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Abstract—Alignment-free sequence comparison methods can
compute the similarity of a huge number of sequences much
faster than traditional sequence alignment methods. Here, a new
non-parametric alignment-free sequence comparison algorithm,
J∗
2 is proposed to measure sequence similarity based on the

suffix tree data structure. Compared against other state-of-the-art
alignment-free methods, namely, Dz

2 , D2, Dsh
2 , D∗

2 , WFV , DV ,
Shi, CPF , DMk, K2 and K∗

2 , J∗
2 has three main advantages:

(1) it has the fastest running time in theory and in practice.
J∗
2 reduces the time for k-words search from O(N2) to O(N).

Our experimental results confirm that it is the fastest among
the 11 popular approaches. (2) J∗

2 is easy to use: unlike the
other alignment-free methods that often need to choose a suitable
parameter k, there is no parameter selection for J∗

2 . (3) J∗
2 does

not have any particular requirement for data distribution. Unlike
the the parametric methods (such as the D2-family) that require
certain distribution for the data, J∗

2 has no demand for a specific
input distribution. The improved running time from J∗

2 will be
very useful in this era of big data, especially, with the increasing
data volume of genome sequences.

Index Terms—sequence similarity measurement, alignment-
free sequence comparison, suffix tree, biological sequences

I. INTRODUCTION

The evaluation of similarity between sequences is a clas-
sical problem that has long been studied in computer sci-
ence, primarily from the view point of string pattern match-
ing [1], [16]. Given their improved speed, alignment-free
methods are gaining more attention than alignment-based
methods [42] in evaluating sequence similarity [10], [44].
Alignment-free sequence analysis are widely used in various
areas, such as computer science [1], [16], graphics [26], foren-
sic analysis [39], and computational biology. In particular,
in genomic sequence analysis, with the increasing size of
genome sequences, alignment-free methods are increasingly
being used in analyzing DNA sequences [15], [32], [33],
RNA sequences [23], [44], and protein sequences [17], [23],
[45], as well as in detection of single nucleotide variants in

genomes [28], cancer mutations [38], and genetic transfer [8],
[10]. Further applications in clinical practice are reported in
[7].

Various approaches have been proposed for sequence sim-
ilarity evaluation (see [1], [16]). Alignment-free sequence
comparison methods can be classified into four general types,
namely, D2-statistic family of methods [5], [43], base-
base correlations (BBC) [24], feature frequency profiles
(FFPs) [11], and compositional vectors (CVs) [49]. The D2

statistic is reported to be generally faster than the other types
[5] since it utilizes the statistical properties of sequence itself.

The proposed J∗2 approach is close in spirit to the D2

statistic which was first introduced by Blaisdell [4]. Many
improved variants have been proposed, such as Dz

2 [19],
D∗2 [35], and Dsh

2 [47]. In order to improve its detection
power between sequences, Dz

2 [19] uses its mean and standard
deviation to normalize the D2 statistic [43]. D∗2 and Dsh

2 are
two other normalization improvement methods which were
proposed in [35], [47]. Dsh

2 is also denoted DS
2 in the

literature [35], [43], using an approach based on Shepp
statistic [40]. According to a comprehensive review [43],
Dsh

2 and its variant are generally the best D2 statistical
methods for alignment-free comparison of genomic sequences,
especially with increasing sequence length.

The D2-statistic family of algorithms have a general prob-
lem of requiring a quadratic or cubic time complexity, with re-
spect to the length of sequences, and the size of k-words being
considered. Furthermore, the D2 family of statistics generally
makes some assumptions on the distribution of sequences,
for instance, most assumed either a uniform distribution, or
a normal distribution, for symbols in sequences.

