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Shortcut Hulls: Vertex-restricted Outer Simplifications of Polygons

Annika Bonerath* Jan-Henrik Haunert®

Abstract

Let P be a crossing-free polygon and C a set of short-
cuts, where each shortcut is a directed straight-line seg-
ment connecting two vertices of P. A shortcut hull of
P is another crossing-free polygon that encloses P and
whose oriented boundary is composed of elements from
C. Shortcut hulls find their application in geo-related
problems such as the simplification of contour lines. We
aim at a shortcut hull that linearly balances the enclosed
area and perimeter. If no holes in the shortcut hull
are allowed, the problem admits a straight-forward so-
lution via shortest paths. For the more challenging case
that the shortcut hull may contain holes, we present a
polynomial-time algorithm that is based on computing
a constrained, weighted triangulation of the input poly-
gon’s exterior. We use this problem as a starting point
for investigating further variants, e.g., restricting the
number of edges or bends. We demonstrate that short-
cut hulls can be used for drawing the rough extent of
point sets as well as for the schematization of polygons.

1 Introduction

The simplification of polygons finds a great number of
applications in geo-related problems. For example in
map generalization it is used to obtain abstract rep-
resentations of area features such as lakes, buildings,
or contour lines. A common technique, which origi-
nally stems from polyline simplification, is to restrict
the resulting polygon @ of a polygon P to the vertices
of P, which is also called a vertez-restricted simplifica-
tion [21, 25, 39]. In that case @ consists of straight
edges! that are shortcuts between vertices of P. In the
classic problem definition of line and area simplification
the result ) may cross edges of P.

In this paper, we consider the vertex-restricted
crossing-free simplification of a polygon P considering
only shortcuts that lie in the exterior of P or are part of
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Figure 1: 1st column: Input polygon (blue) with a set
C of all possible shortcuts (gray). 2nd-3rd columns:
Optimal C-hulls (blue and red area) for different A.

the boundary of P. In contrast to other work, we con-
sider the shortcuts as input for our problem and do not
require special properties, e.g., that they are crossing-
free, or that they comprise all possible shortcuts. The
result of the simplification is a shortcut hull Q of P pos-
sibly having holes. We emphasize that the edges of a
shortcut hull do not cross each other. Figure 1 shows
polygons (blue area) with all possible shortcuts and dif-
ferent choices of shortcut hulls (blue and red area). Such
hulls find their application when it is important that
the simplification contains the polygon. Figure 2 shows
the simplification of a network of lakes. We emphasize
that the lakes are connected to the exterior of the green
polygon at the bottom side. In that use case, it can be
desirable that the water area is only decreased to sus-
tain the area of the land occupied by important map
features. The degree of the simplification of () can be
measured by its perimeter and enclosed area. While a
small perimeter indicates a strong simplification of P, a
small area gives evidence that () adheres to P. In the
extreme case (Q is either the convex hull of P minimiz-
ing the possible perimeter, or @ coincides with P min-
imizing the enclosed area. We present algorithms that
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Figure 2: Simplification of a network of lakes in Sweden.
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Figure 3: Weakly-simple polygons. (a)—(b) Valid input
polygon as the exterior is a connected region. (c) Invalid
input polygon as the exterior consists of two regions.

construct shortcut hulls of P that linearly balance these
two contrary criteria by a parameter A € [0, 1], which
specifies the degree of simplification. With increasing
A the enclosed area is increased, while the perimeter is
decreased. We show that for the case that @) must not
have holes we can reduce the problem to finding a cost-
minimal path in a directed acyclic graph that is based
on the given set of possible shortcuts. However, espe-
cially for the application in geovisualization, where it is
about the simplification of spatial structures, we deem
the support of holes in the simplification as an essential
key feature. For example, in Figure 2d the connections
between the lakes are not displayed anymore as they are
very narrow, while it is desirable to still show the large
lakes. We therefore investigate the case of shortcut hulls
with holes in greater detail.

Input Polygon. As input we expect a clockwise-
oriented polygon P that is weakly-simple, which means
that we allow vertices to lie in the interior of edges as
well as edges that point in opposite directions to lie
on top of each other; see Figure 3. In particular, the
edges of P do not cross each other. Such polygons are

Figure 4: Shortcut hull of a minimum spanning tree.

more general than simple polygons and can be used to
describe more complex geometric objects such as the
faces of a graph embedded into the plane; see Figure 4
for minimum spanning tree. For the input polygon P
we further require that its exterior is one connected re-
gion; we say that the exterior of P is connected; see Fig-
ure 3. Hence, both a simple polygon and the outer face
of the plane embedding of a planar graph are possible
inputs. Finally, we emphasize that P may have holes.
We can handle every hole separately assuming that we
have inserted a narrow channel in P connecting it with
the exterior of P; consider the lakes in Figure 2. We
can force the algorithm to fill the artificially introduced
channel with the interior of Q.

Formal Problem Definition. We are given a weakly-
simple polygon P with connected exterior and a set C
of directed edges in the exterior of P such that the
endpoints of the edges in C are vertices of P; see Fig-
ure 5a. We call the elements in C shortcuts. A C-hull is
a weakly-simple polygon whose oriented boundary con-
sists only of directed edges from C, whose exterior is
connected, and that contains P. We allow C-hulls to
have holes. We observe that such holes can only lie in
the exterior of P. We are interested in a C-hull @) that
linearly balances the perimeter and enclosed area of Q).
Formally, we define the cost of a C-hull Q) as

(@) =A-cp(Q) + (1= A) - ca(Q), (1)

where A € [0,1] is a given constant balancing the
perimeter cp(Q) and the area ca (Q) of Q. Further, @ is
optimal if for every C-hull @’ of P it holds ¢(Q) < ¢(Q").

