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Abstract

Aliasing refers to the phenomenon that high frequency signals degenerate into com-

pletely different ones after sampling. It arises as a problem in the context of deep learning

as downsampling layers are widely adopted in deep architectures to reduce parameters

and computation. The standard solution is to apply a low-pass filter (e.g., Gaussian blur)

before downsampling [37]. However, it can be suboptimal to apply the same filter across

the entire content, as the frequency of feature maps can vary across both spatial locations

and feature channels. To tackle this, we propose an adaptive content-aware low-pass

filtering layer, which predicts separate filter weights for each spatial location and chan-

nel group of the input feature maps. We investigate the effectiveness and generalization

of the proposed method across multiple tasks including ImageNet classification, COCO

instance segmentation, and Cityscapes semantic segmentation. Qualitative and quanti-

tative results demonstrate that our approach effectively adapts to the different feature

frequencies to avoid aliasing while preserving useful information for recognition. Code

is available at https://maureenzou.github.io/ddac/.

1 Introduction

Deep neural networks have led to impressive breakthroughs in visual recognition, speech

recognition, and natural language processing. On certain benchmarks such as ImageNet and

SQuAD, they can even achieve “human-level” performance [11, 24, 26, 31]. However, com-

mon mistakes that these networks make are often quite unhuman like. For example, a tiny

shift in the input image can lead to drastic changes in the output prediction of convolutional

neural networks (ConvNets) [1, 28, 31]. This phenomenon was demonstrated to be partially

due to aliasing when downsampling in ConvNets [37].

Aliasing refers to the phenomenon that high frequency information in a signal is distorted

during subsampling [9]. The Nyquist theorem states that the sampling rate must be at least

twice the highest frequency of the signal in order to prevent aliasing. Without proper anti-

aliasing techniques, a subsampled signal can look completely different compared to its input.

Below is a toy example demonstrating this problem on 1D signals:
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(a) Input (b) 4xDown (c) Gaussian + 4xDown (d) Adaptive + 4x Down

Figure 1: Effect of adaptive filtering for anti-aliasing. (a) Input image. (b) Result of direct

downsampling. (c) Result of downsampling after applying a single Gaussian filter tuned

to match the frequency of the noise. (d) Result of downsampling after applying spatially-

adaptive Gaussian filters (stronger blurring for background noise and weaker for edges).
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Here k is the kernel size (1× 2). Because of aliasing, a one position shift in the origi-

nal signal leads to a completely different sampled signal (bottom) compared to the original

sampled one (top). As downsampling layers in ConvNets are critical for reducing parame-

ters and inducing invariance in the learned representations, the aliasing issue accompanying

these layers will likely result in a performance drop as well as undesired shift variance in the

output if not handled carefully.

To tackle this, [37] proposed to insert a Gaussian blur layer before each downsampling

module in ConvNets. Though simple and effective to a certain degree, we argue that the

design choice of applying a universal Gaussian filter is not optimal – as signal frequencies

in a natural image (or feature map) generally vary throughout spatial locations and channels,

different blurring filters are needed in order to satisfy the Nyquist theorem to avoid aliasing.

For example, the image in Fig. 1 (a) contains high frequency impulse noise in the background

and relatively lower frequency edges in the foreground. Directly applying a downsampling

operation produces discontinuous edges and distorted impulse noise shown in (b) due to

aliasing. By applying a Gaussian filter before downsampling, we can avoid aliasing as shown

in (c). However, as the high frequency impulse noise needs to be blurred more compared to

the lower frequency edges, when using a single Gaussian filter tuned for the impulse noise,

the edges are over-blurred leading to significant information loss. To solve this issue, what

we need is to apply different Gaussian filters to the foreground and background separately,

so that we can avoid aliasing while preserving useful information, as in (d).

With the above observation, we propose a content-aware anti-aliasing module, which

adaptively predicts low-pass filter weights for different spatial locations. Furthermore, as

different feature channels can also have different frequencies (e.g., certain channels capture

edges, others capture color blobs), we also predict different filters for different channels.

In this way, our proposed module adaptively blurs the input content to avoid aliasing while

preserving useful information for downstream tasks. To summarize, our contributions are:

• We propose a novel adaptive and architecture-independent low-pass filtering layer in Con-

vNets for anti-aliasing.

• We propose novel evaluation metrics, which measure shift consistency for semantic and
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instance segmentation tasks; i.e., a method’s robustness to aliasing effects caused by shifts

in the input.

• We conduct experiments on image classification (ImageNet), semantic segmentation (PAS-

CAL VOC and Cityscapes), instance segmentation (MS-COCO), and domain generaliza-

tion (ImageNet to ImageNet VID). The results show that our method outperforms com-

petitive baselines with a good margin on both accuracy and shift consistency.

