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A Dual Scale Approach to Modeling Sub-Filter Shear-Induced Instabilities
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Abstract
A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use in a dual scale
LES model is presented. The method reconstructs the sub-filter velocity field in the vicinity of the interface
by introducing a vortex sheet at the interface. The vortex sheet is transported by an unsplit geometric volume
and surface area advection scheme with a Piecewise Linear Interface Construction (PLIC) representation of
the material interface. At each step and desired location the shear-induced velocities can be calculated by
integrating the vortex sheet and other relevant quantities over the liquid-gas interface with the sub-grid
velocity reconstruction limited to a small number of cells near the phase interface. The vortex sheet method
is tested and compared against prior literature.
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Introduction
Liquid atomization is an important process oc-

curring in many engineering applications. Internal
combustion engines depend on the rapid atomiza-
tion and evaporation of fuels to quickly and e�-
ciently mix with air before combustion can occur.
Evaporation of a liquid fuel is a slow process, but
can be greatly enhanced by increasing the surface
area of the liquid fuel. Since the residence time in
combustion engines is small, the liquid fuel must be
rapidly atomized into many small drops to provide
a large surface area and increase the rate of evap-
oration. Many modern engines rely on the fuel in-
jector design to generate the required turbulence to
rapidly atomize the liquid fuel and obtain an optimal
gaseous fuel/air mixture. Engine performance, e�-
ciency and pollutant production strongly depend on
the quality of the fuel/air mixture prior to combus-
tion, and thus the details of the liquid-gas interface
dynamics and atomization are of great importance.

Predicting the turbulent interface dynamics re-
mains a challenging task for numerical simulations.
Direct numerical simulations (DNS) have provided
great insight for studying many aspects of turbulent
immiscible interfaces. However, DNS must resolve
all the relevant scales of motion, requiring enormous
computational resources to simulate even simple ge-
ometries [1]. This requirement severely limits the
range of resolvable time and spatial scales available
to DNS and restricts DNS from being a viable tool
for engineering design. A need therefore exists for
alternative modeling approaches to predicting tur-
bulent interface dynamics.

A number of models have been introduced to
predict breakup, including stochastic models [2, 3]
and interface transport equations for Reynolds-
averaged Navier-Stokes (RANS) equations [4]. The
stochastic model requires a priori knowledge of
the break-up mechanism for accurate predictions.
Meanwhile the RANS approach models the mean
interface density with a gradient di↵usion-like hy-
pothesis, which ignores the spatial grouping e↵ects
of liquid elements [1]. Many engineering applications
of atomization, including aircraft engine combustors
and diesel engine injectors can exhibit swirling flows,
recirculation regions and jets in cross-flow or co-flow
that are hard to predict using a RANS approach.
Large-Eddy Simulations (LES) are often preferred
in these applications, and therefore an atomization
model consistent with the LES methodology is a de-
sirable engineering design tool.

Several LES models for turbulent immiscible in-
terfaces have been proposed in the past [5, 6]. These
LES models, however, require the existence of a cas-

cade process to predict the unresolved scales, and
furthermore require the dynamics of the unresolved
scales to be inferred from the dynamics of the re-
solved scales. The LES methodology has proven to
be remarkably successful in single phase turbulent
flows due to the existence of the energy cascade.
However, It remains unknown whether a similar cas-
cade process can be taken advantage of to model the
dynamics of turbulent immiscible interfaces and at-
omization. What’s more, high resolution simulations
of turbulent liquid jets show that small droplets can
be ripped out from large ligaments in areas of high
shear, circumventing any cascading process that a
traditional LES approach would use [7].

Surface tension forces tend to increase at in-
creasingly small length scales due to the smaller lo-
cal radius of curvature, similar to the viscous forces
responsible for the energy cascade. Although viscos-
ity acts to dissipate kinetic energy at small scales,
surface tension can either reduce surface corruga-
tions or amplify them via an instability mechanism
like Kelvin-Helmholtz, Rayleigh-Taylor or Rayleigh-
Plateau. These instabilities all rely on sub-filter
interface geometry to predict sub-filter corrugation
growth, and thus require knowledge of the sub-filter
interface geometry. Details of the sub-filter interface
geometry are unavailable in the traditional LES ap-
proach, and therefore a dual-scale approach was pro-
posed to provide a fully resolved realization of the
sub-filter interface geometry [8] and properly handle
the sub-filter e↵ects. In this work a model is pre-
sented capable of predicting the e↵ects of sub-filter
shear-driven dynamics on the resolved interface ge-
ometry.

