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Abstract
Objective

Prediction and determination of drug efficacy for radiographic progression is limited by the heterogeneity inherent in 
axial spondyloarthritis (axSpA). We investigated whether unbiased clustering analysis of phenotypic data can lead to 

coherent subgroups of axSpA patients with a distinct risk of radiographic progression.

Methods
A group of 412 patients with axSpA was clustered in an unbiased way using a agglomerative hierarchical clustering 

method, based on their phenotype mapping. We used a generalised linear model, naïve Bayes, Decision Trees, 
K-Nearest-Neighbors, and Support Vector Machines to construct a consensus classification method. Radiographic 

progression over 2 years was assessed using the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS).

Results
axSpA patients were classified into three distinct subgroups with distinct clinical characteristics. Sex, smoking, 

HLA-B27, baseline mSASSS, uveitis, and peripheral arthritis were the key features that were found to stratifying the 
phenogroups. The three phenogroups showed distinct differences in radiographic progression rate (p<0.05) and the 

proportion of progressors (p<0.001). Phenogroup 2, consisting of male smokers, had the worst radiographic progression, 
while phenogroup 3, exclusively suffering from uveitis, showed the least radiographic progression. The axSpA phenogroup 

classification, including its ability to stratify risk, was successfully replicated in an independent validation group.

Conclusion
Phenotype mapping results in a clinically relevant classification of axSpA that is applicable for risk stratification. 

Novel coupling between phenotypic features and radiographic progression can provide a glimpse into the mechanisms
 underlying divergent and shared features of axSpA.
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Introduction
Axial spondyloarthritis (axSpA) is a 
chronic, progressive disease charac-
terised by inflammation of entheses, 
leading to new bone formation and 
ankylosis of joints, primarily in the 
axial skeleton (1, 2). axSpA exhibits a 
distinct combination of clinical mani-
festations: sacroiliitis, facet joint ar-
thritis, syndesmophyte formation, and 
bamboo-like ankylosis of the spine, 
and often involves peripheral arthritis 
or enthesitis (1, 2). Interestingly, axSpA 
is intimately linked to extraarticular 
manifestations such as uveitis, psoria-
sis, and inflammatory bowel disease (1, 
2). However, in contrast to well-defined 
phenotypic characteristics, no definite 
serological biomarkers for diagnosis 
and subclassification have been discov-
ered except for HLA-B27, which is a 
strong genetic risk factor.
Most of the rheumatic diseases are not 
defined as a single entity but classi-
fied as a single group according to the 
defined classification criteria (3, 4). 
Accordingly, efforts have been made 
to further classify the disease, such as 
rheumatoid arthritis, systemic lupus 
erythematosus, and systemic sclerosis, 
based on histologic features, molecular 
signatures, and serological markers to 
better understand these diseases and tai-
lor intervention or therapy to individu-
als or subgroups (5-10). However, only 
limited attempts have been made to fur-
ther classify axSpA (11, 12), e.g. into 
HLA-B27 positive versus negative and 
familial versus sporadic groups. This is 
ascribed partially to the unavailability 
of the target tissue (inflammatory en-
thesis of spine or facet joints) from the 
patients, no practical biomarker, and the 
inherent heterogeneity of axSpA, which 
has a wide variety of clinical manifesta-
tions and progression.
Recent advances in machine learning 
have successfully tackled multi-dimen-
sional heterogeneous data, of similar 
nature to those collected in the case 
of axSpA patients (13-16). Prior other 
studies in diseases such as heart failure 
and graft-vs-host disease have success-
fully coupled phenotypic characteristics 
and their clinical outcome with machine 
learning approaches (15, 16). In a simi-
lar fashion, we hypothesise that applying 

machine learning algorithms to clinical 
phenotyping will enable the detection of 
novel patterns in multidimensional data 
obtained from patients with axSpA. We 
further hypothesise that the identified 
phenogroups of patients with axSpA 
will have distinct clinical profiles and 
differential radiographic progression 
outcomes. We therefore investigated the 
utility of unbiased phenotype mapping 
algorithms in patients with axSpA and 
validated its functional ability to predict 
radiographic progression in an inde-
pendent group of axSpA patients.

Methods
Patients
A total of 412 axSpA patients who ful-
filled the Assessment of Spondyloar-
thritis International Society (ASAS) 
classification criteria for axSpA (17, 
18), and had received care at St. Vin-
cent’s Hospital, The Catholic Uni-
versity of Korea (Suwon, Republic of 
Korea) between 2008 and 2017 were 
identified. The patients who were clini-
cally suspected of having sacroiliitis 
but had no definite evidence of it on 
radiographs or magnetic resonance im-
ages were excluded according to the 
ASAS classification criteria. Clinical, 
laboratory data and radiographic im-
ages were retrieved from the medical 
records. At baseline, sex, age at diag-
nosis, time since diagnosis, HLA–B27 
status, smoking status, and history of 
extraarticular manifestations (uveitis, 
psoriasis, inflammatory bowel disease, 
peripheral arthritis and enthesitis) were 
recorded. Disease activity was assessed 
according to the Ankylosing Spondy-
litis Disease Activity Score (ASDAS) 
using C-reactive protein (CRP) level 
(19). Of these, the 253 patients who 
were followed up over 2 years were 
assessed for radiographic progression. 
For validation analysis, the data of an 
independent group of 173 patients with 
axSpA were imported from the Yeouido 
St. Mary’s Hospital, The Catholic Uni-
versity of Korea (Seoul, Republic of 
Korea) between 2008 and 2017. These 
patients fulfilled the ASAS classifica-
tion criteria for axSpA and their clinical 
profiles were compiled entirely inde-
pendently. The study was carried out in 
accordance with the Helsinki Declara-
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tion and approved by the Institutional 
Review Board of St. Vincent’s Hospi-
tal, The Catholic University of Korea 
(no. VC18RESI0248).

