2|3,

...
({3}, {2}, {1}) 7→ 3|2|1.

Given L, ` and ϕ, Finocchiaro et al. [8, Definition 6] provided an explicit construction for ψ with
excess risk bound proved in [8, Theorem 6].

In this work, we are interested in the case when L is the WW-hinge loss:

Definition 1.4. For v ∈ Rk, define the Weston-Watkins hinge loss [2] L(v) ∈ Rk+ entrywise by

[L(v)]y =
∑

i∈[k] : i6=y

h(vy − vi), y ∈ [k]

where h : R→ R+ is the hinge function defined by h(x) = max{0, 1− x}.

By Theorem 1.3, to prove that L is calibrated with respect to `, it suffices to show that L embeds `.
Going forward, L will refer to the WW-hinge loss. We now work toward showing that L embeds the
ordered partition loss `, which we introduce next.

2 The ordered partition loss

The prediction spaceR that we use is the set of ordered partitions, which we now define:

Definition 2.1. An ordered partition on [k] of length l is an ordered list S = (S1, . . . , Sl) of
nonempty, pairwise disjoint subsets of [k] such that S1 ∪ · · · ∪Sl = [k]. Denote byOPk the set of all
ordered partitions on [k] with length ≥ 2. We write the length of S as lS to be precise when working
with multiple ordered partitions.

Ordered partitions can be thought of as a complete ranking of k items where ties are allowed. They
are widely studied in combinatorics [25, 26, 27]. In the ranking literature, ordered partitions are
called bucket orders [28] and the Sis are called the buckets. The first bucket S1 contains the highest
ranked items, and so on. There is only one ordered partition with lS = 1, namely the trivial partition
S = ([k]). Thus, OPk is the set of nontrivial ordered partitions.

We now define the following discrete loss over the ordered partitions:

Definition 2.2. The ordered partition loss ` : OPk → Rk+ is defined, for i ∈ [k] and S =

(S1, . . . , Sl) ∈ OPk, as [`(S)]i = |S1| − 1 +
∑lS−1
j=1 |S1 ∪ · · · ∪ Sj+1| · I{i 6∈ S1 ∪ · · · ∪ Sj}.

The intuition behind the ordered partition loss is that we want to rank the labels, where ties are
allowed and each Si is a set of labels that are tied. We want the correct label to be as high up the
ranking as possible. The lower the true class is ranked, the larger the loss.

To build intuitions about `, let Y ∼ p and consider the random variable [`(S)]Y whose expectation is

EY∼p {[`(S)]Y } = |S1| − 1 +

lS−1∑
j=1

|S1 ∪ · · · ∪ Sj+1| · Pr
Y∼p
{Y 6∈ S1 ∪ · · · ∪ Sj} . (2)
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Note that EY∼p {[`(S)]Y } = 〈p, `(S)〉. In Figure 1, we visualize the decision rule for the Bayes
optimal classifier in the k = 3 case by plotting the function p 7→ arg minS∈OPk

〈p, `(S)〉. When
lS = 2, we have

EY∼p {[`(S)]Y } = |S1| − 1 + k Pr
Y∼p
{Y 6∈ S1} . (3)

Thus, we have a trade-off where adding elements to S1 increases the |S1| − 1 term but decreases
the kPrY∼p {Y 6∈ S1} term. More generally, when lS ≥ 2, the ordered partition loss requires the
predictor to associate each test instance x with a nested sequence of sets S1, S1 ∪S2, · · · where these
sets are designed to balance the probability of containing x’s label with the size of the set. In the
learning with partial labels settings [29, 20], for each training instance the learner observes a set of
labels, one of which is the true label. The sets S1, S1 ∪ S2, . . . might be called progressive partial
labels in the spirit of partial label learning [29, 20].

Next, we define the embedding that satisfies Definition 1.2 when L is the WW-hinge loss and ` is the
ordered partition loss:

Definition 2.3. The embedding ϕ : OPk → Rk is defined as follows: Let S = (S1, . . . , Sl) ∈ OPk.
Define ϕ(S) ∈ Rk entrywise so that for all i ∈ [lS] and all j ∈ Si, we have [ϕ(S)]j = −(i− 1).

