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Abstract
In this work, we study the optimization landscape of the non-convex matrix sensing
problem that is known to have many local minima in the worst case. Since the existing
results are related to the notionof restricted isometry property (RIP) that cannot directly
capture the underlying structure of a given problem, they can hardly be applied to
real-world problems where the amount of data is not exorbitantly high. To address
this issue, we develop the notion of kernel structure property to obtain necessary and
sufficient conditions for the inexistence of spurious local solutions for any class of
matrix sensing problems over a given search space. This notion precisely captures the
underlying sparsity and structure of the problem, based on tools in conic optimization.
We simplify the conditions for a certain class of problems to show their satisfaction
and apply them to data analytics for power systems.

Keywords Non-convex optimization · Spurious local minima · Matrix sensing

1 Introduction

Even under the ideal condition of no noise and zero approximation error, many highly-
efficient machine learning techniques involve solving potentially hard or intractable
computational problems while learning from data. In practice, they are tackled by
heuristic optimization algorithms, based on relaxations or greedy principles. The lack
of guarantees on their performance limits their use in applications with significant cost
of an error, impacting our ability to implement progressive data analysis techniques
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in crucial social and economic systems, such as healthcare, transportation, and energy
production and distribution. Commonly, non-convexity is the main obstacle for a
guaranteed learning of continuous parameters.

It is well known that many fundamental problems with a natural non-convex for-
mulation are N P-hard [27]. Sophisticated techniques for addressing this issue,
like generic convex relaxations, may require working in an unrealistically high-
dimensional space to guarantee the exactness of the solution. As a consequence of
complicated geometrical structures, a non-convex function may contain an exponen-
tial number of saddle points and spurious local minima, and therefore local search
algorithms may become trapped in any of those points. Nevertheless, empirical obser-
vations show positive results regarding the application of these approaches to several
practically important instances. This provokes a major branch of research that aims
to explain the success of experimental results in order to understand the boundaries
of the applicability of the existing algorithms and develop new ones. A recent direc-
tion in non-convex optimization consists in studying how simple algorithms can solve
potentially hard problems arising in data analysis applications. The most commonly
applied class of such algorithms is based on local search, which will be the focus
of this work. In some cases, prior information about the location of the solution is
available, which significantly reduces the complexity of the search.

Consider searching over some given domain X . For a twice continuously differ-
entiable objective function f : X → R that reaches its global minimum f ∗, if the
point x attains f (x) = f ∗, then we call it a global minimizer. The point x is said to
be a local minimizer if f (x) ≤ f (x ′) holds for all x ′ within a local neighborhood of
x . If x is a local minimizer, then it must satisfy the first- and second-order necessary
optimality conditions. Conversely, a point x satisfying only the first-order condition
is called a first-order critical point, while a point satisfying both of the conditions is
called a second-order critical point or simply a solution. We call a solution spurious
if it is not a global minimum. In this work, we study how the existence of a spurious
solution depends on the size of the domain as well as the underlying structure of the
problem.

The analysis of the landscape of the objective function around a global optimum
may lead to an optimality guarantee for local search algorithms initialized sufficiently
close to the solution [16,18,19,33,41,42]. Finding agood initialization scheme is highly
problem-specific and difficult to generalize. Global analysis of the landscape is harder,
but potentially more rewarding.

Both local and global convergence guarantees have been developed to justify the
success of local search methods in various applications, such as dictionary learning
[1], basic non-convex M-estimators [25], shallow [30] and deep [37] artificial neural
networks with different activation [22] and loss [26] functions, phase retrieval [4,5,36]
and more general matrix sensing problems [10,17]. Particularly, significant progress
has been made towards understanding different variants of the low-rank matrix recov-
ery, although explanations of the simplest version calledmatrix sensing are still under
active development [6,7,10,24,39,43]. Given a linear sensing operatorA : Sn → R

m

and a ground truth matrix z ∈ R
n×r (r < n), an instance of the rank-r matrix sensing
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problem consists in minimizing over Rn×r the nonconvex function

fz,A (x) =
∥
∥
∥A

(

xxT − zzT
)∥
∥
∥

2

2
=
∥
∥
∥A

(

xxT
)

− b
∥
∥
∥

2

2
, (1)

where b = A (zzT ).We consider this function over a general setX ⊆ R
n×r , although

in this section we setX = R
n×r . Recent work has generally found a certain assump-

tion on the sensing operator to be sufficient for the matrix sensing problem to be
“computationally easy to solve”. Precisely, this assumption works with the notion of
restricted isometry property (RIP).

Definition 1 (Restricted isometry property) The linear map A : Sn → R
m is said to

satisfy δr -RIP for some constant δr ∈ [0, 1) if there is γ > 0 such that

(1 − δr )‖X‖2F ≤ γ ‖A (X)‖22 ≤ (1 + δr )‖X‖2F
holds for all X ∈ S

n satisfying rank(X) ≤ r .

The existing results proving absence of spurious local minima using this notion (such
as [2,10–12,28,31,32,43]) are based on a norm-preserving argument: the problem turns
out to be a low-dimensional embedding of a canonical problem known to contain no
spurious local minima.While the approach is widely applicable in its scope, it requires
fairly strong assumptions on the data. In contrast, Zhang et al. [38,39] introduced a
technique to find a certificate to guarantee that any given point cannot be a spurious
local minimum of the problem of minimizing fz,A over the set X ⊆ R

n×r , where
z ∈ Z ⊆ R

n×r and A satisfies δ2r -RIP. Note that two different sets X and Z are
involved here. Since fz,A depends on z andA , this introduces a class of optimization
problems defined as

{

minimize
x∈X

fz,A (x)
∣
∣
∣ A satisfies δ2r -RIP, z ∈ Z

}

. (ProblemRIP)

(ProblemRIP) consists of infinitely many instances of an optimization problem, each
corresponding to some point z in Z and some operator A satisfying δ2r -RIP. The
state-of-the-art results for (ProblemRIP) are stated below.

Theorem 1 ([2,10,38]) By taking X = Z = R
n×r , the following statements hold:

– If δ2r < 1/5, no instance of (ProblemRIP) has a spurious second-order critical
point.

– If r = 1 and δ2 < 1/2, then no instance of (ProblemRIP) has a spurious second-
order critical point.

– If r = 1 and δ2 ≥ 1/2, then there exists an instance of (ProblemRIP) with a
spurious second-order critical point.

Non-existence of a spurious second-order critical point effectively means that any
algorithm that converges to a second-order critical point is guaranteed to recover zzT

exactly. Examples of such algorithms includevariants of the stochastic gradient descent
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(SGD) that are known to avoid saddle or even spurious local minimum points under
certain assumptions [8], and widely used in machine learning [3,20]. Besides SGD,
many local search methods have been shown to be convergent to second-order critical
points with high probability under mild conditions, including the classical gradient
descent [21], alternating minimizations [23] and Newton’s method [29]. In this paper,
we present guarantees on the global optimality of the second-order critical points,
which means that our results can be combined with any of the algorithms mentioned
above to guarantee the global convergence.

Theorem 1 discloses the limits on the guarantees that the notion of RIP can provide.
However, linearmaps in applications related to physical systems, such as power system
analysis, typically have no RIP constant smaller than 0.9, and yet the non-convex
matrix sensing still manages to work on those instances. The gap between theory and
practice motivates the following question.

What is the alternative property practical problems satisfy that makes them
easy to solve via simple local search?

This question was studied earlier for special cases of matrix sensing, namely phase
retrieval [31] and matrix completion [11]. In case of the phase retrieval problem, the
alternative property consists in the particular distribution of the measurements oper-
ator. Regarding the matrix completion problem, the assumption includes conditions
on the properties of the matrix being recovered along with conditions on the mea-
surement operator itself. We address the above mentioned question by developing a
new notion that deals with the measurement operator and precisely captures when a
structured matrix recovery problem has no spurious solution over an arbitrary ball.
We focus the analysis over a given ball since local search methods tend to search over
a neighborhood rather than the entire space, based on prior knowledge. In Sect. 2,
we motivate the need for a new notion replacing or improving RIP with real-world
examples. Section 3 introduces some formal definitions and develops a mathematical
framework to analyze spurious solutions and relate them to the underlying sparsity and
structure of the problem, using techniques in conic optimization. Sections 4 and 5 give
the theory behind this notion and examples of its application. In Sect. 6, we present
numerical results on the application of the developed theory in a real-world problem
appearing in power systems analysis. Concluding remarks are given in Sect. 7. Some
of the proofs, technical details and lemmas are collected in the appendix.

1.1 Notation

C
n, Rn and R

n×r denote the sets of complex and real n-dimensional vectors, and
n × r matrices, respectively. Sn denotes the set of n × n symmetric matrices. Tr(A),

‖A‖F , λmin(A) and 〈A, B〉 are the trace of a square matrix A, its Frobenius norm,
absolute smallest eigenvalue and the Frobenius inner product of matrices A and B of
compatible sizes. The normal distribution with mean μ and covariance matrix Σ is
denoted as N (μ,Σ). In any linear space, 1 is a vector whose entries are all equal
to 1 and I is the identity matrix. For ω ∈ R

n×r and R ∈ R ∪ {+∞}, we define
BR(ω) = {a ∈ R

n×r : ‖a − ω‖F ≤ R}, B̄R(ω) = {a ∈ R
n×r : ‖a − ω‖F < R}

and ∂BR(ω) = {a ∈ R
n×r : ‖a − ω‖F = R}. It follows from the definition
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that ∂B+∞(ω) = ∅ and minimization over this set results in +∞ for any objective
function. For a square matrix A, we define the symetric part Sym(A) = (A+ AT )/2.
For a symmetric matrix A, its null space is denoted with Ker(A). For square matrices
A1, A2, . . . , An, the matrix diag(A1, . . . , An) is block-diagonal, with Ai ’s on the
block diagonal. The notation A◦ B refers to the Hadamard (entrywise) multiplication,
and A ⊗ B refers to the Kronecker product of matrices. The vectorization operator
vec : Rn×r → R

nr stacks the columns of a matrix into a vector. The matricization
operator mat(·) is the inverse of vec (·). Let � denote the positive semidefinite sign.