• We demonstrate intuitive qualitative results, which show the interpretability of our module

when applied to different spatial locations and channel groups.

2 Related Work

Network robustness In deep learning, the robustness problem related to adversarial at-

tacks [18, 30], input translation [2, 22, 36], and natural perturbations [28] has been widely

studied. The crux of these studies is how small variations in the input image can lead to large

variations in the predictions. In order to obtain a stable and robust network, [17, 19, 35]

introduce novel losses or network architectures to defend against adversarial attacks. Apart

from adversarial defense, [2, 22] propose new algorithms to learn more shift-invariant rep-

resentations. Finally, [37] provides a new perspective on obtaining shift-invariant features

in the context of anti-aliasing. Unlike [37], which applies a single hand-coded low-pass fil-

ter regardless of content, we adaptively learn the low-pass filter in a content-aware way and

demonstrate it leads to improvement in both recognition accuracy and network robustness.

Image filtering Low-pass filters like box [27] and Gaussian [9] are classic content agnostic

smoothing filters; i.e., their filter weights are fixed regardless of spatial location and image

content. Bilateral [25] and guided [10] filters are content aware as they can simultaneously

preserve edge information while removing noise. Recent works integrate such classic filters

into deep networks [14, 35, 37]. However, directly integrating these modules into a neural

network requires careful tuning of hyperparameters subject to the input image (e.g., σs and

σr in bilateral filter or r and ε in guided filter). [16, 29] introduced the dynamic filtering

layer, whose weights are predicted by convolution layers conditioned on pre-computed fea-

ture maps. We differ from them in two key aspects: 1) our filter weights vary across both

spatial and channel groups, and 2) we insert our low-pass filtering layer before every down-

sampling layer for anti-aliasing, whereas the dynamic filtering layer is directly linked to the

prediction (last) layer in order to incorporate motion information for video recognition tasks.

Finally, [33] introduces an adaptive convolution layer for upsampling, whereas we focus on

downsampling with an adaptive low-pass filtering layer.

Pixel classification tasks such as semantic segmentation [5, 21] and instance segmentation

[3, 13] require precise modeling of object boundaries, so that pixels from the same object

instance can be correctly grouped together. Thus, while blurring can help reduce aliasing, it

can also be harmful to these tasks (e.g., when the edges are blurred too much or not blurred

enough hence resulting in aliasing). We investigate the effect of anti-aliasing in these pixel-

level tasks, whereas our closest work, [37], focused mainly on image classification.

3 Approach

To enable anti-aliasing for ConvNets, we apply the proposed content-aware anti-aliasing

module before each downsampling operation in the network. Inside the module, we first
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accuracy consistency generalization

methods Filter Abs Delta Abs Delta Abs Delta

ResNet-101 [12] - 77.7 - 90.6 - 67.6 -

LPF [37]
3 x 3 78.4 + 0.7 91.6 + 1.0 68.8 +1.2

5 x 5 77.7 + 0.0 91.8 + 1.2 67.0 - 0.6

Ours
3 x 3 79.0 + 1.3 91.8 + 1.2 69.9 +2.3

5 x 5 78.6 + 0.9 92.2 + 1.6 69.1 +1.5

Table 1: Image classification accuracy, consistency on ImageNet [7], and domain general-

ization results ImageNet → ImageNet VID [7]. We compare to strong ResNet-101 [12] and

LPF (low-pass filter) [37] baselines. Our method shows consistent improvement in accuracy,

consistency, and generalization.

4 Experiments

We first introduce our experimental settings and propose consistency metrics for image clas-

sification, instance segmentation, and semantic segmentation. We compare to strong base-

lines including ResNet [12], Deeplab v3+ [5], Mask R-CNN on large scale datasets including

ImageNet, ImageNet VID [7], MS COCO [20], PASCAL VOC [8] and Cityscapes [6]. We

also conduct ablation studies on our design choices including number of groups, parame-

ter counts, as well as filter types. Finally, we present qualitative results demonstrating the

interpretability of our anti-aliasing module.

4.1 Image Classification

Experimental settings We evaluate on ILSVRC2012 [7], which contains 1.2M training

and 50K validation images for 1000 object classes. We use input image size of 224× 224,

SGD solver with initial learning rate 0.1, momentum 0.9, and weight decay 1e-4. Full train-

ing schedule is 90 epochs with 5 epoch linear scaling warm up. Learning rate is reduced by

10x every 30 epochs. We train on 4 GPUs, with batch size 128 and batch accumulation of

2. For fair comparison, we use the same set of hyperparameters and training schedule for

both ResNet-101, LPF [37] baselines as well as our method. The number of groups is set to

8 according to our ablation study. We extend the code base introduced in [37].

