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Abstract

Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into

small-size pieces, using the chords of the polygon. Several versions are considered, depending on the

definition of the “size” of a piece. In particular, we consider the area, the diameter, and the radius of

the largest inscribed circle as a measure of the size of a piece. We also consider different objectives,

either minimizing the maximum size of a piece for a given number of chords, or minimizing the

number of chords that achieve a given size threshold for the pieces. We give hardness results for

polygons with holes and approximation algorithms for multiple variants of the problem.
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1 Introduction

Indoor localization is a challenging and important problem. While GPS technology is very

effective outdoors, it generally performs poorly inside buildings, since GPS depends on

line-of-sight to satellites. Thus, other techniques are being considered for indoor settings.

One of the options being investigated for localization and tracking is to use one-dimensional
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7:2 Cutting Polygons into Small Pieces with Chords

tripwire sensors [16] such as laser beams, video cameras with a narrow field of view [31],

and pyroelectric or infrared sensors [12,14]. In these approaches, multiple sensors emitting

directional signal beams are deployed in an environment, with the beams inducing an

arrangement that cuts the domain into cells, allowing one to track the movement of a mobile

target from one cell to another when it crosses the signal beam. Since the accuracy of the

localization depends on the sizes of the cells, it is desirable to cut the polygon into small

pieces. With such beam deployment, one can also ensure that no “large” object can be

“hidden” in the domain, since any such object will necessarily intersect one of the beams.

In the literature there have been studies of target localization and tracking using such

“tripwire” sensors. Zheng, Brady, and Agarwal [32] consider general models of “boundary

sensors” that are triggered when an object crosses them. They assume that the position

of the sensors is already given and consider the signal processing problem of determining

the location and trace of a target by the spatial and temporal sequence of the laser beams

crossed by the target. In this paper, we focus on the problem of optimizing the placement of

signal beam sensors to minimize the ambiguity of target location within each cell.

Problem Formulation and Notation. We study various versions of the laser cutting problem.

The input polygon, denoted by P , is a closed polygonal domain (i.e., a connected compact set

in R
2 with piecewise linear boundary) having a total of n vertices, r of which are reflex (having

internal angle greater than π). The terms “cut” and “laser” will be used interchangeably

to denote a chord of P , i.e., a maximal line segment in P whose relative interior lies in the

interior of P . The measure (or size) of a cell in the arrangement will be (a) the cell’s area,

(b) its diameter (defined as the maximum Euclidean distance between two points of the cell),

or (c) the radius of the largest inscribed disk within the cell.

For each measure, we consider two formulations of the optimization problem:

MinMeasure: Given a positive integer k, determine how to place k laser beams in P to

minimize the maximum measure, δ, of a cell in the arrangement of the lasers.

Min-LaserMeasure: Given δ > 0, determine the smallest number of laser beams to cut P

into cells each of measure at most δ.

In Min-LaserMeasure, no generality is lost by taking the cell size bound, δ, to be 1. We

assume that the optimal solution is greater than a constant c; otherwise, the problem can be

solved optimally in O(npoly(c)) time (in the real RAM model of computation, standard for

geometric algorithms) by reducing it to a mathematical program whose variables are the

locations of the lasers endpoints on the boundary of P (the space of the variables would

be split into regions of fixed combinatorial types for all the lasers, and in each region, the

measures for the cells of the partition of P will be explicitly written and optimized – since

each cell has poly(c) = O(1) complexity, the optimization problem will be of constant size).

It may be interesting to investigate also the opposite scenario and obtain efficient algorithms

for minimizing the measures using a small given number of lasers. Further variants of the

problem may be defined. One possible requirement is to use only axis-aligned lasers – in

fact, with this restriction (of primarily theoretical interest) we obtain better approximations

than for the more general case of unrestricted-orientation lasers.

Results. We give hardness results and approximation algorithms for several variants of the

problems, using a variety of techniques. Specifically,

Section 2 proves hardness of our problems in polygons with holes: we show that it is

NP-hard to decide whether one can split the domain into pieces of measure at most δ,

using a given number k of lasers (this holds for any of the measures, which implies that
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both MinMeasure and Min-LaserMeasure are hard for polygons with holes). Our hardness

reductions hold using axis-parallel lasers, as well, which implies that the problem is hard

with or without the restriction to axis-aligned lasers.

Section 3.1 gives an O(log r)-approximation for Min-LaserArea in simple polygons. The

algorithm “unrefines” the ray shooting subdivision by Hershberger and Suri [17], merging

the triangles bottom-up along the decomposition tree; the merging stops whenever the

next merge would create a cell of area greater than δ, implying that the boundaries

between the merged cells can be charged to disjoint parts of P of area more than δ.

