
ar
X

iv
:2

10
7.

00
79

8v
1

 [c
s.D

S]
 2

 Ju
l 2

02
1

Near-optimal Algorithms for Explainable k-Medians and k-Means∗

Konstantin Makarychev† Liren Shan†

Northwsestern University

Abstract

We consider the problem of explainable k-medians and k-means introduced by Dasgupta,
Frost, Moshkovitz, and Rashtchian (ICML 2020). In this problem, our goal is to find a threshold
decision tree that partitions data into k clusters and minimizes the k-medians or k-means ob-
jective. The obtained clustering is easy to interpret because every decision node of a threshold
tree splits data based on a single feature into two groups. We propose a new algorithm for this
problem which is Õ(log k) competitive with k-medians with ℓ1 norm and Õ(k) competitive with
k-means. This is an improvement over the previous guarantees of O(k) and O(k2) by Dasgupta

et al (2020). We also provide a new algorithm which is O(log
3/2 k) competitive for k-medians

with ℓ2 norm. Our first algorithm is near-optimal: Dasgupta et al (2020) showed a lower bound
of Ω(log k) for k-medians; in this work, we prove a lower bound of Ω̃(k) for k-means. We also
provide a lower bound of Ω(log k) for k-medians with ℓ2 norm.

1 Introduction

In this paper, we investigate the problem of explainable k-means and k-medians clustering which
was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (2020). Suppose, we have
a data set which we need to partition into k clusters. How can we do it? Of course, we could use
one of many standard algorithms for k-means or k-medians clustering. However, we want to find
an explainable clustering – clustering which can be easily understood by a human being. Then,
k-means or k-medians clustering may not be the best options for us.

Note that though every cluster in a k-means and k-medians clustering has a simple mathematical
description, this description is not necessarily easy to interpret for a human. Every k-medians or
k-means clustering is defined by a set of k centers c1, c2, . . . , ck, where each cluster is the set of
points located closer to a fixed center ci than to any other center cj . That is, for points in cluster
i, we must have argminj ‖x − cj‖ = i. Thus, in order to determine to which cluster a particular
point belongs, we need to compute distances from point x to all centers cj . Each distance depends
on all coordinates of the points. Hence, for a human, it is not even easy to figure out to which
cluster in k-means or k-medians clustering a particular point belongs to; let alone interpret the
entire clustering.

In every day life, we are surrounded by different types of classifications. Consider the following
examples from Wikipedia: (1) Performance cars are capable of going from 0 to 60 mph in under 5
seconds; (2) Modern sources currently define skyscrapers as being at least 100 metres or 150 metres

∗The conference version of this paper appeared in the proceedings of ICML 2021.
†Equal contribution. The authors were supported by NSF Awards CCF-1955351 and CCF-1934931.

1

http://arxiv.org/abs/2107.00798v1

in height; (3) Very-low-calorie diets are diets of 800 kcal or less energy intake per day, whereas
low-calorie diets are between 1000-1200 kcal per day. Note that all these definitions depend on a
single feature which makes them easy to understand.

The above discussion leads us to the idea of Dasgupta et al. (2020), who proposed to use
threshold (decision) trees to describe clusters (see also Liu, Xia, and Yu (2005), Fraiman, Ghattas,
and Svarc (2013), Bertsimas, Orfanoudaki, and Wiberg (2018), and Saisubramanian, Galhotra, and
Zilberstein (2020)).

A threshold tree is a binary classification tree with k leaves. Every internal node u of the tree
splits the data into two sets by comparing a single feature iu of each data point with a threshold
θu. The first set is the set of points with xiu ≤ θu; the second set is the set of points with xiu > θu.
These two sets are then recursively partitioned by the left and right children of u. Thus, each point
x in the data set is eventually assigned to one of k leaves of the threshold tree T . This gives us a
partitioning of the data set X into clusters P = (P1, . . . , Pk). We note that threshold decision trees
are special cases of binary space partitioning (BSP) trees and similar to k-d trees Bentley (1975).

Dasgupta et al. (2020) suggested that we measure the quality of a threshold tree using the
standard k-means and k-medians objectives. Specifically, the k-medians in ℓ1 cost of the threshold
tree T equals (1), the k-medians in ℓ2 cost equals (2) and k-means cost equals (3):

costℓ1(X,T) =

k∑

i=1

∑

x∈Pi

‖x− ci‖1, (1)

costℓ2(X,T) =

k∑

i=1

∑

x∈Pi

‖x− ci‖2, (2)

costℓ2
2

(X,T) =

k∑

i=1

∑

x∈Pi

‖x− ci‖22, (3)

where ci is the ℓ1-median of cluster Pi in (1), the ℓ2-median of cluster Pi in (2), and the mean of
cluster Pi in (3).

This definition raises obvious questions: Can we actually find a good explainable cluster-
ing? Moreover, how good can it be comparing to a regular k-medians and k-means cluster-
ing? Let OPTℓ1(X), OPTℓ2(X), and OPTℓ2

2

(X) be the optimal solutions to (regular) k-medians

with ℓ1 norm, k-medians with ℓ2 norm, and k-means, respectively. Dasgupta et al. (2020) de-
fined the price of explainability as the ratio costℓ1(X,T)/OPTℓ1(X) for k-medians in ℓ1 and
costℓ2

2

(X,T)/OPTℓ2
2

(X) for k-means. The price of explainability shows by how much the optimal
unconstrained solution is better than the best explainable solution for the same data set.

In their paper, Dasgupta et al. (2020) gave upper and lower bounds on the price of explainability.
They proved that the price of explainability is upper bounded by O(k) and O(k2) for k-medians in
ℓ1 and k-means, respectively. Furthermore, they designed two algorithms that given a k-medians
in ℓ1 or k-means clustering, produce an explainable clustering with cost at most O(k) and O(k2)
times the cost of original clustering (respectively). They also provided examples for which the price
of explainability of k-medians in ℓ1 and k-means is at least Θ(log k).

2

k-medians in ℓ1 k-medians in ℓ2 k-means

Lower Upper Lower Upper Lower Upper

Our results O(log k log log k) Ω(log k) O(log
3/2 k) Ω(k/ log k) O(k log k log log k)

Dasgupta et al. (2020) Ω(log k) O(k) Ω(log k) O(k2)

Figure 1: Summary of our results. The table shows known upper and lower bounds on the price
of explainability for k-medians in ℓ1 and ℓ2, and for k-means.

1.1 Our results

In this work, we give almost tight bounds on the price of explainability for both k-medians in ℓ1
and k-means. Specifically, we show how to transform any clustering to an explainable clustering
with cost at most O(log k log log k) times the original cost for the k-medians ℓ1 objective and
O(k log k log log k) for the k-means objective. Note that we get an exponential improvement over
previous results for the k-medians ℓ1 objective. Furthermore, we present an algorithm for k-medians
in ℓ2 with the price of explainability bounded by O(log

3/2 k). We complement these results with an
almost tight lower bound of Ω(k/ log k) for the k-means objective and an Ω(log k) lower bound for
k-medians in ℓ2 objective. We summarise our results in Table 1.

Below, we formally state our main results. The costs of threshold trees and clusterings are
defined by formulas (1), (2), (3), (4), (5), and (6).

Theorem 1.1. There exists a polynomial-time randomized algorithm that given a data set X and a
set of centers C = {c1, . . . , ck}, finds a threshold tree T with expected k-medians in ℓ1 cost at most

E[costℓ1(X,T)] ≤ O(log k log log k) · costℓ1(X,C).

Theorem 1.2. There exists a polynomial-time randomized algorithm that given a data set X and
a set of centers C = {c1, . . . , ck}, finds a threshold tree T with expected k-means cost at most

E[costℓ2
2

(X,T)] ≤ O(k log k log log k) · costℓ2
2

(X,C).

We note that the algorithms by Dasgupta et al. (2020) also produce trees based on the given
set of “reference” centers c1, . . . , ck. However, the approximation guarantees of those algorithms
are O(k) and O(k2), respectively. Our upper bound of O(log k log log k) almost matches the lower
bound of Ω(log k) given by Dasgupta et al. (2020). The upper bound of O(k log k log log k) almost
matches the lower bound of Ω(k/ log k) we show in Section 8.

Theorem 1.3. There exists a polynomial-time randomized algorithm that given a data set X and a
set of centers C = {c1, . . . , ck}, finds a threshold tree T with expected k-medians in ℓ2 cost at most

E[costℓ2(X,T)] ≤ O(log
3/2 k) · costℓ2(X,C).

1.2 Related work

Dasgupta et al. (2020) introduced the explainable k-medians and k-means clustering problems
and developed Iterative Mistake Minimization (IMM) algorithms for these problems. Later, Frost,

3

Moshkovitz, and Rashtchian (2020) proposed algorithms that construct threshold trees with more
than k leaves.

Decision trees have been used for interpretable classification and clustering since 1980s. Breiman,
Friedman, Olshen, and Stone (1984) proposed a popular decision tree algorithm called CART for
supervised classification. For unsupervised clustering, threshold decision trees are used in many
empirical methods based on different criteria such as information gain Liu et al. (2005), local 1-
means cost Fraiman et al. (2013), Silhouette Metric Bertsimas et al. (2018), and interpretability
score Saisubramanian et al. (2020).

The k-means and k-medians clustering problems have been extensively studied in the literature.
The k-means++ algorithm proposed by Arthur and Vassilvitskii (2006) is the most widely used
algorithm for k-means clustering. It provides an O(ln k) approximation. Li and Svensson (2016)
provided a 1 +

√
3 + ε approximation for k-medians in general metric spaces, which was improved

to 2.611 + ε by Byrka, Pensyl, Rybicki, Srinivasan, and Trinh (2014). Ahmadian, Norouzi-Fard,
Svensson, and Ward (2019) gave a 6.357 approximation algorithm for k-means. The k-medians and
k-means problems are NP-hard Megiddo and Supowit (1984); Dasgupta (2008); Aloise et al. (2009).
Recently, Awasthi, Charikar, Krishnaswamy, and Sinop (2015) showed that it is also NP-hard to
approximate the k-means objective within a factor of (1 + ε) for some positive constant ε (see also
Lee et al. (2017)). Bhattacharya, Goyal, and Jaiswal (2020) showed that the Euclidean k-medians
can not be approximated within a factor of (1+ ε) for some constant ε assuming the unique games
conjecture.