For a linear operator L : Rn×r → R
m, the adjoint operator is denoted by L T :

R
m → R

n×r . The matrix L ∈ R
m×nr such that L (x) = Lvec (x) is called the

matrix representation of the linear operator L . Bold letters are reserved for matrix
representations of corresponding linear operators.

Sparsity pattern S of a set ofmatricesM ⊂ R
m×n is a subset of {1, . . . ,max{n,m}}2

such that (i, j) ∈ S if and only if there is X ∈ M with the property that Xi j �= 0.
Given a sparsity pattern S, define its matrix representation S ∈ S

m×n as

Si j =
{

0 if (i, j) ∈ S,

1 if (i, j) /∈ S,

Theorthogonal basisof a givenm×nmatrix A (withm ≥ n) is amatrix P = orth(A) ∈
R
m×rank(A) consisting of rank (A) orthonormal columns that span range(A):

P = orth(A) ⇐⇒ PPT A = A, PT P = Irank (A).

Positive partmeans (·)+ = max{0, ·}, and eigenvalues in an arbitrary order are denoted
by λi (·).

2 Motivating example

In this section, we motivate this work by offering a case study on data analytics for
energy systems. The state of a power system can be modeled by a vector of complex
voltages on the nodes (buses) of the network. Monitoring the state of a power system
is obviously a necessary requirement for its efficient and safe operation. This crucial
information should be inferred from some measurable parameters, such as the power
that is generated and consumed at each bus or transmitted through a line. The power
network can be modeled by a number of parameters grouped into the admittance
matrix Y ∈ C

n×n . The state estimation problem consists in recovering the unknown
voltage vector v ∈ C

n from the available measurements. In the noiseless scenario,
these measurements are m real numbers of the form

v∗Miv, ∀ i ∈ {1, . . . ,m}, (2)

where Mi ∈ C
n×n are sparse Hermitian matrices that are obtained from Y and model

power flow, power injection, and voltage magnitude measurements. The sparsity pat-
tern of the measurement matrices is determined by the topology of the network, while
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Fig. 1 Examples of the structure patterns of operators A (left plot) and H (right plot) in power system
applications. The positions of the identical nonzero entries of a matrix are marked with the same markers

its nonzero entries are certain known functions of the entries of Y . Since the total num-
ber of nonzero elements in the matrices Mi exceeds the total number of parameters
contained in Y , one can regard the mapping Y → {Mi }mi=1 as an embedding from
a low-dimensional space. For a detailed discussion on the problem formulation and
approaches to its solution, please refer to e.g. Zhang et al. [40].

To formulate the problem as a low-rank matrix recovery, we introduce a sparse
matrix A ∈ C

m×n2 with its i-th row equal to vec(Mi )
T . The measurement vector

can be written as Avec(vvT ). To find v from the measurements, one may solve the
non-convex optimization problem:

minimize
x∈Cn ,‖x−ω‖F≤R

∥
∥
∥Avec (xxT − vvT )

∥
∥
∥

2
(3)

where ω ∈ C
n and R ∈ R ∪ {+∞} are some parameters determined by the prior

knowledge about the solution v. In practice, this non-convex optimization problem is
usually solved via local search methods, which converges to a second-order critical
point at best. Since f (x) = ‖Avec (xxT − vvT )‖2F = 〈xxT − vvT ,ATAvec (xxT −
vvT )〉, the set of critical points of the problem is defined by the linear map represented
with the matrixH = ATA,which thus is the key subject of the study. Problems arising
in power systems analysis are based on operators that possess a specific structure.
An example of a structure for the matrix A is given in Fig. 1a, and the structure
of the corresponding H is described in Fig.1b. The respective power network will be
considered inmore details in Sect. 6. As discussed previously, givenH, it is practically
important to know if there exist v, x ∈ C

n such that x is a critical point of (3) while
xxT �= vvT . Absence of these points proves that a local search method recovers v

exactly, certifying safety of its use. For example, in case of unconstrained optimization
(R = +∞), the answer is affirmative if the optimal objective value of the following
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problem is equal to zero:

minimize
v, x∈Cn

∥
∥A (xxT − vvT )

∥
∥
2

subject to ∇ f (x) = 0
∇2 f (x) � 0

where∇ and∇2 denote the gradient and Hessian operators. However, this is anN P-
hard problem in general and cannot be solved efficiently. Even if we were able to solve
it, the sensing operatorA could change over time without changing its structure, and
therefore any conclusion made for a specific problem cannot be generalized to other
instances of the problem for real-world applications where the data analysis is to be
performed periodically. One way to circumvent this issue is to develop a sufficient
condition for all mappings H with the same structure.

3 Introducing Kernel structure

Consider a linear operator A : Sn → R
m with the matrix representation A ∈ R

m×n2

and a sparsity pattern SA . Assume that there is a set of hidden parameters ξ ∈ R
d

with d � m such that A is the image of ω in the space of a much higher dimension.
In this way, A has a low-dimensional structure beyond sparsity, which is captured
by A = A(ξ) and A(0) = 0. The motivating complex-valued example in Sect. 2 is a
special case of this construction since it could be stated entirely with only real-valued
vectors and matrices of a bigger size. We define the nonconvex objective

f : Rn×r → R such that f (x) =
∥
∥
∥A

(

xxT − zzT
)∥
∥
∥

2

parametrized by A and z ∈ R
n×r . Its value is always nonnegative by construction,

and the global minimum 0 is attainable. To emphasize the dependence on certain
parameters, we will write them in the subscript. To align the minimization problem
with the problem of reconstructing zzT ,we need to introduce a regularity assumption:

Assumption 1 For all x, z ∈ R
n×r :

∥
∥
∥A

(

xxT − zzT
)∥
∥
∥ = 0 if and only if xxT = zzT

We will rely on Assumption 1 throughout the paper. Note that this assumption is
weaker than the assumption of existence of a 2r -RIP constant, although it is stronger
than the assumption of existence of a r -RIP constant. Another way to express the
objective is

f (x) =
〈

xxT − zzT ,H
(

xxT − zzT
)〉

.
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Here, H = A TA is the linear kernel operator that has the matrix representation
H = ATA and sparsity pattern SH . Namely, (i, j) ∈ SH if and only if there exists k
such that (k, i) ∈ SA and (k, j) ∈ SA . Sparsity ofH is controlled by the out-degree
of the graph represented by SA , and tends to be low in applications like power systems.
SH is represented by a matrix S, so that SH -sparse operators are exclusively those
satisfying the linear equationS (H) = S◦H = 0.Besides sparsity,H inherits the low-
dimensional structure from A , which can be captured by H = A(ξ)TA(ξ) = H(ξ)

where ξ ∈ R
d . This dependence can be locally approximated in the hidden parameter

space with a linear one. More precisely, suppose that there is a linear operator W
defined over Sn

2
such that W (H(ξ)) ≈ 0 for the values of ξ under consideration.

Thus, from now on we focus exclusively on low-dimensional structures of the form
W (H) = 0. Together, the sparsity operator S and the low-dimensional structure
operatorW form the combined structure operatorT = (S ,W ) that accumulates the
structure of the kernel operator.

Definition 2 (Kernel structure property or KSP)Given a linear structure operatorT :
S
n2 → R

t , the linear map A : S
n → R

m is said to satisfy T -KSP if it satisfies
Assumption 1 and

T (ATA) = 0

where A is the matrix representation of A .

Notice that a particular sensing operator A can be kernel structured with respect to
an entire family of structure operators, and we can possibly select any of them for our
benefit in the following section.

4 Analysis based on KSP

Given a kernel structure T , ω ∈ R
n×r and R ∈ R∪ {+∞}, we can state the problem

under study as follows:

{

minimize
x∈BR(ω)

fz,A (x)
∣
∣
∣ A satisfies Assumption 1 and T -KSP, z ∈ BR(ω)

}

,

(ProblemKSP)

Note that (ProblemKSP) consists of infinitely many instances of an optimization prob-
lem, each corresponding to some point z ∈ BR(ω) and some operator A satisfying
T -KSP.

If X is regarded as an input and the operator A is regarded as a system with its
output beingA (X), the RIP constant aims at characterizing the input-output behavior
of the system. This input-output relationship can also be controlled by imposing the
following constraint on the matrix H :

(1 − δ)I � H � (1 + δ)I ,
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whereI is the identity operator. More precisely, the above inequality guarantees that
the operator A will have an RIP constant less than or equal to δ. Inspired by this
observation, we define the function O(x, z;T ) to be the optimal objective value of
the convex optimization problem:

minimum
δ∈R,H

δ

subject to Lx,z(H ) = 0 (4a)

Mx,z(H ) � 0 (4b)

T (H ) = 0 (4c)

(1 − δ)I � H � (1 + δ)I (4d)

where Lx,z(H ) = ∇ fz,H (x) and Mx,z(H ) = ∇2 fz,H (x). This optimization is
performed over all operators H satisfying the T -KSP. We will later show that the
function O sets an upper bound on the δ2r such that none of the functions fz;A with
A satisfying T -KSP and δ2r -RIP has a spurious second-order critical point at x,
provided that x is not on the boundary of the optimization domain BR(ω).

For completeness and for further reference within this paper, we calculate the ana-
lytic forms of the first- and second-order derivatives of fz,H below. Introduce a vector
e and a matrix X such that for all u ∈ R

n×r it holds that

e = vec (xxT − zzT ), Xvec (u) = vec (xuT + uxT ).