The lasers are then put along the cell boundaries of the coarsened subdivision; since

the subdivision is obtained by cutting out O(1) children from parents in a tree on the

original subdivision (where the children were separated from parents by polygonal chains

of O(1) complexity), we can charge these O(1) lasers to the intersection of OPT with

a region of area more than δ. The remaining large pieces in the coarsened subdivision

(e.g., triangles of area more than δ in the initial triangulation) are cut with a suitable

grid of lasers, which is within a constant factor of optimal subdivision for each piece.

The O(log n) approximation factor then follows from the fact that each laser could pass

through O(log n) cells of the original subdivision (the subdivision’s core property). To

bring the approximation factor down to O(log r) we decompose P into convex pieces with

a decomposition whose stabbing number is O(log r) (a result, which may be of independent

interest) and use the same scheme as with the Hershberger–Suri decomposition.

In Section 3.2 we present a bi-criteria approximation to the diameter version for simple

polygons: if k lasers can cut P into pieces of diameter at most δ, we find a cutting

with at most 2k lasers into O(δ)-diameter pieces. In Section 3.3 we use the bi-criteria

algorithm to give a constant-factor approximation to MinDiameter. Both algorithms use

only axis-aligned lasers, yielding the same approximation guarantees for the versions with

general-direction lasers and with axis-aligned lasers.

Section 4 gives a constant-factor approximation to Min-LaserDiameter and Min-LaserArea

in simple polygons under the restriction that the lasers are axis-aligned. The algorithms

are based on “histogram decomposition” with constant stabbing number and solving the

problems in each histogram separately.

In Section 5 we give a bi-criteria approximation to the diameter version in polygons

with holes under the restriction that lasers are axis-parallel. The algorithm is similar

to the one for simple polygons in that they both use a grid; however, everything else

is different: in simple polygons we place lasers along grid lines, while in polygons with

holes the grid lines just subdivide the problem (in fact, we consider the vertical and

the horizontal strips separately). More importantly, even though we place axis-aligned

lasers in both simple and nonsimple polygons, for the former we approximate cutting

with arbitrary-direction lasers, while for the latter only cuttings with axis-aligned lasers

(approximating cuttings with general-direction lasers in polygons with holes is open). We

use the bi-criteria algorithm to give a constant-factor approximation to MinDiameter in

polygons with holes – this part is the same as for simple polygons.

Section 6 gives an O(log OPT)-approximation for Min-LaserCircle in polygons with holes.

The algorithm is based on a reduction to the SetCover problem.

Table 1 summarizes our results. The running times of our algorithms depend on the

output complexity, which may depend on the size (area, perimeter, etc.) of P . Some of our

algorithms can be straightforwardly made to run in strongly-polynomial time, producing a

strongly-polynomial-size representation of the output; for others, such conversion – which in

general is outside our scope – is not easily seen. Many versions of the problem still remain

ESA 2020
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open. For simple polygons, despite considerable attempts, we have neither hardness results

nor polynomial-time algorithms to compute an optimal solution; all of our positive results

are approximation algorithms.

Table 1 Approximations for simple polygons. The results marked with asterisks apply also to

polygons with holes (either directly or with a similar/extended algorithm).

Axis-Parallel Lasers Unrestricted-Direction Lasers

Min-LaserMeasure MinMeasure Min-LaserMeasure MinMeasure

Area O(1) § 4 OPEN O(log r) § 3.1 OPEN

Diameter O(1) § 4 O(1)* § 3.3, § 5 bi-critreria § 3.2 O(1) § 3.3

In-circle radius O(log OPT)* § 6 OPEN O(log OPT)* § 6 OPEN

Related Previous Work. Previous results on polygon decomposition [21] use models that do

not support laser cuts or are restricted to convex bodies. For example, Borsuk’s conjecture [5,

18, 19] seeks to partition a convex body of unit diameter in R
d into the minimum number of

pieces of diameter less than one. Conway’s fried potato problem [3, 9] seeks to minimize the

maximum in-radius of a piece after a given number of successive cuts by hyperplanes for a

convex input polyhedron in R
d. Croft et al. [9, Problem C1] raised a variant of the problem

in which a convex body is partitioned by an arrangement of hyperplanes (i.e., our problem

in R
d), but no results have been presented.

Equipartition problems ask to partition convex polygons into convex pieces all having the

same area or the same perimeter (or other measures) [2, 4, 20,22, 27,29]. In these problems,

the partition is not restricted to chords (or hyperplanes). Topological methods are used

for existential results in this area, and very few algorithmic results are known [1]. Another

related problem is the family of so-called cake cutting problems [13, 28], in which an infinite

straight line “knife” is used to cut a convex “cake” into (convex) pieces that represent a “fair”

division into portions. In contrast, we are interested in cutting nonconvex polygons into

connected pieces.

In [6] several variants of Chazelle’s result from [8] were explored, including cutting the

polygon along a chord to get approximately equal areas of the two resulting parts. Yet

another related problem is that of “shattering” with arrangements [11], in which one seeks to

isolate objects in cells of an arrangement of a small number of lines, but without consideration

of the size of the cells (as is important in our problem).