Radiographs and scoring
Radiographs of the sacroiliac joints 
and the cervical and lumbar spine were 
obtained by the local investigator at 
baseline and after 2 years of follow-up. 
All available radiographs per patient 
were independently scored at the same 
time according to the modified Stoke 
Ankylosing Spondylitis Spine Score 
(mSASSS) (20) by two experienced 
readers independently, blinded to all 
other data except radiograph chronol-
ogy. Spinal radiographic progression 
was defined as worsening of the mean 
mSASSS by more than 2 units over 
2 years, in conformity with previous 
studies (21-23). Radiographic sacro-
iliitis (SI) was scored according to the 
modified New York criteria (24) and ra-
diological hip involvement was graded 
based on the BASRI-hip scoring system 
(25). The interobserver reliability was 
assessed by calculating the interclass 
correlation coefficient (ICC). Agree-
ment between the 2 readers regarding 
mSASSS status was fair (ICC 0.946 
[95% CI 0.940 to 0.952) and agree-
ment regarding change in the mSASSS 
was good (ICC 0.692 [95% CI 0.654 
to 0.726]). The ICC for sacroiliac and 
hip joint status grade was 0.889 [95% 
CI 0.875 to 0.901] and 0.958 [95% CI 
0.953 to 0.963]), respectively.

Unsupervised clustering and 
determination of the optimal 
number of clusters
Unsupervised learning identifies hid-
den structure or patterns purely from 
the information in the data without 
the need for a training set, classes or 
labels. To classify the axSpA patients 
into subgroups based on their pheno-
typic variables, we used the agglomera-
tive hierarchical clustering method, a 
commonly used unsupervised learning 
tool (26). An agglomerative approach 
begins with each observation in a dis-
tinct cluster. Then, the similarity (or 
distance) between each of the clusters 
is computed and the two most similar 
clusters are merged into one. It succes-

sively repeats to merges clusters to-
gether and updates the proximity matrix 
until only a single cluster remains. To 
ensure equal weights of all features in 
their presentation, the 23 representative 
phenotypic variables were standardised 
within a range of 0 to 1. Agglomerative 
hierarchical clustering was performed 
with the dissimilarity matrix given by 
Euclidean distance (27) and the average 
linkage score was used to join similar 
clusters. The Euclidean distance is the 
ordinary straight-line distance between 
two points in Euclidean space, and the 
larger the distance between two clus-
ters, the more distinct it is. The average 
linkage criterion involves looking at the 
distances between all pairs and averages 
all of these distances. To determine the 
optimal number of phenogroups within 
the axSpA group, we used model-based 
clustering, which assumes a Gaussian 
distribution for values of phenotypic 
variables within a cluster and achieves 
parameter fitting and patient assignment 
by maximising the penalised likelihood 
(28). To do this, we used the mclust 
package in R and explored a full range 
of covariance structures, some of which 
relax the requirement for feature inde-
pendence (i.e. non-diagonal covariance 
matrixes are allowed). The Bayesian 
information criterion (BIC) was used to 
penalise increases in model complex-
ity such as a greater number of clusters 
or variability in the standard deviation 
across variables and across clusters 
(29). The BIC procedure is to choose 
the model for which the BIC criterion 
is maximised, and in our implementa-
tion, we investigated models of one to 
five clusters.
To confirm unsupervised clustering re-
sults, we used t-distributed stochastic 
neighborhood embedding (t-SNE) (30), 
a powerful dimensionality reduction 
method. The t-SNE method captures 
the variance in the data by attempting 
to preserve the distances between data 
points from high to low dimensions 
without any prior assumptions about 
the data distribution.

Ensemble of supervised learning 
for the novel phenogroups
Given a set of data, a supervised learn-
ing algorithm attempts to optimise a 

function (the model) to find the com-
bination of feature values that result in 
the target output. Ensemble methods 
are meta-algorithms that combine sev-
eral machine learning techniques into 
one predictive model to decrease vari-
ance, bias, or improve predictions. To 
obtain consensus-based classification 
for the phenogroups, we constructed 
an ensemble of five classifiers: a gen-
eralised linear model (GLM), naïve 
Bayes (NB), decision trees (DT), K-
nearest-neighbours (KNN), and support 
vector machines (SVM) (31, 32). In 
consensus-based classification, the final 
phenogroup label is the one with the 
highest number of votes. For KNN, the 
k parameter was tuned in the range 3 to 
20. The SVM was built using a Gauss-
ian radial basis function kernel and the 
sigma hyperparameter was determined 
from an estimation based upon the 0.1 
and 0.9 quantiles of the samples. For 
the soft margins, the C parameter that 
achieved the best performance was in 
the range of 2-4 to 27. To avoid the over-
fitting and minimise the error, we ap-
plied a 10-fold cross-validation for each 
model. Model fitting was performed us-
ing the caret package in R.

