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By the definition of the tables A and I and Lemma 2
it directly follows, that I[e?] is the cost of a labeled
C+-triangulation of D that is optimal. In particular, by
Lemma 3 the entry I[e?] is the cost of an optimal C-hull.

Step 6. When filling both tables, we further store for
each entry A[e] the triangle (e, e1, e2) ∈ Te with mini-
mum active cost. In particular, for the edge ei (with
i ∈ {1, 2}) we store a pointer to the entry A[ei] if
A[ei] < I[ei] + λ · cP(ei) and a pointer to the entry I[ei]
otherwise. Similarly, we store for each entry I[e] the tri-
angle (e, e1, e2) ∈ Te with minimum inactive cost. In
particular, for the edge ei (with i ∈ {1, 2}) we store a
pointer to the entry I[ei] if I[ei] < A[ei] + λ · cP(ei) and
a pointer to the entry A[ei] otherwise. Starting at the
entry I[e?], we follow the pointers and collect for each
encountered entry its triangle —if such a triangle does
not exist, we terminate the traversal. If the entry be-
longs to A we label ∆ active and if it belongs to I, we
label ∆ inactive. The set T of collected triangles forms
a labeled C+-triangulation T of D that is optimal. By
Lemma 3 the separators of T form an optimal C-hull.

Running Time. The first step clearly runs in O(n)
time. By Theorem 2 there is an enrichment C+ of C and
D that has size O(χ2 + n). It can be easily constructed
in O(χ3+χn) time, which dominates the running times
of Step 2, Step 3 and Step 4. Further, for each edge e of
GC+ the set Te contains δ(C+) triangles. Hence, filling
the tables A and I takes O(|C+| · δ(C+)) time. Hence,
by Theorem 2 we obtain O(χ3+χn) running time. The
backtracking takes the same time.

Theorem 3 ShortcutHull can be solved in O(χ3 +
nχ) time. In particular, it is solvable in O(n3) time in

general and in O(n) time if the edges in C do not cross.

6 Edge and Bend Restricted Shortcut Hulls

In this section, we discuss two variants of Short-

cutHull in which we restrict the number of edges and
bends of the computed shortcut hull. These restrictions
are particularly interesting for the simplification of ge-
ometric objects as they additionally allow us to easily
control the complexity of the simplification.

6.1 Restricted C-Hull: Number of Edges

Next, we show how to find a C-hull Q that balances
its enclosed area and perimeter under the restriction
that it consists of at most k edges. We say that Q is
optimal restricted to at most k edges, if there is no other
C-hull Q′ with at most k edges and c(Q′) < c(Q).

k-EdgeShortcutHull.

given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P , λ ∈ [0, 1], and k ∈ N

find: optimal C-hull Q of P (if it exists)
restricted to at most k edges.

To solve k-EdgeShortcutHull we adapt Step 5 of the
algorithm presented in Section 5. We extend the tables
A and I by an additional dimension of size k modelling
the budget of edges that we have left for the particular
instance. For a shortcut e ∈ C+ and a budget b we
interpret the table entries as follows.

• A[e][b]: cost of labeled C+-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is active and T contains at most b separators.

• I[e][b]: cost of labeled C+-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is inactive and T contains at most b separators.

Let e be the currently considered edge of GC+ when
filling the tables. For a triangle ∆ = (e, e1, e2) ∈ Te
of e its active and inactive costs depend on the given
budgets b1 and b2 with 1 ≤ b1, b2 ≤ k that we intend to
use for the sub-instances attached to e1 and e2.

x∆,b1,b2 =
∑

i∈{1,2}

min{A[ei][bi], I[ei][bi − 1] + λ · cP(ei)}

y∆,b1,b2 =
∑

i∈{1,2}

min{A[ei][bi − 1] + λ · cP(ei), I[ei][bi]}

Hence, for the case that e ∈ C and Te 6= ∅ we define

A[e][b] = min{x∆,b1,b2 | ∆ ∈ Te, b1 + b2 = b}+ β · cA(e),

where β = (1 − λ). There are b possible choices of b1
and b2 that satisfy b1 + b2 = b. Thus, we can compute
A[e][b] in O(b) time. For the remaining cases we define

A[e][b] =

{

∞ e 6∈ C

β · cA(e) e ∈ C, Te = ∅,

which can be computed in O(1) time. Moreover, for the
case that e 6∈ C or Te 6= ∅ we define

I[e][b] = min{y∆,b1,b2 | ∆ ∈ Te, b1 + b2 = b}.

For the same reasons as before we can compute I[e][b]
in O(1) time. For e ∈ C or Te 6= ∅ we define I[e][b] = ∞.
Finally, to cover border cases we set A[e][0] = ∞ and
I[e][0] = ∞. Altogether, the entry I[e?][k] contains the
cost of an optimal C-hull that is restricted to k edges.
Apart from minor changes in Step 6 the other parts of
the algorithm remain unchanged.

Running time. Compared to the algorithm of Sec-
tion 5 the running time of computing a single entry
increases by a factor of O(k). Further, there are O(k)
times more entries to be computed, which yields that
the running time increases by a factor of O(k2).
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M. Nöllenburg. Metrosets: Visualizing sets as metro
maps. IEEE Trans. Vis. Comput. Graph., 27(2):1257–
1267, 2021.

[32] C. B. Jones, G. L. Bundy, and M. J. Ware. Map gen-
eralization with a triangulated data structure. Cartog-
raphy and Geographic Information Systems, 22(4):317–
331, 1995.



Arxiv 2021

[33] T. C. Kao and D. M. Mount. Incremental construc-
tion and dynamic maintenance of constrained Delau-
nay triangulations. In Proc. of 4th Canadian Conf. on
Computational Geometry, CCCG 1992, pages 170–175,
1992.

[34] D.-T. Lee and A. K. Lin. Generalized Delaunay trian-
gulation for planar graphs. Discrete & Computational
Geometry, 1(3):201–217, 1986.

[35] D. T. Lee, C. Yang, and C. K. Wong. Rectilinear
paths among rectilinear obstacles. Discret. Appl. Math.,
70(3):185–215, 1996.

[36] C. Li, Y. Yin, X. Liu, and P. Wu. An automated pro-
cessing method for agglomeration areas. ISPRS Int. J.
Geo Inf., 7(6):204, 2018.

[37] J. Li and T. Ai. A triangulated spatial model for detec-
tion of spatial characteristics of GIS data. In Proc. of
Int. Conf. on Progress in Informatics and Computing,
PIC 2010, volume 1, pages 155–159. IEEE, 2010.

[38] T. Mendel. Area-preserving subdivision simplification
with topology constraints: Exactly and in practice. In
Proc. of 20th Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, pages 117–128. SIAM,
2018.

[39] W. Meulemans. Similarity measures and algorithms for
cartographic schematization. PhD thesis, Mathematics
and Computer Science, 2014.

[40] W. Meulemans, A. van Renssen, and B. Speckmann.
Area-preserving subdivision schematization. In Proc.
of 6th Int. Conf. on Geographic Information Science,
GIScience 2010, volume 6292 of Lecture Notes in Com-
puter Science, pages 160–174. Springer, 2010.

[41] J. S. B. Mitchell, V. Polishchuk, and M. Sysikaski.
Minimum-link paths revisited. Comput. Geom.,
47(6):651–667, 2014.

[42] G. Neyer. Line simplification with restricted orienta-
tions. In Proc. of 6th Workshop on Algorithms and Data
Structures, WADS ’99, volume 1663 of Lecture Notes in
Computer Science, pages 13–24. Springer, 1999.
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