2 Hardness in Polygons with Holes

We show that for all three measures (area, diameter, the radius of the largest inscribed

circle) it is NP-hard to decide whether a given polygon P with holes can be divided into

pieces of small measure using a given number of lasers, both for unrestricted-orientation and

axis-aligned lasers. However, it is currently open whether these problems remain NP-hard

for simple polygons.

We prove hardness by reduction from the 3SAT problem. Our polynomial-time reduction

is similar to previous reductions for line cover problems, which are geometric variants of set

cover [23]. In particular, Megiddo and Tamir [25] proved that the LineCover problem is

NP-complete: Given n points in the plane and an integer k, decide whether the points can

be covered by k lines. Hassin and Megiddo [15] proved hardness for MinimumHittingHo-

rizontalUnitSegments problem: Given n horizontal line segments in the plane, each of
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otherwise create the room [7(j−1)+ 1
2 , 7(j−1)+ 5

2 ]×[3(i−1)+ 3
2 , 3i− 1

2 ]. We create a room for

xi′ (resp., xi′′) analogously, shifted by a horizontal vector (0, 2) (resp;., (0, 4)). Note that the

x-projections of these rectangles do not overlap. Two additional rooms lie above the variable

rooms: [7(j−1)+ 3
2 , 7(j−1)+ 7

2 ]×[2n+ 1
2 , 2n+ 3

2 ] and [7(j−1)+ 7
2 , 7(j−1)+ 11

2 ]×[2n+ 5
2 , 2n+ 7

2 ].

Corridors and separator gadgets. Create narrow corridors along the vertical lines x =

0, 2, 3, . . . , 7m and horizontal lines y = 0, 1, 2, . . . , 3n, y = 3n + 2, and y = 3n + 4. Add

rectangular rooms of area 2 at one end of some of the corridors. Specifically, we add rooms

to the corridors at x = 0 and x = 7j + 2 for j = 0, 1, . . . , m alternately at the top and

bottom endpoints; and similarly for the corridors at y = 3i for i = 0, 1, . . . , n, y = 3n + 2,

and y = 3n + 4, alternately at the left and right endpoints. Altogether, m + n + 5 corridors

have rooms at their endpoints.

Finally, we set the parameter k = 3m + 2n + 5. This completes the description of an

instance corresponding to the Boolean formula Φ.

Equivalence. Let τ : xi → {true, false} be a satisfying truth assignment for Φ. We show

that P can be subdivided by k lasers into regions of area at most 2. Place lasers at all

horizontal and vertical lines that have additional rooms at their endpoints; this requires

m + n + 5 lasers. These lasers subdivide P into subpolygons that each intersect at most one

room. For i = 1, . . . , n, if τ(xi) = true, then place a horizontal laser at y = 3(i − 1) + 1

(along the bottom corridor touching room for xi), otherwise at y = 3(i − 1) + 2 (along the

top corridor touching room for xi). These lasers split each variable room into two rectangles

of area 1
2 and 3

2 . For j = 1, . . . , m, we place two vertical lasers that subdivide the rooms

associated with clause cj . Since τ is a satisfying truth assignment, the rooms corresponding

to true literals are already split by horizontal lasers. As can easily be checked, the remaining

(at most 4) rooms can be split using two vertical lasers. Now P is subdivided into pieces

that each intersect at most one room, and contains at most 1.5 area of each room. Since

the corridors are narrow, the area of each piece is less than 2, as required. We have used n

horizontal lasers for the variables, and 2m vertical lasers for clauses. Overall, we have used

(m + n + 5) + n + 2m = 3m + 2n + 5 lasers.

Suppose now that k = 3m + 2n + 5 lasers can subdivide P into polygons of area at most 2.

We show that Φ is satisfiable. The area of each room is about 2, so they each intersect at least

one laser. Each variable room requires at least one laser; and the n variable rooms jointly

require n lasers (as no laser can intersects two variable rooms). Each clause is associated

with two rooms above the line y = 3n; which jointly require two lasers. Overall these rooms

require 2m lasers.

Note that a laser that intersects a clause rooms above y = 3n or a variable room cannot

intersect any room at the end of corridors. We are left with at most k − (n + 2m) = m + n + 5

lasers to split these rooms. Since we have precisely m + n + 5 rooms at the end of the

corridors, and no laser can intersect two such rooms, there is a unique laser intersecting each

of these rooms. As argued above, for i = 1, . . . , n, the room associated with xi intersects

only one laser. If this laser intersects the corridor at y = 3(i − 1) + 1, then let τ(xi) = true,

otherwise τ(xi) = false. For j = 1, . . . , m, there are two lasers that intersect the two rooms

associated with cj above y = 3n. These two lasers cannot intersect all three rooms associated

with cj below y = 3n. Consequently, at least one of these rooms intersects a laser coming

from a variable room. Hence each clause contains a true literal, and Φ is satisfiable. J

The proofs of the following two theorems are presented in the full version of the paper.