Boutsidis et al. (2009), Boutsidis et al. (2014), Cohen et al. (2015), Makarychev et al. (2019) and
Becchetti et al. (2019) showed how to reduce the dimensionality of a data set for k-means clustering.
Particularly, Makarychev et al. (2019) proved that we can use the Johnson–Lindenstrauss transform
to reduce the dimensionality of k-medians in ℓ2 and k-means to d′ = O(log k). Note, however, that
the Johnson–Lindenstrauss transform cannot be used for the explainable k-medians and k-means
problems, because this transform does not preserve the set of features. Instead, we can use a feature
selection algorithm by Boutsidis et al. (2014) or Cohen et al. (2015) to reduce the dimensionality
to d′ = Õ(k).

Independently of our work, Laber and Murtinho (2021) proposed new algorithms for explainable
k-medians with ℓ1 and k-means objectives. Their competitive ratios are O(d log k) and O(dk log k),
respectively. Note that these competitive ratios depend on the dimension d of the space.

Remark: After this paper was accepted to ICML 2021, we learned about two independent
results that were recently posted on arXiv.org. The first paper by Charikar and Hu (2021) gives
a k1−2/d poly(d log k)-competitive algorithm for k-means. Note that this bound depends on the
dimension of the data set. It is better than our k-means bound (O(k log k log log k)) for small d
(d ≪ log k/ log log k) and worse for large d (d ≫ log k/ log log k). The second paper by Gamlath, Jia,
Polak, and Svensson (2021) gives O(log2 k) and O(k log2 k)-competitive algorithms for k-medians
in ℓ1 and k-means, respectively. These bounds are slightly worse than ours.

2 Preliminaries

Given a set of points X ⊆ R
d and an integer k > 1, the regular k-medians and k-means clustering

problems are to find a set C of k centers to minimize the corresponding costs: k-medians with ℓ1

4

objective cost (4), k-medians with ℓ2 objective cost (5), and k-means cost (6).

costℓ1(X,C) =
∑

x∈X
min
c∈C

‖xi − c‖1, (4)

costℓ2(X,C) =
∑

x∈X
min
c∈C

‖xi − c‖2. (5)

costℓ2
2

(X,C) =
∑

x∈X
min
c∈C

‖xi − c‖22. (6)

Every coordinate cut is specified by the coordinate i ∈ {1, . . . , d} and threshold θ. We denote
the set of all possible cuts by Ω:

Ω = {1, · · · , d} × R.

We define the standard product measure on Ω as follows: The measure of set S ⊂ Ω equals

µ(S) =
d∑

i=1

µR({θ : (i, θ) ∈ S}),

where µR is the Lebesgue measure on R.
For every cut ω = (i, θ) ∈ Ω and point x ∈ R

d, we let

δx(ω) ≡ δx(i, θ) =

{
1, if xi > θ;

0, otherwise.

In other words, δx(i, θ) is the indicator of the event {xi > θ}. Observe that x 7→ δx is an isometric
embedding of ℓd1 (d-dimensional ℓ1 space) into L1(Ω) (the space of integrable functions on Ω).
Specifically, for x, y ∈ R

d, we have

‖x− y‖1 ≡
d∑

i=1

|xi − yi|

=

d∑

i=1

∞∫

−∞

|δx(i, θ)− δy(i, θ)| dθ (7)

=

∫

Ω
|δx(ω)− δy(ω)| dµ(ω) ≡ ‖δx − δy‖1.

A map ϕ : Rd → R
d is coordinate cut preserving if for every coordinate cut (i, θ) ∈ Ω, there

exists a coordinate cut (i′, θ′) ∈ Ω such that {x ∈ R
d : xi′ ≤ θ′} = {x ∈ R

d : ϕ(x)i ≤ θ} and vice
versa. In the algorithm for explainable k-means, we use a cut preserving terminal embeddings of
“ℓ22 distance” into ℓ1.

3 Algorithms Overview

We now give an overview of our algorithms.

5

Input: a data set X ⊂ R
d and set of centers C = {c1, c2, . . . , ck} ⊂ R

d

Output: a threshold tree T

Set Sij = {ω ∈ Ω : δci(ω) 6= δcj (ω)} for all i, j ∈ {1, · · · , k}. Let t = 0.
Create a tree T0 containing a root vertex r. Assign set Xr = X ∪ C to the root.

while Tt contains a leaf with at least two distinct centers ci and cj do
Let Et =

⋃
leaves u{(i, j) : ci, cj ∈ Xu} be the set of all not yet separated pairs of centers.

Let Dt = max(i,j)∈Et
‖ci − cj‖1 be the maximum distance between two not separated

centers.

Define two sets At, Bt ⊂ Ω as follows:

At =
⋃

(i,j)∈Et

Sij and Bt =
⋃

(i,j)∈Et

s.t.µ(Sij)≤Dt/k3

Sij.

Let1Rt = At \Bt. Pick a pair ωt = (i, θ) uniformly at random from Rt.
For every leaf node u in T , split the set Xu into two sets:

Left = {x ∈ Xu : xi ≤ θ} and Right = {x ∈ Xu : xi > θ}.

If each of these sets contains at least one center from C, then create two children of u in
tree T and assign sets Left and Right to the left and right child, respectively.

Denote the updated tree by Tt+1.
Update t = t+ 1.

end while

Figure 2: Threshold tree construction for k-medians in ℓ1

k-medians in ℓ1. We begin with the algorithm for k-medians in ℓ1. We show that its competitive
ratio is O(log2 k) in Section 4 and then show an improved bound of O(log k log log k) in Section 5.

As the algorithm by Dasgupta et al. (2020), our algorithm (see Algorithm 2) builds a binary
threshold tree T top-down. It starts with a tree containing only the root node r. This node is
assigned the set of points Xr that contains all points in the data set X and all reference centers
ci. At every round, the algorithm picks some pair ω = (i, θ) ∈ Ω (as we discuss below) and
then splits data points x assigned to every leaf node u into two groups {x ∈ Xu : xi ≤ θ} and
{x ∈ Xu : xi > θ}. Here, Xu denotes the set of points assigned to the node u. If this partition
separates at least two centers ci and cj, then the algorithm attaches two children to u and assigns
the first group to the left child and the second group to the right child. The algorithm terminates
when all leaves contain exactly one reference center ci. Then, we assign the points in each leaf of
T to its unique reference center. Note that the unique reference center in each leaf may not be the
optimal center for points contained in that leaf. Thus, the total cost by assigning each point to the

6

reference center in the same leaf of T is an upper bound of the cost of threshold tree T .
The algorithm by Dasgupta et al. (2020) picks splitting cuts in a greedy way. Our algorithm

chooses them at random. Specifically, to pick a cut ωt ∈ Ω at round t, our algorithm finds the
maximum distance Dt between two distinct centers ci, cj that belong to the same set Xu assigned
to a leaf node u i.e.,

Dt = max
u is a leaf

max
ci,cj∈Xu

‖ci − cj‖1.

Then, we let At be the set of all ω ∈ Ω that separate at least one pair of centers; and Bt be the set
of all ω ∈ Ω that separate two centers at distance at most Dt/k

3. We pick ωt uniformly at random
(with respect to measure µ) from the set Rt = At \Bt.

Every ω ∈ Rt is contained in At, which means ω separates at least one pair of centers. Thus,
our algorithm terminates in at most k− 1 iterations. It is easy to see that the running time of this
algorithm is polynomial in the number of clusters k and dimension of the space d. In Section 9, we
provide a variant of this algorithm with running time Õ(kd).
k-medians in ℓ2. Our algorithm for k-medians with ℓ2 norm recursively partitions the data set X
using the following idea. It finds the median point m of all centers in X. Then, it repeatedly makes
cuts that separate centers from m. To make a cut, the algorithm chooses a random coordinate
i ∈ {1, . . . , d}, random number θ ∈ [0, R2], and random sign σ ∈ {±1}, where R is the largest
distance from a center in X to the median point m. It then makes a threshold cut (i,mi + σ

√
θ).

After separating more than half centers from m, the algorithm recursively calls itself for each of
the obtained parts. In Section 7, we show that the price of explainability for this algorithm is
O(log

3/2 k).
k-means. We now move to the algorithm for k-means. This algorithm embeds the space ℓ2 into
ℓ1 using a specially crafted terminal embedding ϕ (the notion of terminal embeddings was formally
defined by Elkin et al. (2017)). The embedding satisfies the following property for every center c
(terminal) and every point x ∈ ℓ2, we have

‖ϕ(x) − ϕ(c)‖1 ≤ ‖x− c‖22 ≤ 8k · ‖ϕ(x)− ϕ(c)‖1.

Then, the algorithm partitions the data set ϕ(X) with centers ϕ(c1), . . . , ϕ(ck) using Algorithm 2.
The expected cost of partitioning is at most the distortion of the embedding (8k) times the compet-
itive guarantee (O(log k log log k)) of Algorithm 2. In Section 8, we show an almost matching lower
bound of Ω(k/ log k) on the cost of explainability for k-means. We also remark that the terminal
embedding we use in this algorithm cannot be improved. This follows from the fact that the cost
function ‖x−c‖22 does not satisfy the triangle inequality; while the ℓ1 distance ‖ϕ(x)−ϕ(c)‖1 does.