SHORTCUTHULL.
given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P, and A € [0, 1]
find: optimal C-hull @ of P (if it exists)
Further, we observe that it holds |C| € O(n?) as the
edges of C have their endpoints on the boundary of P.

Our Contribution. We first discuss how to construct
an optimal C-hull in O(|C|) time for the case that it
must not have holes (Section 3). Afterwards, we turn
our focus to C-hulls that may have holes (Sections 4-6).
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Figure 5: The input, a solution, and a subinstance for
an instance of the problem.
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Figure 6: Two examples of set C with different spa-
tial complexities x. (a) C-triangulation and C-hull. (b)
connected components of the crossing graph.

In particular, we show that finding an optimal C-hull @
of P is closely related to finding a triangulation T' of
the exterior of P such that each triangle A € T either
belongs to the interior or exterior of @Q; see Figure 6a.
We present an algorithm that solves SHORTCUTHULL in
O(n?) time if we forbid holes and in O(n?) time in the
general case. Moreover, in the case that the edges of
C do not cross each other, it runs in O(n) time. More
generally, we analyse the running time based on the
structure of C. Let S be the region between P and the
convex hull of P. Let G be the crossing graph of C, i.e.,
each node of G corresponds to an edge in C and two
nodes of G are adjacent if the corresponding edges in
C cross each other. The spatial complezity of C is the
smallest number x € N for which every connected com-
ponent of G can be enclosed by a polygon with x edges
that lies in the exterior of P and only consists of ver-
tices from P; see Figure 6. We show that the purposed
algorithm runs in O(x® + nx) time. We emphasize that
X € O(n). Moreover, we present two variants of C-hulls
that restrict the number of permitted edges or bends.
We further discuss relations of shortcut hulls with re-
spect to problems from application in cartography and
computational geometry (Section 7).

2 Related Work

In the following, we consider two major research fields
that are closely related to our work. At first, the field of
representing geometric objects by less complex and pos-
sibly schematized geometric objects and, secondly, the
field of constrained and weighted triangulations. Ap-

plication fields for the representation of geometric ob-
jects by less-complex and possibly schematized objects
are found, for example, in cartography: administrative
borders [8, 11, 27, 52], building footprints [29, 54], and
metro maps [31, 43, 55]. In particular, we want to
point out the generalization of isobathymetric lines in
sea charts where the simplified line should lie on the
downbhill side of the original line to avoid the elimina-
tion of shallows [56]. In this context, it is important
to find a good balance between the preservation of the
information and the legibility of the visualization [12].
Considering a polygon as input geometry, a basic tech-
nique for simplification and schematization is the con-
vex hull [6, 18, 26, 45]. An approach for rectilinear input
polygons are tight rectilinear hulls [9]. Multiple other
approaches for polygonal hulls of polygons exist—some
of them can be solved in polynomial time [29], while oth-
ers are shown to be NP-hard [30]. A closely related field
is the topologically correct simplification and schemati-
zation of polygonal subdivisions [11, 24, 38, 40, 53]. For
the case that multiple geometric objects are the input of
the problem, there exist several techniques for combin-
ing the aggregation and representation by a more simple
geometry. In the case that the input is a set of polygons,
a common technique is to use a partition of the plane,
such as a triangulation, as basis [17, 32, 36, 37, 46, 50].
In the case that the input is a set of points, we aim at
representing this by a polygonal hull. Many approaches
such as a-shapes [23] and x-shapes [22] use a triangu-
lation as their basis. Amnother approach is based on
shortest-paths [19]. Note that there also exists work
on combining the aggregation of point sets resulting in
schematized polygons [10, 54]. For considering polylines
as input there exists work on computing an enclosing
simple polygon based on the Delaunay triangulation [3].
The schematization of polylines is also closely related to
our approach. On the one hand, there is the schemati-
zation of a polyline inside a polygon or between obsta-
cles 2, 35, 41, 49]. Alternatively, there also exists work
on the simplification of a polyline based on a Delaunay
triangulation [3, 4, 5]. For the general simplification
of polylines we also refer to the Douglas-Peucker algo-
rithm, which is most widely applied in cartography [20],
and similar approaches [1, 42, 44].

Triangulating a polygon is widely studied in com-
putational geometry. Triangulation of a simple poly-
gon can be done in worst-case linear time [13]. A
polygon with h holes, having in total n vertices, can
be triangulated in O(nlogn) time [28] or even O(n +
hlog'™® h) time [7]. Our approach is particularly related
to minimum-weight triangulations [47] and constrained
triangulations [14, 15, 33, 34, 48].



Figure 7: Ilustration of proof for Theorem 1. Due to
the order of the vertices of P the edges e and €’ cannot
both be part of S.

3 Computing Optimal Shortcut Hulls without Holes

Let G¢ be the graph induced by the edges in C. We
call G¢ the geometric graph of C. If we do not allow
the shortcut hull to have holes, we can compute an op-
timal C-hull () based on a cost-minimal path in G¢; see
Figure 5b. For each edge e let Ple] be the polyline of
P that is enclosed by e. We call the polygon describ-
ing the area enclosed by e and P[e] the pocket of e; see
Figure 5¢. We direct e of G such that it starts at the
starting point of Ple] and ends at the endpoint of Ple].
For each edge e we introduce costs that rate the length
cp(e) of e as well as the area ca (Pl[e]) of the pocket of e
with respect to A, i.e. ¢(e) = A-ep(e)+(1—A)-ca(Ple]).