E. M. Arkin et al. 7:7

I Theorem 2. In polygons with holes, both MinDiameter and Min-LaserDiameter are NP-hard

(with or without the axis-aligned lasers restriction).

I Theorem 3. In polygons with holes, both MinCircle and Min-LaserCircle are NP-hard (with

or without the axis-aligned lasers restriction).

3 Decomposition Algorithms for Simple Polygons

In this section, we present approximation results for decomposing a simple polygon P by

lasers of arbitrary orientations (recall that n denotes the total number of vertices of P and r

is the number of reflex vertices). We describe an O(log r)-approximation for Min-LaserArea

(Section 3.1), a bi-criteria algorithm for diameter (Section 3.2), and a O(1)-approximation

for MinDiameter (Section 3.3).

3.1 Min-LaserArea

Given a simple polygon P and a threshold δ, we wish to find the minimum number of

lasers that subdivide P into pieces, each of area at most 1. We start with the easy O(1)-

approximation in the special case when P is a convex polygon (Proof in the full version).

I Lemma 4. For every convex polygon P , we can find a set of k = O(
√

area(P )) lasers that

subdivide P into pieces, each of area at most 1, in O(k + n) time. Every decomposition into

pieces of area at most 1 requires Ω(
√

area(P )) lasers.

Overview. We give a brief overview of our approximation algorithm for a simple polygon P .

The basic idea is to decompose P into convex pieces, and use Lemma 4 to further decompose

each convex piece. There are two problems with this naïve approach: (1) a laser in an optimal

solution may intersect several convex pieces (i.e., the sum of lower bounds for the convex

pieces is not a global lower bound); and (2) the lasers used for a convex decomposition are

not accounted for. We modify the basic approach to address both of these problems.

We use the Hershberger–Suri triangulation (as a convex subdivision). For a simple

polygon P with n vertices, Hershberger and Suri [17] construct a Steiner triangulation into

O(n) triangles such that every chord of P intersects O(log n) triangles. We can modify their

construction to produce a Steiner decomposition into a set C of convex cells (rather than

triangles) such that each laser intersects O(log r) convex cells, where r is the number of reflex

vertices of P . Thus, each laser of OPT can help partition O(log r) convex cells; this factor

dominates the approximation ratio of our algorithm.

A convex cell C ∈ C is large if area(C) > 1, otherwise it is small. We decompose each

large convex cell using Lemma 4. We can afford to place O(1) lasers along the boundary

of a large cell. We cannot afford to place lasers on the boundaries of all small cells. If

we do not separate the small cells, however, they could merge into a large (nonconvex)

region, so we need some separation between them. In the algorithm below, we construct

such separators recursively by carefully unrefining the Hershberger–Suri triangulation. The

unrefined subdivision is no longer a triangulation, but we maintain the properties that (i)

each cell is bounded by O(1) lasers within each pseudotriangle (and an arbitrary number of

consecutive edges of P ), and (ii) every chord of P intersects O(log n) cells.

Basic properties of the Hershberger–Suri triangulation. Given a simple polygon P with

n vertices, Hershberger and Suri [17] construct a Steiner-triangulation in two phases (see

Fig. 2 for an example): First, they subdivide P into O(n) pseudotriangles (i.e., simple

ESA 2020
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Step 1. Place lasers along all edges of the boundary between R̂v and s \ R̂v, and the

boundaries between Rv and Rv′ for all children v′ of v. For example in Fig. 3 (right),

two lasers are placed along the edges (a, c) and (c, e) that disconnect R̂v from s2. Also, a

laser that is placed along edge (b, d) that separates the children of Rv.

Step 2. If area(Rv) ≥ 1 (which means Rv has not merged with any other region in Phase 1,

i.e., R̂v = Rv hence R̂v is convex), subdivide R̂v by Θ(
√

area(Rv)) lasers according to

Lemma 4.

This completes the description of our algorithm.

I Theorem 5. Let P be a simple polygon with n vertices, and let k∗ be the minimum number

of lasers that subdivide P into pieces of area at most 1. We can find an integer k with

k∗ ≤ k ≤ O(k∗ log n) in O(n) time, and a set of k lasers that subdivide P into pieces of area

at most 1 in output-sensitive O(k + n) time.

Proof. Phase 1 of our algorithm (unrefinement) subdivides each pseudotriangle s ∈ S into

regions such that each region corresponds to a subtree rooted at some node v of the recursion

tree T ′
s. Node v corresponds to a region Rv ⊂ s, and a possibly larger region R̂v ⊂ P which

is the union of Rv and adjacent regions in the descendant pseudotriangles of s adjacent to

Rv. Phase 1 of the algorithm ensures that area(R̂v) > 1 (therefore, R̂v must intersect at

least one laser in OPT), but for all children v′ of v in T ′
s, we have area(R̂v′) ≤ 1.