4 Algorithm for k-medians in ℓ1

In this section, we analyse Algorithm 2 for k-medians in ℓ1 and show that it provides an explain-
able clustering with cost at most O(log2 k) times the original cost. We improve this bound to
O(log k log log k) in Section 5.

Recall, all centers in C are separated by the tree T returned by the algorithm, and each leaf of
T contains exactly one center from C. For each point x ∈ X, we define its cost in the threshold

1As we discuss in Section 9, we can also let Rt = At. However, this change will make the analysis of the algorithm

a little more involved.

7

tree T as
algℓ1(x) = ‖x− c‖1,

where c is the center in the same leaf in T as x. Then, costℓ1(X,T) ≤
∑

x∈X algℓ1(x) (note that the
original centers c1, . . . , ck used in the definition of algℓ1(x) are not necessarily optimal for the tree
T . Hence, the left hand side is not always equal to the right hand side.). For every point x ∈ X,
we also define costℓ1(x,C) = minc∈C ‖x− c‖1. Then, costℓ1(X,C) =

∑
x∈X costℓ1(x,C) (see (4)).

We prove the following theorem.

Theorem 4.1. Given a set of points X in R
d and a set of centers C = {c1, . . . , ck} ⊂ R

d, Algo-
rithm 2 finds a threshold tree T with expected k-medians in ℓ1 cost at most

E[costℓ1(X,T)] ≤ O(log2 k) · costℓ1(X,C).

Moreover, the same bound holds for the cost of every point x ∈ X i.e.,

E[costℓ1(x, T)] ≤ O(log2 k) · costℓ1(x,C).

Proof. Let Tt be the threshold tree constructed by Algorithm 2 before iteration t. Consider a point
x in X. If x is separated from its original center in C by the cut generated at iteration t, then x
will be eventually assigned to some other center in the same leaf of Tt. By the triangle inequality,
the new cost of x at the end of the algorithm will be at most costℓ1(x,C) + Dt, where Dt is the
maximum diameter of any leaf in Tt (see Algorithm 2). Define a penalty function φt(x) as follows:
φt(x) = Dt if x is separated from its original center c at time t; φt(x) = 0, otherwise. Note that
φt(x) 6= 0 for at most one iteration t, and

algℓ1(x) ≤ costℓ1(x,C) +
∑

t

φt(x). (8)

The sum in the right hand side is over all iterations of the algorithm. We bound the expected
penalty φt(x) for each t.

Lemma 4.2. The expected penalty φt(x) is upper bounded as follows:

E[φt(x)] ≤ E

[
Dt ·

∫

Ω
|δx(ω)− δc(ω)| ·

1{ω ∈ Rt}
µ(Rt)

dµ(ω)

]
,

where c is the closest center to the point x in C; 1{ω ∈ Rt} is the indicator of the event ω ∈ Rt.

Proof. If x is already separated from its original center c at iteration t, then φt(x) = 0. Otherwise,
x and c are separated at iteration t if for the random pair ωt = (i, θ) chosen from Rt in Algorithm 2,
we have δx(ωt) 6= δc(ωt). Write,

E[φt(x)] ≤ E

[
Pωt

[δx(ωt) 6= δc(ωt) | Tt] ·Dt

]
.

The probability that δx(ωt) 6= δc(ωt) given Tt is bounded as

Pωt
[δx(ωt) 6= δc(ωt) | Tt] =

µ{ω ∈ Rt : δx(ω) 6= δc(ω)}
µ(Rt)

=

∫

Ω
1{δx(ω) 6= δc(ω)} ·

1{ω ∈ Rt}
µ(Rt)

dµ(ω)

=

∫

Ω
|δx(ω)− δc(ω)| ·

1{ω ∈ Rt}
µ(Rt)

dµ(ω).

8

Let

Wt(ω) =
Dt · 1{ω ∈ Rt}

µ(Rt)
.

Then, by Lemma 4.2 and inequality (8), we have

E[algℓ1(x)] ≤ costℓ1(x,C) + E

[∑

t

∫

Ω
|δx(ω)− δc(ω)| ·Wt(ω) dµ(ω)

]
.

The upper bound on the expected cost of x in tree T consists of two terms: The first term is the
original cost of x. The second term is a bound on the expected penalty incurred by x. We now
bound the second term as O(log2 k) · costℓ1(x,C).

E

[∑

t

∫

Ω
|δx(ω)− δc(ω)| ·Wt(ω) dµ(ω)

]
=

∫

Ω
|δx(ω)− δc(ω)| · E

[∑

t

Wt(ω)
]
dµ(ω).

By Hölder’s inequality, the right hand side is upper bounded by the following product:

‖δx − δc‖1 ·max
ω∈Ω

E

[∑

t

Wt(ω)
]
.

The first multiplier in the product exactly equals ‖x− c‖1 (see Equation 7), which, in turn, equals
costℓ1(x,C). Hence, to finish the proof of Theorem 4.1, we need to upper bound the second
multiplier by O(log2 k).

Lemma 4.3. For all ω ∈ Ω, we have

E

[∑

t

Wt(ω)
]
≤ O(log2 k).

Proof. Let t′ be the first iteration and t′′ be the last iteration for which Wt(ω) > 0. First, we prove
that Dt′′ ≥ Dt′/k

3, where Dt′ and Dt′′ are the maximum cluster diameters at iterations t′ and t′′,
respectively. Since Wt′(ω) > 0 and Wt′′(ω) > 0, we have 1{ω ∈ Rt′} 6= 0 and 1{ω ∈ Rt′′} 6= 0.
Hence, ω ∈ Rt′ and ω ∈ Rt′′ . Since ω ∈ Rt′′ , there exists a pair (i, j) ∈ Et′′ for which ω ∈ Sij . For
this pair, we have Dt′′ ≥ µ(Sij). Observe that the pair (i, j) also belongs to Et′ , since Et′′ ⊂ Et′ .
Moreover, µ(Sij) > Dt′/k

3, because otherwise, Sij would be included in Bt′ (see Algorithm 2) and,
consequently, ω would not belong to Rt′ = At′ \Bt′ . Thus

Dt′′ ≥ µ(Sij) > Dt′/k
3. (9)

By the definition of t′ and t′′, we have

∑

t

Wt(ω) =

t′′∑

t=t′

Wt(ω) ≤
t′′∑

t=t′

Dt

µ(Rt)
.

Note that the largest distance Dt is a non-increasing (random) function of t. Thus, we can split
the iterations of the algorithm {t′, ..., t′′} into ⌈3 log k⌉ phases. At phase s, the maximum diameter
Dt is in the range (Dt′/2

s+1,Dt′/2
s]. Denote the set of all iterations in phase s by Phase(s).

Consider phase s. Let D = Dt′/2
s. Phase s ends when all sets Sij with µ(Sij) ≥ D/2 are

removed from the set Et. Let us estimate the probability that one such set Sij is removed from

9

Et at iteration t. Set Sij is removed from Et if the random threshold cut ωt chosen at iteration t
separates centers ci and cj , or, in other words, if wt ∈ Sij. The probability of this event equals:

P[ωt ∈ Sij | Tt] =
µ(Sij ∩Rt)

µ(Rt)
=

µ(Sij)− µ(Sij ∩Bt)

µ(Rt)
≥ µ(Sij)− µ(Bt)

µ(Rt)
.

Note that µ(Sij) > D/2 ≥ Dt/2 and µ(Bt) <
(
k
2

)
· Dt

k3
< Dt

2k (because Bt is the union of at most
(
k
2

)

sets of measure at most Dt/k
3 each). Hence,

P[ωt ∈ Sij | Tt] ≥
Dt

4µ(Rt)
≥ 1

4
Wt(ω).

If Wt(ω) did not depend on t, then we would argue that each set Sij (with µ(Sij) ≥ D/2) is removed
from Et in at most 4/Wt(ω) iterations, in expectation, and, consequently, all sets Sij are removed
in at most O(log k) · 4/Wt(ω) iterations, in expectation (note that the number of sets Sij is upper

bounded by
(k
2

)
). Therefore,

E

[∑

t∈Phase(s)
Wt(ω)

]
≤ O(log k) · 4

Wt(ω)
·Wt(ω) = O(log k).

However, we cannot assume that Wt(ω) is a constant. Instead, we use the following claim with
E = {0, . . . , k − 1} × {0, . . . , k − 1}, E′

t = {(i, j) ∈ Et : µ(Sij) ≥ D/2}, and pt = Wt(ω)/4.

Claim 4.4. Consider two stochastic processes Et and pt adapted to filtration Ft. The values of Et

are subsets of some finite non-empty set E. The values of pt are numbers in [0, 1]. Suppose that
for every step t, Et+1 ⊂ Et and for every e ∈ Et, Pr[e /∈ Et+1 | Ft] ≥ pt. Let τ be the (stopping)
time t when Et = ∅. Then,

E

[τ−1∑

t=0

pt

]
≤ ln |E|+O(1).

Proof of Claim 4.4. Let τe be the first time t ≥ 1 when element e does not belong to Et. Then,
τ = maxe∈E τe. Hence,

τ−1∑

t=0

pt = max
e∈E

τe−1∑

t=0

pt.

By the union bound, for all λ ≥ 0, we have

P

[τ−1∑

t=0

pt ≥ λ

]
≤

∑

e∈E
P

[τe−1∑

t=0

pt ≥ λ

]
. (10)

Define a new stochastic process Zt(e) as follows: Z0(e) = 1 and for t ≥ 1,

Zt(e) =

{
e
∑t−1

t′=0
pt′ , if e ∈ Et;

0, otherwise.

Note that if
∑τe−1

t=0 pt ≥ λ, then maxt≥0 Zt(e) ≥ eλ−1. Thus, we will bound Pr[maxt≥0 Zt(e) ≥ eλ−1].
Observe that Zt is a supermartingale, since

E[Zt+1 | Ft] = Pr[e ∈ Et+1 | Ft] · ept · Zt

≤ (1− pt) · ept · Zt ≤ Zt.