Observation 1 The vertices of the convex hull of P
are part of the boundary of any shortcut hull of P.

Due to Observation 1, any C-hull of P contains the top-
most vertex v of P. Hence, G¢ does not contain any
edge e that contains v in its pocket and when removing
v from G we obtain a directed acyclic graph. We use
this property to prove that a cost-minimal path in G¢
corresponds to an optimal C-hull.

Theorem 1 The problem SHORTCUTHULL without
holes can be solved in O(|C|) time. In particular, in
the case that the edges in C do mot cross each other it
can be solved in O(n) time and O(n?) time otherwise.

Proof. Let S = (e1,...,e;) be the sequence of edges
of the shortest path in G¢ starting at v and ending at
v. Let @ be the polygon that we obtain by interpreting
S as a polygon. We show that @ is an optimal C-hull.
In particular, we need to show that @ is crossing-free.
Due to the definition of G¢, the following two properties
hold: (i) each edge e = xy of G¢ starts and ends on the
boundary of P and (ii) e is directed such that x is the
starting point of Ple] and y is the end point of Ple].
Hence, the vertex x appears before y on the boundary
of P when going along P starting at its topmost point.
Assume that the edges e; = z;y; and ¢; = z;y; with
1 <i < j <1lcross. Since i < j, the start and end
points of e; and e; appear in the order x;y;z;y; on S.
Due to properties (i) and (ii), z; lies in the pocket of

[ 2 ®
pn AP S
P2
Dle]
[ 2 L]
(a) B (b) D (c) pocket of e

Figure 8: Containing box B and sliced donut D of P.

e;. Let S;; = (€i41,...,€j—1). Since properties (i) and
(ii) apply for each edge in .S; j, this is a contradiction.
The computation of a shortest path in a directed acyclic
graph with |C| vertices and edges takes O(|C|) time [16].
In particular, when no two edges of C cross, we obtain
O(n) running time and otherwise O(n?). O

If we allow @ to have holes, we cannot rate the costs for
the area of a pocket in advance.

4 Structural Results for Shortcut Hulls with Holes

In this section, we present structural results for SHORT-
cUuTHULL, which we utilize for an algorithm in Sec-
tion 5. We allow the shortcut hull to have holes.

4.1 Basic Concepts

Let P be a weakly-simple polygon with connected exte-
rior. Let p1,...,p, be the vertices of P; see Figure 8a.
We assume that the topmost vertex of P is uniquely
defined; we always can rotate P such that this is the
case. We denote that vertex by p; and assume that P
is clockwise oriented. Further, let C be a set of shortcuts
of P and A € [0, 1]; see Figure 5a. Due to Observation 1,
any C-hull of P contains p;.

First we introduce concepts for the description of the
structural results and the algorithm. Let B be an axis-
aligned rectangle such that it is slightly larger than the
bounding box of P; see Figure 8a. Let ¢i1,...,q4 be
the vertices of B in clockwise order such that ¢; is the
top-left corner of B. We require that the diagonal edges
q193 and goqq intersect P, which is always possible. We
call B a containing box of P. Let D be the polygon
q1---9491P1Pn - --P1q1- We call D a sliced donut of P;
see Figure 8b. We observe that D is a weakly-simply
polygon whose interior is one connected region. Further,
we call e* = p1q; the cut edge of D. For an edge e in the
interior of D connecting two vertices of D let D[e] be
the polyline of D that connects the same vertices such
that e* is not contained; see Figure 8c. Let D[e] 4 e be
the polygon that we obtain by concatenating Dle] and
e such that e* lies in the exterior of D[e] 4+ e. Note that
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if e € C then Dle] = Ple]. We call Dle] + e the pocket
e. In particular, we define D to be the pocket of e*.

Observation 2 The edges of a C-hull of P are con-
tained in the sliced donut D.

In the following, we define a set CT of edges in D
with C C C* that we use for constructing triangulations
of D, which encode the shortcut hulls. Generally, a
triangulation of a polygon H is a superset of the edges
of H such that they partition the interior of H into
triangles. Further, for a given set E of edges an FE-
triangulation of H is a triangulation of H that only
consists of edges from FE. Moreover, we say that a set
of edges is part of a triangulation T if F is a subset of
the edges of T'. Conversely, we also say that T' contains
FE if FE is part of T. Note that the edges of H are part
of any E-triangulation of H.

We call a set Ct of edges with C C C' an enrichment
of the shortcuts C and the sliced donut D if (1) ev-
ery edge of Ct is contained in D, (2) every edge of
C*t starts and ends at vertices of D, and (3) for ev-
ery set C' C C of pair-wisely non-crossing edges there
is a CT-triangulation 7" of D such that C’ is part of T
First, we observe that CT is well-defined as every edge
in C satisfies the first two properties. Further, by def-
inition for any C-hull Q there is a CT-triangulation T
of D that contains (). Hence, as an intermediate step
our algorithm for computing an optimal C-hull @ cre-
ates an enrichment of C and D, and then constructs
a Ct-triangulation that contains Q. In Section 4.2
we discuss the structural correspondences between C1-
triangulations of D and (optimal) C-hulls. In Section 4.3
we then show how to construct C*. For example a sim-
ple approach for an enrichment of C is the set of all pos-
sible shortcuts in D. We observe that any enrichment
C*t of C has O(n?) edges. In general, the size of C*
can be described by the spatial complexity of C, which
impacts the running time of our algorithm (Section 5).

