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A. Goodrich
⇤
, and M. Herrmann

School for Engineering of Matter, Transport and Energy

Arizona State University

Tempe, AZ 85287-6106 USA

Abstract
A method to compute sub-filter velocities due to shear induced instabilities on a liquid-gas interface for use
in a dual scale LES-DNS model is presented. The method reconstructs the sub-filter velocity field as the
sum of a prescribed base velocity profile and a perturbation velocity field determined by the Orr-Sommerfeld
equations. The base velocity profile is approximated as an error function appropriately scaled with flow
parameters, and the perturbation velocity field is computed by solving the Orr-Sommerfeld equations with
appropriate boundary and interface conditions. The perturbation velocities of the Orr-Sommerfeld equations
are expanded into Chebyshev polynomials to create a linear eigenvalue problem as outlined by Schmid and
Henningson (2001). Finally the eigenvalue problem is solved using a standard linear algebra package and
used to evaluate the perturbation velocities. The Chebyshev method is tested under a variety of flow
parameters and initial interface disturbances. Results are presented and compared against prior literature
and asymptotic solutions.
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Introduction
Direct Numerical Simulations of turbulent

liquid-gas interfaces require tremendous computa-
tional resources to fully resolve all the relevant scales
of motion [1]. Primary atomization is governed by
the fine scales of motion and instabilities that occur
on this interface. To ease the computational burden,
a model is required to make predictive simulations
feasible.

Several attempts have been proposed to model
the unclosed terms in the Large Eddy Simulation
(LES) governing equations [2, 3]. Many of these
models neglect the geometry and instabilities of the
sub-filter interface. A Dual-Scale model is proposed
in [4] and a model for the sub-filter shear driven in-
stabilities is presented here.

Govering Equations
The governing equations for an unsteady, incom-

pressible, two-fluid system in the absence of surface
tension are the Navier-Stokes equations,
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where u is the fluid velocity, ⇢ is the density, p is the
pressure, and µ is the dynamic viscosity. Surface
tension is neglected simply to focus attention on the
shear driven instabilities of the interface. In addition
to the momentum equation, the conservation of mass
constrains the velocity field to be divergence-free.

r · u = 0 (2)

In the incompressible regime, fluid properties
are taken to be uniform throughout each fluid. ⇢
and µ can therefore be evaluated with a volume-of-
fluid scalar,  as,

⇢ =  ⇢l + (1�  ) ⇢g, (3)

µ =  µl + (1�  )µg, (4)

where the l and g subscripts indicate fluid properties
in liquid and gas respectively.  is evaluated as  =
0 in the gas and  = 1 in the liquid. In addition  
must also be transported with the flow field as,
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Filtered Governing Equations

Following the methodology of LES modeling, a
spatial filter is applied to Eqs. (1) and (2),
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r · u = 0, (7)

where the overbar (⇤) implies spatial filtering, and
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where ⌧1, ⌧2 and ⌧3 represent the sub-filter ef-
fects due to acceleration, advection and viscosity
respectively[3]. Applying the spatial filter to Eqs.
(3) and (4) yields
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where the spatially filtered  is
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Z
G(x) dx. (13)

The Dual-Scale Approach to Modeling Sub-
filter Shear Driven Instabilities

In place of applying the spatial filter to Eq.
(5) and generating a model for the sub-filter terms,
the Dual-Scale approach proposed in [4] maintains
a fully resolved realization of the interface geome-
try using the Refined Local Surface Grid (RLSG)
method as described in [5]. Under this approach the
fully resolved volume-of-fluid scalar  is transported
as described in Eq. (5), and subsequently filtered ac-
cording to Eq. (13).

This approach provides an exact closure to any
sub-filter terms that arise from filtering Eq. (5), and
instead shifts the modeling problem to maintaining
a fully resolved interface geometry and correctly pre-
dicting the sub-filter motion. The fully resolved ve-
locity field u can be decomposed into its filtered and
sub-grid components, u = u+usg. Substituting into
Eq. (5) yields
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leaving only usg requiring modeling. [4] proposes to
decompose the sub-grid velocity usg further into

usg = u0 + �u+ u� + ug, (15)
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where u0 is the sub-grid turbulent velocity, �u is the
sub-grid shear driven velocity, u� is the sub-grid sur-
face tension velocity and ug is the sub-grid accelera-
tional instabilities. The sub-grid turbulent velocity
and sub-grid surface tension models are discussed in
other works, and the focus of this work is on the
sub-grid shear driven velocity, �u.