10

By Doob’s maximal martingale inequality, we have

Pr[max
t≥0

Zt(e) ≥ eλ−1] ≤ Z0(e)/e
λ−1 = e−(λ−1).

Using (10), we get

P

[τ−1∑

t=0

pt ≥ λ

]
≤ |E| · e−(λ−1).

Therefore,

E

[τ−1∑

t=0

pt

]
=

∫ ∞

0
P

[τ−1∑

t=0

pt ≥ λ

]
dλ ≤ ln |E|+

∫ ∞

ln |E|
|E| · e−(λ−1)dλ

= ln |E|+ |E|e− ln |E|+1 = ln |E|+ e.

By Claim 4.4,

E

[∑

t∈Phase(s)
Wt(ω)

]
≤ O(log k).

The expected sum of Wt over all phases is upper bounded by O(log2 k), since the number of phases
is upper bounded by O(log k). We note that if the number of phases is upper bounded by L, then
the expected sum of Wt over all phases is upper bounded by O(L log k). This concludes the proofs
of Lemma 4.3 and Theorem 4.1.

5 Improved Analysis for k-medians in ℓ1

In this section, we provide an improved analysis of our algorithm for k-medians in ℓ1.

Theorem 5.1. Given a set of points X in R
d and set of centers C = {c1, . . . , ck} ⊂ R

d, Algorithm 2
finds a threshold tree T with expected k-medians ℓ1 cost at most

E[costℓ1(X,T)] ≤ O(log k log log k) · costℓ1(X,C).

Proof. In the proof of Theorem 4.1, we used a pessimistic estimate on the penalty a point x ∈ X
incurs when it is separated from its original center c. Specifically, we bounded the penalty by the
maximum diameter of any leaf in the tree Tt. In the current proof, we will use an additional bound:
The distance from x to the closest center after separation. Suppose, that x is separated from its
original center c. Let c′ be the closest center to x after we make cut ωt at step t. That is, c′ is the
closest center to x in the same leaf of the threshold tree Tt+1. Note that after we make additional
cuts, x may be separated from its new center c′ as well, and the cost of x may increase. However,
as we already know, the expected cost of x may increase in at most O(log2 k) times in expectation
(by Theorem 4.1). Here, we formally apply Theorem 4.1 to the leaf where x is located and treat
c′ as the original center of x. Therefore, if x is separated from c by a cut ωt at step t, then the
expected cost of x in the end of the algorithm is upper bounded by

E[algℓ1(x) | Tt, ωt] ≤ O(log2 k) · ‖c′ − x‖1 = O(log2 k) ·Dmin
t (x, ωt).

11

In the formula above, we used the following definition: Dmin
t (x, ω) is the distance from x to the

closest center c′ in the same leaf of Tt as x which is not separated from x by the cut ω i.e.,
δx(ω) = δc′(ω). If there are no such centers c′ (i.e., cut ω separates x from all centers), then we let
Dmin

t (x, ω) = 0. Note that in this case, our algorithm will never make cut ω, since it always makes
sure that the both parts of the cut contain at least one center from C. Similarly to Dmin

t (x, ω), we
define Dmax

t (x, ω): Dmax
t (x, ω) is the distance from x to the farthest center c′′ in the same leaf of

Tt as x which is not separated from x by the cut ω. We also let Dmax
t (x, ω) = 0 if there is no such

c′′. Note that Dmax
t (x, ω) is an upper bound on the cost of x in the eventual threshold tree T if

cut ω separated x from c at step t.
We now have three bounds on the expected cost of x in the final tree T given that the algorithm

separates x from its original center c at step t with cut ω. The first bound is Dmax
t (x, ω); the

second bound is O(log2 k) · Dmin
t (x, ω), and the third bound is ‖x − c‖1 + Dt. We use the first

bound if Dmax
t (x, ω) ≤ 2‖x − c‖1. We call such cuts ω light cuts. We use the second bound if

Dmax
t (x, ω) > 2‖x − c‖1 but Dmin

t (x, ω) ≤ Dt/ log
4 k. We call such cuts ω medium cuts. We use

the third bound if Dmax
t (x, ω) > 2‖x− c‖1 and Dmin

t (x, ω) > Dt/ log
4 k. We call such cuts ω heavy

cuts.
Note that in the threshold tree returned by the algorithm, one and only one of the following

may occur: (1) x is separated from the original center c by a light, medium, or heavy cut; (2) x is
not separated from c. We now estimate expected penalties due to light, medium, or heavy cuts.

If the algorithm makes a light cut, then the maximum cost of point x in T is at most 2‖x−c‖1 =
2costℓ1(x,C). So we should not worry about such cuts. If the algorithm makes a medium cut, then
the expected additional penalty for x is upper bounded by

Dmin
t (x, ωt) · O(log2 k) ≤ O(φt(x)/ log

2 k),

where φt(x) is the function from the proof of Theorem 4.1. Thus, the total expected penalty due to
a medium cut (added up over all steps of the algorithm) is Ω(log2 k) times smaller than the penalty
we computed in the proof of Theorem 4.1. Therefore, the expected penalty due to a medium cut
is at most O(‖x− c‖1).

We now move to heavy cuts. Denote the set of possible heavy cuts for x in Rt by Ht. That is,
if x is not separated from its original center c by step t, then

Ht =
{
ω ∈ Rt : Dmin

t (x, ω) > Dt/ log
4 k and Dmax

t (x, ω) > 2‖x− c‖1
}
.

Otherwise, let Ht = ∅. Define a density function W̃t(ω) similarly to Wt(ω):

W̃t(ω) =
Dt · 1{ω ∈ Ht}

µ(Rt)
.

Then, the expected penalty due to a heavy cut is bounded, similarly to Lemma 4.2, by

∑

t

E

[∫ 1

0
|δx(ω)− δc(ω)| · W̃t dµ(ω)

]
.

Therefore, to finish the proof of Theorem 1.1, we need to prove the following analog of Lemma 4.3.

Lemma 5.2. For all ω ∈ Ω, we have

E

[∑

t

W̃t(ω)
]
≤ O(log k log log k).

12

Proof. As in the proof of Lemma 4.3, consider the first and last steps when W̃t(ω) > 0. Denote
these steps by t∗ and t∗∗, respectively. In the proof of Lemma 4.3, we had a bound Dt′′ ≥ Dt′/k

3

(see inequality (9)). We now show a stronger bound on t∗ and t∗∗.

Claim 5.3. We have Dt∗∗ ≥ Dt∗/2 log4 k.

This claim implies that the number of phases defined in Lemma 4.3 is bounded by O(log log k),
which immediately implies Lemma 5.2. So, to complete the proof, it remains to show Claim 5.3.
Proof of Claim 5.3 First, note that 1{ω ∈ Ht∗∗} > 0 and, consequently, cut ω is heavy at step t∗∗.
Thus, Dmin

t∗∗ (x, ω) is positive. Hence, this cut separates c from at least one other center c′ in the
same leaf of the current threshold tree Tt∗∗ . Let c

′′ be the farthest such center from point x. Then,
‖c′′ − x‖1 = Dmax

t∗∗ (x, ω). Since centers c and c′′ are not separated prior to step t∗∗, we have

Dt∗∗ ≥ ‖c− c′′‖1 ≥ ‖x− c′′‖1 − ‖x− c‖1.

Since ω is a heavy cut and not a light cut, ‖x− c′′‖1 > 2‖x− c‖1. Thus,

Dt∗∗ ≥ ‖x− c′′‖1
2

=
Dmax

t∗∗ (x, ω)

2
≥ Dmin

t∗∗ (x, ω)

2
.

Now, observe that the random process Dmin
t∗∗ (x, ω) is non-decreasing (for fixed x and ω) since the

distance from x to the closest center c′ cannot decrease over time. Therefore,

Dt∗∗ ≥ Dmin
t∗∗ (x, ω)

2
≥ Dmin

t∗ (x, ω)

2
≥ Dt∗

2 log4 k
.

In the last inequality, we used that ω is a heavy cut at time t∗. This finishes the proof of Claim 5.3.

6 Terminal Embedding of ℓ22 into ℓ1

In this section, we show how to construct a coordinate cut preserving terminal embedding of ℓ22
(squared Euclidean distances) into ℓ1 with distortion O(k) for every set of terminals K ⊂ R

d of size
k.

Let K be a finite subset of points in R
d. We say that ϕ : x 7→ ϕ(x) is a terminal embedding of

ℓ22 into ℓ1 with a set of terminals K and distortion α if for every terminal y in K and every point
x in R

d, we have
‖ϕ(x) − ϕ(y)‖1 ≤ ‖x− y‖22 ≤ α · ‖ϕ(x) − ϕ(y)‖1.

Lemma 6.1. For every finite set of terminals K in R
d, there exists a coordinate cut preserving

terminal embedding of ℓ22 into ℓ1 with distortion 8|K|.

Proof. We first prove a one dimensional analog of this theorem (which corresponds to the case
when all points and centers are in one dimensional space).

Lemma 6.2. For every finite set of real numbers K, there exists a cut preserving embedding
ψK : R → R such that for every x ∈ R and y ∈ K, we have

|ψK(x)− ψK(y)| ≤ |x− y|2 ≤ 8|K| · |ψK(x)− ψK(y)|. (11)

13

Proof. Let k be the size of K and y1, . . . , yk be the elements of K sorted in increasing order. We
first define ψK on points in K and then extend this map to the entire real line R. We map each yi
to zi defined as follows: z1 = 0 and for i = 2, . . . , k,

zi =
1

2

i−1∑

j=1

(yj+1 − yj)
2.

