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ABSTRACT. In this paper we introduce a notion of almost minimizers for certain
variational problems governed by the fractional Laplacian, with the help of
the Caffarelli-Silvestre extension. In particular, we study almost fractional
harmonic functions and almost minimizers for the fractional obstacle problem
with zero obstacle. We show that for a certain range of parameters, almost
minimizers are almost Lipschitz or C1A-regular.

1. INTRODUCTION AND MAIN RESULTS

1.1. Fractional harmonic functions. Given 0 < s < 1, we say that a function
u € L(R™) := LY(R", (1 + |2|"T2%)~1) is s-fractional harmonic in an open set
QcCR™if

) (AU = Cpep. [ MRS

PRE =0 1in €,

where p.v. stands for Cauchy’s principal value and C), s is a normalization constant.
The formula above is just one of many equivalent definitions of the fractional
Laplacian (—A,)®, another one being a pseudo-differential operator with Fourier
symbol |£]25. We refer to a recent review of Garofalo [Gar19] for basic properties of
(—A,)*, as well as many historical remarks concerning that operator.

In recent years, there has been a surge of interest in nonlocal problems involving
the fractional Laplacian, when it was discovered that the problems can be localized
by the use of the so-called Caffarelli-Silvestre extension procedure [CS07]. Namely,
fora=1-2s€e(—1,1), let

Py = Coa— " () eR xRy =BT
(|l + ly?) >

(to be called the Poisson kernel for the extension operator L,) and consider the
convolution, still denoted by u,

n

u(z,y) :=ux P(-,y) = / u(z)P(z — z,y)dz, (x,y) € R
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Note that u(z,y) solves the Cauchy problem
Lou:=div(Jy[*Vu) =0 in R},
u(z,0) =u(r) onR",
where V = V., is the full gradient in  and y variables. L, is known as the

Caffarelli-Silvestre extension operator. Then, one can recover (—Ag)°u as the
fractional normal derivative on R"”

(=Az)°u(z) = —Cha yg%1+y oyu(z,y), xe€R

to be understood in the appropriate sense of traces. Now, going back to the definition
(1.1), if we consider the even reflection of u in y-variable to all of R**! i.e.,

u(x,y) = U(J?, _y)7 YIS an Yy < Oa

then the following fact holds: u(x) is s-fractional harmonic in € if and only if u(z, y)
satisfies

(1.2) Lou=0 inQ:=R"™U(Qx{0}) UR",

(We will refer to solutions of L,u = 0 as L,-harmonic functions.) This is essentially
Lemma 4.1 in [CS07]. Since L,u = 0 in R} by definition, the condition (1.2) is
equivalent to asking

Lou=0 in B.(x),

for any ball B, () centered at zo € Q such that B,(z) € €2, or equivalently
Bl.(z0) € 2. Now, observing that the solutions of the above equation are minimizers
of the weighted Dirichlet energy [, (o) |Vo|?|y|¢, we obtain the following fact.

Proposition 1.1. A function u € L4(R"™) is s-fractional harmonic in Q if and only
if its reflected Caffarelli-Silvestre extension u(x,y) is in VVi)f (2, |ly|*) and for any
ball B (o) with xo € Q such that BL(xo) € 2, we have

[owatlrs [ ol
B7-($0) B(xO)

for any v € u+ Wy (B, (o), |y|*).

We take this proposition as the starting point for the definition of almost s-
fractional harmonic functions, in the spirit of Anzellotti [Anz83].

Definition 1.2 (Almost s-fractional harmonic functions). Let r¢ > 0 and w :
(0,79) = [0,00) be a modulus of continuity!. We say that a function u € £, (R") is
almost s-fractional harmonic in an open set {2 C R", with a gauge function w, if
its reflected Caffarelli-Silvestre extension u(z,y) is in W,52(€, |y|*) and for any ball

loc

B, (z0) with 2o € Q and 0 < r < ro such that Bl.(x¢) € £, we have

(1.3) /B Il < (1) / Vo),

B (z0)

for any v € u + Wy % (B, (x0), [y]*).

li.e., a nondecreasing function with w(0+) = 0
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1.2. Fractional obstacle problem. A function u € £4(R") is said to solve the
s-fractional obstacle problem with obstacle v in an open set {2 C R™, if

(1.4) min{(—A;)’u,u —¢} =0 in Q.

We refer to [Sil07, CSS08,MNS17] for general introduction and basic results on this
problem. With the help of the reflected Caffarelli-Silvestre extension, we can rewrite
the problem as a Signorini-type problem for the operator L,:

Loyu=0 inRYH
min{—dyu,u — ¥} =0 in Q,

where
a F— 3 a
yu(z,0) 1= y1_1>161+y Oyu(z,y).

This, in turn, can be written in the following variational form, see [CSS08].

Proposition 1.3. A function u € Ls(R™) solves (1.4) if and only if its reflected
Caffarelli-Silvestre extension u(x,y) is in Wlif(Q) and for any ball B,(xg) with
xo € Q such that Bj.(xo) € Q, we have

/ Vullyl® < / Vol2lyl°,
B(z0) B(z0)

for any v € Ryu(Br(wo), [y|*) = {v € u+ W5 (By, [y|*) : v 2 % on B (o)}

Definition 1.4 (Almost minimizers for s-fractional obstacle problem). Let 19 > 0
and w : (0,79) — [0,00) be a modulus of continuity. We say that a function
u € L,(R") is an almost minimizer for the s-fractional obstacle problem in an open
set 2 C R™, with a gauge function w, if its reflected Caffarelli-Silvestre extension
u(z,y) is in VV@?(Q7 ly|*) and for any ball B, (x¢) with 2o € 2 and 0 < r < rg such
that Bl.(z¢) € ©, we have

(15) /B IV < (140 / Vol

By (z0)
for any v € Ry (Br(x0), |y|*)-

The notion of almost minimizers above is related to the one for the thin obstacle
problem (s = 1/2) studied by the authors in [JP19], but there are certain important
differences. In Definition 1.4, we ask the almost minimizing property (1.5) to hold
only for balls centered on the “thin space” R™, while in [JP19], we ask that property
for balls centered at any point in an open set in the “thick space” R”*!. In a sense,
this means that here we think of the perturbation from minimizers as living on the
thin space, while in [JP19] they live in the thick space.

1.3. Main results and structure of the paper. In this paper, our main concern
is the regularity of almost minimizers in their original variables.

We start with examples of almost minimizers in Section 2. We then proceed to
prove the following results, echoing those in [Anz83] and [JP19].