Methods
The governing equations for the fully resolved

motion of an unsteady, incompressible, immiscible,
two-fluid system in the absence of surface tension
and gravitational acceleration are the Navier-Stokes
equations,

@⇢u

@t
+r · (⇢u⌦ u) = �rp+r ·

�
µ
�
ru+rTu

��
,

r · u = 0 (1)

where u is the fluid velocity, ⇢ is the density, p is the
pressure, and µ is the dynamic viscosity. Surface
tension and gravitational acceleration are neglected
to focus on the shear driven instabilities of the in-
terface. In addition to the momentum equation, the
conservation of mass constrains the velocity field to
be divergence-free. In the incompressible regime,
fluid properties are taken to be uniform throughout
each fluid. Therefore, ⇢ and µ are evaluated with a
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volume-of-fluid scalar,  as,

⇢ =  ⇢l + (1�  ) ⇢g, µ =  µl + (1�  )µg,
(2)

where the l and g subscripts denote properties in liq-
uid and gas respectively. The volume-of-fluid scalar
 is evaluated as  = 0 in the gas and  = 1 in the
liquid. In addition  must also be transported with
the flow field as,

@ 

@t
= �u ·r = �r · (u ) +  r · u, (3)

where the last term on the right-hand-side is zero
for incompressible flows due to Eq. (1).

Filtered Governing Equations

Following the methodology of LES modeling, a
spatial filter is applied to Eq. (1),
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+ ⌧ 1 +r · (⌧ 2 + ⌧ 3) , (4)

r · u = 0, (5)

where the overbar (⇤) implies spatial filtering, and

⌧ 1 =
@⇢ u

@t
� @⇢u

@t
, (6)

⌧ 2 = ⇢ u⌦ u� ⇢u⌦ u, (7)

⌧ 3 = µ (ru+rTu)� µ
�
ru+rTu

�
, (8)

where ⌧ 1, ⌧ 2 and ⌧ 3 represent the sub-filter e↵ects
due to acceleration, advection and viscosity respec-
tively [5]. Applying the spatial filter to Eq. (2)
yields

⇢ = ⇢l + ⇢g
�
1�  

�
, µ = µl + µg

�
1�  

�
.
(9)

The spatially filtered volume-of-fluid can be
evaluated by solving
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@t
+r ·

�
u 

�
= ⌧ , (10)

where ⌧ is the sub-filter liquid flux and is obtained
by applying the spatial filter to Eq. (3) and making
use of Eq. (1).

⌧ = r ·
�
u � u 

�
(11)

The Dual-Scale Approach to Modeling Sub-Filter
Shear-Induced Velocities

The classical LES modeling approach in single-
phase flows assume the existence of a cascading pro-
cess where there is a net transfer of energy to small

scales. Applying a cascade process to the atomiza-
tion process for a liquid jet for example, would imply
that the jet first breaks up into large scale structures
and then continues to break up into increasingly
small-scale structures. However as mentioned previ-
ously, evidence from high-resolution simulations of
atomizing liquid turbulent jets suggest that the at-
omization process does not follow a cascade process.
These simulations show that small-scale drops can
be ejected during the ligament-formation process,
circumventing any cascade process for the phase in-
terface geometry [7].

Instead of relying on a cascade process for the
sub-filter motion, the dual-scale approach aims to
maintain a fully resolved realization of the interface
geometry at all times [8]. The dynamics of this in-
terface are governed by Eq. (3), where u is the fully
resolved fluid velocity. The fully resolved velocity
is decomposed into its filtered u and sub-filter usg

components,

u = u+ usg, (12)

which can then be substituted in Eq. (3) as

@ 

@t
= �r · ((u+ usg) ) +  r · (u+ usg) . (13)

Finally,  in Eq. (9) can be evaluated by a direct
explicit filter,

 =

Z
G(x) dx. (14)

where G(x) is a spatial filter function. With a model
for usg and making use of Eq. (14), there is no need
to construct a model for ⌧ , and Eq. (9) can be
evaluated directly. What’s more the unclosed terms
in the Navier-Stokes equations, ⌧ 1, ⌧ 2 and ⌧ 3 , can
be calculated directly by first evaluating the fully
resolved realization of ⇢, µ,  and u using Eqs. (2),
(12) and (13), and then taking an explicit filter of the
terms in Eqs. (6), (7) and (8). Finally, it is worth
noting that because ⇢ and µ are uniform throughout
each fluid, the terms ⌧ 1 and ⌧ 3 reduce to zero when
the spatial filter does not contain an interface, and
⌧ 2 reduces the standard sub-grid stress term that
can be modeled by any classical single-phase LES
technique. Therefore the dual-scale procedure needs
only be applied in the vicinity of the interface.