We write the operators L , M and their transpose operators in closed form:

Lx,z : Sn2 → R
n×r Lx,z(H) = 2 · XTHe,

L T
x,z : Rn×r → S

n2 L T
x,z(y) = eyTXT + XyeT ,

Mx,z : Sn2 → S
nr Mx,z(H) = [Ir ⊗ (mat(He) + mat(He)T

)] + XTHX,

M T
x,z : Snr → S

n2 M T
x,z(V ) = vec (V )eT + evec (V )T + XVXT .

Since fz,H (x) is linear inH , the operatorsLx,z andMx,z are both linear operators.
Thus, the problem defining the function O is convex.

The function O is useful only for those points x that are located strictly inside the
domain BR(ω) . This is due to the fact the constraints (4a) and (4b) are meant to be
optimality conditions for a point inside the domain BR(ω). For a point x that lies on
the boundary, we define the corresponding function O

∂B(x, z;T , ω) as the optimal
objective value of the convex optimization problem:

minimum
δ,μ≥0,H

δ

subject to Lx,z(H ) = −μ(x − ω) (5a)

Px−ωMx,z(H )PT
x−ω � 0 (5b)

T (H ) = 0 (5c)

(1 − δ)I � H � (1 + δ)I (5d)
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where Px−ω ∈ R
(nr−1)×nr is the matrix of orthogonal projection onto the subspace

orthogonal to x −ω. The role of the functionO∂B is the same as ofO but is applicable
to only those values of x such that ‖x − ω‖ = R. Note that (5a) and (5b) are the
necessary optimal conditions for a solution on the boundary of BR(ω).

To relax the δ2r -RIP condition, we consider those operators that have a bounded
effect on a linear subspace of limited-rank inputs. Indeed, for any 2r linearly inde-
pendent vectors, the linear span of them is a linear subspace of the manifold of the
2r -rank matrices. Thus, for any linear operator P from a 2r -dimensional (or lower)
vector space to Rn2 , the following condition on H holds if A satisfies δ-RIP:

(1 − δ)PTP � PTH P � (1 + δ)PTP. (6)

Based on this observation, we define the functionOP (x, z;T ) as the optimal objective
value of the following convex optimization problem:

minimum
δ∈R,H

δ

subject to Lx,z(H ) = 0 (7a)

Mx,z(H ) � 0 (7b)

T (H ) = 0 (7c)

(1 − δ)PTP � PTH P � (1 + δ)PTP (7d)

where P is the linear operator from R
rank([x z])2 to R

n2 that is represented by the
matrix P = orth([x z]) ⊗ orth([x z]). Note that (7) is obtained from (4) by replacing
its constraint (4d) with the milder condition (6). We will show that the function OP

sets a lower bound on the δ2r such that none of the functions fz;A with A satisfying
T -KSP and δ2r -RIP has a spurious second-order critical point at x, provided that x
is not on the boundary of the optimization domain BR(ω).

Similarly toO∂B, the functionO∂B
P (x, z;T , ω) is defined as the optimal objective

value of the convex optimization problem:

minimum
δ,μ≥0,H

δ

subject to Lx,z(H ) = −μ(x − ω)

Px−ωMx,z(H )PT
x−ω � 0

T (H ) = 0
(1 − δ)PTP � PTH P � (1 + δ)PTP

which is designed to lower bound the constant δ2r such that none of the functions fz;A
with A satisfying T -KSP and δ2r -RIP has a spurious second-order critical point at
x, provided that x is on the boundary of BR(ω).

Now, we are ready to state one of the main results of this paper.
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Theorem 2 (KSPnecessary and sufficient conditions)Forall instances of (ProblemKSP),
there are no spurious second-order critical points if

{

OP (x, z;T ) ≡ 1 over BR(ω) × BR(ω) \ {xxT = zzT }
O

∂B
P (x, z;T , ω) ≡ 1 over ∂BR(ω) × BR(ω) \ {xxT = zzT } (8)

and only if

{

O(x, z;T ) ≡ 1 over BR(ω) × BR(ω) \ {xxT = zzT }
O

∂B(x, z;T , ω) ≡ 1 over ∂BR(ω) × BR(ω) \ {xxT = zzT } (9)

This theorem is formally proven in the appendix. To elaborate on implications and
practicality of the result, we present its application for a specific structure of the sensing
operator below.

4.1 Ellipsoid norm: rank 1

In this subsection,we prove a special case ofTheorem2 for the ellipsoid normobjective
function and R = +∞. This proof first provides useful intuition behind the proof of
the general case and then simplifies the conditions of Theorem 2 to show that they
always hold for a specific class of operators.

Consider the ellipsoid norm of xxT − zzT given by a full-rank matrix Q ∈ R
n×n,

denoted with h(x) :

h(x) = ‖Q(xxT − zzT )‖2F = fz,A(x)

With no loss of generality, assume that Q ∈ S
n since h(·) really depends only

on QT Q. The function can be implemented with a block-diagonal sensing opera-
tor matrix A = diag(Q, . . . , Q) ∈ S

n2 , which generates a block-diagonal kernel
matrixH = diag(QQ, . . . , QQ). Thus, the kernel matrix is a block-diagonal matrix
H = diag(H11, . . . , Hnn) ∈ S

n2 with blocks of size n × n equal to each other; in
other words, Hii = Hj j for all i, j ∈ {1, . . . , n}. This generates a kernel structure. By
applying the theory introduced above, we obtain the following result for the rank-one
case.

Proposition 1 Consider a kernel structure operator T = (S ,W ) such that

– S (H) = 0 iff H = diag(H11, . . . , Hnn)

– W (H) = 0 iff Hii = Hj j for all i, j ∈ {1, . . . , n},
Then, no instance of the (ProblemKSP) with R = ∞ has a spurious second-order
critical point over Rn.

The proposition implies that the function h(x) can never have a spurious solution for
rank-1 arguments. To prove this result, first notice that, Assumption 1 and the following
lemma combined imply that Hii , and, consequently, its decomposition Hii = QQ,
are full-rank matrices.
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Lemma 1 Given a constant δr ∈ [0, 1), the matrix Q ∈ S
n satisfies

(1 − δr )‖X‖2F ≤ ‖QX‖2F ≤ (1 + δr )‖X‖2F
for every X such that rank (X) ≤ r only if rank (Q) = n

Proof By contradiction, suppose that u ∈ Ker(Q) and u �= 0. Take X = uuT and
observe that QX = 0, which contradicts that (1 − δr )‖X‖2F ≤ ‖QX‖2F . ��
The following lemma provides a version the conditions (8) and (9) combined for this
particular structure operator.

Lemma 2 Given z ∈ R
n×r , a point x ∈ R

n×r is not a first-order critical point of the
function h(·) for an arbitrary full-rank matrix Q if and only if there is λ ∈ R

n×r such
that

0 �= Sym
[

(xλT + λxT )(xxT − zzT )
]

� 0

Proof By expanding h(x + u) as

h(x + u) = h(x) + Tr
(

2xT
((

xxT − zzT
)

M + M
(

xxT − zzT
))

u
)

+Tr
(

uT
((

xxT − zzT
)

M + M
(

xxT − zzT
))

u

+
(

xuT + uxT
)

M
(

xuT + uxT
))

+ o(|u|2)

one can arrive at amore specified expression for the second-order necessary conditions
for local optimality:

〈∇h(x), u〉 = 2
〈

Q
(

xxT − zzT
)

, Q
(

xuT + uxT
)〉

= 0 (10a)
〈

∇2h(x)u, u
〉

= 2
〈

QQ
(

xxT − zzT
)

, uuT
〉

+
∥
∥
∥Q(xuT − uxT )

∥
∥
∥

2

F
≥ 0 (10b)

for all u ∈ R
n×r . We re-arrange the first-order condition (10a):

((

xxT − zzT
)

M + M
(

xx� − zz�
))

z = 0 (11)

If the Eq. (11) does not hold for some M � 0, then x cannot be a critical point for that
z and M . Consequently, the problem

minimize
M∈Sn ,α∈R −α

subject to
(

(zz� − xx�)M + M(zz� − xx�)
)

z = 0 (12a)

M − α I � 0, (12b)

is bounded from below by 0 if and only if the Eq. (11) does not hold for arbitrary
M � 0. If x is critical for some M � 0, then it is unbounded.

123



Global Optimization in Matrix Sensing

The problem (12) is a semidefinite program with a zero duality gap, since M = 0
and α = −1 constitute a strictly feasible primal point. We introduce the dual variable
λ ∈ R

n×r for the equality constraint (12a) and the dual variableG ∈ S
n for the positive

semi-definite (PSD) constraint (12b). The dual problem can be written as

max
λ∈Rn×r ,G�0

min
M∈Sn ,α∈RTr

[(

2 Sym
[(

zλT + λzT
) (

zzT − xxT
)]

− G
)

M
]

+ α(Tr(G) − 1)

The inner optimization problem has a finite solution if and only if

{

G = (zλ� + λz�
) (

zz� − xx�)+ (zz� − xx�) (zλ� + λz�
)

Tr(G) = 1

The dual problem can be expressed as

maximize
λ∈Rn×r ,G∈Sn

0

subject to G = Sym
[(

zλ� + λz�
) (

zz� − xx�)] ,
Tr(G) = 1,
G � 0

This is feasible if and only if the primal problem (12) is bounded. Consequently, it is
feasible if and only if the point x ∈ R

n×r is not a critical point of the function h for
all M � 0.

To eliminate the condition on the trace, notice that a PSD matrix has a nonnegative
trace that is equal to zero if and only if the matrix is the zero matrix. Since the
constraints are homogeneous in G, the trace can always be normalized to 1. Thus, the
dual feasibility is equivalent to the condition 0 �= G � 0. This concludes the proof. ��

This condition will be relaxed further for simplicity below.