Theorem I. Let u € £5(R™) be almost s-fractional harmonic in Q. Then
(1) w is almost Lipschitz in Q, i.e, u € C%(Q) for any 0 < o < 1.
(2) Ifw(r) =r%, then u € CYP(Q) for some B = Bnaa > 0.
(3) If0<s<1/2 ors=1/2 and w(r) = r® for some o > 0, then u is actually
s-fractional harmonic in €.
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In the case of the s-fractional obstacle problem, our results are obtained under
the assumption that 1/2 < s < 1. Also, because of the technical nature of the
problem, we restrict ourselves to the case ¢ = 0.

Theorem II. Let u € £,(R™) be an almost minimizer for the s-fractional obstacle
problem with obstacle ¥ = 0 in Q.

(1) If1/2 < s < 1, then u € C%(Q) for any 0 < o < 1.
(2) If1/2 < s <1 and w(r) = r" for some o > 0, then u € CYP(Q) for some
5 = Bn,a,a > 0.

The proofs follow the general approach in [Anz83] and [JP19] by first obtaining
growth estimates for minimizers (see Section 3) and then deriving their perturbed
versions for almost minimizers (Section 4 for s-fractional harmonic functions and
Section 5 for the s-fractional obstacle problem). The regularity then follows by an
embedding theorem of a Morrey-Campanato-type space into the Holder space, which
we included in Appendix A. Finally, Appendix B contains the proof of orthogonal
polynomial expansion of L,-harmonic functions, that we rely on in deriving the
growth estimates in Section 3. The polynomial expansion has other interesting
corollaries such as the (known) real-analyticity of s-fractional harmonic functions,
which are of independent interest.

1.4. Notation. Throughout the paper we use the following notation. R™ is the n-
dimensional Euclidean space. The points of R"*! are denoted by X = (x,y), where
x = (z1,...,2,) € R”, y € R. We routinely identify 2 € R™ with (x,0) € R™ x {0}.
R stands for open halfspaces {X = (z,y) € R*! : 4y > 0}.

We use the following notations for balls of radius r in R™ and R"*+!

B.(X)={ZeR"™ :|X — Z| <r}, (Euclidean) ball in R™**,
BE(x) = B.(x,0) N {#y > 0}, half-ball in R™ "1,
B!(z) = B.(x,0) N {y = 0}, ball in R™.

s

We typically drop the center from the notation if it is the origin. Thus, B, = B,(0),
B! = B/(0), etc.

Next, Vu = Vxu = (Oz,u,...,0;,u,dyu) stands for the full gradient, while
Vit = (Og ..., 0, ). We also use the standard notations for partial derivatives,
such as Oy, u, uy,, uy etc.

In integrals, we often drop the variable and the measure of integration if it is
with respect to the Lebesgue measure or the surface measure. Thus,

/u|y|a= / u(X)|y|"dX, / ulyl® = / u(X)|y|dS.
B, B OB, OB

r T

where Sx stands for the surface measure.
By L?(Bg, |y|*) and L?(dBg, |y|*) we indicate the weighted Lebesgue spaces of
functions with the norms

el ey = / Wyl
Br

lal 2o 11y = / 2Ly,
L2(0BRr,|y|*) 9B
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W12(Bg, |y|%) is the corresponding weighted Sobolev space of functions with the
norm

||u||%/V1v2(BR,|y|"') = ||u||2L2(BR,|y\a) + ||Vu||2L?(BR7\y\“)'

We also use other typical notations for Sobolev spaces. Thus, I/VO1 ’2(B R, [y|®) stands
for the closure of C§°(Bg) in W12(Bg, |y|®).

For z € R™ and r > 0, we indicate by (u),,, the |y|*-weighted integral mean
value of a function u over B,.(z). That is,

1
UWpy = ulylt = —mm———— uly|®,
< >$7T ]ir(aﬁ) i Wn 147" /Br(z) v

where Wy, 1140 = [, [y|* is the |y|*-weighted volume of the unit ball By in R"*1.
(Note that here and throughout the paper, the sign f denotes the integral mean
value with respect to the weighted measure |y|*dX.) Finally, similarly to the other
notations, we drop the origin if it is 0 and write (u), for (u)o .

2. EXAMPLES OF ALMOST MINIMIZERS

Before we proceed with the proofs of the main results, we would like to give some
examples of almost minimizers.

Example 2.1. Let u € £,(R™) be a solution of
(=A)°u+b(x) Veu=0 inQ,

where b = (b,62,...,b") € WL (Q) and 1/2 < s < 1 (or —1 < a < 0). Then u
is an almost s-fractional harmonic with a gauge function w(r) = Cr~® (note that
—a > 0).

Proof. Consider a ball B,.(zg) centered at zg € §2 such that Bl (z9) € Q. Without
loss of generality assume that xo = 0. Let v be the minimizer of

/ Vo2lyl
B,

T

on u + Wy (B, |y|*). Then

/ Vol (u— v)[y|* =0,
B,

and as a consequence,

/ (IVul? — [VoP)lyl® = / ¥ (u— ) 2lyle.

7 s

Then, we have

| Qv = 19oPlsl =2 [ (9= o)Plul®

. B}

2 [ 9= 0Pl + div(sl" (= 0) (u - 0)

r

oo oo (45)

:2/(8&)+ |y|“(u—v)(uy—v,,)—2/ (u — v)(Du — %0)

B

/
"
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=C | (u—v)(—Az)u
B,

=—C [ (u—wv)bu,
B,

with C = C,, 5. Next, extending b" to R"™! by b'(z,y) := b*(z), we have
[ Qvap = 19op)sl = ¢ [ (- opiu,
B, B!

=C Ay ((u —v)b'uy,)

Bt

=C (ty — vy )b Uz, + (U — V)b Uy, y
Bf

< Clblwrnge [ Vul +[VoP
B
+C (u — )b uy vy, — C'/ O, ((u — v)b")uy,
a(B;h) B
_ ch||W1,m(Q)/ Val? + Vol
B
O [ (= b (w0t
Bt )
< OBl o /+ Tl + Vol + Ju — of?.
B
Using Poincare’s inequality, it follows that
[ 4wu = 19oPlsl <€ [ 19 +[90F
B, B,
<cre [ (vl + [Vl

T

< COro / IVul2[y|°.

B,
Hence,
[ wapwr<asern [ Pl
Br(z0) Br(z0)
for 0 < r < rp, with C' and r¢ depending on n, a, and ||b|y 1, (q)- O

Example 2.2. Let u € £4(R™) be a solution of the obstacle problem for fractional
Laplacian with drift

min{(—Az)’u+b(x) - Vyu,u} =0 in Q,

where b = (b1, b%,...,0") € WhH°(Q) and 1/2 < s <1 (or —1 < a < 0). Then u is
an almost minimizer for s-fractional obstacle problem in €2 with an obstacle ¥ = 0
and a gauge function w(r) = Cr=*.