In Step 1, the algorithm uses O(1) lasers for each v ∈ Us to separate R̂v from s \ R̂v.

Recall that the recursion tree Ts has bounded degree. Consequently, we use O(1) lasers to

separate R̂v′ from R̂v \ R̂v′ for all children v′ of v. These polylines subdivide R̂v′ into smaller

regions of area at most 1. Overall, we have used O(1) lasers for each of these nodes v ∈ T ′
s,

s ∈ S. Note that each region R̂v is the union of triangles from the Hershberger–Suri Steiner

triangulation, and so each laser in OPT intersects O(log n) such regions. Consequently, we

use O(k∗ log n) lasers in Step 1.

Finally, consider the lasers used in Step 2 for subdividing the triangles t ∈ T with

area(t) > 1. By Lemma 4, each such triangle intersects at least Ω(
√

area(t)) lasers in any

valid solution; and conversely each laser of an optimal solution intersects O(log n) regions in

T . Consequently, the number of lasers uses in Step 2 is
∑

t∈T O(
√

area(t)) ≤ O(k∗ log n).

It remains to show that the algorithm runs in O(n + k) time. The Hershberger-Suri

Steiner triangulation can be computed in O(n) time [17]. It consists of O(n) triangles, hence

the combined size of the dual tree Tp, and the recursion trees Ts, s ∈ S, is also O(n). The

unrefinement algorithm is done in a single traversal of these trees, spending O(1) time at

each node. For each large cell (triangle) of the Hershberger-Suri triangulation, by Lemma 4,

we can compute a minimum bounding box and the number of lasers used by the algorithm

in O(1) time. Computing all k lasers requires O(k) additional time. J

An O(log r) Approximation for Min-LaserArea in Simple Polygons. We can improve the

approximation ratio in Theorem 5 from O(log n) to O(log r), where r is the number of reflex

vertices of P , if we replace the Hershberger–Suri triangulation with a convex decomposition.

(Hershberger and Suri decompose P into triangles to support ray shooting queries, but for

our purposes a decomposition into convex cells suffices.)

Let (v1, . . . , vn) be the n vertices of P ; assume they are in general position. Let R be the

set of reflex vertices of P . For every reflex vertex v ∈ R, the angle bisector of the interior

angle at v hits some edge avbv of P . Let L = {v, av, bv : v ∈ R}, that is, L is the set of

all reflex vertices of P , and both endpoints of the edges hit by the angle bisectors of reflex

angles. Clearly, |L| ≤ 3r.
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cell). The result is a decomposition of P into kH +1 = |C ′
H |+1 pieces, each having projection

onto the y-axis of length less than 3δ. Analogously to Lemma 10, we get k∗ ≥ kH + 1 if

kH ≥ 1.

If we now overlay the vertical chords C ′
V and the horizontal chords C ′

H , the resulting

arrangement decomposes P into pieces each of which is a simple polygon having projections

onto both the x- and the y-axis of lengths less than 3δ; thus, the resulting pieces each have

diameter less than 3δ
√

2. The total number of lasers is kV + kH ≤ 2(k∗ − 1).

I Theorem 11. Let P be a simple polygon with n vertices, and let k∗ be the minimum

number of lasers that decompose P into pieces each of diameter at most δ for a fixed δ > 0.

One can compute a set of at most 2(k∗ − 1) axis-aligned lasers that decompose P into pieces

each of diameter at most 3
√

2δ in time polynomial in n and diam(P )/δ.

3.3 O(1)-Approximation for MinDiameter in Simple Polygons

In this section we consider the problem of minimizing the maximum diameter of a cell in the

arrangement of k lasers, for a given number k. Our O(1)-approximation algorithm repeatedly

decreases the x- and y- separation in the bi-criteria solution from Theorem 11 until the

number of placed lasers is about to jump over 2k; then, the number of lasers is halved while

increasing the diameter by a constant factor.

Specifically, let `(δ) denote the number of lasers used in the end of the bi-criteria algorithm

with the x- and y-separation between consecutive vertical and horizontal lines being δ. Our

algorithm to approximate the diameter achievable with k lasers is as follows:

Initialize δ = diam(P ), and ε > 0.

While `(δ) ≤ 2k, set δ = δ/(1 + ε) and recompute `(δ).

Let δ0 be such that `(δ0) ≤ 2k but `(δ0/(1 + ε)) > 2k.

Let CV and CH be the `(δ0) ≤ 2k vertical and horizontal lasers, resp., found by the

bi-criteria algorithm.

Partition CV into lasers along x = iδ0 for even i and the rest (odd i); let C ′
V be a smallest

part. Similarly, let CH be a smaller part when we partition CH into two subsets of lines

where y = iδ0 is an even or odd multiple of δ0.

Return the lasers in C ′
V ∪ C ′

H .