With the discrete loss ` and the embedding map ϕ defined, we now proceed to the main results.

3 Main results

In this work, we establish that the WW-hinge loss embeds the ordered partition loss:

Theorem 3.1. The Weston-Watkins hinge loss L : Rk → Rk embeds the ordered partition loss
` : OPk → Rk with embedding ϕ as in Definition 2.3.

In light of Theorem 1.3, Theorem 3.1 implies

Corollary 3.2. L is calibrated with respect to `.

In the remainder of this section, we develop the tools necessary to prove Theorem 3.1.

3.1 Vectorial representation of ordered partitions

First, we define the set SkCZ whose elements serve as realizations of ordered partitions inside Rk.

Definition 3.3. Define the following sets:

C := {v ∈ Rk : v1 = 0, vk ≤ −1, vi − vi+1 ∈ [0, 1], ∀i ∈ [k − 1]}, CZ := C ∩ Zk (4)

and finally SkCZ :=
⋃
σ∈Sk

σCZ where σCZ = {σv : v ∈ CZ}.

A vector v ∈ Rk is monotonic non-increasing if v1 ≥ v2 ≥ · · · ≥ vk. Note that vectors in CZ are
nonconstant, integer-valued monotonic non-increasing such that consecutive entries decrease at most
by 1. Furthermore, by construction, SkCZ consists of all possible permutations of elements in CZ.
Therefore, the entries of an element v ∈ SkCZ take on every value in 0,−1, . . . ,−(l − 1) for some
integer l ∈ {2, . . . , k}. Thus, v ∈ SkCZ can be thought of as vectorial representation of the ordered
partition S = (S1, . . . , Sl) where Si = {j : vj = −(i − 1)} for each i ∈ [l]. In Proposition 3.6
below, we make this notion precise.

Lemma 3.4. The image of ϕ is contained in SkCZ.

Proof. Let S ∈ OPk. It suffices to prove that there exists some σ ∈ Sk such that σϕ(S) ∈ CZ. Note
that by definition, we have the set of unique values of ϕ(S) is

{[ϕ(S)]j : j ∈ [k]} = {0,−1,−2, . . . ,−(lS − 1)}.

Thus, let σ ∈ Sk be such that σϕ(S) is monotonic non-increasing. Then σϕ(S) ∈ CZ.

Next, we define the inverse of ϕ.
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Definition 3.5. The quasi-link map ψ̃ : SkCZ → OPk is defined as follows: Given v ∈ SkCZ,
let l = 1 − minj∈[k] vj . Define Si = {j ∈ [k] : vj = −(i − 1)} for each i ∈ [l]. Finally, define
ψ̃(v) = (S1, . . . , Sl).

The tilde in ψ̃ is to differentiate the quasi-link from ψ in Definition 1.1.
Proposition 3.6. The embedding map ϕ : OPk → SkCZ given in Definition 2.3 is a bijection with
inverse given by the quasi-link map ψ̃ from Definition 3.5.

Proof. We first show that for all ψ̃(ϕ(S)) = S for all S = (S1, . . . , Sl) ∈ OPk. Observe that
Si = {j ∈ [k] : [ϕ(S)]j = −(i− 1)} for all i = 1, 2, . . . , l. This implies that ψ̃(ϕ(S)) = S.

Next, we show that ϕ(ψ̃(v)) = v for all v ∈ SkCZ. Let S = (S1, . . . , Sl) = ψ̃(v). Then
[ϕ(S)]j = −(i − 1) if and only if j ∈ Si. By definition Si = {j ∈ [k] : vj = −(i − 1)}. Hence,
[ϕ(S)]j = −(i− 1) if and only if vj = −(i− 1) which implies that ϕ(S) = v, as desired.

In the next section, using ϕ, we prove a relationship between the inner risk functions of L and `.