Consistency metric We use the consistency metric defined in [37], which measures how

often the model outputs the same top-1 class given two different shifts on the same test

image: Consistency = EX ,h1,w1,h2,w2
I{F(Xh1,w1

) = F(Xh2,w2
)}, where E and I denote expec-

tation and indicator function (outputs 1/0 with true/false inputs). X is the input image, h1,w1

(height/width) and h2,w2 parameterize the shifts and F(·) denotes the predicted top-1 class.

Results and analysis As shown in Table 1, our adaptive anti-aliasing module outperforms

the baseline ResNet-101 without anti-aliasing with a 1.3 point boost (79.0 vs 77.7) in top-1

accuracy on ImageNet classification. More importantly, when comparing to LPF [37], which

uses a fixed blurring kernel for anti-aliasing, our method scores 0.6 points higher (79.0 vs

78.4) on top-1 accuracy. Furthermore, our method not only achieves better classification ac-

curacy, it also outputs more consistent results (+0.2/+0.4 consistency score improvements for

3×3 and 5×5 filter sizes) compared to LPF. These results reveal that our method preserves

more discriminative information for recognition when blurring feature maps.
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Mask Box

method mAP Delta mAISC Delta mAP Delta mAISC Delta

Mask R-CNN [13] 36.1 - 62.9 - 40.1 - 65.1 -

LPF [37] 36.8 + 0.7 66.0 + 4.1 40.9 + 0.8 68.8 + 3.7

Ours 37.2 + 1.1 67.0 + 5.1 41.4 + 1.3 69.8 + 4.7

Table 2: Instance segmentation results on MS COCO. We compare to Mask R-CNN [13]

and LPF [37]. Our approach consistently improves over the baselines for both mask and box

accuracy and consistency.

PASCAL VOC Cityscapes

method mIOU Delta mASSC Delta mIOU Delta mASSC Delta

Deeplab v3+ [5] 78.5 - 95.5±0.11 - 78.5 - 96.0±0.10 -

LPF [37] 79.4 + 0.9 95.9±0.07 + 0.4 78.9 + 0.4 96.1±0.05 + 0.1

Ours 80.3 + 1.8 96.0±0.13 + 0.5 79.5 + 1.0 96.3±0.07 + 0.3

Table 3: Semantic segmentation on PASCAL VOC 2012 [8] and Cityscapes [6]. We compare

to Deeplab v3+ [5] and LPF [37]. Our approach leads to improved accuracy and consistency.

Results and analysis We evaluate mAP and mAISC for both mask and box predictions.

As shown in Table 2, while simply applying a fixed Gaussian low-pass filter improves mAP

by +0.7/+0.8 points for mask/box, our adaptive content-aware anti-aliasing module is more

effective (further +0.4/+0.5 point improvement over LPF for mask/box). This demonstrates

that it is important to have different low-pass filters for different spatial locations and channel

groups. More interestingly, by introducing our adaptive low-pass filters, mAISC increases

by a large margin (+5.1/+4.7 for mask/box over the baseline, and +1.0/+1.0 over LPF). This

result demonstrates that 1) an anti-aliasing module significantly improves shift consistency

via feature blurring, and 2) edges (higher frequency) are better preserved using our method

(compared to LPF) during downsampling which are critical for pixel classification tasks.

4.4 Semantic Segmentation

Experimental settings We next evaluate on PASCAL VOC2012 [8] and Cityscapes [6]

semantic segmentation with Deeplab v3+ [5] as the base model. We extend implementa-

tions from [15] and [32]. For Cityscapes, we use syncBN with a batch size of 8. As for

PASCAL VOC, we use a batch size of 16 on two GPUs without syncBN. We report better

performance compared to the original implementation for DeepLab v3+ on PASCAL VOC.

For Cityscapes, our ResNet-101 backbone outperforms the Inception backbone used in [4].

Consistency metric (mASSC) We propose a new mean Average Semantic Segmentation

Consistency (mASSC) metric to measure shift consistency for semantic segmentation meth-

ods. Similar to mAISC, we take two random crops (e,f) from the input image (a) in Fig. 5.

We then compute the Semantic Segmentation Consistency between the overlapping regions

X and Y of the two crops: Consistency(X ,Y ) := Ei∈[0,h)E j∈[0,w) I[S(X)i, j = S(Y )i, j], where

S(X)i, j and S(Y )i, j denote the predicted class label of pixel (i, j) in X and Y , and h,w is the

height and width of the overlapping region. We average this score for all pairs of crops in an

image, and average those scores over all test images to compute the final mASSC.

Results and analysis As shown in Table 3, our method improves mIOU by 1.8 and 1.0

points on PASCAL VOC and Cityscapes compared to the strong baseline of DeepLab v3+.

Furthermore, our method also consistently improves the mASSC score (+0.5 and +0.3 for

VOC and Cityscapes) despite the high numbers achieved by the baseline method (95.5/96.0).
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