In this work, a novel nonparametric approach, J∗2 is pro-
posed, which does not make any assumption on its base data
distribution. It uses the Jaccard correlation statistic to estimate
the similarity between sequences. The Jaccard correlation is
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a non-parametric method to calculate the correlation between
two sets of random variables. It was adopted to measure the
similarity among two sets of k-words which are extracted from
two sequences respectively. J∗2 reduces the k-words search
from O(N2) to O(N) by using the suffix tree data structure.
When compared to the other state-of-the-art alignment-free
sequence similarity methods (e.g., D2, D∗2 , Dsh

2 , and Dz
2),

J∗2 demonstrates an improved power in detecting relatedness
between sequences as measured by its ability to generate the
correct phylogenetic tree. Further, J∗2 is faster than the other
methods, especially since it does not need to search for an
optimal length k as the other methods do. This places the
proposed J∗2 statistic among the best non-alignment based
sequence similarity measures, especially with increasing se-
quence lengths or increasing size of k-mer.

II. METHODS

A. Basic Notations and Terminology.

Strings. Let T = T [1 . . . N ] be the input string of length
N , over an alphabet Σ. Let T = αβγ, for some strings α,
β, and γ (α and γ could be empty). The string β is called a
substring of T , α is called a prefix of T , while γ is called a
suffix of T . We will use T [i] to denote the i-th symbol in T .

Suffix tree. Given a string T = T [1...N ] with symbols over
alphabet Σ, its suffix tree (ST) is a rooted tree with N leaves,
where the i-th leaf node corresponds to the i-th suffix STi of
T (1 ≤ i ≤ N). Except for the root node and the leaf nodes,
each internal node must have at least two descendant children
nodes. Each edge in the suffix tree represents a substring of T ,
and no two edges out of a node start with the same character.
k-word. The k-word (also sometimes called k-mer, or k-

gram) is a word (or substring) with length k over an alphabet
Σ.

B. Jaccard correlation

The Jaccard correlation is a popular concept in set theory.
Given two sets A and B, the union of A and B is R = A

⋃
B.

Let A denote elements outsides set A. There are three parts
in R, namely, A

⋂
B, A

⋂
B, and A

⋂
B.

In set theory, the Jaccard correlation describes the similarity
between two data sets A and B.

J (A,B) = |A
⋂

B|
|A

⋃
B|

= |A
⋂

B|
|A

⋂
B|+|A

⋂
B|+|A

⋂
B|

= min(|A|,|B|)
max(|A|,|B|)

(1)

C. Jaccard similarity between two sequences

In order to calculate the Jaccard similarity between two
sequences, first, we need to compute the size of the intersection
and union for a single k-word w in sequences X and Y .
Let Xw and Yw denote a k-word w in sequences X and Y .
Let |Xw| and |Yw| denote the frequency of a k-word w in

sequences X and Y , respectively. For a single k-word w, the
Jaccard similarity between sequences X and Y is defined by:

J (Xw, Yw) =
|Xw

⋂
Yw|

|Xw

⋃
Yw|

=
min(|Xw|, |Yw|)
max(|Xw|, |Yw|)

(2)

The above J (Xw, Yw) is in the range of [0, 1]. When |Xw| =
|Yw|, the value is 1, otherwise, if the k-word w does not occur
in either sequence (or in both sequences), the value is 0.

Let ϕ(Xw, Yw) denote the weight of a k-word w over two
sequences X and Y . The weight is the ratio of the actual
number of occurrences of the k-word w in the concatenated
sequence X$Y# to the expected frequency in the concate-
nated sequence X$Y#. Assume |Σ| is the size of the alphabet
Σ. For a symbol in the alphabet Σ, the probability of its
occurrence at a particular position in the sequence is 1

|Σ| ,
assuming uniform probability for every symbol. Let P (w)
denote the probability of a k-word w. Hence, P (w) = ( 1

|Σ| )
|w|,

where |w| denote the length of a k-word w. Let N denote
the length of the concatenated sequence X$Y#, that is,
N = NX +NY +2. Thus, the expected number of occurrence
E(w) for a k-word w is the length N times the occurring
probability P (w). Therefore, the weight ϕ(Xw, Yw) can be
written as in Equation 3:

ϕ(Xw, Yw) =
|Xw|+ |Yw|

E(w)
=
|Xw|+ |Yw|
N × P (w)

=
|Xw|+ |Yw|
N × ( 1

|Σ| )
|w|

(3)
where N is the length of the concatenated sequence X$Y#,
that is, N = NX +NY + 2; |Σ| is the size of the alphabet Σ.