3.2 Inner risk functions

Define the inner risk functions L : ∆k → R+ and ` : ∆k → R+ as follows:

L(p) = inf
v∈Rk
〈p, L(v)〉, and `(p) = inf

S∈OPk

〈p, `(S)〉. (5)

Note that these functions appear in the second part of Definition 1.2, although here we have inf
instead of min. Since OPk is finite, the infimum in the definition of ` is attained. Later, we will
argue that the infimum in the definition of L is also attained.

We now state the main structural result regarding L:
Theorem 3.7. For all p ∈ ∆k, we have

L(p) = min
v∈SkCZ

〈p, L(v)〉.

Sketch of proof. Note that L is invariant under translation by any scalar multiple of the all ones
vector. Thus, L has an extra degree of freedom. We introduce a loss function Ł : Rk−1 → Rk
called the reduced WW-hinge loss, which removes this extra degree freedom. Furthermore, there
exists a mapping π : Rk → Rk−1 such that 〈p, L(v)〉 = 〈p, Ł(π(v))〉 for all p ∈ ∆k and v ∈ Rk.
Letting z = π(v) ∈ Rk−1, we show that for a fixed p, the function Fp(z) := 〈p, Ł(z)〉 is convex
and piecewise-linear and the minimization of which can be formulated as a linear program [30].
Furthermore, since Fp is nonnegative, the infimum infz∈Rk−1 Fp(z) is attained [30, Corollary 3.2],
which implies that the infimum in the definition of L in eq. (5) is attained as well. The linear
program is shown to be totally unimodular, which implies that an integral solution exists [31], i.e.,
minz∈Rk−1 Fp(z) = Fp(z

∗) for some z∗ ∈ Zk−1. From z∗, we obtain an integral v∗ ∈ Zk such that
L(p) = 〈p, L(v∗)〉. Finally, we construct an element v† ∈ SkCZ from v∗ in such a way that the
objective does not increase, i.e., 〈p, L(v∗)〉 ≥ 〈p, L(v†)〉, which implies that L(p) = 〈p, L(v†) by
the optimality of v∗.

The ordered partition loss ` and the WW-hinge loss L are related by the following:
Theorem 3.8. For all p ∈ ∆k and all S ∈ OPk, we have

〈p, `(S)〉 = 〈p, L(ϕ(S))〉,
where ϕ is the embedding map as in Definition 2.3.

Sketch of proof. Let S = (S1, . . . , Sl) ∈ OPk and p ∈ ∆k. Let T ∈ Rk×k consist of ones on and
below the main diagonal and zero everywhere else. Letting D = T−1, we have

〈p, L(ϕ(S))〉 = 〈p, TDL(ϕ(S))〉 = 〈T ′p,DL(ϕ(S))〉.
Next, we observe that [T ′p]i = pi + · · · + pk for each i ∈ [k]. We then show through a lengthy
calculation that for each i ∈ [k]
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1. If i = 1, then [T ′p]1 = 1 and [DL(ϕ(S))]1 = |S1| − 1.

2. If i > 1 and i = |S1 ∪ · · · ∪ Sj |+ 1 for some j ∈ [l], then [T ′p]i = PrY∼p {Y 6∈ S1 ∪ · · · ∪ Sj}
and [DL(ϕ(S))]i = |S1 ∪ · · · ∪ Sj+1|.

3. For all other i, [DL(ϕ(S))]i = 0 (in which case the value of [T ′p]i is irrelevant).

From this, we deduce that 〈T ′p,DL(ϕ(S))〉 is equal to eq. (2).

Next, we show that the inner risks of L and ` from eq. (5) are in fact identical:
Corollary 3.9. For all p ∈ ∆k, we have L(p) = `(p).

Proof. Observe that

`(p)
(a)
= min

S∈OPk

〈p, `(S)〉 (b)= min
S∈OPk

〈p, L(ϕ(S))〉 (c)= min
v∈SkCZ

〈p, L(v)〉 (d)= L(p)

where (a) follows from definition of `, (b) from Theorem 3.8, (c) from the fact that ϕ : OPk → SkCZ
is a bijection (Proposition 3.6), and (d) from Theorem 3.7.

Having developed all the tools necessary, we turn toward the proof of our main result Theorem 3.1.