I Theorem 12. Let P be a simple polygon with n vertices, and let δ∗ be the optimal diameter

achievable with k lasers. For every ε > 0, one can compute a set of at most k lasers that

partition P into pieces each of diameter at most 4
√

2(1 + ε)δ∗ in time polynomial in n,

diam(P )/δ∗, and ε.

The proof of Theorem 12 is presented in the full version of this paper.

4 Axis-Parallel Lasers

In this section we study Min-LaserDiameter and Min-LaserArea under the constraint that all

lasers must be axis-parallel (the edges of P may have arbitrary orientations). The algorithms

for both problems start with a “window partitioning” P into “(pseudo-)histograms” of

stabbing number at most three, and are then tuned to the specific measures to partition the

histograms. We use a simple sweepline algorithm for the diameter, and a dynamic program

for the area. The main result is:

I Theorem 13. Let P be a simple polygon with n vertices and let k∗ be the minimum number

of axis-parallel lasers needed to subdivide P into pieces of area (diameter) at most 1. There

is an algorithm that finds O(k∗) axis-parallel lasers that subdivide P into pieces of area

(diameter) at most 1 in time polynomial in n and area(P ) (diam(P )).
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intersects some laser in OPT; we charge pq to one of these lasers. Denote by OPTh(Cpq)

and OPTv(Cpq), resp., the horizontal and vertical lasers in OPT that intersect Cpq. The

charging scheme is described by the following rules:

(a) If OPTh(Cpq) 6= ∅, then charge pq to the lowest laser in OPTh(Cpq);

(b) else, if Cpq intersects ∂P , then charge pq to a laser in OPTv(Cpq) that is closest to

Cpq ∩ ∂P ;

(c) else, if there is no horizontal laser in OPT that lies above pq, then charge pq to an

arbitrary laser in OPTv(Cpq);

(d) else, charge pq to the lowest horizontal laser in OPT that lies above pq.

It remains to prove that each laser in OPT is charged at most once for each the four

rules. Since (a) and (d) charge to horizontal lasers, and (b) and (c) charge to vertical lasers

in OPT, then each laser in OPT is charged by at most two of the rules. In each case, we

argue by contradiction. Assume that a laser ` ∈ OPT is charged twice by one of the rules,

that is, there are two lasers pq, rs ∈ ALG2
h, that are charged to ` by the same rule. The

width of cells Cpq and Crs is at most 1/2, because of the spacing of the vertical lasers in

ALG1. Since diam(Cpq) = diam(Crs) = 1, they each have height at least
√

3/2. Without

loss of generality, we may assume that the algorithm chooses pq before rs.

(a) In this case, ` is the lowest horizontal laser in OPT that intersect Cpq and Crs, respectively.

Since pq is above rs, laser pq intersects the interior of Crs, contradicting the assumption

that Crs is a cell formed by the arrangement of all lasers in ALG.

(b) In this case, ` is a vertical laser that intersects both Cpq and Crs, and also intersect ∂P .

When the algorithm places a horizontal laser at pq, it also places vertical lasers from p

and q to the base of P . These three lasers separate ∂P from the portion of ` below pq.

This contradict the assumption that Crs is a cell formed by the arrangement of all lasers

in ALG.

(c) In this case, both Cpq and Crs intersects a vertical laser ` ∈ OPT, and they both lie

above the highest horizontal laser that crosses `. Consequently, they both intersect the

two highest cells, say Cleft and Cright, on the two sides of ` in the arrangement formed

by OPT. The combined height of Cpq and Crs is at least
√

3. Therefore, the height of

Cleft and Cright is at least
√

3 > 1, contradicting the assumption that diam(Cleft) ≤ 1

and diam(Cright) ≤ 1.

(d) In this case, ` is the lowest horizontal laser in OPT that lies above Cpq and Crs,

respectively. Let Cbelow be the cell of the arrangement of OPT that lies below `. The

combined height of Cpq and Crs is at least
√

3. Therefore, the height of Cbelow is at least√
3 > 1, contradicting the assumption that diam(Cbelow) ≤ 1. J

Adaptation to Pseudo-Histograms. In a laser cutting of P into pieces of diameter at most

1, each pseudo-histogram Pu intersects a laser, since diam(Pu) > 1. An adaptation of the

algorithm in Section 4.2 can find an O(1)-approximation for Min-LaserDiameter in each Pu.

As noted above, each laser intersect at most 3 pseudo-histograms, hence the union of lasers

in the solutions for pseudo-histograms is an O(1)-approximations for P .