When the length of w is longer, the E(w) will be smaller,
the weight ϕ(Xw, Yw) will be larger. Intuitively, with the
increasing length of a k-word, if the k-word occurs in both
sequences, the importance of the k-word is increasing. That
is, a shorter length k-word occurring in both sequences has
less weight.

For a single word w, the weighted Jaccard similarity be-
tween sequences X and Y is defined by:

CJ (Xw, Yw) = J (Xw, Yw)× ϕ(Xw, Yw)

= |Xw
⋂

Yw|
|Xw

⋃
Yw| × ϕ(Xw, Yw)

= min(|Xw|,|Yw|)
max(|Xw|,|Yw|) ×

|Xw|+|Yw|
N×( 1

|Σ| )
|w|

(4)

For a sequence with length N over alphabet Σ, there are
N(N−1)

2 k-words. Then the Jaccard similarity between two
sequences is the sum of the weighted similarity CJ (Xw, Yw)
for all k-words in two sequences, as shown in Equation 5.

J∗2 (X,Y ) =
∑

w∈|Σ∗| CJ (Xw, Yw)

=
∑max(NX,NY )

k=1

∑
w∈Σk J (Xw,Yw)×ϕ(Xw,Yw)∑max(NX,NY )

k=1

∑
w∈Σk ϕ(Xw,Yw)

(5)
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D. Efficient computation of Jacard sequence similarity

Observe that in Equ 5, there are
∑max(NX ,NY )

k=1 |Σ|k words
in the input sequences X and Y . In the concatenated sequence
S = X$Y# with length N = NX +NY +2, there are at most
N(N−1)

2 substrings. Hence the number of k-words (substrings
with length k) is O(N2). This implies that the time complexity
to compute the Jaccard similarity will be at least O(N2)
by going through all k-words. This complexity is relatively
high, especially for very large datasets that are encountered
in practice. For the Jacard similarity to be practical, there is
a need to find ways to reduce the time complexity. In the
following, we show our method to reduce the time complexity
to O(N) by using the suffix tree data structure.

Thus, we propose a new alignment-free sequence compar-
ison algorithm, J∗2 to measure sequence similarity. The time
complexity for J∗2 is in O(N). We first build a suffix tree from
the concatenated sequence S = X$Y#, and then analyze the
frequencies of all k-words in the suffix tree. We describe the
main idea below.

First, a suffix tree ST is constructed from the concatenated
sequence S = X$Y# (length N ), there are at most N internal
nodes and N leaves, where N = NX +NY + 2.

After constructing the suffix tree ST , we need to count the
occurrence frequency for each k-word(substring) in concate-
nated sequence. That is, we need to count the frequency of
each k-word in the sequence via the suffix tree. We note that
every k-word in the sequence can be identified by starting
from the root node in the suffix tree and walking down a path
that spells out the substring. There are three cases for different
k-words in the tree.
• Leaf node: For a k-word ending at a leaf in the suffix

tree ST , the occurring frequency is 1.
• Internal node: For a k-word ending at an internal node
v in the suffix tree ST , the occurring frequency is equal
to the total number of leaf nodes in the subtree rooted at
node v. For a given node in the suffix tree for sequence
T , the path label is also a substring in T . The frequency
of this substring(k-word) can be recursively calculated by
summing the frequencies along the path of the children
nodes.

• The k-word ending on an edge e(u, v): for a k-
word ending at a character along an edge e(u, v), the
occurrence frequency is equal to the frequency of the
child node v. All k-words(substrings) ending along the
edge from internal node u to v have the same frequency
(the same value as the child node v).

We use a bottom-up strategy to calculate substring fre-
quencies in the suffix tree. The time complexity will be
O(N), where N is the length of sequence. Here, we have
N = NX + NY + 2. For a sequence of length N , the total
number of internal and leaf nodes is at most 2N (usually much
less than 2N ). See [1], [16].