Lemma 3 Given z ∈ R
n×r , a point x ∈ R

n×r is not a first-order critical point of the
function h(·) for an arbitrary full-rank matrix Q if there are T1 ∈ R

r×r and T2 ∈ S
r

such that the matrix T =
[

0 T1
−T T

1 T2

]

satisfies the relations

0 �= [−z x]
(

T T P + PT
) [−zT

xT

]

� 0 (13)

where P =
[

zT

xT

]

[z x] .
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Proof Suppose that there exists T satisfying the condition of the lemma. Notice that

xT T
1 zT + 1

2
xT2x

T + zT1x
T + 1

2
xT2x

T = [−z x]

[

0 −T1
T T
1 T2

] [

zT

xT

]

= [z x]

[

0 T1
−T T

1 T2

] [−zT

xT

]

and

xxT − zzT = [z x]

[−zT

xT

]

= [−z x]

[

zT

xT

]

We use the above formulas to expand the condition (13) and obtain

0 �= Sym

[(

x

(

zT1 + xT2
2

)T

+
(

zT1 + xT2
2

)

xT
)

(xxT − zzT )

]

� 0,

The proof follows immediately from applying Lemma 2 with λ = zT1 + 1
2 xT2. ��

To prove Proposition 1, we check the previous condition for all pairs of z and x .

Proof of Proposition 1 We start by proving that no point other than 0 and ±z can be a
first-order critical point of the function h. Assume that x /∈ {0,±z}. By Lemma 3, it

is sufficient to prove that there are α and β in R such that the matrix T =
[

0 α

−α β

]

satisfies

0 �= G = [−z x]
(

T T P + PT
) [−zT

xT

]

� 0

where P =
[

zT

xT

]

[z x] . Consider three scenarios for x and z :
Case 1 x = γ z: One can write

G = [−z x]
(

T T P + PT
) [−zT

xT

]

= 2γ (γ 2 − 1)(2α + βγ )zzT zzT

For α = γ (γ 2 − 1) and β = 0, it holds that G = (2γ (γ 2 − 1)zzT
)2 � 0. The matrix

is nonzero for x /∈ {0,±z}.
Case 2 zT x = 0: The matrix P takes the form P =

[ ‖z‖2 0
0 ‖x‖2

]

. Therefore, for

α = 0 and β = 1, it holds that

G = 2‖x‖2xxT � 0

The matrix is nonzero for x �= 0.
Case 3 0 < (zT x)2 < ‖z‖22‖x‖22: By scaling, we can assumewithout loss of generality

that zT x = 1; thus P =
[ ‖z‖22 1

1 ‖x‖22

]

. It is sufficient to show that T T P + PT � 0 to
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guarantee G to be nonzero and PSD. To show this, we use Sylvester’s criterion. The
upper-left corner of this matrix is equal to −2α. Moreover,

det
(

T T P + PT
)

=
(

−
(

‖x‖22 − ‖y‖22
)2 − 4

)

α2 − 2
(

‖x‖22 + ‖y‖22
)

αβ − β2

For α = −1, the discriminant of this quadratic polynomial with respect to β is equal to
D = 16(‖z‖22‖x‖22 − 1). By the strict Cauchy–Schwarz inequality in the assumption
of the case, D is strictly greater than 0. Thus, there exists β such that the matrix
is positive definite. This implies that none of x /∈ {0,±z} satisfies the first-order
necessary condition of local optimality for an unconstrained problem. Assume that
x = 0. The quadratic form on the Hessian at this point

〈

∇2h(0)u, u
〉

= −2
〈

QzzT , uuT
〉

takes a negative value at u = z. Thus, it does not satisfy the second-order necessary
condition of local optimality for an unconstrained problem. The points x = ±z are
not spurious points, which concludes the proof. ��

4.2 Ellipsoid norm: higher ranks

The function h(·) defined over Rn×r is significantly harder to study analytically if
r > 1. En empirical analysis of Theorem 2 allows us to make a conjecture.

Conjecture 1 For the kernel structure operator introduced in Proposition 1, no
instance of the (ProblemKSP) with Z = R

n×r has a spurious second-order critical
points over Rn×r for an arbitrary r .

This conjecture is based on the evaluation of O(x, z;T ) at 72,000 pairs of points
x, z ∈ R

8×3 randomly sampled from a standard Gaussian distribution. All of them
have the optimal value 1.However, ifwe consider first-order critical points aswell, then
it is straightforward to find a counterexample. After dropping the constraint onMx,z in
the formulation ofO(x, z;T ) andOP (x, z;T ), one can formulate a statement similar
to Theorem 2 tailored to first-order solutions. The following proposition presents a
corollary of the result.

Proposition 2 For the kernel structure operator introduced in Proposition 1, for every
n ≥ 8 and r > 1, there is z ∈ R

n×r such that (ProblemKSP) has a spurious saddle
point.
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Proof First, we prove it for n = 8 and r = 2 by a counterexample. Consider the two
points

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1
1 −1
1 1
1 0
0 0

−1 1
−1 1
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1
1 1
1 −1

−1 0
1 0
1 −1
1 −1

−1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and find a matrixH that solvesO(x, z;T ) without the constraint onMx,z . This will
result inH such thatMx,z(H ) has both negative and positive eigenvalues. For larger
values of n and r , one can fill up the extra entries with zeros and the proof carries over.

��
The code for reproducing the result is available on-line1. It took 482 tosses to generate
the counterexample of the matrices containing only ±1 or 0 as their components. We
used the uniform distribution over those matrices to generate the tosses.

4.3 DC power systems with acyclic topology

In Sect. 4.2, we studied one particular structure for the operator A . Now, we analyze
a real-world problem to highlight the role of the KSP. Recall that the power system
discussed in Sect. 2 was anAC network for which the voltages were complex numbers.
To simplify the computation,we analyze aDCsystem in this section,where all voltages
are real-valued [13]. Assume that there are n nodes, associated with the unknown real-
valued voltages x̃1, . . . , x̃n . The power is measured at each node i ∈ {1, . . . , n} and
is denoted as p̃i , which can be calculated according to the formula:

pi (x̃) =
∑

j∈N (i)

x̃i
(

x̃i − x̃ j
) 1

ri j
= p̃i ,

where N (i) ⊂ {1, . . . , n} is the set of nodes adjacent to node i and ri j = r ji > 0 is
the resistance of the line between nodes i and j . The least-squares formulation of the
voltage recovery problem consists in minimization over the set v ∈ BR(1) of

f (x) =
n
∑

i=1

(pi (x) − p̃i )
2

which is a special case of the function (1). Let R be a number such that 2xi > xn
for all i ∈ {1, . . . , n − 1}. In this subsection, we will demonstrate the application of

1 github.com/igormolybog/matrix-sense-global.
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our results on a specific topology of the network, although as discussed later on, our
conclusion applies to any acyclic topology.

Suppose that the network possesses a star topology, meaning that each node i ∈
{1, . . . , n−1} is connected to only one node— namely, node n—and no others. This
means that N (i) = {n} if i �= n and N (n) = {1, . . . , n − 1}. As a result, the power
measurements in this particular case can be written as

pi (x) = xi (xi − xn)
1

rin
, i ∈ {1, . . . , n − 1}

pn(x) =
n−1
∑

j=1

xn(xn − x j )
1

r jn

which generate a particular structure for the sensing operator. Solving aivec (xxT −
x̃ x̃ T ) = pi for ai , we conclude that the rows a1, . . . , an of A can be written as

ai = ξivec (Eii − Eni ), i ∈ {1, . . . , n − 1}

an = −vec

⎛

⎝ξn Enn +
n−1
∑

j=1

ξ j E jn

⎞

⎠

where Ei j is an n × n matrix with (i, j)-th entry equal to 1 and all other entries
equal to zero, and where ξi = 1

rin
= 1

rni
> 0 for i �= n and ξn = −∑n−1

j=1 ξ j . The
corresponding kernel matrix is given by

Hstar (ξ) := H = ATA =
n
∑

i=1

aTi ai

As a result, H has a structured sparsity pattern: it is a block-diagonal matrix with n
blocks M1, . . . , Mn ∈ S

n such that the first n − 1 blocks each have only four nonzero
entries:

Mi = ξ2i [Eii − Ein − Eni + Enn] = ξ2i [en − ei ][en − ei ]T , i ∈ {1, . . . , n − 1}

where ei is the i-th column of the n × n identity matrix. The last block of H is a full
matrix:

Mn = ξξ T

The sparsity pattern of H is visualized for n = 4 in Fig. 2. The matrix H = Hstar (ξ)

also has a low-dimensional structure: the 4(n − 1)+ n2 nonzero entries ofH quadrat-
ically depend on only n − 1 parameters ξ1, . . . , ξn−1. In Sect. 6, we will demonstrate
how linearization of the structure can be applied, while here we provide an analyti-
cal proof that deals with the nonlinear low-dimensional structure directly. This proof
sheds light on some of the ideas behind Theorem 2.
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Fig. 2 Sparsity pattern of the
matrix H corresponding to a DC
power system with a star
topology consisting of four
buses
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The 2-RIP constant of the sensing operators that correspond to star topology power
networks does not exist due to their sparsity. Therefore, Theorem 1 cannot be applied.
Nevertheless, we will show that the non-convex voltage recovery problem on a system
with a star topology possesses no spurious local minima.

Proposition 3 Consider the problem

{

minimize
x∈B̄1/3(1)

fz,A(x)
∣
∣
∣H = Hstar (ξ); z ∈ B̄1/3(1) and ξ T p(z) �= 0

}

,

or equivalently, (ProblemKSP) under the additional constraint ξ T p(z) �= 0. No
instance of this problem has a spurious second-order critical point.