Selection of informative features
To capture the features that provide the 
salient information that distinguishes 
phenogroups, we employed the wrap-
per feature selection method (32, 33). 
The wrapper method uses the classifier 
as a black box to rank different subsets 
of the features according to their pre-
dictive power.

Statistical analyses
For continuous distributed data, the re-
sults are shown as means with standard 
deviation (SD); between-group com-
parisons were performed using Stu-
dent’s t-test or ANOVA. Categorical or 
dichotomous variables are expressed 
as frequencies and percentages, and 
were compared using the chi-squared 
test or Fisher’s exact test. Multivari-
able logistic regression analysis was 
performed to identify independent pre-
dictors associated with radiographic 
progression. Survival rates and cor-
responding 95% confidence inter-
vals were estimated by Kaplan-Meier 
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analysis and compared using log-rank 
tests. The risk of discontinuation of 
TNF inhibitor treatment was evalu-
ated using a Cox proportional hazards 
regression model. A two-sided p-value 
of less than 0.05 was considered statis-
tically significant. All statistical analy-
ses were performed using R (v. 3.5.1, 
The R Project for Statistical Comput-
ing, www.r-project.org).

Results
Clustering of the study 
population and their characteristics
The baseline characteristics of the study 
subjects (n=412) are given in Table I 
and an overview of the analysis steps 
is given in Fig. 1. Because there is re-
dundancy of information among some 
variables, we selected the following 23 
representative features for clustering 

analysis: sex, age at diagnosis, disease 
duration, body mass index (BMI), HLA-
B27 status, smoking status, peripheral 
arthritis, enthesitis, uveitis, psoriasis, 
inflammatory bowel disease, erythro-
cyte sedimentation rate (ESR), CRP, 
ASDAS-CRP, modified Stoke Ankylos-
ing Spondylitis Spine Score (mSASSS), 
syndesmophyte(s), sacroiliac joint 
grades (right and left), hip joint grades 

Table I. Baseline characteristics of the study subjects and comparison between phenogroups.

Variable All patients Phenogroup 1 Phenogroup 2 Phenogroup 3 p-value
 (n=412) (n=182) (n=158) (n=72) 