E. Algorithm
The proposed J∗2 sequence comparison algorithm is shown

in Fig 1 and its corresponding recursive algorithm to calculate

the frequency of k-words (substrings) is shown in Fig 2.
In the algorithm (Fig 1), first, a suffix tree data structure ST

is constructed from the concatenation string S = X$Y# and
the corresponding variables are initialized. Then, from Line 2
to Line 4, variables representing each node (v) in the tree
are initialized, i.e, Xcount, Y count, and length. Given a
node v, variable Xcount records the number of leaf nodes
which come from sequence X , |Xw(u,v)|, variable Y count
records the number of leaf nodes which come from sequence
Y , |Yw(u,v)| . Variable length is the length of edge e(u, v),
where the node u is the direct parent of node v.

Then, the recursive algorithm calCJ runs to calculate the
necessary parameters for each internal node in the tree from
Line 5 to Line 7. The algorithm calCJ (Fig 2) processes each
internal node in a depth-first search. The depth-first search
counts the frequency from bottom-up, which counts the leaf
node first (1 for an existing leaf) and then counts the frequency
of its direct parent node recursively until reaching the root. The
frequency of a direct parent node is the sum of the frequency
of all its children nodes. The frequency of edge e(u, v) is the
frequency of node v where node v is the direct child node of
u.

The sum of CJ and ϕ parameters are updated accordingly
during the processing. After obtaining the sum of CJ and ϕ,
the J∗2 similarity between X and Y is computed by

∑
CJ∑
ϕ in

Line 8.
Complexity analysis. The first stage for constructing suffix

tree and initializing variables are shown in Line 1-4 in Fig 1.
This step uses O(N) space and time. The next stage calls the
recursive algorithm calCJ (Fig 2) for each child node in Line
5-7 (Fig 1). In the suffix tree ST , the subtrees never overlap.
The total number of subtrees (including leaves) is at most 2N ,
where N = NX + NY + 2 is the length of the concatenated
sequence S = X$Y#.

The algorithm calCJ (Fig 2) calculates the frequencies for
each internal node by using depth-first search. The space and
time complexity depend on the number of subtrees. We know
that for a sequence of length N , the total number of nodes
(both internal nodes and leaf nodes) in the suffix tree is at most
2N . Thus the space and the time complexity of the second
stage is at most O(2N) = O(N).

The last stage just calculates J∗2 in O(1) constant time and
space. Taken together, the J∗2 algorithm (Fig 1) runs in O(N)
time, and requires O(N) space.

III. EXPERIMENTS AND ANALYSIS

A. Datasets and environment

Two sets of biological sequence data are used on the
experiment. The first data set used is the complete mtDNA
sequences from [9], [36] containing data on 12 proteins
encoded in the H strand of mtDNA in 20 eutherian species,
often used to evaluate the similarity of different species,
especially using phylogenetic trees. This data set is called the
“mtDNA20” dataset.

The second dataset is 23 whole mitochondrial DNA
genomes from different Eukaryotic fish species of the suborder



2212

Fig. 1. Algorithm for computing J∗
2 similarity.

Fig. 2. Algorithm for computing CJ and ϕ for each node.

Labroidei, taken from [13]. We could not locate the sequences
for two of the species, namely, P. trewavasae and T.
moorii. Thus, though the original work in [13] used 25
species, our dataset contained only 23 of the 25 species. The
sequence lengths ranged from 16440 to 17040 symbols. We
call this dataset the “Fish23” dataset.

The experiments were performed in a PC environment,
running Intel i5, 4 cores, with 16GB RAM and 1TB HD. J∗2
was written using the R Language.

For comparison purposes, we also tested several other state-
of-the-art alignment-free methods using the same data sets.
The algorithm for D2 was from [43], Dsh

2 was from [47],
and D∗2 was from [35]. They all were implemented by using
C language. The method Dz

2 was developed in Perl in the
original work of [19]. K∗2 from [22], WFV from [2], DMk
from [48], CPF from [3], DV from [51] and Shi from
[41].

B. Phylogenetic tree evaluation measure

Here, we compare the phylogentic trees generated by using
the distance matrix against the known correct (reference)
phylogenetic tree for the species in the data set. Methods that
generate trees that are more similar in structure to the reference
tree are regarded as having better performance.