4.2 From CT-Triangulations to C-Hulls

In this section, we assume that we are given an enrich-
ment CT for the set of shortcuts C and a sliced donut
D. Let T be a CT-triangulation of D; see Figure 9.

Observation 3 For each enrichment CT of C and each
C-hull Q there exists a Ct-triangulation T of the sliced
donut D such that Q is part of T

Let T be a Ct-triangulation of D such that the C-
hull @ is part of T'; see Figure 9a. We can partition the
set of triangles of T in those that are contained in the
interior of ) and those that are contained in the exterior
of Q. We call the former ones active and the latter ones
inactive; see Figure 9b. Further, we call an edge e of
T a separator if (1) it is part of P and adjacent to an

(a) Q is part of T

(b) labels

(c) dual graph G*

Figure 9: CT-triangulation T'. (b) The red triangles are
active, while all other triangles are inactive. (c¢) The
restricted dual graph G* of T forms a tree with root p.

inactive triangle, or (2) it is adjacent to both an active
and an inactive triangle. Conversely, let £: T'— {0, 1}
be a labeling of T' that assigns to each triangle A of T'
whether it is active (£(A) = 1) or inactive (¢(A) = 0).
We call the pair T = (T,¢) a labeled C*-triangulation.
From Observation 3 we obtain the next observation.

Observation 4 For each enrichment CT of C and each
C-hull Q there exists a labeled CT -triangulation such that
its separators stem from C and form Q.

Let T = (7,¢) be a labeled C*-triangulation of the
interior of a polygon H. We denote the set of separators

of T by St. We define

cp(St) = E cp(e) and cp(T) = E ca(A),
eEST A€T,
o(A)=1

where cp(e) denotes the length of e and cs(A) denotes

the area of A. The costs of T are then defined as
(T)=X-cp(ST)+ (1 —A)-ca(D).

For any e € C*\ C we define cp(e) = oo. Thus, we have

¢(T) < oo if and only if St C C. We call a labeled C™-

triangulation T of H optimal if there is no other labeled

C*-triangulation T/ of H with ¢(T’) < ¢(T).

Next, we show that a labeled Ct-triangulation T =
(T,¢) that is optimal can be recursively constructed
based on optimal sub-triangulations. Let G* be the re-
stricted dual graph of T', i.e., for each triangle G* has a
node and two nodes are adjacent iff the corresponding
triangles are adjacent in 7'; see Figure 9c.

Lemma 1 The restricted dual graph G* of a C*t-
triangulation T of D is a binary tree.

Proof. Aseach edge of T starts and ends at the bound-
ary of D, each edge of T splits D into two disjoint re-
gions. Hence, G* is a tree. Further, since each node of
G™* corresponds to a triangle of T', each node of G* has
at most two child nodes. O



We call G* a decomposition tree of D. Let p be the
node of G* that corresponds to the triangle of T' that
is adjacent to the cut edge e* of D; as e* is a boundary
edge of D, this triangle is uniquely defined. We assume
that p is the root of G*; see Figure 9c. Let G be an
arbitrary sub-tree of G* that is rooted at a node u of
G*. Further, let e, be the edge of the triangle A, of u
that is not adjacent to the triangles of the child nodes of
u; we call e, the base edge of A,. The triangles of the
nodes of G form a Ct-triangulation T, of the pocket
A, = Dley]+e, of e,. Thus, G is a decomposition tree
of A,. A labeled Ct-sub-triangulation T, = (Ty,¥%,)
consists of the CT-triangulation T, of A, with T,, C T
and the labeling ¢,, with £,,(A) = £(A) for every A € Ty,.

Lemma 2 Let T be a labeled CT-triangulation of D
that is optimal. Let T, = (Ty,%y) be the labeled CT-
sub-triangulation of T rooted at the node w and let
T! = (T0,0,) be an arbitrary labeled C* -triangulation
of the same region. We denote the triangles of T, and
T, adjacent to e, by A, and A!,, respectively.

If A, and Al have the same labels, i.e., £,(A,) =
2, (AL), then ¢(Ty) < ¢(T%,).

Proof. For the proof we use a simple exchange argu-
ment. Assume that there is a labeled Ct-triangulation
T, of the pocket Dle,] + e, with £(A,) = ¢/(A!,) and
e(T)) < ¢(Ty). As both T, and T, are triangulations
of the pocket D[e,] + ey, we can replace the triangles
of T,, with the triangles of T/, in T obtaining a new tri-
angulation T” of D. Further, we define a new labeling
¢ such that ¢/(A) = ¢(A) for every A € T\ T, and
U(A) = L(A) for every A € T),. Let T = (T",¢') be
the corresponding labeled CT-triangulation of D. The
following calculation shows ¢(T’) < ¢(T'), which contra-
dicts the optimality of T.

c(T)y =\~ (CP(ST’ \ St,) + CP(ST;)) +

(L=X) - (ca(T"\T;) + ca(T,))
=A-cp(St\ S11,) + (1 = N) - ea(T\ T;,)+

A CP(ST;‘) + (1 — )\) . CA(T,LIL)
X ep(S7\ S1,) + (1= A) - ea(T\ 1) + e(T)
<A- CP(ST \ ST,‘,) + C(Tu) = C(T)

Altogether, we obtain the statement of the lemma. [

We use Lemma 2 for a dynamic programming ap-
proach that yields a labeled CT-triangulation T of D
that is optimal.

Lemma 3 Let T be a labeled CT-triangulation of D
that is optimal and has cost ¢(T) < oco. The separa-
tors of T form an optimal C-hull of P.