Male, n (%) 302  (73.3) 96  (52.7) 158  (100.0) 48  (66.7) <0.001
Age, years 36.5  ±  12.5 36.9  ±  12.8 35.1  ±  12.6 38.6  ±  11.4 0.134
Age at diagnosis, years 33.2  ±  12.0 33.4  ±  12.3 32.1  ±  11.9 34.9  ±  11.7 0.243
Disease duration, years 4.0  ±  5.2 3.61  ±  4.95 4.31  ±  5.51 4.38  ±  5.19 0.204
BMI, kg/m2 23.8  ±  3.7 22.7  ±  3.4 23.9  ±  3.3 23.6  ±  3.9 0.005
HLA-B27, n (%) 344  (83.5) 123  (67.6) 156  (98.7) 70  (97.2) <0.001
Smoking         <0.001
   Never, n (%) 211  (54.2) 133  (73.1) 52  (32.9) 35  (48.6) 
   Ex-smoker, n (%) 40  (10.3) 14  (7.7) 22  (13.9) 5  (6.9) 
   Current smoker, n (%) 138  (35.5) 35  (19.2) 84  (53.2) 32  (44.4) 
Peripheral arthritis, n (%) 131  (31.8) 118  (64.8) 3  (1.9) 10  (13.9) <0.001
Enthesitis, n (%) 24  (5.8) 20  (11.0) 4  (2.5) 0  (0.0) <0.001
Uveitis, n (%) 76  (18.4) 4  (2.2) 2  (1.3) 70  (97.2) <0.001
Psoriasis, n (%) 10  (2.4) 8  (4.4) 1  (0.6) 1  (1.4) <0.001
Inflammatory bowel disease, n (%) 9  (2.2) 2  (1.1) 6  (3.8) 1  (1.4) 0.208
ESR, mm/hr 36.5  ±  27.8 42.4  ±  31.0 30.7  ±  23.9 33.5  ±  23.7 <0.001
CRP, mg/dL 1.9  ±  3.0 2.3 ±  3.6 1.4  ±  1.8 1.8  ±  3.4 0.035
ASDAS-CRP 2.6  ±  0.9 2.6  ±  1.0 2.5  ±  0.8 2.5  ±  0.9 0.221
Use of TNF inhibitor, n (%) * 202  (49.0) 98  (53.8) 70  (44.4) 34  (47.2) 0.202
Sacroiliitis according to mNY criteria 222  (53.8) 86  (47.3) 91  (57.6) 45  (62.5) 0.044
mSASSS, units 8.4  ±  14.6 6.9  ±  14.2 10.5  ±  15.3 8.1  ±  13.8 0.070
   Cervical spine 3.9  ±  7.4 3.3  ±  7.3 4.0  ±  7.2 3.6  ±  6.7 0.687
   Lumbar spine 4.9  ±  9.0 3.6  ±  8.0 6.5  ±  9.9 4.5  ±  8.4 0.008
Presence of syndemophyte(s), n (%) 173  (42.0) 125  (68.7) 92  (58.2) 43  (59.7) 0.107
Number of syndesmophyte(s) 2.6  ±  5.0 2.2  ±  5.0 3.2  ±  5.2 2.4  ±  4.7 0.147
Cervical spine 1.2  ±  2.6 1.1  ±  2.6 1.3  ±  2.6 1.1  ±  2.4 0.719
   Lumbar spine 1.4  ±  3.0 1.0  ±  2.7 1.9  ±  3.4 1.3  ±  2.8 0.030
Sacroiliac joint, n (%)         0.067 / 0.037
Grade 0 (Right / Left) 77  (18.7) / 87 (21.1) 41  (22.5) / 51 (28.0) 25  (15.8) / 23 (14.6) 11  (15.3) / 13 (18.1) 
   Grade 1 (Right / Left) 93  (22.6) / 85 (20.6) 41  (22.5) / 37 (20.3) 38  (24.1) / 36 (22.8) 14  (19.4) / 12 (16.7) 
   Grade 2 (Right / Left) 112  (27.2) / 97 (23.5) 56  (30.8) / 43 (23.6) 38  (24.1) / 34 (21.5) 18  (25.0) / 20 (27.8) 
   Grade 3 (Right / Left) 57  (13.8) / 77 (18.7) 25  (13.7) / 32 (17.6) 21  (13.4) / 33 (20.9) 11  (15.3) / 12 (16.7) 
   Grade 4 (Right / Left) 73  (17.7) / 66 (16.0) 19  (10.4) / 19 (10.4) 36  (22.8) / 32 (20.3) 18  (25.0) / 15 (20.8) 
Hip involvement, n (%)         0.545 / 0.292
Grade 0 (Right / Left) 368  (89.3) / 368 (89.3) 159  (87.4) / 162 (89.0) 145  (91.8) / 141 (89.2) 64  (88.9) / 65 (90.3) 
   Grade 1 (Right / Left) 25  (6.1) / 28 (6.8) 15  (8.2) / 15 (8.2) 5  (3.2) / 8 (5.1) 5  (6.9) / 5 (6.9) 
   Grade 2 (Right / Left) 14  (3.4) / 9 (2.2) 7  (3.8) / 2 (1.1) 5  (3.2) / 5 (3.2) 2  (2.8) / 2 (2.8) 
   Grade 3 (Right / Left) 2  (0.5) / 4 (0.9) 1  (0.5) / 3 (1.6) 1  (0.6) / 1 (0.0) 0  (0.0) / 0 (0.0) 
   Grade 4 (Right / Left) 3  (0.7) / 3 (0.7) 0  (0.0) / 0 (0.0) 2  (1.3) / 3 (1.9) 1  (1.4) / 0 (0.0) 
BMD, g/cm2     
   Lumbar spine 1.060  ±  0.152 1.060  ±  0.161 1.060  ±  0.153 1.040  ±  0.122 0.709
   Femoral neck 0.852  ±  0.118 0.840  ±  0.102 0.864  ±  0.144 0.854  ±  0.084 0.168
   Total hip 0.910  ±  0.116 0.891  ±  0.103 0.928  ±  0.133 0.920  ±  0.100 0.011
Z score     
   Lumbar spine -0.243  ±  1.140 -0.187  ±  1.220 -0.289  ±  1.150 -0.286  ±  0.903 0.670
   Femoral neck -0.399  ±  0.848 -0.455  ±  0.788 -0.401  ±  0.929 -0.253  ±  0.801 0.231
   Total hip -0.442  ± 0.813 -0.521  ±  0.717 -0.397  ±  0.938 -0.340  ±  0.734 0.187

ASDAS: Ankylosing Spondylitis Disease Activity Score; BMD: bone mineral density; BMI: body mass index; CRP: C-reactive protein; ESR: erythrocyte 
sedimentation rate; Lt: left; mNY: modified New York; Rt: right; TNF: tumour necrosis factor.
* Counted if ever used. TNF inhibitors include etanercept, adalimumab, infliximab, and golimumab.
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(right and left), and Z-score (lumbar 
spine, femur neck, and total hip). Use of 
the TNF inhibitor was excluded because 
it is not a phenotype but a treatment 
method to control disease activity.
The axSpA patients were then cat-
egorised into subgroups based on their 
phenotypic profiles using model-based 
hierarchical clustering (28). To identify 
the optimal number of clusters and to 
assess robustness of the clustering re-
sult, we computed the Bayesian infor-
mation criterion for different numbers 
of clusters from 1 to 5, where we found 
that 3 clusters are the optimal represen-
tation of the data (Fig. 2A) and dendro-
gram of 3 clusters is shown in Fig. 2B. 
Phenogroup was assigned in their order 
of membership and the phenotype heat 
map given in Fig. 2C. Segregation of 
axSpA phenogroups was also repro-
duced by t-distributed stochastic neigh-
bourhood embedding (t-SNE), which 
is an unsupervised machine learning 
algorithm that project all patients onto 
a two-dimensional plane by reducing 
dimensionality (Fig. 2D) (30).
The characteristics of the phenogroups 
are compared in Table I. Phenogroup 