Now consider an arbitrary number x in R. Let yi be the closest point to x in K. Let εx =
sign(x − yi). Then, x = yi + εx|x − yi|. Note that εx = 1 if x is on the right to yi, and εx = −1,
otherwise. Let the function ψK be

ψK(x) = zi + εx(x− yi)
2.

For x = (yi + yi+1)/2, both yi and yi+1 are the closest points to x in K. In this case, we have

zi + εx(x− yi)
2 = zi+1 + εx(x− yi+1)

2,

which means ψK(x) is well-defined.
An example of the terminal embedding function ψK(x) is shown in Figure 3. Then, we show

that this function ψK is a cut preserving embedding satisfying inequality (11).
We first show that this function ψK is continuous and differentiable in R. Consider 2k open

intervals on the real line divided by points in K and points (yi + yi+1)/2 for i ∈ {1, 2, · · · , k − 1}.
In every such open interval, the function ψK is a quadratic function, which is continuous and
differentiable. Since ψK is also continuous and differentiable at the endpoints of these intervals, the
function ψK is continuous and differentiable in R. For any x ∈ R, we have ψ′

K(x) = 2 |x− y∗| ≥ 0
where y∗ is the closest point in K to x. Thus, the function ψK is increasing in R, which implies
ψK is cut preserving.

We now prove that ψK satisfies two inequalities. We first show that for every x ∈ R and y ∈ K,
|ψK(x) − ψK(y)| ≤ |x − y|2. Suppose that x ≥ y (The case x ≤ y is handled similarly.) If x = y,
then this inequality clearly holds. Thus, to prove |ψK(x) − ψK(y)| ≤ |x − y|2, it is sufficient to
prove the following inequality on derivatives

(ψK(x)− ψK(y))′x ≤
(
(x− y)2

)′
x
.

Let y∗ be the closest point in K to x. Then,

(ψK(x)− ψK(y))′x = (ψK(x))′x = (ψK(y∗) + εx(x− y∗)2)′x = 2|x− y∗|.

Since y∗ is the closest point in K to x, we have |x − y∗| ≤ |x − y| =
(
(x − y)2

)′
x
/2. This finishes

the proof of the first inequality.

We now verify the second inequality. First, consider two points yi and yj (yi < yj). Write,

ψK(yj)− ψK(yi) = zj − zi =
1

2

j−1∑

m=i

(ym+1 − ym)2.

By the arithmetic mean–quadratic mean inequality, we have

(j − i) ·
j−1∑

m=i

(ym+1 − ym)2 ≥
(j−1∑

m=i

ym+1 − ym

)2
= (yj − yi)

2.

14

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

(y1, z1)

(y2, z2)

(y3, z3)

ψK(x)

x

z

Figure 3: Terminal embedding function ψK(x) for K = {1, 3, 5}.

Thus,

ψK(yj)− ψK(yi) ≥
(yj − yi)

2

2(j − i)
≥ (yj − yi)

2

2(k − 1)
.

Now we consider the case when x is an arbitrary real number in R and y ∈ K. Let y∗ be the
closest point in K to x. Then,

|x− y|2 ≤ 2|x− y∗|2 + 2|y∗ − y|2.

The first term on the right hand side equals 4|ψK(x) − ψK(y∗)|; the second term is upper
bounded by 4(k − 1)|ψK(y)− ψK(y∗)|. Thus,

|x− y|2 ≤ 4|ψK(x)− ψK(y∗)|+ 4(k − 1)|ψK(y∗)− ψK(y)|.

Note that |ψK(x) − ψK(y∗)| ≤ |ψK(x) − ψK(y)| since y∗ is the closest point in K to x. Also, we
have

|ψK(y∗)− ψK(y)| ≤ |ψK(x)− ψK(y∗)|+ |ψK(x)− ψK(y)| ≤ 2|ψK(x)− ψK(y)|.
Hence,

|x− y|2 ≤ 8k|ψK(x)− ψK(y)|.
This completes the proof.

Using the above lemma, we can construct a terminal embedding ψ from d-dimensional ℓ22 into
d-dimensional ℓ1 as follows. For each coordinate i ∈ {1, 2, · · · , d}, let Ki be the set of the i-
th coordinates for all terminals in K. Define one dimensional terminal embeddings ψi for all
coordinates i. Then, ψ maps every point x ∈ ℓ22 to ψ(x) = (ψ1(x), · · · , ψd(x)).

We show that this terminal embedding ψ is coordinate cut preserving. By the construction of
ϕ, we have for any threshold cut (i, θ)

{x ∈ R
d : ψ(x)i ≤ θ} = {x ∈ R

d : ψi(xi) ≤ θ}.

15

Since ψi is a cut preserving terminal embedding by Lemma 6.2, there exists a threshold θ′ ∈ R such
that

{x ∈ R
d : xi ≤ θ′} = {x ∈ R

d : ψi(xi) ≤ θ},
which implies ψ is coordinate cut preserving.

For explainable k-means clustering, we first use the terminal embedding of ℓ22 into ℓ1. Then, we
apply Algorithm 2 to the instance after the embedding. By using this terminal embedding, we can
get the following result.

Theorem 6.3. Given a set of points X in R
d and a set of centers C in R

d, Algorithm 2 with
terminal embedding finds a threshold tree T with expected k-means cost at most

E[costℓ2
2

(X,T)] ≤ O(k log k log log k) · costℓ2
2

(X,C).

Proof. Let ϕ be the terminal embedding of ℓ22 into ℓ1 with terminals C. Let T ′ be the threshold
tree returned by our algorithm on the instance after embedding. Since the terminal embedding ϕ
is coordinate cut preserving, the threshold tree T ′ also provides a threshold tree T on the original
k-means instance. Let ϕ(C) be the set of centers after embedding. For any point x ∈ X, the
expected cost of x is at most

E[costℓ2
2

(x, T)] ≤ 8k · E[costℓ1(ϕ(x), T ′)]

≤ O(k log k log log k) · costℓ1(ϕ(x), ϕ(C))

≤ O(k log k log log k) · costℓ2
2

(x,C),

where the first and third inequality is from the terminal embedding in Lemma 6.1 and the second
inequality is due to Theorem 5.1.

7 k-medians in ℓ2

In this section, we present an algorithm for the k-medians in ℓ2 and show that it provides an
explainable clustering with cost at most O(log3/2 k) times the original cost.

7.1 Algorithm for k-medians in ℓ2

Our algorithm builds a binary threshold tree T using a top-down approach, as shown in Algorithm 4.
It starts with a tree containing only the root node r. The root r is assigned the set of points Xr

that contains all points in the data set X and all reference centers ci. Then, the algorithm calls
function Build tree(r). Function Build tree(u) partitions centers in u in several groups Xv

using function Partition Leaf(u) and then recursively calls itself (Build tree(v)) for every new
group Xv that contains more than one reference center ci.

Most work is done in the function Partition Leaf(u). The argument of the function is
a leaf node u of the tree. We denote the set of data points and centers assigned to u by Xu.
Function Partition Leaf(u) partitions the set of centers assigned to node u into several groups.
Each group contains at most half of all centers ci from the set Xu. When Partition Leaf(u)
is called, the algorithm finds the ℓ1-median of all reference centers in node u. Denote this point
by mu. We remind the reader that the i-th coordinate of the median mu (which we denote by

16

Input: a data set X ⊂ R
d, centers C = {c1, c2, . . . , ck} ⊂ R

d

Output: a threshold tree T

function Main(X,C)
Create a root r of the threshold tree T containing Xr = X ∪ C.
Build tree(r).

end function

function Partition Leaf(u)
Compute the ℓ1 median mu of all centers in Xu.
Set the main part u0 = u and set t = 0.
while node u0 contains more than 1/2 of centers in Xu do

Update t = t+ 1.
Let Ru

t = maxc∈Xu0
‖c‖2.

Sample iut ∈ {1, 2, · · · , d}, θut ∈ [0, (Ru
t)

2], and σu
t ∈ {±1} uniformly at random.

if two centers in Xu0
are separated by (iut ,m

u
i + σu

t

√
θut) then

Assign to u0 two children u≤ = {x ∈ Xu0
: xi ≤ ϑ} and u> = {x ∈ Xu0

: xi > ϑ}
where i = iut , ϑ = mu

i + σu
t θ

u
t .

Update the main part u0 be u≤ if σu
t = 1, and be u> otherwise (thus, the main part

always contains mu).
end if

end while
end function

function Build tree(u)
Call Partition Leaf(u).
Call Build tree(v) for each leaf v in the subtree of u containing more than one center.

end function

Figure 4: Threshold tree construction for k-medians in L2

mu
i) is a median for i-th coordinates of centers in Xu. That is, for each coordinate i, both sets

{c ∈ Xu∩C : ci < mu
i } and {c ∈ Xu∩C : ci > mu

i } contain at most half of all centers in Xu. Then,
function Partition Leaf(u) iteratively partitions Xu into pieces until each piece contains at most
half of all centers from Xu. We call the piece that contains the median mu the main part (note that
we find the median mu when Partition Leaf(u) is called and do not update mu afterwards).

At every iteration t, the algorithm finds the maximum distance Ru
t from centers in the main

part to the point mu. The algorithm picks a random coordinate iut ∈ {1, 2, · · · , d}, random number
θut ∈ [0, (Ru

t)
2], and random sign σu

t ∈ {±1} uniformly. Then, it splits the main part using the
threshold cut (iut ,m

u
i +σu

t

√
θut) if this cut separates at least two centers in the main part. Function

Partition Leaf(u) stops, when the main part contain at most half of all centers in Xu. Note that
all pieces separated from mu during the execution of Partition Leaf(u) contain at most half of
all centers in Xu because mu is the median of all centers in Xu.

17

Theorem 7.1. Given a set of points X in R
d and a set of centers C = {c1, . . . , ck} ⊂ R

d, Algo-
rithm 4 finds a threshold tree T with expected k-medians in ℓ2 cost at most

E[costℓ2(X,T)] ≤ O(log
3/2 k) · costℓ2(X,C).