Proof. We show the following two claims, which proves
the lemma. (1) For every C-hull @ of P there is a labeled

Figure 10: Proof of Lemma 3. (a) The triangles inci-
dent to the vertices g1, g2, g3 and ¢4 form a path in the
dual graph of the labeled triangulation T. (b) The ver-
tices p1,...,ps form a CT-hull of P containing all active
triangles (red) of T.

Figure 11: Inductive construction of the boundary
path K. of an edge e that is a base edge of an inac-
tive triangle A. (a) Base case. (b) e; is a base edge of
an inactive triangle, and es is a separator. (c) Both e;
and e are base edges of inactive triangles.

CT-triangulation T of D such that the separators of T
form @ and ¢(T) = ¢(Q). (2) For every labeled C*-
triangulation T of D with ¢(T) < oo the separators of
T form a C-hull Q with ¢(T) = ¢(Q).

Claim 1. Let @ be a C-hull of P. By the definition
of CT there is a CT-triangulation 1" of D such that @ is
part of T. We define the labeling ¢ such that ¢(A) =1
for every triangle A € T' that is contained in the inte-
rior of @ and £(A) = 0 for every other triangle A € T.
Hence, the separators of the labeled C*t-triangulation
T = (T, ) are the edges of ). Further, by the construc-
tion of T we have ¢(T) = ¢(Q). This proves Claim 1.

Claim 2. Let T = (T,/) be a CT-triangulation of
D with ¢(T) < oo and let St be the separators of T.
By the definition of the costs of T we have St C C.
Moreover, as T is a triangulation, the edges in St do
not cross each other. We show that the edges in St
form a C-hull @ with ¢(Q) = ¢(T). Let G* be the dual
graph of T'. As the diagonal edges of the containing box
B intersect P, each triangle of T' that is incident to one
of the vertices of B is also incident to a vertex of P;
see Figure 10a. The vertices of the triangles incident to
the vertices of B form a path vy,...,v; in G* such v; is
the root of G* and vy, is a leaf. We denote the triangles
represented by this path by Aj, ..., A, respectively.

Let p1,...,p; be the vertices of P in the order as they
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are incident to the triangles Ay, ..., Ay in clockwise or-
der; see Figure 10a. We define p;+1 = p1. The vertices
p1,...,p form a weakly-simple polygon @’ that con-
tains P; if P crossed ', this would contradict that the
vertices are incident to the disjoint triangles Aq, ..., Ag.
We observe that Q' is a C*T-hull of P without holes. Let
T’ C T be the set of triangles that are contained in Q'
and let £’ be the edges of these triangles. We first show
that for each edge e € E’ that is a base edge of an inac-
tive triangle in T there is a path K. in the pocket of e
such that (1) K. only consists of edges from St, (2) K.
connects the endpoints of e, and (3) the polygon K. +e
only contains inactive triangles of T. We call K, the
boundary path of e; see Figure 11. Later, we use these
boundary paths to assemble Q).

Let A be the inactive triangle of which e is the base
edge and let e; and es be the other two edges of A. We
do an induction over the number of triangles of T that
are contained in the pocket of e. If the pocket of e only
contains A, both edges e; and ey are edges of P; see
Figure 11a. Hence, by definition they are separators.
We define K. as the path e; + ea, which satisfies the
three requirements above. So assume that the pocket
of e contains more than one triangle; see Figure 11b—c.
If e; is not a separator, then it is the base edge of an
inactive triangle. Hence, by induction there is a path
K., that satisfies the requirements above. If e; is a
separator, we define K., = e;. In the same way we
define a path K., for the edge es. The concatenation
K., + K., forms a path that satisfies the requirements
above, which proves the existence of the boundary path
for an edge e € E'.

We now describe the construction of the boundary of
Q. For a pair p;, p;+1 with 1 <i < the adjacent trian-
gle incident to one of the vertices of B is inactive. Let
K; = pipit1 if pipi1 is a separator. Otherwise, p;p;41
is the base edge of an inactive triangle in T. Thus, it
has a boundary path K, , and we define K; as K.
The concatenation K7 + - - -+ K; forms the boundary B
of a weakly-simple polygon @ that encloses P; see Fig-
ure 10b. By construction it consists of edges from C.

Finally, we show how to construct the holes of Q. Let
e € St be a separator that is contained in the interior
of B and that is a base edge of an inactive triangle; see
e and ¢ in Figure 10b. The polygon Z. that consists
of e and the boundary path K. only contains inactive
triangles of T and is entirely contained in B. Further,
for any pair e and €’ of such separators in the interior of
B the interiors of the polygons Z, and Z. are disjoint.
Hence, we set these polygons to be the holes of (). Thus,
we obtain a C-hull ) of P with holes such that the
inactive triangles of T lie in the exterior of @, while all
active triangles lie in the interior of (). This implies that
¢(Q) = ¢(T), which concludes the proof of Claim 2. [

(a) P,C,and D
D

(c) edges Er

Figure 12: Obtaining the enrichment C* from C.

43 FromCto(C™t

Solving SHORTCUTHULL relies on the considered enrich-
ment CT. For an edge e € C* let &, be the number of
triangles that can be formed by e and two other edges
from C*, and let 6(C*) be the maximum J,. over all
edges e in CT. In Section 5 we show that the problem
can be solved in O(|CT|-§(C")) time.

A simple choice for CT is the set of all edges that lie
in D and connect vertices of D. It is an enrichment of
C as it contains any choice of C and any triangulation of
D that is based on the vertices of D is a subset of CT.