The obstacle problem above has been studied earlier in [PP15] and [GPPS17].
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Proof. We argue similarly to Example 2.1. Let B,.(zg) centered at xg € Q such that
Bl (z9) € 2. Without loss of generality assume that xo = 0. Let v be the minimizer

of
[ 9ol
B

on 8o (B, [y|*) = {v € u+ Wy (B, |y|*) : v >0 on Bl.(x)}. Next, we write

/ (IVuf> — Vo) =2 / Y (u — v)lyl* — / IV (u— )|y
B, B, B,

§2/ VuV(u—v)|y|*
B

r

=4 VuV(u—v)|y|* + div(ly|*Vu)(u — v)
Bf

—4/ (u—v)0yu
By

=C [ (v—v)(—Az)°u

By

C [—/ (u — v)biug, + / (—v) (—Az)su}
B/n{u>0} B!N{u=0}

C[—/ (u — v)b'uy, — / (—v)biuxi}
B {u>0} BN {u=0}

=-C [ (u—v)buy,,
B,
where we used that (—A)%u + blu,, > 0 and —v < 0 on B. N {u = 0} in the last
inequality.
Then we complete the proof as in Example 2.1. O

IN

3. GROWTH ESTIMATES FOR MINIMIZERS

In this section we prove growth estimates for L,-harmonic functions and solutions
of the Signorini problem for L, i.e., minimizers v of the weighted Dirichlet integral

/ Vol2lyl
B,

on v + Wy *(B,, |y|*) or on the thin obstacle constraint set 8o .,(By, |y|*).

The idea is that these estimates will extend to almost minimizers and will
ultimately imply their regularity with the help of Morrey-Campanato-type space
embedding.

The proofs in this section are akin to those in [JP19] for almost minimizers of
the thin obstacle problem. Yet, one has to be careful with different growth rates for
tangential and normal derivatives.

3.1. Growth estimates for L,-harmonic functions.

Lemma 3.1. Let v € WY2(Bg, |y|*) be a solution of Lyv =0 in Br. If v is even
iny, then for 0 < p < R

n+1l+4+a
21,,|a < B / 21,,|a
[ et < (5)77 [ @ity

P
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P n+3+a
[ il < (%) o o1
B, Br

Proof. Note that we can write
oo
U(x,y) = Zpk(x7 y)7
k=0

where py’s are L,-harmonic homogeneous polynomials of degree k (see Appendix B).
Then {0,,pr}72, are Ly-harmonic homogeneous polynomials of degree k — 1, and
thus orthogonal in L?(9By, |y|*). Thus,

|vzv|2|y|a = / prk 2 Yy “
/| p > [, Wl
e p N\t ltat2(k=1) .
=> (%) V.ol

k=1 Br

£ n+1l+4+a oo/ 9 o
<(R) X[, IV

= (8)"" [ 1wl

Similarly, {|y|*0ypr}72, are L_,-harmonic homogeneous functions of degree k —
1+ a, and thus orthogonal in L?(9B, |y|~¢). Notice that since p;(z,y) = p1(z) is
independent of y variable by the even symmetry, we have |y|*0,p1 = 0. Thus,

2 _
/ oy 2lyl® = / g%y 2 ]~
B B

P P

o0
2 —
oy AR Y AR
k=2 Bp

o0
p n+l—a+2(k—1+a) _
=> (%) 191°0,px[2ly|
k=2 Br

A

p n+3+a/ 9
< (%) oy 2] O
R Br
Lemma 3.2. Let v be a solution of Lyv = 0 in Bg, even iny. Then, for 0 < p < R,
21, 1a p\rats 2], |a
(3.1) Vo = (Vo) Plyl” < (£) Vav = (Vo) rlly|”.
B R Br
P

Proof. First note that since L,(V4v) = 01in Bg, (V,v) = V,v(0) by the mean value
theorem for L,-harmonic functions, see [CSS08, Lemma 2.9]. If we use the expansion
v = 1 oPr(z,y) in Bg as in the proof of Lemma 3.1, then V,v — V,v(0) =
Y res Vapr and consequently

o0
/ V.0 — Vao )Pyl = 3 / Vopel2lyl®
B k=2"Bo

_ & B n+a+2k71/ 5 “
=> (%) il
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P n+a+3 > / 9
< (%) Vepkl2lyl®

P n+a+3/ 2 a
_(L 20— V,0(0)[2]y|°. O
()" [ 1¥a0 = Va0l

3.2. Growth estimates for the solutions of the Signorini problem for L,.
Our estimates for the solutions of the Signorini problem will require an assumption
that 1/2 < s < 1, or a < 0. Also, unless stated otherwise, the obstacle 1 is assumed
to be zero.

The first estimate is the analogue of Lemma 3.1, but with less information of the
growth of v,.

Lemma 3.3. Let v be a solution of the Signorini problem for L, in Bgr, even in vy,
with a < 0. Then, for0 < p< R

n+l+a
3.2 2yl < (£ / 2jylo.
(32) [ v < () [ e

Proof. We use the following property: if v is as in the statement of the lemma, then
Vg, @ =1,...,n, and y|y|* v, are Holder continuous in Bg, see [CSS08]. Moreover,
we have that

La(vi) >0, L—a((y|y|ailvy)i) >0 in Bg.

This follows from the fact that L,v,, =0 in {£v,, > 0} and L_,(y|y|* 'v,) =0 in
{+y|y|*tv, > 0}, by the complementarity condition v,v = 0 on B, as well as an
argument in Exercise 2.6 or Exercise 9.5 in [PSU12]. As a consequence, we have

Lo(IVov[?) 20, L_a(lly|*vy|*) 20 in B,

We next use the following |y|*-weighted sub-mean value property for L,-subharmonic
functions: If Lyw > 0 weakly in Br, —1 < a < 1, then

1
PH7n+1+a/ wly|
P B

P

is nondecreasing. This follows by integration from the spherical sub-mean value
property, see [CSS08, Lemma 2.9]. Thus, we have that

1 2
prr pn—&-l—&-a/Bp [Vzol*[yl®

1
P W/B vylyl®

P

are monotone nondecreasing for 0 < p < R. This implies

p n+l4+a
IZETE VaPlyl”
B, Br
P n+l—a
[ < (%) 2lyl”
B, Br

In the case a < 0, we therefore conclude that the bound (3.2) holds. (]

Lemma 3.4. Let v be a solution of the Signorini problem for L, in Br, even in y,
with a < 0. Ifv(0) = 0, then there exists C = Cy, o such that for0 < p <r < (3/4)R,
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u 0 n+a+3 @
[ W= @ Pl < (2)7 [ 90— (920, Pl
B, r B,

p
+C\|U||iw(BR)W'

n+2

Proof. Define
. 1 2 a
Pr) = s | V20— (Tan), Pl
Then,

1 2 a a
so(r)zw[/rwm o =2(V0), [ Tl + ¢ /By|y|}

2
1 ) 1
= e |, o~ e ’”"“) |

Thus, using the Cauchy-Schwarz and Young’s inequality, we obtain

1 n+a+3 @ o
w’(r)—wm[— ‘ /|vxv|2|y\ [V

[d

n+a+3 a n+l+a
T omrirar e W 14T 2T (/ Vol ) W 14" T2Ta (/ Varlyl* )
2
G ([, Zet) (), w0
c 1 . 1 . 1/2 . 1/2
Ll +( / |vxv|2|y) (/ |vmv|2y|)
” JB, ™ JB, 8B,

_,rnJraJrS
C 1 2 a 2 a
e |r [ 2

Next, we note that

[VIU]CO’S(BB/AIR) < ﬁ HUHLOO(BR).