Proof. Let Tt(u) be the threshold tree at the beginning of iteration t in function Partition Leaf(u).
For every point x ∈ Xu, define its cost at step t of function Partition Leaf(u) to be the distance
from x to the closest center in the same leaf of Tt(u) as x. That is, if x belongs to a leaf node v in
the threshold tree Tt(u), then

costℓ2(x, Tt(u)) = min{‖x− c‖2 : c ∈ Xv ∩ C}.

If the point x is separated from its original center in C by the cut generated at time step t, then
x will be eventually assigned to some other center in the main part of Tt(u). By the triangle
inequality, the new cost of x at the end of the algorithm will be at most costℓ2(x,C) + 2Ru

t , where
Ru

t is the maximum radius of the main part in Tt(u) i.e., Ru
t is the distance from the median mu

to the farthest center ci in the main part. Define a penalty function φu
t (x) as follows: φ

u
t (x) = 2Ru

t

if x is separated from its original center c at time t; φu
t (x) = 0, otherwise. Let Ux be the set of

all nodes u for which the algorithm calls Build Tree(u) and x ∈ Xu. Note that some nodes v of
the threshold tree with x ∈ Xv do not belong to Ux. Such nodes v are created and split into two
groups in the same call of Partition Leaf(u). Observe that φu

t (x) 6= 0 for at most one step t in
the call of Partition Leaf(u) for some node u ∈ Ux, and

costℓ2(x, T) ≤ costℓ2(x,C) +
∑

u∈Ux

∑

t

φu
t (x). (12)

The sum in the right hand side is over all iterations t in all calls of function Partition Leaf(u)
with u ∈ Ux. Since each piece in the partition returned by function Partition Leaf(u) contains
at most half of all centers from Xu, the depth of the recursion tree is at most O(log k) (note that
the depth of the threshold tree can be as larger as k− 1). This means that the size of Ux is at most
O(log k). In Lemma 7.3, we show that the expected total penalty in the call of Partition Leaf(u)
for every u ∈ Ux is at most O(

√
log k) times the original cost. Before that, we upper bound the

expected penalty φu
t (x) for each step t in the call of Partition Leaf(u) for every node u ∈ Ux.

Lemma 7.2. The expected penalty φu
t (x) is upper bounded as follows:

E[φu
t (x)] ≤ E

[
2‖x− c‖2 ·

‖c−mu‖2 + ‖x−mu‖2
d · Ru

t

]
,

where c is the closest center to the point x in C.

Proof. We first bound the probability that point x is separated from its original center c at iteration
t. For any coordinate i ∈ {1, 2, · · · , d}, let xi and ci be the i-th coordinates of point x and center
c respectively. For any point x ∈ R

d, we define the indicator function δx(i, θ) = 0 if xi ≤ θ, and
δx(i, θ) = 1 otherwise. To determine whether the threshold cut sampled at iteration t separates x
and c, we consider the following two cases: (1) x and c are on the same side of the median mu in
coordinate i (i.e. (xi −mu

i)(ci −mu
i) ≥ 0), and (2) x and c are on the opposite sides of the median

mu in coordinate i (i.e. (xi −mu
i)(ci −mu

i) < 0).

18

If x and c are on the same side of the median mu in coordinate i, then the threshold cut
(i,mu

i +σu
t

√
θut) separates x and c if and only if σu

t has the same sign as xi−mu
i and θut is between

(xi −mu
i)

2 and (ci −mu
i)

2. Thus,

P [δx(i, ϑ
u
t) 6= δc(i, ϑ

u
t) | Tt(u)] =

∣∣(ci −mu
i)

2 − (xi −mu
i)

2
∣∣

2(Ru
t)

2

≤ |ci − xi| (|ci −mu
i |+ |xi −mu

i |)
2(Ru

t)
2

,

where ϑu
t = mu

i + σu
t

√
θut .

Now, suppose x and c are on the opposite sides of the median mu in coordinate i, i.e. (xi −
mu

i)(ci−mu
i) < 0. The threshold cut (i,mu

i +σu
t

√
θut) separates x and c if and only if σu

t (xi−mu
i) ≥ 0,

θut ≤ (xi −mu
i)

2 or σu
t (ci −mu

i) ≥ 0, θut ≤ (ci −mu
i)

2. Thus, we have for every coordinate i with
(xi −mu

i)(ci −mu
i) < 0,

P [δx(i, ϑ
u
t) 6= δc(i, ϑ

u
t) | Tt(u)] =

(ci −mu
i)

2 + (xi −mu
i)

2

2(Ru
t)

2

≤ |ci − xi| (|ci −mu
i |+ |xi −mu

i |)
2(Ru

t)
2

,

where the last inequality follows from |ci − xi| ≥ max{|ci −mu
i | , |xi −mu

i |}, since ci, xi are on the
different sides of mu

i .
Since the coordinate iut is chosen randomly and uniformly from {1, · · · d}, the probability that

x and c are separated at iteration t is

P[δx(i
u
t , ϑ

u
t) 6= δc(i

u
t , ϑ

u
t) | Tt(u)] ≤

d∑

i=1

|ci − xi| (|ci −mu
i |+ |xi −mu

i |)
2d · (Ru

t)
2

≤ ‖c− x‖2(‖x−mu‖2 + ‖c−mu‖2)
d · (Ru

t)
2

,

where the last inequality follows from the Cauchy-Schwarz inequality and (|ci|+ |xi|)2 ≤ 2c2i +2x2i .
Then, the expected penalty is

E[φu
t (x)] ≤ E

[
P [δx(i

u
t , ϑ

u
t) 6= δc(i

u
t , ϑ

u
t) | Tt(u)] · 2Ru

t

]

≤ E

[
2‖c− x‖2 ·

‖c−mu‖2 + ‖x−mu‖2
d ·Ru

t

]
.

To bound the expected penalty for point x, we consider two types of cuts based on three
parameters: the maximum radius Ru

t and distances ‖x − mu‖2, ‖c − mu‖2 between x, c and the
median mu . If x is separated from its original center c at iteration t with

Ru
t ≤

√
log2 k ·max{‖x−mu‖2, ‖c −mu‖2},

then we call this cut a light cut. Otherwise, we called it a heavy cut.

19

Lemma 7.3. In every call of Partition Leaf(u) (see Algorithm 4), the expected penalty for a
point x ∈ X is upper bounded as follows:

E

[∑

t

φu
t (x)

]
≤ O(

√
log k) · costℓ2(x,C).

Proof. If point x is not separated from its original center c in Partition Leaf(u), then the total
penalty is 0. If x is separated from its center c in this call, then there are two cases: (1) the point
x is separated by a light cut; (2) the point x is separated by a heavy cut. We first show that the
expected penalty due to a heavy cut is at most O(

√
log k)costℓ2(x,C).

Denote the set of all heavy cuts at iteration t in Partition Leaf(u) by Hu
t :

Hu
t = {x : max{‖x−mu‖2, ‖c −mu‖2} < Ru

t /
√

log2 k}.

Then, by Lemma 7.2, the expected penalty x incurs due to a heavy cut is at most

E

[
∑

t:x∈Hu
t

φu
t (x)

]
≤ 2‖x− c‖2 · E

[
∑

t:x∈Hu
t

‖x−mu‖2 + ‖c−mu‖2
d · Ru

t

]
.

Since the maximum radius Ru
t is a non-increasing function of t, we split all steps of this call of

Partition Leaf into phases with exponentially decreasing values of Ru
t . At phase s, the maximum

radius Ru
t is in the range (Ru

1/2
s+1, Ru

1/2
s], where Ru

1 is the maximum radius at the beginning of
Partition Leaf(u).

Consider an arbitrary phase s and step t in that phase. Let R = Ru
1/2

s. For every center c′

with ‖c′ −mu‖2 ∈ (R/2, R], the probability that this center c′ is separated from the main part at
step t in phase s is at least

P [δc′(i
u
t , ϑ

u
t) 6= δmu(iut , ϑ

u
t) | Tt(u)] =

d∑

j=1

1

d
·
(c′j −mu

j)
2

2(Ru
t)

2
=

‖c′ −mu‖22
2d · (Ru

t)
2

≥ 1

4d
,

where the last inequality is due to ‖c′ −mu‖2 > R/2 ≥ Ru
t /2 for step t in the phase s. Since there

are at most k centers, all centers with norm in (R/2, R] are separated from the main part in at
most 4d ln k steps in expectation. Thus, the expected length of each phase is O(d log k) steps, and
hence, the expected penalty x incurred during phase s is at most

2‖x− c‖2 · E
[∑

t:x∈Hu
t

Ru
t ∈(R/2,R]

‖x−mu‖2 + ‖c−mu‖2
d ·Ru

t

]
≤ 2‖x− c‖2 · E

[∑

t:x∈Hu
t

Ru
t ∈(R/2,R]

‖x−mu‖2 + ‖c−mu‖2
d · R/2

]

≤ O(log k) · ‖x− c‖2 ·
‖x−mu‖2 + ‖c−mu‖2

R
.

Let s′ be the last phase for which

Ru
1/2

s′ ≥
√

log2 k ·max{‖x−mu‖2, ‖c −mu‖2}. (13)

20

Then, in every phase s > s′, all cuts separating x from its original center c are light. Hence, the
total expected penalty due to a heavy cut is upper bounded by

O(log k) · ‖x− c‖2 · (‖x−mu‖2 + ‖c−mu‖2) ·
s′∑

s=0

2s

Ru
1

=

= O(log k) · ‖x− c‖2 · (‖x−mu‖2 + ‖c−mu‖2) ·
2s

′+1

Ru
1

.