The Robinson-Foulds (RF) distance is used to compare
the similarity/dissimilarity between two trees [37]. The RF
distance (also called the symmetric difference metric) is a
well-known approach for measuring the similarity between
two trees. In general, a smaller value of the RF distance
implies more similarity between the trees.

C. Phylogenetic tree experiment

In the phylogenetic tree experiment, the mtDNA20, and
Fish23 datasets are used. The trees published by Cao et al.
[9] and by Fischer et al. [13] are used as the reference trees.
See also [22], [27].

The experimental results generated for mtDNA20 data are
quantitative RF distance which are shown in table I. Methods
D2, D∗2 , Dsh

2 , Dz
2 , K2, DMk, CPF , and WFV depend on

the input parameter k. Each column contains the distances of
a given alignment-free method with parameter k varied from
2 to 9. When k = 9, Dz

2 generates a runtime error. Thus, we
could not obtain a result for this case. Four methods, K∗2 , J∗2 ,
DV and Shi, do not need to choose any parameter. Results
of these four methods are shown in the bottom of table I.

The minimum RF distance in this table is 12 which is
present in the column for Dsh

2 with parameter k=7, 8. The
distance of K∗2 and J∗2 method is 12. D∗2 and CPF are
able to achieve the second best with k = 7, 8, 9 respectively.
Hence, the performance advantage of K∗2 and J∗2 are from
two main view points: they are not only easy to use (without
the necessity to choose a parameter), but also they have better
performance.

TABLE I
THE ROBINSON-FOULDS DISTANCE BETWEEN THE REFERENCE

PHYLOGENETIC TREE AND PHYLOGENETIC TREES GENERATED USING
DIFFERENT ALIGNMENT-FREE STATISTICAL METHODS (WITH

k = 2, 3, . . . , 9). RESULTS ARE BASED ON THE MTDNA20 DATASET [9].
Dz

2 GENERATED AN ERROR AT k = 9. FOUR METHODS,K∗
2 ,J∗

2 , DV AND
Shi, WITHOUT VARIED k PARAMETER, THEY ARE REPORTED IN THE LAST

ROW FOR BREVITY.

k D2 D∗2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 22 26 26 36 26 18 24 26
3 24 26 28 34 22 20 22 24
4 22 20 22 26 22 16 18 24
5 22 20 16 26 20 16 16 22
6 24 16 16 24 18 18 16 24
7 18 14 12 20 14 16 14 24
8 18 16 12 20 12 16 14 24
9 16 14 14 — 12 18 16 24

K∗2 12 DV 20 Shi 22 J∗2 12

Table II shows the RF distances between the reference phy-
logenetic tree and phylogenetic trees generated using different
alignment-free statistical methods (with k = 2, 3, . . . 9) on
Fish23 data. In this case, the minimal RF = 6 of J∗2 is
the best among all. K∗2 is able to achieve the second best of
RF = 8. D2, D∗2 , Dsh

2 , and K2 are able to obtain the second
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best with RF = 8 in different k (7,8,9). However, J∗2 and K∗2
are still better selection because they do not need to try all
the possible k values (from 2 to 9 in this case). Certainly, J∗2
is the recommended method here for its ease of use, and best
reported accuracy (RF=6).

TABLE II
THE ROBINSON-FOULDS DISTANCES BETWEEN THE REFERENCE

PHYLOGENETIC TREE AND PHYLOGENETIC TREES GENERATED USING
DIFFERENT ALIGNMENT-FREE STATISTICAL METHODS (WITH

k = 2, 3, . . . 9). RESULTS ARE BASED ON THE FISH23 DATASET [13]. Dz
2

GENERATED AN ERROR AT k = 9. FOR BREVITY, THE RESULTS FOR K∗
2 ,

DV, SHI, AND J∗
2 ARE REPORTED IN THE LAST ROW( FOUR METHODS

WITHOUT PARAMETER k SELECTION PROBLEM).

k D2 D∗2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 32 34 36 40 36 30 32 36
3 30 30 28 40 26 28 30 30
4 26 26 30 36 24 22 24 26
5 24 20 22 38 20 20 20 26
6 14 10 20 36 12 10 12 32
7 14 8 14 34 8 12 12 34
8 8 8 8 34 8 12 14 34
9 8 10 14 — 10 14 16 34

K∗2 8 DV 32 Shi 34 J∗2 6

D. Practical running time

Table III shows the comparison of running time using the
mtDNA20 data set in generating phylogenetic tree.