1 is composed of approximately equal 
numbers of men and women who were 
mostly non-smokers (73.1%) and the 
least positive for HLA-B27 (67.6%). In 
contrast, phenogroup 2 is all male and 
has the highest rate of ex- or current-
smokers (67.1%). Phenogroup 3 is a 
mixture of men and women in a ratio of 
2:1 and the ex- or current-smoker rate is 
51.3%. No significant difference exists 
in baseline age, age at diagnosis, and 
disease duration across phenogroups. 
Peripheral arthritis and enthesitis are 
much more common in phenogroup 1, 
while uveitis is exclusively predominant 
in phenogroup 3. Psoriasis is also most 
common in phenogroup 1 although low 
in frequency (4.4%). Mean ESR and 
CRP is highest in phenogroup 1, but 
ASDAS does not differ across pheno-
groups (p=0.221). Radiographic indi-
ces of spine (mSASSS and number of 
syndesmophyte) is marginally higher in 
phenogroup 2 than phenogroups 1 and 
3 (p=0.070 and p=0.147, respectively), 
and the proportion of severe SI and hip 
injury is highest in phenogroup 2. The 
BMD and Z-score of the lumbar spine 
and femur neck are comparable across 

the phenogroups. The use of the TNF 
inhibitor does not differ between the 
phenogroups (p=0.202). These results 
demonstrate that axSpA can be further 
classified into subgroups with distinct 
features.

Association of phenogroups 
with radiographic progression
For 253 of the 412 patients, radiographs 
in the spine were available at baseline 
and at 2-year follow-up. There are no 
significant differences in the baseline 
characteristics between a subset of the 
2-year follow-up and original popula-
tions (Supplementary Table S1). We 
examined the radiographic progres-
sion over 2 years according to pheno-
group. The rate of increase in mSASSS 
is significantly higher in phenogroup 
2 than phenogroup 1 and 3 (1.19±1.94 
vs. 0.664±1.27 and 0.548±1.37, all 
p<0.05; Fig. 3A). For the change in 
the number of syndesmophytes, phe-
nogroup 2 shows a higher increase 
than phenogroups 2 and 3 (0.905±1.73 
vs. 0.482±1.16 and 0.432±0.219, all 
p<0.05; Fig. 3B). The proportion of 
progressors in phenogroup 2 is higher 

Fig. 1. Overview of the data analysis steps. A training dataset of 412 patients and 23 clinical variables was clustered in an unbiased way using agglomerative 
hierarchical clustering, which is an unsupervised machine learning method, resulting in three phenogroups with distinct features. Phenotypic variables and 
the assigned labels (phenogroups) were learned using an ensemble model consisting of five classifiers (GLM, NB, KNN, DT, and SVM). A validation dataset 
of 173 patients and 23 variables was predicted using the trained models and the class label with the highest number of votes is given to each observation. 
DT, decision tree; GLM, generalised linear model; KNN, k-nearest neighbours; NB, naïve Bayesian; SVM, support vector machine.
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than that of phenogroup 3 (33.7% vs. 
11.4%, p<0.05), but insignificant with 
respect to phenogroup 1 (33.7% vs. 

23.7%, p=0.148; Fig. 3C). However, 
the proportion of progressors definitely 
showed a decreasing tendency for phe-

nogroups 2, 1, and 3 in that order (p for 
trend <0.001).
To confirm the association between 
the phenogroups and radiographic pro-
gression, we performed multivariable 
logistic regression analysis including 
the phenogroups in addition to known 
predictors (Table II). Phenogroups 1 
and 2 are significantly associated with 
radiographic progression in comparison 
with phenogroup 3 (phenogroup 1: OR 
6.36, 95% CI, 1.61 to 25.05, p=0.008; 
phenogroup 2: OR 6.36, 95% CI, 1.82 
to 22.14, p=0.004). The presence of 
syndesmophyte(s) at baseline, male 
sex, body mass index, and baseline 
ESR are also independently associated 
with radiographic progression, and this 
is consistent with previous results (21, 
23, 34, 35).