Proof Since R < 1
3 , it holds that 2xi > xn and 2zi > zn for all i ∈ {1, . . . , n}. We

are interested in the landscape of the function

h(x) = vec (xxT − zzT )THvec (xxT − zzT )

=
n
∑

i=1

(xi x − zi z)
T Mi (xi x − zi z)

To find the first and second derivatives, consider

h(x + u) =
n
∑

i=1

(xi x − zi z + xi u + ui x + uiu)T

Mi (xi x − zi z + xiu + ui x + uiu)

= h(x) + 2
n
∑

i=1

(xiu + ui x)
T Mi (xi x − zi z)
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+
n
∑

i=1

(xiu + ui x)
T Mi (xiu + ui x)

+2
n
∑

i=1

(uiu)T Mi (xi x − zi z) + o
(

|u|2
)

Selecting the term that is linear in u, the gradient takes the form

∇xh(x) = 2
n
∑

i=1

[

xi Mi (xi x − zi z) + Tr
[

xT Mi (xi x − zi z)
]

ei
]

= 2
n−1
∑

i=1

[

ξ2i xi (en − ei )(en − ei )
T (xi x − zi z)

+Tr
[

xT (en − ei )(en − ei )
T (xi x − zi z)

]

ei

+2xiξξ T (xi x − zi z) + Tr
[

xT ξξ T (xi x − zi z)
]

ei
]

which can be written in the compact form

∇xh(x) = B(x)[p(x) − p(z)]

where the (i, j)-th component of the n × n matrix B(x) is

Bi j =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ξi (2xi − xn) if i = j, i �= n
∑n−1

s=1 ξi (2xn − xs) if i = j = n

−ξi xi if i �= j, i = n or i �= j, j = n

0 otherwise

and p(x) is a vector with its i-th component eqal to pi (x). If B(x) is non-singular at a
point x , then x is a first-order critical point of h(x) in the open ball B̄1/3(1) if and only
if p(x) − p(z) = A (xxT − zzT ) = 0, which implies that it is a global minimum.
Therefore, it is essential to identify all points x such that det(B) = 0.

With a slight abuse of notation, we denote B(x) with the shorthand notation B. Let
βn denote the (n, n)-th entry of B, which is equal to

∑n−1
s=1 ξs(2xn − xs). Represent

the matrix B as a block matrix: B =
[

B ′ bT
b B ′′

]

with the scalar B ′ = ξ1(2x1 − xn) and

the (n − 1)-dimensional vector bT = [0, . . . , 0,−ξ1x1]. Since x ∈ B̄1/3(1), we have
B ′ �= 0. One can write:

det(B) = 0 ⇐⇒ det(B ′′ − B ′−1bbT ) = 0
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The new (n − 1) × (n − 1) matrix B ′′ − B ′−1bbT is equal to B ′′ in all components
but its (n − 1, n − 1)-th entry, which changes to

βn−1 = −ξ1
x1xn

2x1 − xn
+ βn

= −ξ1
x1xn

2x1 − xn
+ ξ1(2xn − x1) +

n−1
∑

s=2

ξs(2xn − xs)

= −2ξ1
(x1 − xn)2

2x1 − xn
+

n−1
∑

j=2

ξs(2xn − xs)

Repeating the above matrix reduction argument n − 1 times yields that det(B) = 0 if
and only if β1 = 0, where

β1 = −2
n−1
∑

i=1

ξi
(xi − xn)2

2xi − xn

Since 2xi − xn > 0, we conclude that β1 = 0 if and only if x1 = · · · = xn . Therefore,
there are no spurious solutions outside the set {x : x1 = · · · = xn}. To study this set,
we derive the Hessian of h(x) by extracting from h(x + u) the term that is quadratic
in u :

∇2
xxh(x) =

n
∑

i=1

[

x2i Mi + xi
(

ei x
T Mi + Mi xe

T
i

)

+ ei x
T Mi xe

T
i

+ Mi (xi x − zi z) e
T
i + ei (xi x − zi z)

T Mi

]

and substitute x1 = · · · = xn = x ′ or x = x ′1. At the same time, we substitute Mi =
ξ2i [en − ei ][en − ei ]T and Mn = ξξ T , and note that (en − ei )T 1 = 1T (en − ei ) = 0
and ξ T 1 = 1T ξ = 0 by construction. After simplification, we obtain that

∇2
xxh(x)

∣
∣
x=x ′1 = x ′2

[
n−1
∑

i=1

ξ2i (en − ei )(en − ei )
T + ξξ T −

(

ξeTn + enξ
T
)

znz
T ξ

−
n−1
∑

i=1

ξ2i

(

(en − ei )e
T
i + ei (en − ei )

T
)

zi (zn − zi )

]

Consider the quadratic form q(s, t) = [s . . . s t]∇2
xxh(x)

∣
∣
x=x ′1[s . . . s t]T ,where

[s . . . s t] ∈ R
n . One can write:
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q(s, t) =
n−1
∑

i=1

ξ2i (t − s)2 +
(
n−1
∑

i=1

sξi + tξn

)2

−2t zn

(
n−1
∑

i=1

sξi + tξn

)(
n−1
∑

i=1

ziξi + znξn

)

−2s(t − s)
n−1
∑

i=1

ξ2i zi (zn − zi )

= (t − s)2

⎡

⎣

n−1
∑

i=1

ξ2i +
(
n−1
∑

i=1

ξi

)2⎤

⎦

+2(t − s)

[

t

(
n−1
∑

i=1

ξi

)(
n−1
∑

i=1

ξi zn(zi − zn)

)

− s

(
n−1
∑

i=1

ξ2i zi (zn − zi )

)]

= c1(t − s)2 + 2(t − s)(c2t − c3s)

= (c1 + 2c2)t
2 − 2(c1 + c2 + c3)st + (c1 + 2c3)s

2

where c1, c2 and c3 are some constants introduced to shorten the expression. If q(s, t)
takes negative values, then ∇2

xxh(x)
∣
∣
x=x ′1 has a negative eigenvalue, and therefore

x = x ′1 cannot be a spurious second-order critical point.
Now, consider the polynomials q(1, t) and q(s, 1). Suppose that

∑n−1
i=1 ξ2i ≥

(
∑n−1

i=1 ξi

)2
and consider any point z ∈ B̄1/3(1). Since |zn(zi − zn)| ≤ 4

3 · 2
3 = 8

9 , it

must hold that

c1 + 2c2 >

n−1
∑

i=1

ξ2i +
(
n−1
∑

i=1

ξi

)2

− 2
8

9

(
n−1
∑

i=1

ξi

)2

=
n−1
∑

i=1

ξ2i − 6

9

(
n−1
∑

i=1

ξi

)2

≥ 0

Thus, q(1, t) is a polynomial of order 2 with respect to t with a positive leading term.

Suppose that
∑n−1

i=1 ξ2i <
(
∑n−1

i=1 ξi

)2
. Similarly,

c1 + 2c3 >

n−1
∑

i=1

ξ2i +
(
n−1
∑

i=1

ξi

)2

− 2
8

9

n−1
∑

i=1

ξ2i =
(
n−1
∑

i=1

ξi

)2

− 6

9

n−1
∑

i=1

ξ2i ≥ 0

and thus q(s, 1) is a polynomial of order 2 with respect to s with a positive leading
term. At least one of the polynomials q(1, t) or q(s, 1) has a positive leading term.
Both q(1, t) and q(s, 1) have the same determinant and thus the argument to be made
below can be made for any of them. Without loss of generality, assume that q(1, t)
has a positive leading term and takes negative values if and only if its determinant is
strictly positive:

4(c1 + c2 + c3)
2 − 4(c1 + 2c2)(c1 + 2c3) > 0.
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It is positive if and only if (c2 − c3)2 > 0, which is equivalent to c2 �= c3. After
substituting c2 = (

∑n−1
i=1 ξi )(

∑n−1
i=1 ξi zn(zi − zn)) = −(

∑n−1
i=1 ξi )pn(z) and c3 =

(
∑n−1

i=1 ξ2i zi (zn − zi )) = −∑n−1
i=1 ξi pi (z), one can guarantee that ∇2

xxh(x)
∣
∣
x=x ′1 has

a negative eigenvalue unless
ξ T p(z) = 0.

Otherwise, q(1, t) only reaches zero at t = 1 and never crosses it. ��

The technique of using the properties of the Schur complement to reduce the
dimension of a matrix one by one can be applied to any arbitrary network with an
acyclic topology. For any such network, the gradient ∇xh(x) also takes the form
∇xh(x) = B[p(x) − p(z)], but with a different matrix B. Applying elimination of
the rows and columns of B that correspond to the leaves first, then to the first layer of
parent nodes, then to the second layer of parent nodes and so forth leads to a similar
result on the location of first-order critical points. Thus, in a similar way, the con-
clusion of Proposition 3 can be proven for any arbitrary acyclic network, but for a
different value of the radius R that may not be analytically calculable. However, the
proof is not generalizable to networks with cycles. The proof of Proposition 3 was
based on analyzing the first- and second-order optimality conditions and exploiting the
properties of the operator A that benefits from both sparsity and a low-dimensional
structure. The ideas used in the proof help the reader understand Theorem 2. Since
Proposition 3 does not apply to networks with cycles, one may instead use Theorem 2
to numerically evaluate the inexistence of spurious solutions for any particular cyclic
network. This will be carried out in Sect. 6.

5 Combining KSP with RIP

After fixing the hyperparameters ω ∈ R
n×r and R ∈ R ∪ {+∞} together with the

kernel structure of the sensing operators and the RIP constant, we can state the problem
under study in this section as follows:

{

minimize
x∈BR(ω)

fz,A (x)
∣
∣
∣ A satisfies δ2r -RIP and T -KSP, z ∈ BR(ω)

}

,

(ProblemKSP+RIP)

Note that (ProblemKSP+RIP) consists in the minimization of a class of functions fz,A
that correspond to some point z ∈ BR(ω) and some operator A that satisfies T -
KSP and δ2r -RIP simultaneously. This is a generalization of both (ProblemRIP) and
(ProblemKSP). For (ProblemKSP+RIP), we provide necessary and sufficient conditions
for having no spurious second-order critical point, and consequently no spurious local
minimum.
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Theorem 3 (KSP+RIP necessary and sufficient conditions) For all instances of
(ProblemKSP+RIP), there are no spurious second-order critical points if

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ2r < min
x∈BR(ω),z∈BR(ω)

xxT �=zzT

OP (x, z;T )

δ2r < min
x∈∂BR(ω),z∈BR(ω)

xxT �=zzT

O
∂B
P (x, z;T , ω)

(14a)

(14b)

and only if
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ2r < min
x∈BR(ω),z∈BR(ω)

xxT �=zzT

O(x, z;T )

δ2r < min
x∈∂BR(ω),z∈BR(ω)

xxT �=zzT

O
∂B(x, z;T , ω)

(15a)

(15b)

Following the results of Zhang et al. [38], the necessary and sufficient conditions
coincide for the trivial structure operator T ≡ 0 and R = +∞.