Sub-grid Shear Driven Velocity Model

We propose to model the sub-grid shear driven
velocity by use of the Orr-Sommerfeld equations to
construct a linear stability problem as outlined in
[6]. Within an LES grid cell the error function will
be used to approximate the base velocity profile

Ug(y) = U?
g erf(y/�g) (16)

Ul(y) = U?
l erf(y/�l) (17)

where U?
g/l is the asymptotic velocity away from the

interface for gas and liquid respectively, y is the di-
rection normal to the interface and �g/l is the bound-
ary layer thickness for gas and liquid respectively.
The asymptotic velocities and boundary layer thick-
nesses are constrained at by the continuity of shear
stress at the interface via
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For brevity of the Orr-Sommerfeld equations we
introduce the following non-dimensional paramters:
density ratio r = ⇢g/⇢l, viscosity ratio m = µg/µl,
boundary layer thickness ratio n = �g/�l, Reynold’s
number Re = ⇢gU?

g �g/µg and Weber number We =
⇢g(U?

g )
2�g/�. Peturbations to the base flow are eval-

uated by constructing stream functions,

 k(x, y, t) = exp (i↵(x� ct))�k(y) (19)

where k denotes liquid or gas,  k is the stream func-
tion in either phase, ↵ is the wavenumber of per-
turbed interface, c is the complex phase speed of
the interface, and �k denotes the y�dependence of
the streamfunction. Using the streamfunction defi-
nition, the perturbation velocities can be recovered
as
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The Orr-Sommerfeld equations can then by con-

structed as
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where D is the partial derivative with respect to y
[6]. At the upper and lower boundaries the tangen-
tial perturbation velocities vanish:

�g(Lg) = D�g(Lg) = 0 (24)

�l(�Ll) = D�l(�Ll) = 0. (25)

At location of the interface the normal and tangen-
tial perturbation velocities are continuous:
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�g(0) = �l(0). (27)

Finally, the normal and tangential stress must be
continuous at the interface:
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Numerical Methods
Eqs. (22) - (29) define an eigenvalue problem

for the growth rates and corresponding perturbation
velocities of the two fluid system. The eigenfunc-
tions �k are expanded with Chebyshev polynomi-
als and solved with a collocation algorithm per [7].
Upon reconstructing the sub-grid velocty field near
the interace with the RLSG method, Eq. (14) is
solved using an unsplit geometric transport scheme
for the volume-of-fluid scalar. The geometric inter-
face within each computational cell is accomplished
with a PLIC reconstruction with the analytical for-
mulas [8] and surface normal vectors estimated by
ELVIRA [9].
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The geometric unsplit method ensures that both
volume is conserved and that  remains bounded un-
der the constraint that divergence-free face-centered
velocities are used. Since the eigenvalue problem
in [6] was formulated for a flat interface, the eigen-
functions, �k(y), can be used without a coordinate
shift. However, if the interface is perturbed then,
since y is the normal distance from the perturbed
interface, the eigenfunctions must shift vertically by
an amount equal to the displacement of the inter-
face. Thus the streamfunctions are not guaranteed
to generate divergence-free perturbed velocities in
the shifted frame.

To correct this, �u is projected into the subspace
of divergence-free velocity fields using the projection
step of a standard fractional step method. For the
simplicity of the examples presented in this work, the
Poisson system is constructed for the entire domain.
However, in future work and in keeping with the
Dual-Scale methodoloy, the Poisson system will be
constructed only within each LES cell containing an
interface.

Results
In the first verification test, a liquid-gas interface

is perturbed with a single wavenumber disturbance
as shown in Figure (1).

Figure 1. Liquid-gas interface disturbed with a sin-
gle wavenumber.

The interface is perturbed with a sinusoidal
function of the form y = 0.01 sin(⇡x). The flow pa-
rameters of the simulation are provided in table (1).

The advancement of the interface geometry is

Re We r m �g n U?
g

8000 1 1 0.1 0.25 1 1

Table 1. Simulation flow parameters.

then simulated in three ways: first with a DNS ini-
tialized by the perturbation velocites of the eigen-
value problem and allowed to advance without fur-
ther modeling, next with the perturbation velocities
used to advect the volume-of-fluid scalar (referred to
as the linear model from here on) and finally with a
sine wave growing exponentially with the computed
growth rate of the eigenvalue problem.
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Figure 2. Peak growth comparison

As can be seen in Figure (2), when the ampli-
tude of the perturbation is asymptotically small all
three models capture the growth correctly. However,
as the disturbance continues to grow into the non-
linear regime, the exponentially growing sine wave
is unable to capture the growth shown by the DNS
and the linear model.

Since the perturbation velocities grow at the
same rate as the sine wave, these results are puz-
zling at first glance. However, the non-linear growth
captured by the linear model can be attributed to
the use of the projection step. As the interface pro-
gresses further into the base flow Ug(y), the pro-
jection step corrects for increasingly large base flow
velocities.

As a second case, an interface is disturbed with a
composition of two wavenumbers. As shown in Fig-
ure (3), the interface is perturbed with a disturbance
of the form y = 0.02 sin(⇡(x� 0.6)) + 0.01 sin(2⇡x).
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Figure 3. Liquid-gas interface disturbed with a sin-
gle wavenumber.

Again the simulation is repeated, with the re-
sults of the peak growth shown in Figure (4).
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Figure 4. Peak growth comparison

As in the single wave simulation, when the am-
plitude of disturbance is asymptotically small, all
three models are able to capture the growth e↵ec-
tively. However, once the amplitude is su�ciently
large and outside the asymptotic regime, the sine
wave is unable to capture the growth accurately.
The linear model is able to capture some of the ef-
fects of non-linear growth observed in the DNS by
way of the projection step.
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