The dual-scale method does present an exact
closure of the sub-grid terms, however the model-
ing task is now shifted to maintaining a fully re-
solved realization of the interface geometry by solv-
ing Eq. (13) and modeling the sub-filter velocity
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usg. A model for usg is proposed consisting of four
parts,

usg = u0 + �u+ u� + ug (15)

where u0, �u, u� and ug are the sub-filter velocities
due to turbulent fluctuations, shear-induced insta-
bilities, surface tension and acceleration instabilities
respectively. Models for u0 and u� are presented in
[9] and [10] respectively, a model for �u is presented
here and ug is the subject of future work.

Sub-Filter Velocity due to Shear-Induced Instabilities

To model the shear-induced sub-filter velocities,
we consider the motion of the phase interface be-
tween two fluids that are two-dimensional, inviscid
and incompressible. This motion is governed by the
Euler equations presented here in dimensionless form
as

@ui

@t
+ (ui ·r)ui = � 1

⇢i
rp, r · ui = 0, (16)

where the velocity u and density ⇢ are defined
on either side i of the interface �, and p is the pres-
sure. Additionally, the boundary conditions at the
interface are given by

[(ug � ul) · n]
��
�
= 0, [(ug � ul) · t]

��
�
= ⌘

(17)

[pg � pl]
��
�
=

1

We
 (18)

and the velocities are constrained to U±1 far
from the interface. In these boundary conditions,
n and t are unit-vectors normal and tangent to
the interface, ⌘ is the vortex-sheet strength, We =
⇢refLrefu2

ref/⌃ is the Weber number, ⌃ is the surface
tension coe�cient, ⇢ref, uref and Lref are the refer-
ence density, velocity and length respectively, and
 is the local curvature of �. The evolution of the
vortex sheet strength can be derived by introduc-
ing velocity potentials into the Euler equations and
its accompanying boundary conditions to produce a
vortex sheet transport equation [11, 12, 13].

@⌘

@t
+ u ·r⌘ = (n ·ru · n) ⌘ + 1

We
r · t (19)

The terms on the left-hand side of Eq. (19) rep-
resent the temporal changes and convective trans-
port of the vortex sheet strength. The terms on the
right-hand side describe the stretching of the vortex

sheet and surface tension e↵ects. Note that ⌘ is a
surface quantity so Eq. (19) only needs to be solved
at the location of the interface. In addition to track-
ing the vortex sheet the interfacial area A in each
cell is transported via the following equation [14].

@A

@t
+ u ·rA = � (n ·ru · n)A (20)

Additionally the circulation C around the inter-
face is defined as the line integral around the inter-
face, taking the form of

C =

Z

�
u · nds =

Z

�
(ug � ul) · nds =

Z

�
⌘(s)ds

(21)

Finally the velocities due to the presence of the
vortex sheet can be evaluated via a line integral of
the form

u (x, t) =

Z

�
⌘(s, t)ez ⇥

x� x(s, t)

|x� x(s, t)|2
ds, (22)

where the interface � is parameterized by the
arc length of the interface s. Milne-Thomson showed
that Eq. (22) can be transformed into

u(x, y) =
1

2

Z L

0
⌘(s)

sinh (2⇡(y � y(s)))

cosh (2⇡(y � y(s)))� cos (2⇡(x� x(s))) + µ2
ds,

(23)

v(x, y) =
1

2

Z L

0
⌘(s)

sin (2⇡(x� x(s)))

cosh (2⇡(y � y(s)))� cos (2⇡(x� x(s))) + µ2
ds,

(24)

for vortex sheets of length L that are periodic
in the x-direction [15]. Note that the to avoid singu-
larities in the integrals in Eqs. (22), (23) and (24) a
desingularization parameter µ2 is added to the de-
nominator [16].

Numerical Approach
The Navier-Stokes equations are solved using

NGA, a structured, staggered, finite di↵erence flow
solver with a fractional step method [17]. The task of
maintaining a fully resolved realization of the phase
interface geometry is achieved by solving Eq. (13) on

4



a high resolution auxiliary Cartesian grid indepen-
dent of the underlying flow solver grid. The Refined
Level Set Grid (RLSG) method [18] is used to man-
age the auxiliary grid and activate it in regions where
the spatial filter contains an interface as illustrated
in Fig. (1).