5.1 Robustness

Consider the scenario where the measurements are corrupted with independent and
identically distributed Gaussian noise. More precisely, we assume that the measure-
ment vector b is corrupted by an additive noise that can be written asA (V ) for some
random matrix V that is probably full rank (since A (·) is from the high-dimensional
space Sn to the presumably low-dimensional space Rm , we just need the mild surjec-
tivity assumption). In this section, we show that the resulting recovery error can be
bounded with high probability. For simplicity, we consider the case R = +∞, but a
similar argument can be used to analyze the case with a finite radius.

Theorem 4 Consider (ProblemKSP+RIP) with R = +∞ for which the condition (14a)
holds. Let V ∈ S

n be a random matrix of arbitrary rank. Define the noisy recovery
loss

g(x) =
∥
∥
∥A (xxT − zzT + V )

∥
∥
∥ .

For every p ∈ (0, 1) and ε > 0, there exists σ = σ(p, ε;A , z) > 0 such that for
V ∼ N (0, σ 2 I ), with probability at least p, every second-order critical point x
 of
g(x) satisfies ‖x
x
T − zzT ‖ < ε

Proof Expand the recovery loss:

g(x) =
〈

xxT − zzT + V , (xxT − zzT + V )
〉

= f (x) +
〈

V ,H (xxT − zzT ) + xxT − zzT
〉

+ 〈V ,H (V )〉

We outline the proof below:
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– Split Rn into four regions according to the behavior of f (x) associated with the
noiseless scenario:

1. ε-neighborhood of the second-order critical points of f (x)
2. some neighborhood of the remaining first-order critical points of f (x)
3. inner compact region where the value of ‖∇ f ‖ is bounded by some positive

constants from below and from above
4. Outer region, where ‖∇ f ‖ is large;

– Show the existence of σ such that there are no second-order critical points of g(x)
in regions 2, 3 and 4 with high probability;

– Conclude that the only region that contains the second-order critical points of g(x)
with high probability is region 1, which coincides with the set {x : ‖xxT − zzT ‖ <

ε}.
The illustration of the regions used in the proof can be found in Fig. 3. To prove
formally, first calculate the gradient

∇x g(x) = ∇x f (x) + ∇x

〈

V ,H (xxT ) + xxT
〉

For i ∈ {1, . . . , n} and j ∈ {1, . . . , r}, one can write:

∂

∂xi j
〈V , xxT 〉 =

〈

V , ei x
T
j + x j e

T
i

〉

= 2eTi V x j

where ei is the i-th column of the n × n identity matrix. Moreover,

∂

∂xi j
〈V ,H (xxT )〉 = 〈V ,H (ei x

T
j + x j e

T
i )〉

The Hessian can also be written as

∇2
xx g(x) = ∇2

xx f (x) + ∇2
xx

〈

V ,H
(

xxT
)

+ xxT
〉

Similarly, for i ′ ∈ {1, . . . , n} and j ′ ∈ {1, . . . , r}, we have

∂2

∂xi j∂xi ′ j ′

〈

V , xxT
〉

= 2δ j j ′ 〈V , Eii ′ 〉

where δ j j ′ ∈ R is defined as δ j j ′ =
{

1 if j = j ′

0 otherwise,
and Eii ′ ∈ R

n×n is a matrix

whose (i, i ′)-th entry is 1 and other entries are 0. Similarly,

∂2

∂xi j∂xi ′ j ′

〈

V ,H (xxT )
〉

= δ j j ′ 〈V ,H (Eii ′ + Ei ′i )〉
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By assumption, there exists γ > 0 such that 1−δ2r
γ

‖xxT −zzT ‖2F ≤ ‖A (xxT −zzT )‖2F
for all x . This implies that f (x) is a coercive functions of x for any given A and z.
Moreover, ‖∇x f (x)‖ is also a coercive function. To show this, using the notation from
Sect. 4, consider

〈
x

‖x‖F ,∇x f (x)

〉

= 2

‖x‖F 〈vec (x),XTHe〉

= 2

‖x‖F 〈Xvec (x),He〉

= 2

‖x‖F 〈xxT + xxT ,H (xxT − zzT )〉

= 4

‖x‖F [ f (x) + 〈zzT ,H (xxT − zzT )〉]

Knowing that f (x) grows as fast as ‖xxT ‖2F = ‖x‖4F and −〈zzT ,H (xxT − zzT )〉
grows at most as fast as ‖x‖2F ,we conclude that 〈 x

‖x‖F ,∇x f (x)〉 → ∞ as ‖x‖ → ∞,

which implies that ‖∇x f (x)‖ → ∞ as ‖x‖ → ∞.

For an arbitrary K ′ > 0, define the set CK ′ = {x | f (x) ≤ K ′, ‖∇x f (x)‖ ≤ K ′}.
It is compact due to the coerciveness. The difference ∇x g(x) − ∇x f (x) is linear in
both V and x, while ∇x f (x) is cubic in x . Noting that ‖∇x g(x)‖ ≥ ‖∇x f (x)‖ −
‖∇x f (x) − ∇x g(x)‖, one can conclude that ‖∇x g(x)‖ is also a coercive function.
Therefore, for any pK ∈ (0, 1) there exist K and σ = σK such that ‖∇x g(x)‖ > 0
over Rn\CK with probability pK . Select pK = 3

√
p and fix the corresponding K and

σK .

The set O f o of first-order critical points of f (x) is closed due to the closed graph
theorem. Moreover, it is bounded due to coercievness of f (x), and thus compact
even when R = +∞. Denote the set of second-order critical points of f (x) with
Omin ⊆ O f o. It coincideswith the set of globalminimizers of f (x) since the condition
(14a) holds and Theorem 3 can be utilized. DefineUmin = ∪x∈Omin B̄ε(x), and the set
Orest = O f o\Umin that is compact. Note that the minimum eigenvalue of ∇2

xx f (x)
is strictly negative for every x ∈ Orest . Since minimum eigenvalue is a continious
function, there exists λ̄ < 0 such that minx∈Orest λmin(∇2

xx f (x)) = λ̄. By continuity

of ∇2
xx f (x) with respect to x, there exists ξ > 0 such that λmin(∇2

xx f (x)) < λ̄
2 for

all x ∈ Urest = ∪x ′∈Orest B̄ξ (x ′). The difference of Hessians ∇2
xx g(x) − ∇2

xx f (x) is
linear in V and constant in x . Therefore, for any ψ > 0 and pψ ∈ (0, 1), there exists
σψ such that with probability pψ, it holds that ‖∇2

xx g(x) − ∇2
xx f (x)‖F < ψ for all

x ∈ CK . Select ψ = λ̄
3 and pψ = 3

√
p, and fix the corresponding σψ. Notice that

under σ ≤ σψ, with probability pψ there are no second-order critical points of g(x)
in Urest .

Denote U f o = Urest ∪ Umin and notice that CK \U f o is a compact set that con-
tains no first-order critical points of f (x). Therefore, there exists ρ > 0 such that
‖∇x f (x)‖ > ρ for all x ∈ CK \U f o. Due to the continuity of ∇x g(x) − ∇x f (x), for
any φ > 0 and pφ ∈ (0, 1), there exists σ = σφ such that with probability pφ it holds
that ‖∇x g(x) − ∇x f (x)‖F < φ for all x ∈ CK . Select φ = ρ and pφ = 3

√
p, and
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CK

Omin

Orest

Umin

Urest

Fig. 3 Schematic of the domain of the function f (x) with highlighted regions. The grey area denotes the
compact region CK . The bold lines denote the set of first-order critical points named O f o whose subset
shown in red corresponds to the set of global minimizers named Omin , while the blue part corresponds to
Orest . The area countered by the red shaded line is the ε-neighborhood of Omin , namely Umin , while the
area countered by the blue shaded line is the ξ -neighborhood of Orest , namely Urest . The proof finds that
with high probability there are no second-order critical points of g(x) outside of CK (outer region 4), or
inside Urest (region 2), or inside CK \[Urest ∪ Umin ]. Therefore, all such points must be located inside
Umin . (colour figure online)

fix the corresponding σφ. Notice that under σ ≤ σφ, with probability pφ there are no
second-order critical points of g(x) in CK \U f o.

To conclude the proof, select σ < min{σK , σψ, σφ} and observe that with proba-
bility at least pK × pψ × pφ = p there are no second-order critical points of g(x) in
the set Rn\Umin = [Rn\CK ] ∪Urest ∪ [CK \U f o]. ��

5.2 Sparse structure and normalization

Due to Theorem 1 for the rank-1 case, the instances of (ProblemKSP+RIP) have no
spurious solutions withT ≡ 0 as long as δ2 is upper bounded by 1

2 . In this subsection,
we are concerned with the question of how much sparsity can impact the best bound
on RIP that certifies global convergence. Formally, we set W ≡ 0 and T ≡ S and
find a tighter upper bound on δ2. After enforcing sparsity, it is natural to expect that
the bound grows and becomes less restrictive. However, this turns out not to be the
case.