Observation 5 There is an enrichment C* of C with
ICT| € O(n?) and 6(C*) € O(n).

If C has no crossings, we can do much better. We first
observe that the edges of any triangulation 7' of the
sliced donut D are an enrichment of C and D if C is a
subset of these edges. Hence, we can define an enrich-
ment as the set of edges of a triangulation T" of D such
that the edges of C are part of T'; for this purpose we can
for example utilize constrained Delaunay triangulations,
but also other triangulations are possible.

Observation 6 If the edges in C do not cross, C has
an enrichment CT with |[C*T| € O(n) and 6(CT) € O(1).

In the following we generalize both constructions of
C* and relate |CT| and §(C™") to the number n of vertices
of P and the spatial complexity x of C. Let Cy,...,Cp,
be subsets of C such that two edges e € C; and €’ € C;
with 1 <14, j < h cross each other if and only if ¢ = j; see
Figure 12. We call C; a crossing component of C. Let R;
be the polygon in D with fewest edges, that is defined by
vertices of P and contains C;. We call R; the region of



C;. Let C" be the set of edges that contains (i) all edges
of C, (ii) the edges Er of a constrained triangulation for
the interior of D, and (iii) for each 1 < ¢ < h the set
E'R, of all possible shortcuts of region R; such that these
start and end at vertices of R; and are contained in D.
Hence, an enrichment is of size O(x?+n) as each region
R; has at most y vertices.

Theorem 2 There is an enrichment Ct of C with
ICT] € O(x* +n) and 6(CT) € O(x).

Proof. Let Ct be the set of edges that contains all
edges of C, Ep, and EpR,,...,ER,. We show that
CT is an enrichment, by proving that for each set
C' C C of pair-wisely non-crossing edges there is a C*-
triangulation T' of D such that C’ is part of T'.

Observe that the regions Ry, ..., Ry of crossing com-
ponents induce a partition R of D that contains
Ry,..., Ry and regions Ry,...,Rj partitioning D \
U?Zl R;. Since an edge e € C* cannot cross the bound-
ary of two regions R, R’ € R, the triangulation of each
region R € R can be constructed independently.

Let F be the edges of C’ that are contained in region
R € R. If R is a region of a crossing component, CT
contains all shortcuts in this region. Since the edges of
E are crossing-free, there exists a CT-triangulation of
R that is constrained to E. Thus, the edges of E are
part of a C*-triangulation of R. If R is not a region of
a crossing component, the enrichment C* contains the
edges of a triangulation of D constrained to all edges
of C that are contained in R. Since F C C, this tri-
angulation contains all edges of E. By joining the CT-
triangulations for each region of the partition, we obtain
a Ct-triangulation of D such that C’ is part of it.  [J

5 Computing Optimal Shortcut Hulls with Holes

The core of our algorithm is a dynamic programming
approach that recursively builds the decomposition tree
of T as well as the labeling ¢ using the sliced donut D
of the input polygon P and the input set of shortcut C
as guidance utilizing Lemma 2. The algorithm consists
of the following steps.
1. Create a containing box B and the sliced donut D
of P and B. Let e* be the cut edge of D.
2. Create an enrichment C* of C and D.
3. Create the geometric graph G+ based on C*. Let
T be the set of triangles in G+ .
4. Determine for each edge e of Gg+ the set T, C T
of all triangles (e, e1,€e2) in Ge+ such that e; and
es lie in the pocket of e.
5. Create two tables A and I such that they have an
entry for each edge e of Ge+.
e Ale]: minimal cost of a labeled C*-trian-
gulation T of the pocket Dle]+e s.t. the tri-
angle adjacent to e is active.

A, (R, (A, U
(a) (b) () (d)
S S O o
() (f) (8) (h)

Figure 13: The possible cases for the (a)—(d) active (red)
and (e)—(h) inactive cost of a triangle A.

e Ile]: minimal cost of a labeled CT-trian-
gulation T of the pocket Dle]+e s.t. the tri-
angle adjacent to e is inactive.

6. Starting at I[e*] apply a backtracking procedure to
create a CT-triangulation T of D that is optimal.
Return T and the corresponding optimal C-hull @
of T (see proof of Lemma 3 for construction of Q).

We now explain Step 5 and Step 6 in greater detail.

Step 5. We compute the table entries of A and I in
increasing order of the areas of the edges’ pockets. Let
e be the currently considered edge of G¢+. For a triangle
A = (e,e1,e2) € Te of e we define its active cost za as

INES Z min{Ale;], Ie;] + X - cp(e;)}.
i€{1,2}

Hence, za is the cost of a labeled CT-triangulation T,
of the pocket D[e]+e such that A is active and the sub-
triangulations of T, restricted to the pockets D[e;]+ e1
and Dles] 4 eo are optimal, respectively; see Figure 13
for the four possible cases.

00 e C

B'CA(G) 666772207
min{za |A €T} +B-cale) eeC, Te #0,

where 5 = (1 — A). Analogously, we define for A its
mnactive cost ya as

ya =Y min{Ale;] + X eples), I[ei]}-
i€{1,2}

Ale] =

Hence, ya is the cost of a labeled C*-triangulation T, of
the pocket D[e] + e such that A is inactive and the sub-
triangulations of T, restricted to the pockets Dle;]+e;
and Dles] + e2 are optimal, respectively. We compute
the entry I[e] as follows.

T[] = 00 e€Cand 7T, =0,
~ | min{ya | A € .} otherwise.
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By the definition of the tables A and I and Lemma 2
it directly follows, that I[e*] is the cost of a labeled
CT-triangulation of D that is optimal. In particular, by
Lemma 3 the entry I[e*] is the cost of an optimal C-hull.