Indeed, this follows from the known interior regularity for solutions of the Signorini
problem for L, in B; in the case R = 1, see e.g. [CSS08], and a simple scaling
argument for all R > 0. Noting also that V,v(0) = 0, since v attains its minimum
on B! at 0, we have that for X € B, with r < (3/4)R

C S
[Vau(X)| = [Vav(X) = Veu(0)] < WHWHL“(BR)T

and so
1 7“”+1

20, |1a 20,,|1a 2
2wttt [T < Ol g

This gives
1
/ 2
P (1) 2 =g ol (B e

Thus, for 0 < p <r < (3/4)R

=z 70””"%“(33) R2+2s
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Therefore,

/ Va0 — (Vo) 2]y

P

= " 0(p)

3 9 p—l—a _ T—l—a
< prtet (@(7”) + C||U||Loo(BR)R2+25>

p\ntats 20 |a 2 pn+2
<™ 1900 = (Va0 Plol* + Clolie o) gz D

r

Lemma 3.5. Let v be a solution of the Signorini problem for L, in Bg, even in y.
Then there are Cy = Cy, 4, Co = Cy, o such that for all 0 < p < S < (3/8)R,

S

n+a+3
| weo— @ < (5)T [ 90— (TPl

Sn+2

+ CQ HU”%“(BR) R2+2s°

Proof. If p > S/8, then we immediately have
8p n+a+3
[ o=@l <c () [ 19 (Tl
B B,

14 nta+3 2 a
< — — .
<o) [ Ve (Tasll

Thus we may assume p < S/8. Due to Lemma 3.4, we may assume v(0) > 0. Let
d := dist (0,{v(-,0) = 0}) > 0. Then L,v = 0 in By. Thus, if d > S, we may use
Lemma 3.2 to obtain

u P n+a+3 o
f, 190 el < () [ 19— (Tl
Bs

P

Thus we may also assume d < S.
Case 1. S/4 < d(< S).
Case 1.1. Suppose 0 < p < d (< S). Then using L,(V,v) =0 in B, again,

o 0 n+a+3 u
[ 19— @ Plal < (5)7 [ Va0 = (Fa0dal?l
B, Bq
P n+a+3/ 9
<C|35 Vv — (Vv yl®.
(%) . [Vav = (Fa0)sll
Case 1.2. Suppose p > d (> S/4). Then

) 4p n+a+3 )
/ [Vav — (Vao) [yl < (S> / [Vev = (Vav)s|7[yl*.
B Bs

P

Case 2. 0 < d < S/4.

Case 2.1. Suppose p < d/2. Take z1 € 0(B)) such that v(x1) = 0. Then using
inclusions B, C Bgj2 C Bsj2ya(v1) C Bgja(x1) C Bgry2(z1), Lav = 0 in By and
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the preceding Lemma 3.4, we obtain

| 1920 (T Pyl
B,

P

n+a+3
[ 19— (T a0)aps Pyl
Ba/2

SIS

<
g
g

n+a+3
2 a
) / |va - <va>f61,(3/2)d‘ ‘y|
Bz /2ya(z1)

n+a+3 3d n+a+3
|:(S) / |vmv - <vwv>zl,5/2|s|y|a
Bsa(z1)

) Sn+2
+ CllvlLe By 2(e1)) Favas

S

Sn+2

p n+a+3 21 1a 2
<c(2) /B V0= (Ta0)s Pl + Cllolf 5. s

Case 2.2. Suppose d/2 < p. Then we see that B, C Bs,(z1) C Bg/2(1) C Bs. As
we did in Case 2.1, we have

/ Vav — (V)2

P

< / Vot = (Vaoo)a, 02l
BBp(wl)

p n+a+3 2|, |a
< C (i) / |V$11 - <vacv>m1,S/2‘ |y|
Bg/a(z1)

S
Sn+2
+ Cllol i (8o (e0)) o735
P n+a+3 21 1a 2 Sn+2
<C (g) /BS IVov = (Vav)s*lyl* + Cllollze by pogzs- U

Corollary 3.6. Let v be a solution of the Signorini problem for L, in Bg, even in
y. Then there are C1 = C,, 4, Co = Cyp o such that for all 0 < p < S < (3/16)R,

n+a+3
[ Vo= e P < (£)7 [ 1Wa0 = (Ve Pl
B, Bs

Sn+2
+ 02<’U2>Rw.

Proof. Since v = max(£v,0) > 0 and L, (vF) = 0in {v* > 0}, we have L, (v¥) > 0
in Bg. (For this, one may follow the argument in Exercise 2.6 or Exercise 9.5 in
[PSU12].) Thus, we have by Theorem 2.3.1 in [FKS82]

1 ) 1/2
+ + a

sup v= < C (/ ) Y > .

BR/2 Wn+1+aRn+1+a Br ( ) | |

[oll3e (55 0y < C0P)rs

which completes the proof. [

Hence,
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4. ALMOST s-FRACTIONAL HARMONIC FUNCTIONS

In this section we prove Theorem I, by deducing growth estimates for almost
s-fractional harmonic functions from that of s-fractional harmonic functions and
then applying the Morrey-Campanato space embedding to deduce the regularity of
almost s-fractional harmonic functions.

Theorem 4.1 (Almost Lipschitz regularity). If u is an almost s-fractional harmonic
function in B}, 0 < s <1, then u € C%?(BY) for any 0 < o < 1.

Besides the growth estimates for minimizers we will also need the following
lemma.