Let n = 2 and r = 1, and consider the smallest sparsity pattern possible for
H = A TA � 0. It consists exclusively of elements (i, i), and thus enforces H to
be diagonal. Consider the point x with respect to the instance of the problem given by
z and A as in the example below:
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Example 1 Assume that

x = (1, 1); z = (
√
2,−√

2); A = diag(
√
3, 1, 1,

√
3)

Then, x is spurious for fz,A since it satisfies the second-order necessary conditions:

∇ fz,A(x) = 0, ∇2 fz,A(x) = 16

[

1 1
1 1

]

� 0

which makes it a spurious second-order critical point (note that xxT �= zzT ). Notice
thatH = A TA is indeeddiagonal.Moreover, for all X ∈ S

2, the operatorA satisfies

the tight bound ‖X‖2F ≤ ‖A (X)‖2 = ‖
[√

3 1
1

√
3

]

◦ X‖ ≤ 3‖X‖2F . Therefore,

the largest number δ2 for this instance is equal to 1/2, which coincides with the
upper bound for unstructured problems. Somewhat counter-intuitively, the tight bound
established in Zhang et al. [38,39] holds even when a very restrictive sparsity pattern
of the kernel operator is enforced. Nevertheless, for an arbitrary low-dimensional
structure W , a tighter sparsity constraint entails a less restrictive bound on the RIP
constant as discussed below.

Proposition 4 If the sparsity pattern S has a sub-pattern S′ meaning that S′ ⊂ S, then
O(x, z;W ,S ′) ≤ O(x, z;W ,S ) for all x, y ∈ R

n×r . Thus, the necessary bound
on the RIP constant forH with S′ is not more restrictive than the bound forH with S.

In other words, a more restrictive assumption on the sparsity of the kernel operator can
only push the upper bound on the RIP constant higher up. Consequently, Example 1
shows that there is no sparsity pattern of cardinality greater than 3 that can itself
compensate the lack of isometry. Note that the example is given for the case n = 2,
but there is a straightforward extension to an arbitrary n by adding zero components
to x and z. It is common in practice to normalize the rows of the sensing matrix
before proceeding to recovery. In the context of power systems, it is expressed as

xT Mi x → xT Mi x‖Mi‖F . For Example 1, after normalization, A turns into the identity.
The corresponding instance of the problem is known to have no spurious critical
points. This illustrates how normalization helps to improve the isometry property of
the sensing operator and removes the spurious second-order critical points out of the
corresponding instance of the problem. Normalization in this case can be regarded as
inducing structure on top of sparsity.

6 Numerical results

It is desirable to numerically study the non-convex matrix recovery in problems with a
structured sensing operator. The objective is to show how the general theory developed
in Sect. 3 can be applied to a real-world problem, namely the power system state
estimation discussed in Sect. 2. In general, optimization problems in (14) and (15) are
non-convex. Thus, we propose to use Bayessian optimization [9] in order to obtain a
numerical estimation of their solutions. We have empirically observed that Bayesian
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Fig. 4 The outcome of the
minimization of OP (x, z) and
O

∂B
P (x, z) with the Bayessian

optimization toolbox. The
resulting value is the
approximation of the right-hand
side of the inequalities in (14)
and can be used in Theorem 3 to
estimate the lower bound on the
sufficient RIP constant for
global optimality. The values of
the radius of the domain ball
BR(ω) are on the x-axis, and the
corresponding approximations
of minOP (x, z) and
minO∂B

P (x, z) are on the y-axis.
The red line depicts the lowest
observed value of the function
OP (x, z) and the blue dashed
line depicts the minimum value
of the function O

∂B
P (x, z)

optimization tends to obtain the same optimal solution to this problem much faster
than random shooting or cross-entropy.

6.1 Power systems

In this section, we focus our attention on three networks named case9, case14
and case30 that are provided in the MATPOWER package [44]. For case9, the
number of buses is n = 9 and there are m = 63 possible power measurements that
can be collected, while we have n = 14 and m = 98 for case14 and have n = 30
and m = 210 for case30. We denote the corresponding sensing operators withA 9,

A 14 and A 30. Both matrices A30 and H30 are visualized in Fig. 1.
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We linearize the low-dimensional structure that was discussed in Sect. 4.3. Rep-
etition of the nonzero entries of H· (after some scaling) is considered as a form of
low-dimensional structure, instead of the nonlinear dependence on the admittance.
For example, if the entries (i, j) and (i ′, j ′) of H 30 are equal, then W 30 is con-
structed to be such that its kernel consists of matrices, for which the entries (i, j) and
(i ′, j ′) are equal.

Based on this property, we form the linear operators T 9, T 14 and T 30. All of the
matrices in their kernel subspace are rank deficient. In this case, Theorem 3 can only
provide us with the trivial upper bound on the RIP: δ2 < 1. However, this operator
will allow us to use Theorem 3 to find a less conservative bound on RIP to certify
the inexistence of spurious solutions for the structured mapping. Although the power
system state estimation aims to find a complex vector, it is straightforward to verify
that 〈a + √−1b,H(a + √−1b)〉 = 〈a,Ha〉 + 〈b,−Hb〉 for any real vectors a and
b as well as a real symmetric matrix H. Therefore, it is enough to consider (14) over
X = Z = R

n .
The purpose of the experiment is to study the dependence of δ2r that is sufficient

for the absence of spurious solutions in (ProblemKSP+RIP) on the radius R of the ball
domain. Intuitively, one would expect the dependence to bemonotonically decreasing,
since the larger the domain is, the more solutions can appear there with some being
spurious. However, this is not exactly what can be observed. Figure 4 shows the right-
hand side of the inequalities in (14) from Theorem 3 for a range of values of R for
three structure operators: T 9, T 14 and T 30. In these experiments, the vector ω has
the unit entries. The red line provides a guarantee on no spurious solutions in the
interior of the domain, while the blue dashed line takes care of the spurious solutions
on the boundary. Indeed, the red curve decreases monotonically and converges to a
value around 0.64 for all of the experiments, while the blue dashed line decreases
to 0.5 and recovers back to the same value afterwards. It turns out that 0.64 is the
bound on δ2r for R = +∞ in each of the cases as well. This interesting behavior can
be explained qualitatively. Consider a toy example with three cases in Fig. 5, where
the domain grows from Case I to Case III. There are no spurious solutions in case
I, whereas one appears in case II and disappears in case III. Notice that the spurious
solution can only appear on the boundary, which motivates the steady behavior of
the red curve in Fig. 4. Recall that the threshold 0.5 is valid for the trivial structure
operator T ≡ 0 and R = +∞ and the blue curve never goes below it. Therefore, the
constructed conditions of the absence of spurious local optimality are strictly superior
to the previously known bound.

The above simulations were based on the networks provided in the package MAT-
POWER 7.0b1 [44]. Keeping the structure of a network, we set the parameters of
the lines equal to each other to be able to better visualize the operator H . All of
the presented simulations were performed using the MATLAB bayesopt toolbox, and
the MATLAB modeling toolbox CVX [14,15] with SDPT3 [34,35] as the underlying
solver.
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Fig. 5 Illustration for the local solution on the boundary. Three cases are considered, each marked with
a different color. The colored intervals along the x-axis depict the domain in each of the cases, while the
colored crosses denote the local solutions (colour figure online)

6.2 Synthetic data

In this subsection, we present numerical studies of the matrix recovery problem for
structured sensing operators obtained from random ensembles. For simplicity, we set
R = +∞. In this section, the smallest value of δr such that A satisfies the δr -RIP
property is referred to as the best RIP constant of the map A .

Recall that the structure operator is defined by two operators stack together: T =
(S ,W ).Here,W captures the underlying structure that is not captured by the sparsity
operatorS .We consider the same form of this operator as in the experiment on power
systems data. Given the matrix representation H of the kernel operator, denote the
unique nonzero values in this matrix with the scalars h1, . . . , hdW . It means that H
is representable in the form H = h1E1 + · · · + hdW EdW , where Ei is a matrix of
the same size as H with 0 and 1 entries. The operator W that we use in this section is
any operator that has the subspace {β1E1 + . . . + βdW EdW |β1, · · · , βdW ∈ R} as its
kernel.

We introduce a distribution RS(p0,U ) over the space of structure operators by
describing the sampling scheme below. First, we generate the measurement structure
matrix Ast such that each of its components takes value 0 with probability p0 and
any of the values 1, . . . ,U with the equal probability of 1−p0

U . We then form the
kernel structure matrix as Hst = AT

stAst and construct the sparsity operator S and
the extra structure operator W as discussed before. The obtained structure operator
T is such that the operator represented with Ast satisfies the T -KSP. Note that the
average sparsity of Ast is p0 and the number of unique nonzero values is U with high
probability, which implies that p0 is a parameter qualifying the amount of sparsity
structure in the problem, and U is a parameter qualifying the amount of additional
structure.

Figure 6 depicts the estimated sufficient RIP to guarantee the existence of no spu-
rious second-order critical points in random problems with different values for the
sparsity (p0) and the unique counter (U ). The sufficient RIP is obtained from Theo-
rem 3 by imposing the KSP. Observe that the sparsity and the additional structure (the
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Fig. 6 The average of sufficient best RIP constant obtained from the developed analytic framework (Theo-
rem 3) for random structures generated from the distribution RS(p0,U ) (each colored line stands for one
specific value of p0), compared with the baseline method from Theorem 1 (shown as black and dashed).
Shaded area represents the standard deviation window (colour figure online)

number of unique nonzero values in the measurement matrix in this particular case)
both have a significant impact on the sufficient RIP. Note that a higher p0 means more
sparsity and a lower U means more extra structure. Although it was observed theo-
retically that sparsity alone could not guarantee an increase in the sufficient best RIP
constant, it appears to be an important characteristic when combined with the addi-
tional structure. Even for structures with a considerably low sparsity (0.85), the tight
extra structure (U = 2) has the sufficient best RIP of 1, which is a counter-intuitive
result. The sufficient RIP seems to decay exponentially as we relax extra structure by
increasing U , but with different bases for different p0. This behavior coincides with
the one predicted in Proposition 4. If the goal is to make the RIP higher than a certain
threshold, the amount of extra structure needed to achieve this reduces dramatically
with the increase of the sparsity structure.