3.3 Proof of Theorem 3.1

We check that the two conditions in Definition 1.2 holds. The first condition is that L(ϕ(S)) = `(S)
for all S ∈ OPk, which follows from Theorem 3.8. To see this, note that for all i ∈ [k] the i-th
elementary basis vector ei ∈ ∆k. Thus, we have

[L(ϕ(S))]i = 〈ei, L(ϕ(S))〉 = 〈ei, `(S)〉 = [`(S)]i

for all i ∈ [k]. This implies that L(ϕ(S)) = `(S), which is the first condition of Definition 1.2.

Next, we check the second condition. Let p ∈ ∆k. Define γ(p) := arg minS∈OPk
〈p, `(S)〉,

and Γ(p) := arg minv∈Rk〈p, L(v)〉. Furthermore, by the definition of γ, S ∈ γ(p) if and only if
〈p, `(S)〉 = `(p). Likewise, ϕ(S) ∈ Γ(p) if and only if 〈p, L(ϕ(S))〉 = L(p). By Corollary 3.9 and
Theorem 3.8, we have 〈p, `(S)〉 = `(p) if and only if 〈p, L(ϕ(S))〉 = L(p). Putting it all together,
we get S ∈ γ(p) if and only if ϕ(S) ∈ Γ(p), which is the second condition of Definition 1.2.

4 Minimially emblematic losses

Going forward, let L : Rd → Rk+ be a generic surrogate loss. The WW-hinge loss is denoted by
LWW and the CS-hinge loss by LCS . Likewise, let ` : R → Rk+ be a generic discrete loss. The
ordered partition loss is denoted by `OP and the 0-1 loss by `zo.

We define a “dual” notion to the embedding dimension Finocchiaro et al. [32, Definition 6]:
Definition 4.1. Let L : Rd → Rk+ be a loss. Define the embedding cardinality of L as

emb.card(L) := min
{
n ∈ {2, 3, . . . } | there exists a discrete loss `:[n]→Rk

such that L embeds `

}
.

A discrete loss ` : R → Rk is said to be minimally emblematic for L if |R| = emb.card(L) and L
embeds `.
Remark 4.2. Intuitively, ` is minimally emblematic for L with embedding ϕ if ϕ(R) captures all the
essential information contained in the surrogate L in the most compact way. Let us say that a set
of vectors E ⊆ Rk is an emblem of L if for all p ∈ ∆k, the set E ∩ argminv〈p, L(v)〉 is nonempty.
Then we can equivalently define ` with ϕ to be minimally emblematic for L if ϕ(R) is an emblem of
L of minimal cardinality. In other words, ϕ(R) is a minimal set of minimizers of all possible L-inner
risks.

For each k ∈ {3, . . . , 15}, we showed by a computer search that for all S ∈ OPk, there exists
p ∈ ∆k such that S is the unique minimizer of minT∈OPk

〈p, `(T)〉. A consequence of this is that
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Figure 2: The gray triangle represents the probability simplex ∆3, where (p1, p2, p3) ∈ ∆3 is plotted
as (p2, p3) in the plane. The light gray regions are ΩLWW (left) and ΩLCS (right). For the derivation,
see Supplementary Material.

Proposition 4.3. For k ∈ {3, . . . , 15}, emb.card(LWW ) = |OPk|. In other words, the ordered
partition loss is minimally emblematic for the WW-hinge loss.

We conjecture this result holds for all k ≥ 3.

5 The argmax link

Define γ`(p) := arg minr∈R〈p, `(r)〉 and ΓL(p) := arg minv∈Rd〈p, L(v)〉. For multiclass classifi-
cation into k classes, most multiclass SVMs typically output a vector of scores v ∈ Rk which is
converted to a class label by taking arg max v. In this section, we analyze the arg max as a “link”
function. Recall from Section 1.3, arg max is a set-valued function. Define

ΩL := {p ∈ ∆k : | arg max p| = 1, arg max v = arg max p, ∀v ∈ ΓL(p)}.