Using the definition (13) of s′, we write

(‖x−mu‖2 + ‖c−mu‖2) ·
2s

′+1

Ru
1

≤ 2
‖x−mu‖2 + ‖c−mu‖2

Ru
1/2

s′
≤ 4√

log2 k
.

Thus, the expected penalty due to a heavy cut is at most O(
√
log k)costℓ2(x,C).

We now analyze the expected penalty due to a light cut. Consider an iteration t in Parti-
tion Leaf(u) with x 6∈ Hu

t . By the analysis in Lemma 7.2, the probability that x and c are
separated at iteration t is at most

‖c− x‖2(‖x−mu‖2 + ‖c−mu‖2)
d · (Ru

t)
2

.

The probability that x or c is separated from the main part at iteration t is at least

max{‖x−mu‖22, ‖c−mu‖22}
d(Ru

t)
2

.

If x or c is separated from the main part, then the point x will not incur penalty at any step after t.
Thus, the probability that x and c are separated by a light cut in the end of Partition Leaf(u)
is at most

‖c− x‖2(‖x−mu‖2 + ‖c−mu‖2)
max{‖x−mu‖22, ‖c −mu‖22}

≤ 2‖c − x‖2
max{‖x−mu‖2, ‖c−mu‖2}

.

Since the penalty of a light cut is at most Ru
t ≤

√
log2 k · max{‖x − mu‖2, ‖c − mu‖2}, the

expected penalty due to a light cut is at most O(
√
log k) · costℓ2(x,C).

This concludes the proof of Lemma 7.3.

For every node u, the main part contains the median mu, which is also the ℓ1-median of all
centers in Xu. Thus, each cut sampled in the call Partition Leaf(u) separates at most half of all
centers in Xu from the origin. The main part contains at most half of centers in Xu at the end of the
call Partition Leaf(u). Therefore, each leaf node generated in the end of Partition Leaf(u)
contains at most half of centers in Xu. Thus, the depth of the recursion tree is at most O(log k).
By Lemma 7.3 and Equation (12), we get the conclusion.

8 Lower Bound for Threshold Tree

8.1 Lower bound for k-means

In this section, we show a lower bound on the price of explainability for k-means.

21

Theorem 8.1. For any k, there exists an instance X with k clusters such that the cost of explainable
k-means clustering for every tree T is at least

costℓ2
2

(X,T) ≥ Ω

(
k

log k

)
OPTℓ2

2

(X).

To prove this lower bound, we construct an instance as follows. We uniformly sample k centers
C =

{
c1, c2, · · · , ck

}
from the d-dimensional unit cube [0, 1]d where the dimension d = 300 ln k. For

each center ci, we add two points ci± (ε, ε, · · · , ε) with ε = 300 ln k/k. We also add many points at
each center such that the optimal centers for any threshold tree remain almost the same. Specially,
we can add k2 points co-located with each center ci. Then, if one center ci is shifted by a distance
of ε in the threshold tree clustering, the cost of the co-located points at ci is at least k2ε2. Since the
optimal regular cost for this instance is kdε2, the total cost of the threshold tree is lower bounded
by Ω(k/ log k)OPTℓ2

2

(X). Consequently, we consider the threshold tree with optimal centers shifted
by at most ε.

First, we show that any two centers defined above are far apart with high probability.

Lemma 8.2. With probability at least 1− 1/k2 the following holds: The squared distance between
every two distinct centers c and c′ in C is at least d/12.

Proof. Consider any fixed two centers c, c′ ∈ C. Since c, c′ are uniformly sampled from [0, 1]d, each
coordinate of c, c′ is sampled from [0, 1]; and centers c, c′ are sampled independently. Thus, we have

Ec,c′[‖c− c′‖2] =
d∑

i=1

Eci,c′i
[(ci − c′i)

2] =
d

6
.

We use a random variable Xi to denote (ci − c′i)
2 for each coordinate i ∈ {1, . . . , d}. Since random

variables {Xi}di=1 are independent, by Hoeffding’s inequality, we have

P

[
d∑

i=1

Xi − E

[d∑

i=1

Xi

]
≤ −

√
2d ln k

]
≤ e−4 ln k =

1

k4
,

where we used that d = 300 ln k. This implies that the squared distance between c and c′ is less
than d/12 with probability at most 1/k4. Using the union bound over all pairs of centers in C, we
conclude that the squared distance between all pairs in C is at least d/12 with probability at least
1− 1/k2.

If any two centers are far apart, then a point x separated from its original center will incur a
large penalty. Thus, we can get a lower bound if there exists an instance which satisfies: (1) any
two centers are separated by a large distance; (2) every threshold tree separates a relatively large
portion of points from their original centers. In particular, we prove that with probability 1− o(1),
every threshold cut separates a relatively large portion of points from their original centers in the
random instance we constructed.

Lemma 8.3. With probability at least 1− 1/k2, the following holds: every threshold cut (i, θ) with
i ∈ {1, 2, · · · , d} and θ ∈ [0, 1) separates at least εk/4 points from their original centers.

22

Proof. Consider a fixed coordinate i ∈ {1, . . . , d}. We project each center and its rectangular neigh-
borhood onto this coordinate. For each center cj ∈ C, we define an interval Iji as the intersection

of [0, 1] and the ε-neighborhood of its projection cji , i.e. I
j
i = (cji − ε, cji + ε) ∩ [0, 1]. Each interval

Iji has length at least ε. If we pick a threshold cut inside any interval Iji , then we separate at least

one points from center cj . In this case, the interval Iji is called covered by this threshold cut. Then,
we give the lower bound on the minimum number of intervals covered by a threshold cut.

For a fixed set of centers C, we consider at most 2k special positions for the threshold cut at
coordinate i as follows. Let Ei be the set containing two end points of intervals Iji for all centers
cj . For any threshold cut at coordinate i, the closest position in set Ei covers exactly the same set
of intervals as this threshold cut. Thus, we only need to consider threshold cuts at positions in Ei.

For centers chosen uniformly from [0, 1]d, the set Ei contains 2k random variables. Suppose
we pick a threshold cut at a position θ in Ei related to interval Iji . Conditioned on the position
θ, the other k − 1 centers cj for j 6= j∗ are uniformly distributed in [0, 1]d since all centers are
chosen independently. For j ∈ {1, 2, · · · , k} \ {j∗}, let Y j

i be the indicator random variable that

the interval Iji contains this position θ. For each variable Y j
i , we have ε ≤ P

[
Y j
i = 1

]
≤ 2ε. Since

random variables Y j
i are independent, by the Chernoff bound for Bernoulli random variables, we

have

P


∑

j

Y j
i − E

[
∑

j

Y j
i

]
≤ −

√
18εk ln k | θ


 ≤ e−4 lnk =

1

k4
.

Thus, we have the number of intervals containing this position θ is at least εk/4 with probability
at least 1− 1/k4.

Since we have 2k positions Ei for each coordinate i ∈ {1, 2, · · · , d}, there are total 2dk positions
for threshold cuts. Using the union bound over all positions, we have the minimum number of
intervals covered by a threshold cut is at least εk/4 with probability at least 1 − 1/k2. Since the
threshold cut separates one point from its original center for each covered interval, we have every
threshold cut separates at least εk/4 points from their original centers in this case.

Proof of Theorem 8.1. By Lemma 8.2, we can only consider the instance where any two centers
are separated with the squared distance at least d/12. Note that the optimal centers for any
threshold tree remain almost the same as centers C. Thus, we analyze the k-means cost given by
any threshold tree with respect to center C. If a point in X is separated from its original center,
this point will finally be assigned to another center in C. By the triangle inequality, the k-means
cost of this point is at least d/20. By Lemma 8.3, there exists an instance such that any threshold
cut separates at least εk/4 points from their original centers. Thus, there exists an instance X such
that any threshold tree T has the k-means cost at least

costℓ2
2

(X,T) ≥ εk

4
· d

20
=

εkd

80
.

Note that the optimal regular k-means cost for this instance X is

OPTℓ2
2

(X) = 2k · ε2d.

Therefore, the k-means cost for this instance X given by any threshold tree T is at least

costℓ2
2

(X,T) ≥ 1

160ε
·OPTℓ2

2

(X) = Ω

(
k

log k

)
·OPTℓ2

2

(X).

23

8.2 Lower bound for k-medians in ℓ2

In this section, we show a lower bound on the price of explainability for k-medians in ℓ2.

Theorem 8.4. For every k ≥ 1, there exists an instance X with k clusters such that the k-medians
with ℓ2 objective cost of every threshold tree T is at least

costℓ2(X,T) ≥ Ω(log k)OPTℓ2(X).

To prove this lower bound, we use the construction similar to that used in Theorem 8.1. We
discretize the d-dimensional unit cube [0, 1]d into grid with length ε = 1/⌈ln k⌉, where the di-
mension d = 300 ln k. We uniformly sample k centers C = {c1, c2, · · · , ck} from the above grid
{0, ε, 2ε, · · · , 1}d. For each center ci, we add 2 points ci ± (ε, ε, · · · , ε) to this center. Similar to
Theorem 8.1, we also add many points at each center such that the optimal centers for any threshold
tree remain almost the same.

Similar to Lemma 8.2, we show that any two centers defined above are far apart with high
probability.

Lemma 8.5. With probability at least 1 − 1/k2 the following holds: The distance between every
two distinct centers c and c′ in C is at least

√
d/4.

Proof. To sample a center from the grid uniformly, we can first sample a candidate center uniformly
from the cube [−ε/2, 1+ ε/2]d and then move it to the closest grid point. Note that the ℓ2-distance
from every point in this cube to its closest grid point is at most ε

√
d = o(1). By Lemma 8.2, the

ℓ2 distance between every pairs of candidate centers is at least
√

d/12 with probability at least
1 − 1/k2. Thus, the distance between every two distinct centers is at least

√
d/4 with probability

at least 1− 1/k2.