Step 6. When filling both tables, we further store for
each entry Ale] the triangle (e, e1,e2) € T, with mini-
mum active cost. In particular, for the edge e; (with
i € {1,2}) we store a pointer to the entry Ale;] if
Ale;] <TI[e;]+ A - cp(e;) and a pointer to the entry I[e;)
otherwise. Similarly, we store for each entry Ife] the tri-
angle (e,e1,ez) € T, with minimum inactive cost. In
particular, for the edge e; (with ¢ € {1,2}) we store a
pointer to the entry I[e;] if I[e;] < Ale;] + A - cp(e;) and
a pointer to the entry Ale;] otherwise. Starting at the
entry I[e*], we follow the pointers and collect for each
encountered entry its triangle —if such a triangle does
not exist, we terminate the traversal. If the entry be-
longs to A we label A active and if it belongs to I, we
label A inactive. The set T of collected triangles forms
a labeled CT-triangulation T of D that is optimal. By
Lemma 3 the separators of T form an optimal C-hull.

Running Time. The first step clearly runs in O(n)
time. By Theorem 2 there is an enrichment C* of C and
D that has size O(x? + n). It can be easily constructed
in O(x® +xn) time, which dominates the running times
of Step 2, Step 3 and Step 4. Further, for each edge e of
Ge+ the set T, contains 6(CT) triangles. Hence, filling
the tables A and I takes O(|C*|-6(CT)) time. Hence,
by Theorem 2 we obtain O(x® + yn) running time. The
backtracking takes the same time.

Theorem 3 SHORTCUTHULL can be solved in O(x> +
nx) time. In particular, it is solvable in O(n?) time in
general and in O(n) time if the edges in C do not cross.

6 Edge and Bend Restricted Shortcut Hulls

In this section, we discuss two variants of SHORT-
CUTHULL in which we restrict the number of edges and
bends of the computed shortcut hull. These restrictions
are particularly interesting for the simplification of ge-
ometric objects as they additionally allow us to easily
control the complexity of the simplification.

6.1 Restricted C-Hull: Number of Edges

Next, we show how to find a C-hull @ that balances
its enclosed area and perimeter under the restriction
that it consists of at most k edges. We say that @ is
optimal restricted to at most k edges, if there is no other
C-hull @’ with at most k edges and ¢(Q’) < ¢(Q).

k-EDGESHORTCUTHULL.

given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P, \€0,1], and k € N
find:  optimal C-hull @ of P (if it exists)
restricted to at most k edges.
To solve k-EDGESHORTCUTHULL we adapt Step 5 of the
algorithm presented in Section 5. We extend the tables
A and I by an additional dimension of size k£ modelling
the budget of edges that we have left for the particular
instance. For a shortcut e € C* and a budget b we
interpret the table entries as follows.

e Ale][b]: cost of labeled CT-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is active and T contains at most b separators.

e I[e][b]: cost of labeled C*-triangulation T of the
pocket of e s.t. T is optimal, the triangle adjacent
to e is inactive and T contains at most b separators.

Let e be the currently considered edge of G+ when
filling the tables. For a triangle A = (e,e1,e2) € Te
of e its active and inactive costs depend on the given
budgets b, and by with 1 < by,bs < k that we intend to
use for the sub-instances attached to e; and es.

TA Dy by = Z min{ Ale;][b:], I[es][bi — 1] + X - cp(es)}
i€{1,2}

Yabbe = Y min{Ale;][b; — 1] + X ep(e;), Ies][bi]}
i€{1,2}

Hence, for the case that e € C and T, # () we define
Ale][b] = min{xa p, b, | A € Te, by + b2 = b} + 5 -cale),

where 8 = (1 — ). There are b possible choices of b
and by that satisfy by + by = b. Thus, we can compute
Ale][b] in O(b) time. For the remaining cases we define

_Jo edgC
Alelle] = {B-CA(e) ecC, T.=0,

which can be computed in O(1) time. Moreover, for the
case that e € C or T, # () we define

I[e][b] = min{ya b, b, | A € Te, b1 + by = b}.

For the same reasons as before we can compute I[e][b]
in O(1) time. For e € C or 7. # () we define I[e][b] = co.
Finally, to cover border cases we set Ale][0] = oo and
I[e][0] = oo. Altogether, the entry I[e*][k] contains the
cost of an optimal C-hull that is restricted to k edges.
Apart from minor changes in Step 6 the other parts of
the algorithm remain unchanged.

Running time. Compared to the algorithm of Sec-
tion 5 the running time of computing a single entry
increases by a factor of O(k). Further, there are O(k)
times more entries to be computed, which yields that
the running time increases by a factor of O(k?).



Theorem 4 The problem k-EDGESHORTCUTHULL can
be solved in O(k?(x3 4+ ny)) time. In particular, it can
be solved in O(k*n®) time in general and in O(k*n) time
if the edges in C do not cross.

6.2 Restricted C-Hull: Number of Bends

A slightly stronger constraint than restricting the num-
ber of edges is restricting the number of bends of a
C-hull. Formally, we call two consecutive edges of a
simply-weakly polygon a bend if the enclosed angle is
not 180°. We say that @ is optimal restricted to at most
k bends if there is no other C-hull @’ with at most k
bends and ¢(Q’) < ¢(Q).

k-BENDSHORTCUTHULL.
given: weakly-simple polygon P with n vertices
and connected exterior, set C of shortcuts
of P, A€ [0,1],and k € N
find:  optimal C-hull @ of P (if it exists)
that is restricted to at most k bends.