Lemma 4.2. Let 19 > 0 be a positive number and let ¢ : (0,79) — (0,00) be a
nondecreasing function. Let a, B, and v be such that a >0, v > 8 > 0. There exist
two positive numbers € = €448, C = Cay,p Such that, if

o(p) < a[@)w +6}s0(7“) +br7

for all p, v with 0 < p < r < rqg, where b > 0, then one also has, still for
0<p<r<rg,

B
p(p) < c[(ﬁ) (r) + pr}-
Proof. See Lemma 3.4 in [HLI7]. O

Proof of Theorem 4.1. Let K be a compact subset of Bj containing 0. Take § =
Onw,o,ic > 0such that § < dist(K,0B]) and w(d) < e, where € = €2 n11+a,n—1+a+20
is as Lemma 4.2. For 0 < R < §, let v be a minimizer of

| wekire
Br
on u + WOI’Q(BR). Then L,v =0 in Bg. In particular,

| vovu-opr=o
Br
and hence

/ IV(u— 0)2Jy]" = / Vul?lyle / VolPlyle—2 [ Vo V(- vy
Br Br Br Br

< w(R) / Vol
Br

Moreover, by Lemma 3.1, for 0 < p < R we have

o o (PN a
| v < (5) Vol
B, Br

| v <2 [ vepile 2 [ 9@ oPe

P B, B,

p ntlte 2 a 2 a
< I~ —
<2(f)7 [ wey 42 Rl

Thus
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ﬁ ntlta 2, |a 21,,|a
<2(x IVolPlyl* +2w(R) [ [Vol7yl
Br Br

n+l4+a
<2 [(;) +5}/ IVul?]y|.
Br
By Lemma 4.2,

/ |vu|2|y|a <C (ﬁ)n71+a+20/ |vu|2| |a
>~ Un,a,o0 R yl,
B, Br

for any 0 < o < 1. Taking R ¢ we have

(4.1) / [Vul?ly|* < Criaos

B,

By weighted Poincaré inequality [FKS82, Theorem (1.5)]

/ = (2101 < o s [Tl 5, g2

P

—14a+20

VullZa (s, 1ye)0"

Now, a similar estimates holds at all point xy € K, which implies the Holder
continuity of u (see Theorem A.1) with

||u||CO’U(K) < Cn,a,w,o’,Kl|u||W1’2(Bl7|y|a)' 0

Theorem 4.3 (CY# regularity). If u is an almost s-fractional harmonic function
in B}, 0 < s <1, with gauge function w(r) =r®, a > 0, then V,u € C%8(BY) for
some = f(n,s,a).

Proof. Let K € B’ be a ball and take 0 < ¢ < dist(K,0B). Let By (zo) € B} with
0 < R <9, for zg € K. For simplicity write zog = 0, and let v be the L,-harmonic
function in Bg with v = u on dBR. Then, by Jensen’s inequality we have

/B (Vo) — (Vo) 2] < / Vau — Voo,

3 B,
and hence
| Vo= (e, Pyt <3 [ 90— Do Pyl 43 [ (9ou— Vool
+3 [ Ve, = (Tao), Pl
<3 [ (Va0 (Vo) Pl 46 [ [Vau= VaoPl
B, B,
Similarly,

/ Vav — (Vo0)r2lyl" < 3 / Vau — (Vouh gyl + 6 / Vau — Vool
Br Bgr B

R

Next let 5 € (0,/2). Then using the estimate (4.1) in the proof of Theorem 4.1

with 0 =1+ 8 — 5, we have
[owumvepiyp = [ wupale~ [ veplyl
BR BR BR
< R / IVl
Br

)Rn+1+a+25.

< C|Vulzp, jy)e
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Then, with the help of Lemma 3.2, we have that for p < R

[ ¥ (9, Pl

P

<c / Vav — (Vo0),2lyl* + C / Vot = Vaul2[y]®
B, By

IN

n+a+3
(L) [ Vo= (TPl +C [ Vau— Vool
R Br B,

IN

n+a+3
c(L)™ [ Wau— (VanPlol +C [ 1Vau— ooyl
R BR BR

p n+a+3 a n a

<c (%) Vot — (Vo) &P y|® + ClIVulla g, gy B2,
R Br

Hence, by Lemma 4.2, we obtain that for p < R

/ |ku_ <un>p|2|y|a
B

P

R
Taking R " 4, we have

/ Vot — (Voo P19 < G . Vel o™

P

n+1l+a+28
<c [(”) /B Vot = (Vo) P14+ [Vl 3, oy ™54
R

Now, a similar estimate holds for any x¢ € K. Fixing § and applying Theorem A.1,
we have

IVaullcosxy < Cnaa.xllullwizs, ya)- U

Remark 4.4. From the assumption for almost minimizers that the Caffarelli-Silvestre
extension u € Wéf we know only that V,u € L2 _, which is not sufficient to deduce
the existence of the trace of V,u on Bj. However, in the proof of Theorem 4.3 we
showed that V, u is in a Morrey-Campanato space, which implies the existence of

the trace as the limit of averages

T (Vyu)(zo) = Tli%l+<vxu>xo,r'
It is not hard to see that T'(V,u) is the distributional derivative V,u on Bj. Indeed,
if n € C§°(By), then extending it to R"*! by n(z,y) = n(z), we have

/| TG =t [ Ouran =ty [ ouute

1
Theorem 4.5. Let u be an almost s-fractional harmonic function in By for 0 <
s <1/2 or s =1/2 and a gauge function w(r) = r* for some a > 0. Then u is
actually s-fractional harmonic in B .

’
1

Proof. We argue as in the proof Theorem 4.1. Let K, §, R, v be as in the proof of
that theorem. Then, by Lemma 3.1, for 0 < p < R

p n+3+a
I 1ol < (%) o 1.
B, Br
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Thus, for any 0 < ¢ < 1, we have

[ oo <2 [ Pl +2 [y - Pl
B, B, B,
p n+3+a
2(%) [Pyl +2 [y = v, Pyl
Br By
p n+3+a
(%) [y Plyl” +6 |y = v, 2yl
BR BR
14 n+3ta a 2 —a 2 a
(%) 17y Py~ + 6(R) [ [Vully
Br B

R
P n+3+a/ 9 _
(%) [yl Py~
R Br Y

+ Cn,a,oﬁw(R)Hv“H%?(Bl

IN

IA
~

IN

IN

n—1+a+20
Tyl it )

where we used (4.1) in the last inequality.
Consider now the two cases in statement of the theorem.

Case 1. 0 < s <1/2 (or a > 0). In this case by Lemma 4.2,

/ /21y P[]~
B

P

<C E n—ltat2o a 2 —a 5 v 2 n—1l+a+20
< Y “uy"ly[~* + w ) [Vullz2 (s, yje)p
R Br

< C”VUH%Z(Bl,|y|a)/)n+1_a+(_2+2a+20)-

Now we take 0 = 1 —a/2 € (0,1) to have —24 2a+ 20 = a > 0. Varying the center,
we have a similar bound at every x € K. Then, by Theorem A.1, we obtain that
the limit of the averages T'(y|y|* 'u,) = 0 on Bf. This implies that (—A,)%u =0
on Bj. Indeed, arguing as in Remark 4.4, by considering the mollifications u. in
z-variable, we note that

/ 9] (ue), Py~ < Cprti-ota

BP
which implies that T'(y|y|*~!(us),) = 0 on K € Bj. On the other hand, u. €

C?* N %L,(R™), which implies that y|y|*~!(u.), is continuous up to y = 0, since we
can explicitly write, for y > 0, the symmetrized formula

() = [

Ue (T + 2) + us(z — 2) — 2uc(z)
n |2|2

|z|2ya8yP(z, y)dz

with locally integrable kernel |z|?|y?8, P(z,y)| < C/|z|" "1~ Hence, we obtain that
(=Az)*ue = dju. = 0 on the ball K € Bj. Then, passing to the limit as ¢ — 0, this
implies that (—=A;)°u =0 in Bf.