Validation of the 
phenogroups analyses
To validate our results, we imported 
the data of an independent 173 patients 
with axSpA from an affiliated hospital. 
The characteristics of the validation 
group are compared in Supplementary 
Table S2. In the validation group, the 
proportion of male patients is higher 
(83.8% vs. 73.3%, p=0.009) and pe-
ripheral arthritis is less frequent (15.6% 
vs. 31.8%, p<0.001). The distribution 
of hip joint grade is marginally differ-
ent (right and left, p=0.053 and 0.048, 
respectively), but there is no difference 
in the level of severity (grades 3 and 
4, p=0.905). The higher BMD and Z 
scores in the validation group seem to 
be ascribable to the higher male propor-
tion. No significant difference between 
the two groups was found in the other 
variables.
We constructed a consensus classifica-
tion scheme that consists of five dif-
ferent classifiers: a generalised linear 
model (GLM), naïve Bayes (NB), deci-
sion trees (DT), K-nearest-neighbours 
(KNN), and support vector machines 
(SVM) (Fig. 1). Each model was fit-
ted to the phenotypic features and the 
assigned classes (phenogroups) of the 
training dataset. The key features that 
discriminate the phenogroups were ex-
plored using the wrapper method for 
each model. Sex, smoking, uveitis, pe-
ripheral arthritis, and HLA-B27 are the 

Fig. 2. A: Bayesian information criterion analysis for the identification of the optimal number of phe-
nogroups. B: Dendrogram of the hierarchical clustering based on the phenotypic features. C: Heatmap 
of the hierarchical clustering. Columns are the clinical and phenotypic variables and rows represent the 
clustered individual study participants. Red indicates a higher value of a phenotype whereas blue indi-
cates a lower value. Dichotomous or graded variables are designated as discrete scales. For example, 
sex, HLA-B27, or uveitis are expressed as 1 (i.e. male, positive, or presence) or 0 (i.e. female, negative, 
or absence). (D) t-SNE plot of the phenogroups.
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key features of the KNN, DT, and SVM 
models. Uveitis, peripheral arthritis, 
HLA-B27, and mSASSS are the in-
formative variables of the GLM model. 
In contrast, uveitis, peripheral arthritis, 
and sex are the informative variables of 
the NB model.

The fitted models were applied to the 
validation group to predict phenogroup. 
The phenogroup with the highest num-
ber of votes of the five models was as-
signed to each patient in the validation 
group. Phenogroup 2 was most often 
predicted (n=91, 52.6%), followed by 

phenogroup 1 (n=48, 27.7%) and phe-
nogroup 3 (n=34, 19.7%). Each of the 
predicted phenogroups was success-
fully matched to the pre-defined pheno-
groups (Supplementary Table S3). We 
examined the radiographic progression 
over 2 years with respect to the pre-
dicted phenogroups in the validation 
group. The rate of increase in mSASSS 
is significantly higher in phenogroup 2 
than phenogroup 1 and 3 (1.40 ± 1.83 
vs. 0.931±0.866 and 0.879±0.843, all 
p<0.05; Fig. 3D). Phenogroup 2 is also 
superior to phenogroup 2 and 3 with 
respect the change in number of syn-
desmophytes (0.879±1.76 vs 0.438 ± 
0.796 and 0.441±0.824, all p<0.05; 
Fig. 3E). The proportion of progressors 
is marginally higher in phenogroup 2 
than in phenogroups 1 and 3 (30.8% vs. 
16.7% and 14.7%, p=0.109 and 0.113, 
respectively; Fig. 3F). However, the 
proportion of progressors clearly shows 
a decreasing tendency phenogroups 
2, 1, and 3 in that order (p for trend 
=0.030). This result confirms that the 
phenogroups have a different risk for 
radiographic progression.

Fig. 3. Radiographic progression over 2 years by phenogroup. 
A: Change in mSASSS in the training dataset. B: Change in number of syndesmophytes in the training dataset. C: Proportion of progressors in the training 
dataset. D: Change in mSASSS in the validation dataset. E: Change in number of syndesmophytes in the validation dataset. F: Proportion of progressors in 
the validation dataset. * indicates p<0.05.

Table II. Association between the novel phenogroups and radiographic progression in     
patients with axial spondyloarthritis.

Variables Crude OR Adjusted OR p-value
 (95% CI) (95% CI) 

Phenogroup (ref. phenogroup 3)   
   1 2.42  (0.87, 6.76) 6.36  (1.61, 25.05) 0.008
   2 3.96  (1.42, 11.03) 6.34  (1.82, 22.14) 0.004
Male sex 5.62  (2.15, 14.72) 4.87  (1.35, 17.53) 0.010
Age at diagnosis 1.04  (1.01, 1.06) 1.01  (0.97, 1.05) 0.568
Disease duration 1.03  (0.99, 1.07) 1.03  (0.97, 1.10) 0.317
BMI 1.88  (1.25, 2.84) 2.31  (1.32, 4.03) 0.003
HLA-B27 1.02  (0.45, 2.30) 0.84  (0.24, 2.98) 0.791
Smoking 2.27  (1.27, 4.03) 1.83  (0.81, 4.13) 0.143
ESR 1.01  (1.1, 1.02) 1.02  (1.1, 1.04) 0.017
CRP 1.07  (0.98, 1.18) 1.02  (0.86, 1.20) 0.861
ASDAS-CRP 1.35  (099, 1.84) 0.83  (0.47, 1.49) 0.536
Presence of syndesmophyte(s) at baseline 10.91  (5.47, 21.73) 8.42  (3.32, 21.35) <0.001
Use of TNF inhibitor 0.7  (0.4, 1.24) 0.59  (0.27, 1.27) 0.175