The experiment demonstrates that our method can be successfully applied to matrix
sensing with randomly generated structure. The key takeaway from this experiment is
that our method captures the trade-off between the sparsity and the low-dimensional
structural properties of a given mapping. It shows that imposing restrictions on struc-
ture significantly affects the sufficient RIP, which leads to certifying the absence of
spurious solutions under far less restrictive requirements (by improving the previous
RIP bound 0.5 for arbitrary mappings).

7 Conclusion

The paper is concerned with the theoretical explanation of the recent empirical suc-
cess of solving the low-rank matrix sensing problem via nonconvex optimization.
It is known that under an RIP assumption on the sensing operator, the optimization
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problem has no spurious local minima. This assumption is too strong for real-world
applications where the amount of data cannot be sufficiently high. Aside from that, it
does not account for the prior knowledge about the solution that is available in dif-
ferent applications. We develop the notion of Kernel structure property (KSP) based
on linear matrix inequalities, which can be used instead or combined with RIP in this
context. KSP explains how the inherent structure of an operator contributes to the
inexistence of spurious local minima over the entire space or a given ball. As a special
case, we study sparse sensing operators that have a low-dimensional representation.
Using KSP, we obtain novel necessary and sufficient conditions for having no spurious
solutions over a compact set for the matrix sensing problem, and demonstrate them in
analytical and numerical studies.

Acknowledgements This work was supported by grants from ARO, ONR, AFOSR, and NSF.

Appendix

In this part, we will prove Theorems 2 and 3 via showing the nonexistence of a
counterexample. Specifically, givenT , for a point x and a parameter value z, we aim
to find a value δ

x,z
2r for which the following claim holds:

“There exists A that satisfies T -KSP and δ2r -RIP such that x
is a second-order critical point of fz,A if and only if δ2r > δ

x,z
2r ”

X is equal to BR(ω) in the notation from Sect. 1. The conditions for a point x to
be a second-order critical point of a function f over BR(ω) can be expressed in the
compact form:

{

∇ f (x) = 0,

∇2 f (x) � 0
if x /∈ ∂BR(ω) or

{

∃ μ ≤ 0 : ∇ f (x) = μ(x − ω),

Px−ω∇2 f (x)PT
x−ω � 0

if x ∈ ∂BR(ω)

where Px−ω ∈ R
(nr−1)×nr is the matrix of orthogonal projection onto the subspace

orthogonal to x − ω. With that in mind, we construct the two functions: δ(x, z) and
∂δ(x, z) via the following optimization procedures:

δ(x, z) ≡ minimum
δ2r∈R,A

δ2r

subject to Lx,z(A
TA ) = 0

Mx,z(A
TA ) � 0

T (A TA ) = 0

A satisfies δ2r -RIP.
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∂δ(x, z) ≡ minimum
δ2r ,μ∈R,μ≥0,A

δ2r

subject to Lx,z(A
TA ) = −μ(x − ω)

Px−ωMx,z(A
TA )PT

x−ω � 0

T (A TA ) = 0

A satisfies δ2r -RIP.

In each of the problems, the first two constraints represent the requirement that x is a
second-order critical point of fz,A , the third constraint takes care of the KSP, and the
last one is the RIP. It is straightforward to verify that min{δ, ∂δ} takes the value of the
desired δ

x,z
2r . Minimization of δ

x,z
2r over {x ∈ X , z ∈ Z : xxT �= zzT } gives δ


2r such
that (ProblemKSP+RIP) with δ2r has an instance with a spurious second-order critical
point if and only if δ2r > δ


2r .

Suppose that we are able to find δ
x,z
2r and δ

x,z
2r such that δ

x,z
2r ≤ δ

x,z
2r ≤ δ

x,z
2r for all

x ∈ X , z ∈ Z . Then,

δ
 = min
x∈X ,z∈Z
xxT �=zzT

δ
x,z
2r ≤ min

x∈X ,z∈Z
xxT �=zzT

δ
x,z
2r ≤ min

x∈X ,z∈Z
xxT �=zzT

δ
x,z
2r = δ
.

This inequality shows that δ2r ≥ δ

2r is a sufficient, and δ2r ≤ δ


2r is a nec-
essary condition for the absence of spurious second-order critical points in the
instances of the problem (ProblemKSP+RIP). Now, it is desirable to show that
min{O∂B

P (x, z;T , ω),OP (x, z;T )} can serve as δ
x,z
2r , and min

{O∂B(x, z;T , ω),O(x, z;T )} can serve as δ
x,z
2r .

Lemma 4 The following statements hold all x ∈ X and z ∈ Z :

OP (x, z) ≤ δ(x, z) ≤ O(x, z) (16a)

O
∂B
P (x, z) ≤ ∂δ(x, z) ≤ O

∂B(x, z) (16b)

Proof Here, we show only inequality (16a) since (16b) can be shown similarly. Notice
that for P = orth([x, z]), the following sequence of inclusions holds:

{PY PT : Y ∈ S
rank([x z])} ⊆ {X ∈ S

n : rank (X) ≤ 2r} ⊆ S
n . (17)

Let (H ∗, δ∗) denote the minimizer of the problem corresponding to LM I (x, z). By
the defenition of the O function, for every X ∈ S

n it holds that

(1 − δ∗)‖X‖2F ≤ 〈X ,H ∗(X)〉 = ‖A ∗(X)‖2 ≤ (1 + δ∗)‖X‖2F

The decomposition H ∗ = A ∗TA ∗ exists because H ∗ � 0. If the inequality holds
for all X ∈ S

n , it must holdwhen rank(X) ≤ 2r , as noticed in (17). Thus, we conclude
that the pair (A ∗, δ∗) is feasible for the problemdefining δ(x, z).This proves the upper
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bound. Similarly, if (A∗, δ∗) is the minimizer of the problem defining δ(x, z), then by
(17), the pair (A T∗ A∗, δ∗) is feasible for the problem defining OP (x, z). This can be
verified after rewriting the last constraint of the problem defining OP in the form

(1 − δ)‖PY PT ‖2F ≤ 〈PY PT ,A T∗ A∗(PY PT )〉
= ‖A∗(PY PT )‖2 ≤ (1 + δ)‖PY PT ‖2F

for all Y ∈ S
rank(x,z). It is important to notice that the same argument works for an

arbitrary choice of P ∈ R
n×d with d ≤ 2r . ��

Theabove lemmacompletes the proof ofTheorem3.Theorem2 followsby substituting
1 in the right-hand sides of 14 and 15. Notice that the linearity of the gradient and the
Hessian with respect to the kernel operationmatrix is the only property of the objective
function that has been extensively used here. It can be exploited for generalization of
the developed theory.

Proof of Proposition 4 We write the dual of the problem defining the function O as:

maximize
y,λ,U1�0,U2�0,V�0

Tr[U1 −U2] (18a)

subject to Tr[U1 +U2] = 1, (18b)

L T
x,z(y) − M T

x,z(V ) + T T (λ) =
U1 −U2 (18c)

This problem is the exact reformulation of

maximize
y∈Rn×r ,V�0,μ∈Rt

∑d
i=1(−λi (L T

x,z(y) − M T
x,z(V ) + T T (μ)))+

∑d
i=1(+λi (L T

x,z(y) − M T
x,z(V ) + T T (μ)))+

(19)

For details, please refer to Lemma 14 in Zhang, Sojoudi, and Lavaei [38]. Both primal
and dual problems are bounded and the dual is strictly feasible. Recall vector e and
matrix X from Sect. 4, where for all u ∈ R

n×r it holds that

e = vec (xxT − zzT ), Xvec (u) = vec (xuT + uxT )

Astrictly feasible point of (18) can be chosen as y = 0, λ = 0,V = ε I ,U1 = ηI−εW
and U2 = ηI + εW , where 2η = n−2, 2W = r [vec (I )eT + evec (I )T ] −XXT , and
ε is sufficiently small to ensure that both U1 and U2 are PSD. Consequently, Slater’s
condition and strong duality hold, and thus the solution of (19) coincides withO(x, z).
If T = (S ,W ), then T T (u,T) = W T (u) + S T (T). At the same time, if S is
represented by the matrix S, then S (T) = S T (T) = S ◦ T. Let S and S′ be the
matrix representations ofS andS ′, respectively. S′ ⊂ S means that there exists SΔ

such that S = S′ ∪ SΔ and S′ = S + SΔ. It is straightforward to verify that for every
R ∈ S

n2 there exists T ∈ S
n2 such that S ◦T+ SΔ ◦R = S′ ◦T. The opposite is also

true: for every T ∈ S
n2 there exists R ∈ S

n2 such that S ◦ T + SΔ ◦ R = S′ ◦ T.
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We introduce the short-hand notation O(y, V , u) = L T
x,z(y) − M T

x,z(V ) + W T (u).

One can write:

O(x, z;W ,S ′)

= minimize
y∈Rn×r ,V�0,u∈Rl ,T∈Sn2

∑d
i=1(−λi (O(y, V , u) + S′ ◦ T))+

∑d
i=1(+λi (O(y, V , u) + S′ ◦ T))+

= minimize
y∈Rn×r ,V�0,u∈Rl ,T∈Sn2 ,R∈Sn2

∑d
i=1(−λi (O(y, V , u) + S ◦ T + SΔ ◦ R))+

∑d
i=1(+λi (O(y, V , u) + S ◦ T + SΔ ◦ R))+

≤ minimize
y∈Rn×r ,V�0,u∈Rl ,T∈Sn2

∑d
i=1(−λi (O(y, V , u) + S ◦ T + SΔ ◦ 0))+

∑d
i=1(+λi (O(y, V , u) + S ◦ T + SΔ ◦ 0))+

= O(x, z;W ,S )

This completes the proof. ��
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