Case 2. s =1/2 (or a =0) and w(r) = r®. In this case, we have a bound

p 7L+3 n— O+«
[l <a(5)7 [l CIvulag, Bt

Br
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Then, by Lemma 4.2, we have

p n—14+20+a e ota
| wesc|(4) g 2 4 [Vl 427*
B, Br

< C|[Vulfap, oI O220),

Taking 1 —a/4 < o < 1, we can guarantee that « — 2+ 20 > «/2 > 0, which implies
that T'(y|y|~'u,) = 0 on Bj. Then, arguing as at the end of Case 1, we conclude
that (—A,)Y?u =0 in Bj. O

We finish this section with formal proof of Theorem I.

Proof of Theorem I. Parts (1), (2), and (3) are proved in Theorems 4.1, 4.3, and
4.5, respectively. O

5. ALMOST MINIMIZERS FOR S$-FRACTIONAL OBSTACLE PROBLEM

In this section we investigate the regularity of almost minimizers for the s-
fractional obstacle problem with zero obstacle and give a proof of Theorem II. All
results in this section are proved under the assumption 1/2 < s <1, or —1 < a < 0.

Theorem 5.1 (Almost Lipschitz regularity). Let u be an almost minimizer for
s-fractional obstacle problem with zero obstacle in Bj, for 1/2 < s < 1. Then
u € C%(BY) for any 0 < o < 1 with

[ullco.r () < Cnaworllullwr2s, ye
for any K € Bj.

Proof. Let K € Bj with 0 € K. Take 6 = 6, q.0,0,x > 0 such that ¢ < dist(K,0B])
and w(d) < e, where € = €2 n114+a.n—11a+20 @8 in Lemma 4.2. For 0 < R < 4, let v

be the minimizer of
| webiul
Br

on Ry u(Br, |y|*). Then v satisfies the variational inequality

VoV(w —v)|y|* >0
Br

for any w € Ro (B, |y|*). Particularly, taking w = u, we have

VoV (u —v)|y|* > 0.
Br

As a consequence,

[ova=oPe = [ vyl - [ 9o -2 [ vo-va- o
Br Bgr Br Br
<w() [ [vePlyl”
Br
Next, we use (3.2) to derive a similar estimate for u. We have,

| v <2 [ vepiie 2 [ 9ol

P B, B,

n+l+a
<2(£)" [ Pyl 20r) [ woplype
R Br Br
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n+1l+a
<2{(1’;) +s]/B IVul?|y|e.

R

Hence, by Lemma 4.2,

/ |vu|2| |a <C (ﬁ)n71+a+20/ |Vu|2| |a
Y = UCna,o R Y-
B, Br

As we have seen in Theorem 4.1, this implies

(51) / |VU|2|y‘a S Cn,a,o,(s

P

n—1+a+20

2
IVullzz (s, jyjeyP

then
n+1+a+20

[ lu= Pl < G

P

VullZ (s, 1y0)P

and ultimately
[ullcow(x) < Cnawo s lullwr 2z, jyjo)- O

Theorem 5.2 (C# regularity). Let u be an almost minimizer for the s-fractional
obstacle problem with zero obstacle in Bf, 1/2 < s < 1, and a gauge function
w(r) =r®. Then V,u € COP(BY) for B < SmTTteTary @nd for any K € Bj there
holds

|‘Vru|‘00ﬁ(l() < Cn,a,a,ﬂ,K”“HWLQ(Bl,\yI“)'
Proof. Let K be a thin ball centered at 0 such that K € B;. Let ¢ := m
and v =1 — ﬁ We fix Ry = Ro(n,a,a, K) > 0 small so that R(lfg < d/2,
where d := dist(K,0B]) and Ry < (13—6)1/6. Then K = {z € B} : dist(z, K) <
Ry} € By. We claim that for 2o € K and 0 < p < R < Ry,

/ Vot = (Vatt)ag o [*[y]"
Bp(.’to)

n+a+3
(5.2) < Cha (ﬁ) / [Vau — (Vatt)go, 1| |y]”
Br(zo)

)Rn+1+a+ss

R

+ Craa i lullfyrz s,y

Note that once we have this bound, the proof will follow by the application of
Lemma 4.2 and Theorem A.1. B
For simplicity we may assume zo = 0, and fix 0 < R < Ry. Let R := R'~°. Let

v be the minimizer of
| webiul
Bf

R

on Ko..(Bz, [y|*). Then by (3.2) and (5.1) with o0 =7, for 0 < p < R

p n+l4+a
[k < (&) [ worre
B, R By

p n+l+a
< () [ iy
(5.3) R o
C,

R

p\ it n—1l+a+2y
9 —_n—
S n,a,o, K (R) ||UHW1’2(Blv‘y|a)R

§ Cn’a’a’K||u||%/V1’2(Bl,\y‘a)l)n71+a+2’y'
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This gives
(54) ][ |U - UP|2|y|a < ClHu”%/Vl»?(BlJy\ﬂ)pQ’yv Cl = Cn,a,a,K-
Since this estimate holds for any 0 < p < R, the standard dyadic argument gives
(5.5) 0(0) — () 5] < Collullwresy g B Co = Craa k-
Moreover, using (3.2) and (5.1) again, we have for any z; € B/§/2’ 0<p<R/2,
a (20 a
[oweewes (%) [ weewl
B,(z1) R B (1)
(56) 2p n+l+4a
(%) [ v
R By

< Craallullfyracp, ysp" T,

which implies
(5.7) [U]co,w(m) < Gsllullwrzsy jyie); O3 = Cnaa k-

Now we define
Cy:=C1 +Cj +C3.

Our analysis then distinguishes the following two cases

B2 527
<'U2>§ < GC4||U||%/[/1,2(BL|y|a)R or <1)2>§ > 604“114”12/1/1,2(317@‘(1)]% .
Case 1. Suppose first that
<’U2>§ < 604”””%4/1,2(317@”)1% .