Figure 1: Refined Level Set Grid [18]

Eqs. (13) and (20) are advanced using an un-
split geometric transport scheme. The volume-of-
fluid scalar transport is executed via the computa-
tional framework of Owkes and Desjardins directly
[19], and the split transport interfacial area trans-
port scheme of James and Lowengrub [14] is ex-
tended to the unsplit framework of Owkes and Des-
jardins. This method ensures that volume-of-fluid
scalars remain bounded and that discrete volume is
conserved for each fluid. The geometric interface
within each computational cell of the RLSG is built
using PLIC reconstruction with analytical formulas
[20] and ELVIRA estimated normals [21]. Addition-
ally the circulation C is regarded as a surfactant
and transported geometrically with the interfacial
area via the scheme of James and Lowengrub [14].
The vortex sheet strength is subsequently updated
in each RLSG cell containing an interface upon com-
pletion of the advection step with the following equa-
tion.

⌘i,j =
Ci,j

Ai,j
(25)

The sub-filter velocities in Eq. (22) are numer-
ically evaluated by first triangulating the PLIC re-
construction in each cell and then numerically in-
tegrating Eq. (22) (or Eqs. (23) and (24) in the
periodic case) with a 9-point Gaussian Quadrature
formula for triangles [22]. To evaluate the vortex
sheet strength ⌘ at the Gaussian Quadrature points
in the triangulated PLIC surfaces, it is linearly in-
terpolated using gradients computed by neighboring
cells [14].

Results

The sub-filter velocity generation technique is
tested with a desingularized version of the Moore
singularity problem following Krasny [16]. The ini-
tial condition for the interface is given by

y (x, t = 0) = A0 sin

✓
2⇡

B


x�A0 sin

2⇡

B
x

�◆
, (26)

where A0 and B are the amplitude and wave-
length of the disturbance respectively. The initial
vortex sheet strength is then given by

⌘(x, t = 0) =
⌘?q

1 + 4⇡A0
B cos 2⇡

B x+ 2
⇥
2⇡A0
B cos 2⇡

B x
⇤2 ,

(27)

where ⌘? is the unnormalized vortex sheet strength.
For this test case the initial amplitude and wave-
length are A0 = 0.01 and B = 1, and the unnormal-
ized vortex sheet strength is ⌘? = �1. The initial
velocity field can then be evaluated with Eqs. (23)
and (24) with the aforementioned Gaussian Quadra-
ture formula for triangles. The simulation will take
place in a 1⇥1 domain with an equidistant 256⇥256
cartesian grid and periodic boundary conditions on
the left and right walls. As shown in Fig. (2) the
results from this study (labeled ”VoF-PLIC”) are
in good qualitative agreement with that of the vor-
tex sheet roll-up study conducted by Krasny [16].
The overall shape between the resutls is identical
for early times with some slight deviation occuring
late in the simulation, however the number of turns
generated by the vortex sheet is the same between
each set of results.

Quantitatively this method can be compared to
Krasny’s study with the arc length of the interface
after 1.0 second of simulated time at several desingu-
larization parameters µ. The arc length of the VoF-
PLIC vortex sheet method is computed by simply
summing up the interfacial area A in each cell. The
results of this comparison are presented in Table (1)
and they show excellent agreement with this study
and that of Krasny [16] with the notable exception of
µ = 0.10. This is believed to be caused by the desin-
gularization parameter µ, which acts to numerically
di↵use the vortex sheet. In cases where µ is su�-
ciently large the numerical viscosity will dampen out
high wavenumber disturbances. Since the method
relies on a discontinuous PLIC geometric representa-
tion of the interface, high wavenumber disturbances
can exist at cell faces and be amplified. This results
in roll-up occurring not only at the low wavenumber
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of the domain but at high wavenumbers leading to
excessive stretching of the interface and a larger arc
length.

Table 1: Arc Length Comparison

µ Krasny VoF-PLIC (%) Di↵erence
0.50 1.034 1.035 0.1
0.45 1.044 1.044 0.0
0.40 1.059 1.058 0.1
0.35 1.082 1.08 0.2
0.30 1.123 1.119 0.4
0.25 1.207 1.197 0.8
0.20 1.358 1.343 1.1
0.15 1.601 1.582 1.2
0.10 1.996 3.888 95

Conclusions
In this paper a method to reconstruct sub-filter

shear driven velocities for use in a Dual-Scale LES
model has been presented. The method generates
shear driven velocities by applying a vortex sheet at
the interface location of a phase interface between a
liquid and gas. The velocities induced by that vor-
tex sheet can then be found by numerically integrat-
ing Eq. (22) with a Gaussian Quadrature formula.
These velocities are then used to transport the inter-
face and surface quantities with an unsplit geomet-
ric transport scheme. Finally, the updated interface
geometry can be explicitly filtered and sent back
to the underlying Navier-Stokes flow solver. The
method has been tested against well-known results
and shows excellent agreement in capturing the mo-
tion of the interface under reasonable conditions.
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Figure 2: Moore Singularity Interface Comparison with Krasny [16], µ = 0.25, t = 1, 2, 3, 4
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