For every node in the threshold tree, we can specify it by threshold cuts in the path from the
root to this node. Thus, we define a path π as an ordered set of tuples (ij , θj, σj), where (ij , θj)
denotes the j-th threshold cut in this path and σj ∈ {±1} denotes the direction with respect to
this cut. We use u(π) be the node specified by the path π. We define a center is damaged if one
of its two points are separated by this cut, otherwise a center is undamaged. Let Fu be the set of
undamaged centers in node u.

Lemma 8.6. With probability at least 1 − 1/k, the following holds: For every path π with length
less than log2 k/4, we have (a) the node u(π) contains at most

√
k undamaged centers; or (b) every

cut in node u(π) damages at least ε|Fu(π)|/2 centers in Fu(π).

Proof. Consider any fixed path π with length less than log2 k/4. We upper bound the probability
that both events (a) and (b) do not happen conditioned on Fu(π). If |Fu(π)| ≤

√
k, then the event

(a) happens. For the case Fu(π) contains more than
√
k centers, we pick an arbitrary threshold cut

(i, θ) in the node u(π). For every center c in Fu(π), the probability we damage this center c is at
least ε. Let Xj be the indicator random variable that the j-th center in Fu(π) is damaged by the
threshold cut (i, θ). Then, we have the expected number of centers in Fu(π) damaged by this cut
(i, θ) is

E

[∑

j

Xj

]
≥ ε

∣∣Fu(π)

∣∣ .

24

Let µ = E[
∑

j Xj]. By the Chernoff bound for Bernoulli random variables, we have

P


∑

j

Xj ≤ ε
∣∣Fu(π)

∣∣ /2


 ≤ P


∑

j

Xj ≤ µ/2


 ≤ e−µ/8 ≤ e−ε

√
k/8.

Using the union bound over all threshold cuts in u(π), the failure probability that both event (a)

and (b) do not happen is at most e−ε
√
k/16. The number of paths with length less than log2 k/4

is at most m(2d/ε)m ≤ e− log2 k. Thus, by the union bound over all paths with length less than
log2 k/4, we get the conclusion.

Proof of Theorem 8.4. By Lemma 8.5 and Lemma 8.6, we can find an instance X such that both
two properties hold. We first show that the threshold tree must separate all centers. Suppose there
is a leaf contains more than one center. Since the distance between every two centers is at least√
d/4 and there are many points at each center, the cost for this leaf can be arbitrary large. To

separate all centers, the depth of the threshold tree is at least ⌈log2 k⌉.
We now lower bound the cost for every threshold tree that separates all centers. Consider any

threshold tree T that separates all centers. We consider the following two cases. If the number of
damaged centers at level ⌊log2 k⌋/4 of threshold tree T is more than k/2, then the cost given by T
is at least

costℓ2(X,T) ≥ k

2
·
√
d

8
=

k
√
d

16
.

If the number of damaged centers at level ⌊log2 k⌋/4 of threshold tree T is less than k/2, then the
number of undamaged centers at every level i = 1, 2, . . . , ⌊log2 k⌋/4 is at least k/2. We call a node u a
small node if it contains at most

√
k undamaged centers, otherwise we call it a large node. Then, we

lower bound the number of damaged centers generated at any fixed level i ∈ {1, 2, · · · , ⌊log2 k⌋/4}.
Since the number of nodes at level i is at most k1/4, the number of undamaged centers in small
nodes at level i is at most k3/4. Thus, the number of undamaged centers in large nodes at level i
is at least k/4. By Lemma 8.6, the number of damaged centers generated at level i is at least εk/8.
Therefore, the cost given by this threshold tree T is at least

costℓ2(X,T) ≥ ⌊log2 k⌋
4

εk

8

√
d

8
= Ω(k

√
dε log k).

Note that the optimal cost for this instance is at most kε
√
d and ε = 1/⌈log k⌉. Combining the two

cases above, we have the cost given by threshold tree T is at least

costℓ2(X,T) = Ω(k
√
dε log k) = Ω(log k)OPTℓ2(X).

9 Fast Algorithm

In this section, we provide a fast variant of Algorithm 2 with running time O(kd log2 k). The input
of this algorithm is the set of reference centers c1, . . . , ck and the output is a threshold tree that
splits all centers. The algorithm does not consider the data points (hence, it does not explicitly

25

assign them to clusters). It takes an extra O(nk) time to assign every point in the data set to one
of the leaves of the threshold tree.

This fast variant of Algorithm 2 picks a separate threshold cut ωu for each leaf u. This cut is
chosen uniformly at random from Ru, where

Ru =
⋃

ci,cj∈Xu

Sij.

That is, Ru is the set of all cuts ω that separate at least two centers in Xu. The algorithm then
splits leaf u into two parts using ωu.

A straightforward implementation of the algorithm partitions each leaf by computing δc(ω
u) for

all centers c in Xu. It takes O(d · |Xu ∩ C|) time to find Ru and sample ωu for each u. It takes
time O(|Xu ∩C|) to split Xu into two groups. Thus, the total running time of this implementation
of the algorithm is O(k2d). We now discuss how to implement this algorithm with running time
O(kd log2 k) using red-black trees.

The improved algorithm stores centers for each leaf of the threshold tree in d red-black trees.
Centers in the i-th red-black tree are sorted by the i-th coordinate. Using red-black trees, we can
find the minimum and maximum values of ci for c ∈ C∩Xu in time O(d log k). Denote these values
by ai and bi, then

Ru =
⋃

i

{i} × [ai, bi].

Hence, we can find Ru and sample a random cut ωu in time O(d log k) for each u.
To partition set Xu into two groups with respect to ωu = (i, θ), we consider the i-th red-

black tree for leaf u and find the sizes of the new parts, Left = {c ∈ Xu ∩ C : ci ≤ θ} and
Right = {c ∈ Xu ∩ C : ci > θ}. We choose the set that contains fewer centers. Let us assume
that the second set (Right) is smaller the first one (Left). Then, we find all centers in Right
and delete them from this red-black tree and all other red-black trees for node u. We assign the
updated red-black trees (with deleted Right) to the left child of u. For the right child, we build d
new red-black trees, which store centers for Right. Since we delete at most half of all centers in
the red-black tree, each center is deleted at most O(log k) times. Each time it is deleted from d
trees and inserted into d trees. Each deletion and insertion operation takes time O(log k). Thus,
the total time of all deletion and insertion operations is O(kd log2 k).

We note that though this algorithm slightly differs from the algorithm presented in Section 4,
its approximation guarantees are the same.

References

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-
means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4):
FOCS17–97, 2019.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-
of-squares clustering. Machine learning, 75(2):245–248, 2009.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006.

26

Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The hardness
of approximation of euclidean k-means. arXiv preprint arXiv:1502.03316, 2015.

Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris Schwiegelshohn.
Oblivious dimension reduction for k-means: beyond subspaces and the johnson-lindenstrauss
lemma. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 1039–1050, 2019.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18(9):509–517, 1975.

Dimitris Bertsimas, Agni Orfanoudaki, and Holly Wiberg. Interpretable clustering via optimal
trees. arXiv preprint arXiv:1812.00539, 2018.

Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal. Hardness of approximation of euclidean
k-median. arXiv preprint arXiv:2011.04221, 2020.

Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation algo-
rithm for the column subset selection problem. In Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms, pages 968–977. SIAM, 2009.

Christos Boutsidis, Anastasios Zouzias, Michael W Mahoney, and Petros Drineas. Randomized
dimensionality reduction for k-means clustering. IEEE Transactions on Information Theory, 61
(2):1045–1062, 2014.

L Breiman, JH Friedman, R Olshen, and CJ Stone. Classification and regression trees, 1984.

Jaros law Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An im-
proved approximation for k-median, and positive correlation in budgeted optimization. In Pro-
ceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 737–756.
SIAM, 2014.

Moses Charikar and Lunjia Hu. Near-optimal explainable k-means for all dimensions. arXiv
preprint:2106.15566, 2021.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 163–172, 2015.

Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science and
Engineering, University of California, San Diego, 2008.

Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Explainable k-means
and k-medians clustering. In International Conference on Machine Learning, pages 7055–7065.
PMLR, 2020.

Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theoretical Computer
Science, 697:1–36, 2017.

Ricardo Fraiman, Badih Ghattas, and Marcela Svarc. Interpretable clustering using unsupervised
binary trees. Advances in Data Analysis and Classification, 7(2):125–145, 2013.

27

Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Exkmc: Expanding explainable k-means
clustering. arXiv preprint arXiv:2006.02399, 2020.

Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. Nearly-tight and oblivious algo-
rithms for explainable clustering. arXiv preprint:2106.16147, 2021.

Eduardo Laber and Lucas Murtinho. On the price of explainability for some clustering problems.
arXiv preprint arXiv:2101.01576, 2021.

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for
k-means. Information Processing Letters, 120:40–43, 2017.

Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on
Computing, 45(2):530–547, 2016.

Bing Liu, Yiyuan Xia, and Philip S Yu. Clustering via decision tree construction. In Foundations
and advances in data mining, pages 97–124. Springer, 2005.

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1027–1038, 2019.

Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric location
problems. SIAM journal on computing, 13(1):182–196, 1984.

Sandhya Saisubramanian, Sainyam Galhotra, and Shlomo Zilberstein. Balancing the tradeoff be-
tween clustering value and interpretability. In Proceedings of the AAAI/ACM Conference on AI,
Ethics, and Society, pages 351–357, 2020.

28

	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	3 Algorithms Overview
	4 Algorithms for k-medians in l1
	5 Improved Analysis for k-medians in l1
	6 Terminal Embedding of squared l2 into l1
	7 k-medians in l2
	7.1 Algorithm for k-medians in l2

	8 Lower Bound for Threshold Tree
	8.1 Lower bound for k-means
	8.2 Lower bound for k-medians in l2

	9 Fast Algorithm