The J∗2 method requires 1.13s to run. With a quick look
at the table, it may appear that this 1.13s is slower than the
following cases: D2, D∗2 , and Dsh

2 methods with k = 2, 3, 4, 5.
However, as the previous results on two datasets show, these
methods reach their best performance with larger values of k,
with k ≥ 6. At these large values of k, all these methods
require more time than J∗2 (and DV , Shi, and K∗2 too).
Thus, if we consider the need to search through parameter
k from 2 to 9 to determine the best one, the running times for
D2, D

∗
2 , D

sh
2 , Dz

2 will significantly exceed those for J∗2 , and
of the other methods that do not depend on varying k values,
such as DV , Shi, and K∗2 .

Four methods, K∗2 , DV , Shi, and J∗2 , which do not
require parameter selection, consume 3.07, 2.33, 1.37, and
1.13 seconds, respectively. They all run faster than the other
methods as they do not need to try all parameters from
k = 2...9. Considering the performance shown in Table I, we
can state that K∗2 (RF=12) and J∗2 (RF=12) are much better
than DV (RF=20) and Shi(RF=22). Overall, J∗2 is the best
because it has the fastest running time (2.7 times quicker than
K∗2 ), and also has the best effectiveness, at least in phylogentic
tree construction. Similar results were observed for the Fish23
dataset.

IV. CONCLUSION

In this study, a new non-parametric alignment-free sequence
comparison algorithm, J∗2 is proposed to measure sequence
similarity based on the suffix tree data structure. Comparing to
the other 12 state-of-the-art alignment free methods, Dz

2 , D2,
Dsh

2 , D∗2 , WFV , DV , Shi, CPF , DMk, K2 and K∗2 , J∗2 has
four main advantages: (1) fast running time in theory and in
practice; (2) method is easy to use; (3) better performance

TABLE III
PRACTICAL RUNNING TIME (IN SECONDS) USING ALIGNMENT-FREE

METHODS ON THE MTDNA20 DATASET IN GENERATING PHYLOGENETIC
TREE. Dz

2 GENERATED AN ERROR AT k = 9. RESULTS OF FOUR METHODS,
K∗

2 , J∗
2 ,DV AND Shi WITHOUT PARAMETER k SELECTION PROBLEM,

ARE REPORTED IN THE LAST ROW.

k D2 D∗2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 0.02 0.05 0.05 1.55 0.41 3.64 13.23 0.004
3 0.03 0.05 0.07 1.56 0.45 4.90 14.02 0.008
4 0.08 0.11 0.15 1.61 0.57 5.91 15.63 0.020
5 0.20 0.34 0.5 1.76 1.94 7.06 16.82 0.088
6 0.56 1.29 2 2.35 2.22 9.78 16.58 0.884
7 1.26 4.91 7 5.38 3.17 18.09 16.43 7.768
8 2.40 18.18 25 19.19 3.63 40.13 16.82 38.3
9 4.58 70.28 99 — 4.34 92.10 17.05 347.1

K∗2 3.07 DV 2.33 Shi 1.37 J∗2 1.13

in phylogentic tree construction; (4) unlike the parametric
D2-family that requires uniform or normal distribution of
data, J∗2 does not require knowledge of the data distribution.
Specifically, J∗2 reduces k-words search from O(N2) to O(N)
in theory which is verified in experiments. J∗2 does not need
to search for optimal parameter k as the other alignment-free
methods, this greatly improves it flexibility. Comparing to the
other state-of-the-art alignment free methods, J∗2 demonstrates
an overall superior performance in generating phylogenetic
trees, in classifying viral genomes, and in clustering DNA and
protein data. The practical running time of J∗2 is the fastest
among all the methods, which consistent with its O(N) time
bound. This theoretical improvement in time complexity will
be of potential benefit for sequence comparison involveing
a huge number of genomes, or very large genomes. This is
particularly important given the recent rapid increase in the
volume of available genomic data sequences.
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