ASDAS: Ankylosing Spondylitis Disease Activity Score; BMI: body mass index; CI: confidence in-
terval; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; OR: odds ratio; TNF: tumour 
necrosis factor.
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Risk of discontinuation 
of the first TNF inhibitors
Drug survival is a composite measure 
of effectiveness and safety (36, 37). 
Thus, we further investigated the sur-
vival rate of the first TNF inhibitor in 
the three subgroups over 4 years (208 
weeks). Results showed that the drug 
retention rate differed between the 
three phenogroups (Log-rank p=0.03): 
it was high in phenogroups 2 and 3 but 
low in phenogroup 1 (Fig. 4A). Com-
pared with phenogroup 1, the risk of 
discontinuing TNF inhibitor treatment 
was substantially lower in phenogroup 
2 (HR [95% CI] 0.36 [0.15–0.88], 
p=0.025) and in phenogroup 3 (HR 
[95% CI] 0.45 [0.16–1.30], p=0.141) 
(Fig. 4B). Reasons for discontinuing 
TNF inhibitor treatment included inef-
ficacy (including primary and second-
ary inefficacy) (64.3% of cases, n=27) 
and adverse effects (35.7% of cases, 
n=15) (Fig. 4C). The rate of discontinu-
ation owing to inefficacy was highest in 
phenogroup 1 (19.4%, p=0.004), while 
the rate of continuation was highest in 
phenogroup 2 (88.6%).

Discussion
In the current study, we demonstrated 
the feasibility and validity of a novel 
classification technique for axSpA, a 
heterogeneous group of rheumatic dis-
eases. These results were obtained for 
a group of 412 patients with axSpA 
along with a validation group of 173 
independent patients with axSpA. We 
analysed the phenotypic data of axSpA 
patients in an unbiased manner using 
unsupervised learning and successfully 
divided them into three mutually ex-
clusive phenogroups in term of clinical 
features. The identified phenogroups 
have differential radiographic progres-
sion, indicating differing risk profiles 
and clinical trajectories.
AxSpA is a well-characterised disease 
with a combination of unique spinal and 
extraspinal features, and the scoring 
systems measuring the disease activity 
and structural change of the involved 
sites are established. These systems 
enabled the phenotype mapping and a 
novel grouping. Although all patients 
met the established classification crite-
ria for axSpA, the mapped phenotypes 

clearly demonstrate that axSpA is heter-
geneous in nature.
The three identified phenogroups 
showed striking differences. Pheno-
group 1 is a mixed group with members 
that are more associated with periph-
eral arthritis, enthesitis, and psoriasis. 
Members in phenogroup 1 are mostly 
non-smokers. Phenogroup 2 is a subset 
of males with few extraspinal manifes-
tations such as peripheral arthritis, en-
thesitis, and uveitis. Phenogroup 2 has 
the highest ex- or current-smoker rate 
(67.1%). Phenogroup 3 is a subpopula-
tion of mixed males and females in a ra-
tio of 2:1 with an exclusively high rate 
of uveitis. The advanced stages of SI 
and hip joint are more common in phe-
nogroup 2. Phenogroup 2 had a higher 
mSASSS at baseline than phenogroup 
1 and 3, and this is probably due to the 
high proportion of males and smokers, 
which are known unfavourable risk fac-
tors for radiographic progression (1, 
38). The key features stratifying the 
phenogroups by machine learning mod-
els are sex, smoking, HLA-B27, base-
line mSASSS, uveitis, and peripheral 

Fig. 4. Drug survival rate and risk of discontinuation of the first TNF inhibitor over 4 years by phenogroup. 
A: Cumulative survival curves of the first TNF inhibitor derived by Kaplan-Meier analysis. B: Forest plot showing hazard ratios of TNF inhibitor discontinu-
ation created using a Cox proportional hazards regression model. C: Frequency of TNF inhibitor use and discontinuation, including reasons for discontinu-
ation. Statistical analysis using a chi-square test was conducted to evaluate the differences in the proportions of each phenogroup.
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arthritis. It is known that uveitis is more 
prevalent in HLA-B27-positive pa-
tients than HLA-B27-negative patients 
(39). In our result, HLA-B27-positive 
patients are further divided into two 
subgroups (phenogroups 2 and 3) by 
the presence of uveitis. A close link be-
tween females and non-smokers in phe-
nogroup 1 is ascribed in part to the low 
smoking rate (5% to 7%) of females in 
Korea (40). The low rate of psoriasis 
(7.4%) in Asian axSpA patients (37) 
could also alter the effect of psoriasis 
on the grouping.
As an independent measure of how well 
these groups are separated, we clinical-
ly validated the association of pheno-
groups with radiographic progression, 
demonstrating the robust potential of 
phenogroup membership as a method 
for risk stratification. Factors negative-
ly affecting the radiographic progres-
sion in axSpA are well known (1, 38). 
Inarguably, the patients in phenogroup 
2, with its unfavourable risk factors 
of male sex, smoking, and syndesmo-
phytes at baseline, showed the worst 
radiographic progression rate of the 
phenogroups. In contrast, the patients 
in phenogroup 1, with its favourable 
risk factors of female sex, no smoking, 
and fewer syndesmophytes at baseline, 
exhibited a retarded radiographic pro-
gression. An interesting subset is phe-
nogroup 3, which showed the least ra-
diographic progression although its pa-
tients had moderate risk profiles com-
pared with those of phenogroups 1 and 
2. Clinical features and risk factors for 
radiographic progression in axSpA are 
well-defined but it remains undefined 
how many subgroups would be distin-
guishable by the reasonable method. 
This result demonstrated that a group of 
axSpA patients with heterogeneity and 
high dimensional variables was success-
fully reduced into three subgroups by 
calculating the similarities and distance 
between patients. Unravelling the in-
triguing coupling between phenogroup 
and radiographic progression could help 
us better understand the aetiopathogen-
esis of axSpA.
The protective effect of TNF inhibi-
tors on radiographic progression or 
new bone formation in axSpA remains 
controversial. Three open-label exten-