Note that Ry < (1%)1/6 implies R < %R. Then, using Corollary 3.6, we see that
for 0 < p <R,

/ Vot — (Vo Pyl < 3 / Va0 — (Vo) 2] + 6 / Vot — Voo2ly|” de

P By P

E n+a+3 B 9 a
Coa (£)" [ 1Ve0 = (Tahal

IN

(v?) 7”“ ‘ - [yl
+Chafv S+ 6/ Vaou — Vao|7|yl®
RR2+2 5

P

14 ntat3 2|, |a
< — _
<o) [ e (Tl

+c<v2>—Rn—+2+c |Vt — V)% |y|
RE2+25 B x x Y-

Note that for 0 :=1— /4

/ Vot — Vao2ly|e < / Vot — Voo[2ly)?
Br R

Bg

<E [ ol
Br
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<R / Vul[y]?
By

_ —n—1+a+2
< Crarer kBl 22y gy B2

= Cllulliya s, gy B4

Moreover by the assumption

Rn+2 —2v7—2—2s
Oty amzrzs < Onacorcllullivras, o B R

= Cllullfyrzp, yo) B0

Hence, we obtain (5.2) in this case.
Case 2. Now we assume
(0V*)g > 6 Cullullfyrzp, |y R -
Then, by (5.4) and (5.5) we obtain
£ =Py <2f - ogPlit+2f o= o

R Bx Bx

Jlyle

S 2C4||UH%/V1’2(B1,\3/|‘1)R .

Combining the latter bound and the assumption,

0(0)? = ]l 0(0) Py

o, WEOPI = 10(X) = o)yl

2 BR BR

Y

=2
> C4||u||%/V1!2(Bl,|y\“)R ’Y.
Since Cy4 > C2, we have v > 0 on B/ﬁ/z by (5.7). Thus, Lev = 0 in Bg,, and by
Lemma 3.2 we have for 0 < p < R

u 0 n+a+3 a
[ Vo= @it < (8)" [ 1920 = (el
B Br

P

Thus,

/ Vot — (Vo Pyl

P

<3 [ (Va0 (ool Pl 46 [ [Vau- VaoPlyp

R

P B
n+a+3
<3(%) Voo — (Voo Plyl" 46 [ [Vou—TooPlyle
R BR B/’
n+a+3
sc(ﬁ) / Ivzu—<Vzu>Rl2ly|“+C/ Vou = Vol lyl*
R Br Br
p n+a+3 a n at+o
<c(®) /B Vot — (Vo) rPlyl” + Cllul3pra s, ey R/,
R

This implies (5.2) and completes the proof. a



ALMOST MINIMIZERS FOR CERTAIN FRACTIONAL VARIATIONAL PROBLEMS 21

Proof of Theorem II. Parts (1) and (2) are contained in Theorems 5.1 and 5.2,
respectively. ([

APPENDIX A. MORREY-CAMPANATO-TYPE SPACE

Theorem A.1. Let u € L*(By,|y|") and M be such that ||u||p2(p, jy«) < M and
for some o € (0,1)

1

2 a 2 n+l+a+20 _ a
U— (W, |yl* < M r Ugr = —/ u |y
/B,-(w)| el e Wit 14ar" T S () 4

for any ball B, (x) centered at x = (x,0) € By , and radius 0 <r <rg <1/2. Then
for any x € Bi/z there exists the limit of averages

T = 1i
u(m) TI_I}%)<U/>I,7‘7
which will also satisfy
/ |u _ TU($)|2|y‘a S Cn7a7aM2,r,n+1+a+20.
B, (z)
Moreover, Tu € CO"’(Bi/z) with
I Tullco.o(zy,,) < Cn.aomeM.

Remark A.2. Note, we can redefine u(x,0) = Tu(z) for any z € Bi/zv making (z,0)
a Lebesgue point for u.

Proof. Let x,z € 31/2 and 0 < p <1 < 1o be such that B,(z) C B,(z). Then

(e = (Werl < u= eyl

By ()

n+1l+4+a
() F o el
B, (z)
n+1l4a 1/2 1/2
() (f u—<u>z,r|2|y“> (f |y“>
Bo(2) B,(2)

r n+1l+4+a
< Cha <> Mr°.
P

Now, taking x = z and using a dyadic argument, we can conclude that

r
S —
p
r
S —
p

u)z,p — (War| < ChiaoMr®, forany 0<s=p<r<rg.
Indeed, let k = 0,1,2,... be such that /21 < p < r/2F. Then

(w)z,p — (Wa,r

k
< W21 = (W jas | + (W jor — (Wap]
j=1

k+1
< CraM D (r/2771)7 < Cra o M1,
j=1
This implies that the limit

Tu(z) = lim(u) g,

r—0 ’



22 SEONGMIN JEON AND ARSHAK PETROSYAN

exists and
ITu(@) = (W)z,r| < Cna,oMr7.
Hence, we also have the Hélder integral bound

[ um Tu@)Pyl < Cogodrrriese,
B.,.(z

Besides, we have
Tu()] < (Wer, + CniaoMri < CnaoreM.

It remains to estimate the Holder seminorm of Tu on Bi/z' Let x,z € B’l/2 and
consider two cases.

Case 1. If |x — 2| < 7r0/4, let r = 2|z — z|. Then note that B, 5(x) C B,(z) and
therefore we can write

Tu(x) — Tu(z)| < |[Tw(@) = (W2l + [Tu(z) = (Wer| + (War/2 — (U)zr|
< Cha,eMr® =Cp oMz —2|°.
Case 2. If |z — z| > ro/4, then
Tu(z) — Tu(z)| < |[Tu(z)| + |Tu(z)]
< Cna0m0M
< ChaoroM|z — 2|7,
Thus, we conclude

[Tullcow(By,,) < Cn.aomM- a

APPENDIX B. POLYNOMIAL EXPANSION FOR CAFFARELLI-SILVESTRE EXTENSION

Some of the results in Section 3 rely on polynomial expansion theorem for
L,-harmonic functions given below.

Theorem B.1. Let u € W12(By,|y|?), —1 < a < 1, be a weak solution of the
equation Lyu = 0 in By, even iny. Then we have the following polynomial expansion:

u(z,y) =Y pr(z,y)
k=0

locally uniformly in By, where pi(x,y) are Lq-harmonic polynomials, homogeneous
of degree k and even in y. Moreover, the polynomials py above are orthogonal in
L?(0By, |y|®), i.e.,

/ PEPmlyl® =0, k#m.
0B,

In particular, u is real analytic in Bj.

This theorem has the following immediate corollaries, which are of independent
interest and are likely known in the literature. We state them here for reader’s
convenience and for possible future reference.

Corollary B.2. Let u € WH%(By,|y|*), —1 < a < 1, be a weak solution of the
equation Lqou = 0 in By. Then, we have a representation

u(z,y) = o(x,y) +ylyl “¢(x,y), (z,y) € B,

where p(x,y) and ¥(x,y) are real analytic functions, even in y.
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Corollary B.3. Let u € £L4(R™) satisfies (—A)*u = 0 in the unit ball B} C R™.
Then wu is real analytic in BY.

Corollary B.4. Let u € W12(By,|y|*), —1 < a < 1, be a weak solution of the
equation Lou =0 in By, even iny. If u(-,0) =0 in B}, then u =0 in By.