If the vertices of P are in general position, i.e., no
three vertices lie on a common line, a C-hull @ of P is
optimal restricted to at most k bends if and only if it
is optimal restricted to k edges. Hence, in that case we
can solve k-BENDSHORTCUTHULL using the algorithm
presented in Section 6.1. In applications, the case that
the vertices of P are not in general position, occurs likely
when the input polygon is, e.g., a schematic polygon or
a polygon whose vertices lie on a grid. In that case, we
add an edge p1pn to C for each sequence p1, ..., pn of at
least three vertices of P that lie on a common line; we
add pipp only if it lies in the exterior of P. The newly
obtained set C’ has O(n?) edges. Hence, compared to
C it possibly has an increased spatial complexity with
X € O(n). From Theorem 4 we obtain the next result.

Theorem 5 The problem k-BENDSHORTCUTHULL can
be solved in O(k?-n?) time.

7 Relations to other Geometric Problems

We have implemented the algorithm presented in Sec-
tion 5. For example, computing a shortcut hull for the
instance shown in Figure 2 one run of the dynamic pro-
gramming approach (Step 5) took 400ms on average.
This suggests that despite its cubic worst-case running
time our algorithm is efficient enough for real-world ap-
plications. However, more experiments are needed to
substantiate this finding.

Balancing the Costs of Area and Perimeter In Fig-
ure 1 we display a series of optimal C-hulls?; see also
Figure 14. We use the same polygon and the set of all

2Figure 1b: A = 0.906; Figure lc: A = 0.995; Figure le: \ =
0.914; Figure 1f: X = 0.975

(a) (b)

(c) (d)
Figure 14: Optimal C-hulls for increasing values of A.
In particular, for A = 1 we only consider the costs for

the area (Subfigure (a)) and for A = 0 we only consider
the costs for the perimeter (Subfigure (d)).

possible shortcuts as input while increasing the param-
eter A of the cost function. To find relevant values of A
we implemented a systematic search in the range [0, 1].
It uses the simple observation that with monotonically
increasing A the amount of area enclosed by an optimal
shortcut hull increases monotonically. More in detail,
we compute the optimal shortcut hull for A = 0 and
A = 1. If the area cost ¢4 of these shortcut hulls differ,
we recursively consider the intervals [0, 0.5] and [0.5, 1]
for the choice of A similar to a binary search. Otherwise,
we stop the search.

As presented in Equation 1, we consider costs for the
area and perimeter in SHORTCUTHULL. The second col-
umn of Figure 1 shows a result for a small value of A, i.e.,
the costs for the area are weighted higher. As expected
the resulting optimal C-hull is rather close to the input
polygon. In contrast, the last column of Figure 1 shows
the optimal C-hull for a larger A-value. We particularly
obtain holes that represent large areas enclosed by the
polygon, while small gaps are filled.

Simplification and Schematization of Simple Polygons
In the following, we discuss how our approach relates to
typical measures for simplification and schematization.
These are the number of edges, the number of bends [20]



Arxiv 2021

(a) (b) octilinear (c) rectilinear
Figure 15: Simplification (a) and schematization (b)—(c)
of the main island of Shetland.

or the perimeter [51], which are implemented by short-
cut hulls; e.g., Figure 15a shows the simplification of
the border of the main island of Shetland by a C-hull
as defined in SHORTCUTHULL. The schematization of a
polygon is frequently implemented as a hard constraint
with respect to a given set O of edge orientations. For
schematizing a polygon with C-hulls, we outline two pos-
sibilities: a non-strict and a strict schematization. For
the non-strict schematization, we adapt the cost func-
tion of the shortcuts such that edges with an orientation
similar to an orientation of O are cheap while the oth-
ers are expensive; see Figure 15b for O consisting of
horizontal, vertical, and diagonal orientations and Fig-
ure 15c for O consisting of the horizontal and vertical
orientations. The strict schematization restricts the set
C of shortcuts, such that each edges’ orientation is from
0. For example, one can define C based on an under-
lying grid that only uses orientations from O. We then
need to take special care about the connectivity of C,
e.g., by also having all edges of the input polygon in C.

Aggregation of Multiple Objects and Clustering We
can adapt C-hulls for multiple geometric objects, e.g. a
point set. We suggest to use a geometric graph that
contains all vertices of the input geometries, all edges of
the input geometries and is connected as input for prob-
lem SHORTCUTHULL, e.g., a minimum spanning tree of
the point set; see Fig 16. With increasing A-value the
regions of the shortcut hull first enclosed are areas with
high density. By removing all edges of @) that are not
adjacent to the interior of @), we possibly receive multi-
ple polygons which each can be interpreted as a cluster.

(c) (d)

Figure 16: Optimal C-hulls for increasing values of A for
a point set using a minimum spanning tree as basis.

8 Conclusion

We introduced a simplification technique for polygons
that yields shortcut hulls, i.e., crossing-free polygons
that are described by shortcuts and that enclose the in-
put polygon. In contrast to other work, we consider the
shortcuts as input. We introduced a cost function of a
shortcut hull that is a linear combination of the covered
area and the perimeter. Computing optimal shortcut
hulls without holes takes O(n?) time. For the case that
we permit holes we presented an algorithm based on
dynamic programming that runs in O(n3) time. If the
input shortcuts do not cross it runs in O(n) time.

We plan on considering (i) the bends as part of the
cost function, (ii) more general shortcuts, e.g. allowing
one bend per shortcut, and (iii) optimal spanning trees
for the case of multiple input geometries.
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