The sweepline algorithm in Section 4.2 can easily be adapted to subdivide a pseudo-

histogram Pu. Recall that Pu consists of a histogram Hu and pockets of diameter at most

1. We run steps 1 and 2 of the algorithm for the histogram Hu with two minor changes in

step 2: (1) we compute the critical diameters with respect to Pu (rather than Hu), and (2)

when the diameter of a cell C above a chord pq of Pu is precisely 1, we place up to four

vertical lasers: at intersection points of L with ∂Pu the ∂Hu (the vertical lasers through

pq ∩ ∂Hu cut possible pockets that intersect pq). The analysis of the sweepline algorithm is

analogous to Section 4.2, and yields the following result.
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I Theorem 15. There is an algorithm that, given a simple polygon P with n vertices,computes

an O(1)-approximation for the axis-parallel Min-LaserDiameter problem in time polynomial in

n and diam(P ).

4.3 Discretization of the Solution Space in a Histogram Polygon

Consider a histogram polygon P having n vertices. We assume that the vertices are in

general position, in the sense that no three vertices are collinear. We show that there is a

discrete set of candidate orthogonal chords such that lasers chosen from this set yield an

O(1) approximation for minimizing the number of lasers, subject to a target measure bound

1 on the obtained pieces. This is useful for finding an O(1) approximation for Min-LaserArea

by dynamic programming.

We prove the following lemma in the full version, which extends to pseudo-histograms.

I Lemma 16. For a histogram P , let k∗ be the minimum number of axis-parallel lasers that

subdivide P into pieces of area (diameter) at most 1. We can find a set C of O(n + area(P ))

(O(n + per(P ))) chords of P , such that O(k∗) lasers from C can subdivide P into pieces of

area (diameter) at most 1.

4.4 O(1)-Approximation for Min-LaserArea

We now consider the Min-LaserArea with axis-parallel lasers chosen from a discrete set to

achieve pieces of area at most 1. An O(1)-approximation algorithm is based on the window

partition method described earlier, allowing us to reduce to the case of subdividing a pseudo-

histogram, for which we give a dynamic program to choose lasers from the discrete candidate

set. In the full version, we describe the algorithm using area as the measure. With slight

modifications, the algorithm also applies to the measure of diameter, allowing us to solve

Min-LaserDiameter in pseudo-histograms (albeit in a higher polynomial time bound than

stated in Theorem 14).

5 Diameter Measure in Polygons with Holes and Axis-Parallel Lasers

5.1 Bi-Criteria Approximation for Diameter

In this section we give a bi-criteria approximation for the diameter version in a polygon

with holes when lasers are constrained to be axis-parallel. The approach is similar to the

algorithm for simple polygons and lasers of arbitrary orientations (cf. Section 3.2) in that

both use grid lines, but they differ significantly to handle holes in a polygon when the lasers

are axis-parallel. Particularly, in simple polygons we place lasers along grid lines, while in

polygons with holes the grid lines just divide the problem into sub-problems.

Lasers in Vertical Strips. Consider the infinite set of equally spaced vertical lines LV =

{x = iδ : i ∈ Z}, for some δ > 0. The lines subdivide P into a set PV of polygons (possibly

with holes), that we call strips. (Unlike Section 3.2, we do not place lasers along the lines

in LV ; we use the strips for a divide-and-conquer strategy.) The projection of any strip on

the x-axis has length at most δ; we say that a strip is full-width if its projection has length

exactly δ. Let FV ⊂ PV denote the set of full-width strips, and let F ∈ FV be a full-width

strip.
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By minimality of γ(F ), the number links |γ(F )| in it (and hence the number of lasers we

place) is at most |γ(F )|. Let kV =
∑

F ∈FV
|γ(F )| be the total number of lasers placed in all

full-width strips in FV , and let k∗ be the minimum number of axis-parallel lasers in a laser

cutting of P into cells of diameter at most δ. An immediate consequence of Lemma 17 is the

following.

I Corollary 18. kV ≤ 3k∗.

Proof. As the links of γ(F ) follow lasers, at least aF (γ) lasers are fully contained in F . J

The kV lasers placed in full-width strips subdivide P into polygonal pieces; let Q be one

such piece.

I Lemma 19. The length of the x-projection of Q on the x-axis is at most 2δ.

Proof. We prove that Q intersects at most one line in LV . Suppose, to the contrary, that

Q intersects two consecutive lines `1 : x = iδ and `2 = x = (i + 1)δ. Let λ be a shortest

path in Q between points in Q ∩ `1 and Q ∩ `2, respectively. By minimality, λ lies in the

strip between `1 and `2. Consequently, λ is contained in some full-width strip F ⊂ FV .

However, the path γ(F ) intersects every path in F between F ∩ `1 and F ∩ `2; in particular,

it intersects λ. Since we have placed a laser along every segment of γ(F ) in the interior of P ,

λ intersects a laser, contradicting the assumption that λ ⊂ Q. J

Lasers in Horizontal Strips. Similarly, we consider the set of horizontal lines LH = {y =

jδ : j ∈ Z} and apply the above process to P , yielding horizontal chords CH that subdivide

the polygon into horizontal strips (polygons, possibly with holes). We again work only with

full-height strips, whose boundary intersect two consecutive lines in LH . In each full-height

strip, we find a minimum-interior-link rectilinear path that separates the boundary points

along the two lines in LH , and place lasers along the links of the path. Let kH be the number

of lasers over all full-height strips.