When L is calibrated with respect to `zo, we have that ΩL = {p ∈ ∆k : | arg max p| = 1}. Hence,
∆k \ ΩL has measure zero. For other L not necessarily calibrated with respect to `zo, it is desirable
that ΩL be as large as possible. Below, we will prove that ΩLCS is a proper subset of ΩLWW .

Recall that X is a sample space and P is a distribution on X × [k]. For each x ∈ X , define the class
conditional distribution ηP (x) ∈ ∆k by [ηP (x)]y = PrX,Y∼P (Y = y|X = x).

Proposition 5.1. Let P be a joint distribution on X × [k] such that ηP (x) ∈ ΩL for all x and
L : Rd → Rk+ be a loss. Let g∗ : X → Rk be such that g∗(x) ∈ ΓL(ηP (x)) for all x ∈ X . Then
arg max ◦g∗ is Bayes optimal with respect to the 0-1 loss.

Proof. By definition of ΩL, we have arg max ◦g∗(x) = arg max ηP (x) for all x ∈ X .

The following theorem asserts that for any v ∈ ΓLWW (p), the arg max v is contained in the top
bucket S1 for some S ∈ γ`OP (p).

Theorem 5.2. Let p ∈ ∆k be such that max p > 1
k and v ∈ ΓLWW (p). Then there exists S =

(S1, . . . , Sl) ∈ γ`OP (p) such that arg max v ⊆ S1.

Below, we consider two conditions on p ∈ ∆k such that for all S ∈ γ`OP (p), the top bucket S1 =
arg max p. By Theorem 5.2, for such p ∈ ∆k, we can recover arg max p from any v ∈ ΓLWW (p).
The first condition covers p ∈ ∆k such that the top class has a majority:

Proposition 5.3. Let p ∈ ∆k satisfy the “majority condition”: max p > 1/2. Then for all S =
(S1, . . . , Sl) ∈ γ`OP (p), we have |S1| = 1 and S1 = arg max p.

While Proposition 5.3 does not guarantee that γ`OP (p) is a singleton, all S ∈ γ`OP (p) have the same
top bucket. The second condition covers p ∈ ∆k whose top class may not have a majority, yet
arg max p can still be recovered from any v ∈ ΓLWW (v) by taking arg max v:
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Proposition 5.4. Fix a number α such that 1 > α > 1
k . Let p ∈ ∆k satisfy the “symmetric label

noise (SLN) condition”: there exists j∗ ∈ [k] so that pj∗ = α and pj = 1−α
k−1 for all j 6= j∗. Then

({j∗}, [k] \ {j∗}) is the unique element of γ`OP (p).

In particular, when α < 1/2, p violates the majority condition. Under SLN, we have arg max p =

{j∗} since α− 1−α
k−1 = (k−1)α−1+α

k−1 = kα−1
k−1 > 1−1

k−1 = 0. In light of Theorem 5.2, we have

Corollary 5.5. If p ∈ ∆k satisfies the majority or the SLN condition, then p ∈ ΩLWW .

Thus, in two common regimes where for all x ∈ X the class conditional ηP (x) satisfies the SLN or
the majority condition, the Bayes optimal ordered partition has a top bucket consisting of a single
element. When this occurs, the argmax link recovers the most probable class, i.e., the unique element
from the top bucket. This supports the observation by Doǧan et al. [1] that the WW-SVM performs
well under the SLN condition, even with significant label noise. For the CS-hinge loss, it is known
that ΩLCS = {p ∈ ∆k : p satisfies the majority condition} [5, Lemma 4]. In particular, ΩLCS is a
proper subset of ΩLWW . For k = 3, we show in Figure 2 the regions ΩLWW and ΩLCS . Our finding
provides theoretical support for the finding of [1] that WW outperform CS.

6 Conclusion and future work

We proved that the Weston-Watkins hinge loss is calibrated with respect to the ordered partition
loss, which we argue is minimally emblematic for the WW-hinge loss. Furthermore, we showed the
advantage of WW-hinge loss over the Crammer-Singer hinge loss when the popular “argmax” link
is used. An interesting direction is to apply the ordered partition loss to other multiclass learning
problems such as partial label and multilabel learning.

Broader Impact

This work does not present any foreseeable societal consequence.
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