sions of randomised controlled trials of 
TNF inhibitors in axSpA over 2 years 
failed to demonstrate an inhibition of 
radiographic progression in compari-
son with a historical cohort of patients 
not treated with TNF inhibitors (41-
43). In contrast, use of a TNF inhibi-
tor was associated with a reduction of 
radiographic progression in a 2-year 
prospective observational study (44). 
These conflicting results could have 
several reasons and one could be driven 
by stratification given the heterogeneity 
of a study population that has different 
risk profiles. In the latter study, when 
the patients were categorised into three 
subgroups according to ASDAS level, 
it was found that radiographic progres-
sion was significantly impeded for those 
patients with a lower ASDAS level at 
baseline (44). In this context, our study 
has several important ramifications for 
the design of future axSpA clinical tri-
als and the research of axSpA. Future 
clinical trials can take into account the 
phenotypic categorisation by perform-
ing the deep phenotyping of study par-
ticipants and differential analysis for ra-
diographic progression. This approach 
can be also used in a clinical setting 
to determine whether certain groups 
of patients are more responsive to the 
investigational drug than other types 
of patients. Although epidemiological 
studies and observational registries of 
axSpA have enrolled a wide variety of 
patients with varying phenotypic char-
acters, detailed mechanistic studies of 
axSpA are often selective on the patient 
phenotype, hence limiting their abil-
ity to generalise their findings to the 
broader axSpA patient population. In 
some inflammatory diseases, a disease 
subgroup with a different clinical out-
come has different clinical phenotypes 
or molecular backgrounds (13, 14, 16, 
45). This phenotype-based cluster-
ing may provide a good starting point 
for catching a glimpse into the diver-
gent mechanistic features of axSpA. It 
would be also interesting to investigate 
whether the distinct subgroups show a 
different response to TNF inhibitors or 
investigational drugs.
It is worthy of note that the rate of dis-
continuation owing to inefficacy was 
highest in phenogroup 1, while the rate 

of continuation was highest in pheno-
group 2. This finding indicates that 
patients in phenogroup 1 were more 
resistant to TNF inhibitors for reasons 
that remain unclear. However, while 
patients in phenogroup 2 responded 
relatively well to TNF inhibitors, and 
the level of the TNF inhibitor was 
maintained over time, these patients 
exhibited worse radiographic progres-
sion. These findings imply that more 
well-established, mature inflammatory 
lesions may be present in the spines of 
patients in phenogroup 2, as indicated 
in the TNF-brake hypothesis (46). 
Thus, we hypothesise that IL-17 inhibi-
tors, which show promising efficacy 
in suppressing new bone formation, 
would be more suitable for patients in 
phenogroup 2 (47, 48). Independent 
validation steps in large patient cohorts 
with multimodal approaches are needed 
to validate this hypothesis (49).
There are some limitations in this 
study that should be addressed. First, 
data were retrospectively collected. 
Retrospective data collection is inher-
ently susceptible to bias, including both 
misclassification and information bias. 
Second, a variation in the prevalence 
of extraarticular manifestations has 
been found across different races and 
geographical areas. Because uveitis and 
peripheral arthritis are the key features 
stratifying the patients, phenotype map-
ping and clustering could differ in other 
cohorts. However, the primary goal of 
our study is to show the use of an un-
biased approach allows the clustering 
of patients into distinct and mutually 
exclusive groups that could be used in 
the clinic or in clinical trials, not to de-
fine specific subgroups. Third, the ef-
fect of TNF inhibitors on radiographic 
progression was not fully considered, 
although the frequency in use of TNF 
inhibitors did not differ across the 3 
phenogroups and treatment durations 
are less than 2 years. Fourth, functional 
metrics such as BASFI or BASMI were 
not included in the phenotype mapping 
because of a lack of data. However, 
spinal mobility or functional activity 
is strongly dependent on inflammation 
and potentially reversible (50, 51).
In the present study, we demonstrat-
ed how one can use unbiased cluster 



517Clinical and Experimental Rheumatology 2021

Classification of axSpA using machine learning / Y.B. Joo et al.

analysis of phenotypic data to obtain 
clinically relevant categories of axSpA 
patients with significantly different risk 
of radiographic progression. In consid-
eration of the heterogeneity of axSpA, 
phenotype mapping could be useful for 
the subclassification of axSpA patients 
and may enable a more personalised 
therapy in the future. Moreover, phe-
notype mapping could give information 
for the design of future clinical trials to 
better assess their outcomes.
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