Putting Everything Together. We overlay the kV lasers in full-width strips with the kH

lasers in full-height strips. The resulting arrangement partitions P into polygonal pieces

(possibly with holes). The x- and y-projection of each piece has length at most 2δ by

Lemma 19; thus, each piece has diameter less than 2δ
√

2. By Corollary 18, the total number

of lasers used in the arrangement is kV + kH ≤ 6k∗. We obtain the following theorem.

I Theorem 20. Let P be a polygon with holes of diameter diam(P ) having n vertices, and

let k∗ be the minimum number of laser cuts that partition P into pieces each of diameter at

most δ for a fixed δ > 0. In time polynomial in n and diam(P )/δ, one can compute a set of

at most 6k∗ lasers that subdivide P into pieces each of diameter at most 23/2δ.

5.2 O(1)-Approximation to MinDiameter

Similarly to Section 3.3, we can use the bi-criteria algorithm to derive a constant-factor

approximation for minimizing the maximum diameter of a cell in the arrangement of a given

number k of axis-parallel lasers. Our O(1)-approximation algorithm (Theorem 21, proof in

the full version) repeatedly decreases the x- and y- separation in the bi-criteria solution from

Theorem 20 until the number of placed lasers is about to jump over 6k; then, the number of

lasers is decreased by a factor of 6 while increasing the diameter by a constant factor.

I Theorem 21. Let δ∗ be the minimum diameter achievable with k axis-parallel lasers. For

every ε > 0, one can compute a set of at most k axis-parallel lasers that partition P into

pieces each of diameter at most 12
√

2(1 + ε)δ∗ in time polynomial in n, diam(P )/δ∗, and ε.
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6 O(log OPT)-approximation for Min-LaserCircle

This section considers the radius of the largest inscribed circle as the measure of cell size; in

particular, in Min-LaserCircle the goal is to split the polygon P (which may have holes) into

pieces so that no piece contains a disk of radius 1. We give an O(log OPT)-approximation

algorithm for Min-LaserCircle based on reducing the problem to SetCover. The following

reformulation is crucial for the approximation algorithm:

I Observation 22. A set of lasers splits P into pieces of in-circle radius at most 1 if and

only if every unit disk that lies inside P is hit by a laser.

I Theorem 23. For a polygon P with n vertices (possibly with holes), Min-LaserCircle admits

an O(log OPT)-approximation in time polynomial in n and area(P ).

Proof. We lay out a regular square grid of points at spacing of
√

2. The set of grid points

within P is denoted by G. We may assume |G| = O(area(P )) by a suitable (e.g., uniformly

random) shift. Due to the spacing, every unit-radius disk in P contains a point of G (possibly

on its boundary).

Consider an optimal set L∗ of lasers that hit all unit disks that are contained within P .

Replace each laser (chord) c ∈ L∗ with up to four anchored chords of the same homotopy

type as c with respect to the vertices of P and the points G, obtained as follows: Shift the

chord c vertically down (up), while keeping its endpoints on the same pair of edges of P ,

until it becomes incident to a point in G or a vertex of P , then rotate the chord clockwise

(counterclockwise) around this point until it becomes incident to another point in G or a

vertex of P . Since every unit disk within P contains a point of G, any unit disk within P

that is intersected by c is also intersected by one of the shifted and rotated copies of c. This

means that we can construct a candidate set, C, of O((n + area(P ))2) chords that can serve

as lasers in an approximate solution, giving up at most a factor 4 of optimal. Further, in the

arrangement of the segments C within P , any unit disk is intersected by some set of chords

of C, thereby defining a combinatorial type for each unit disk in P . (Two disks are of the

same type if they are intersected by the same subset of chords in C; one way to define the

type is to associate it with a cell in the arrangement of lines drawn parallel to each chord

c ∈ C at distance 2 from c on each side of c. While the center of the disk is in one cell of the

arrangement, the disk intersects the same chords.) Let D be the polynomial-size (O(|C|2))

set of disks, one “pinned” (by two segments, from the set C and the set of edges of P ) disk

per combinatorial type. By construction, any set of chords from C that meets all disks of D

must meet all unit disks within P .

We thus formulate a discrete set cover instance in which the “sets” correspond to the

candidate set C of chords, and the “elements” being covered are the disks D. Since there are

constant-size sets of disks that cannot be shattered, the VC dimension of the set system is

constant, and an O(log OPT)-approximate solution for the set cover can be found in time

polynomial in the size of the instance [7]. J

The same algorithm works for the version in which the lasers are restricted to be axis-aligned

(the only change is that the candidate set C consists of axis-aligned chords through points of

the grid G and vertices of P ).
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