The proof of Theorem B.1 and subsequently those of Corollaries B.2, B.3, and
B.4 are based on the following lemmas. We follow the approach of [ABRO1] for
harmonic functions.

Let 2} = {p: p(z,y) polynomial of degree < m, even in y}.
Lemma B.5. Letp € ). Then there exists p € 2 such that
L,p=0 in By, p=p ondBj.
In other words, the solution of the Dirichlet problem for L, in By with boundary
values in 2P on 0By is itself in P,

Proof. For m = 0,1, we simply have p = p. For m > 2, we proceed as follows.
For g € 9} _, define Tq € 2}, _5 by

(Tq)(z,y) = ly| ™ La((1 — 2* — y*)a(z,y))-
(It is straightforward to verify that T'q is indeed in 25, _5). We now claim that the
mapping T': P _, — 9Pr _, is bijective. Since T is clearly linear and %, _, is finite
dimensional it is equivalent to showing that T is injective. To this end, suppose
that Tiq = 0 for some q € P _,. This means that Q(z,y) = (1 — 22 — y?)q(z,y) is
L,-harmonic in Bj:

LaQ =0 in Bl.

On the other hand @ = 0 on 0B, and therefore, by the maximum principle @ = 0
in By. But this implies that ¢ = 0 in By, or that ¢ = 0. Hence, the mapping T is
injective, and consequently bijective. It is now easy to see that

p=p—1—2> =y )T (ly|"“La(p)) € P},

satisfies the required properties. ([

Lemma B.6. Polynomials, even in y, are dense in the subspace of functions in
L?(0By, |y|*), even in y.

Proof. Polynomials, even in y are dense in the space of continuous functions in
C(0By), even in y, with the uniform norm. The claim now follows from the
observation that the embedding C(8B;) < L?(0By, |y|*) is continuous:

1/2
ol 22 11y < ol (o2 ( /6 ) |y|“) < Cloll (om0, 0
1

Lemma B.7. The subspace of functions in L?(0B1, |y|*), even in y, has an or-
thonormal basis {pr}3>, consisting of homogeneous Ly-harmonic polynomials py,
even in y.

Proof. If p is a polynomial, even in y, then restricted to 0B it can be replaced with
an L,-harmonic polynomial p. On the other hand, if we decompose
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where g; is a homogeneous polynomial of order i, even in y, then
m
Y™ Lap = > [y| ™" Lagi
i=2

where |y|~%L,q; is a homogeneous polynomial of order ¢ — 2, i = 2,..., m. Hence,
L,p=0iff L,q; =0, for all i =0,...,m (for i« = 0,1 this holds automatically).

We further note that if ¢; and ¢; are two homogeneous L,-harmonic polynomials
of degrees i # j, then they are orthogonal in L?(9By, |y|*). Indeed,

0 :/ q; div(ly|*Vg;) — div(|y|*Vai)g; =/8 (29095 — 4;0u4i)|y|"
Bl Bl

=u—o/ gig; 1°.
0B,

Using this and following the standard orthogonalization process, we can construct a
basis consisting of homogeneous L,-harmonic polynomials. O

Lemma B.8. Let u € WY2(By, |y|*) N C(By) is a weak solution of Loyu =0 in By.
Then
lull Lo (i) < Cnaxllull 208y, Jy1e)-
for any K € Bs.
Proof. First, we note that by [FS87]

||U||L°°(K) < Cn,a,K||“||L2(Bl,Iy\“)~
So we just need to show that
[ullz2 By 1) < Cnallullz2 @B, jyle)-

This follows from the fact that u? is a subsolution: La(uQ) > (0 in B; and therefore
the weighted spherical averages

1
r'—>7/ Wy, 0<r<l1
Wi Jop

r

are increasing. Integrating, we easily obtain that

lullz2(By lyo) < Crallull 2@y 1y)9)- O

We are now ready to prove Theorem B.1.

Proof of Theorem B.1. Without loss of generality we may assume u € W12(By, ly|*)N
C(By), otherwise we can consider a slightly smaller ball. Now, using the orthonormal
basis {pr}72, from Lemma B.7 we represent

oo
w= agpr in L*DBy,y|").
k=0

We then claim that
o0
u(z,y) = Zakpk(x, y) uniformly on any K € Bj.
k=0

Indeed, if wm(z,y) = Y=g arpk(x, y), then ||u — up| L2908, |y2) = 0 as m — oo
and therefore by Lemma B.8

lu — uml|Loe (k) < Cha,x ||t — Uml 208, |y)2) — O- O
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We now give the proofs of the corollaries.

Proof of Corollary B.2. Write u(z,y) in the form

U(%Zl) = ueven(x7y) + uodd(x>y>7

where Ueven and uogqq are even and odd in y, respectively. Clearly, both functions
are L,-harmonic. Moreover, by Theorem B.1, teyen is real analytic and we take
© = Ueven- On the other hand, consider

v(w,y) = |y|“Oyuoad(w, ).

Then, v is L_,-harmonic in B; and again by Theorem B.1, v is real analytic. We
can now represent

Yy
Uoda (2, y) = yly|~ v (z,y), ¢($,y)=y’1|y\“/0 |s| v (x, s)ds.

It is not hard to see that ¢ (z,y) is real analytic, which completes our proof. O

Proof of Corollary B.3. The proof follows immediately from Theorem B.1 by con-
sidering the Caffarelli-Silvestre extension

u(z,y) =ux P(-,y) = Pz — z,y)u(z)dz, (z,y) e R" xRy
Rn

where P(z,y) = Chq (|x|2+u2;;"a+1—"')/2 is the Poisson kernel for L,, and noting that

its extension to R"*! by even symmetry in y (still denoted u) satisfies Lou = 0 in
B;. O

Proof of Corollary B.4. Represent u(x,y) as a locally uniformly convergent in By
series

u(w, y) = Z qk(x’ y),
k=0

where ¢x(x,y) is a homogeneous of degree k L,-harmonic polynomial, even in y.
We have

u(z,0) = qu(x,O) =0
k=0

from which we conclude that g (z,0) = 0. We now want to show that ¢ = 0. To
this end represent
[k/2]
a (@) =Y prooj(x)y?,
§=0

where p_2;(z) is a homogeneous polynomial of order k —2j in . Clearly py(x) = 0.
Taking partial derivatives 0% ¢qi(z) of order |a| = k — 2, we see that

92qi(2) = cay?,  co = 0SPr—2

is L,-harmonic, which can happen only when ¢, = 0. Hence D¥~2p;_»(z) = 0 and
therefore pr_o = 0. Then taking consequently derivatives of orders k —2j, j =2, ...,
we conclude that py_o;(x) =0 for all j =0,...,[k/2] and hence gx(z,y) =0. O
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