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Abstract—The operation of power grids is becoming
increasingly data-centric. While the abundance of data could
improve system efficiency, it poses major reliability challenges.
In particular, state estimation aims to find the operating state of
a network from the telemetered data, but an undetected attack
on the data could lead to making wrong operational decisions
for the system and trigger a large-scale blackout. Nevertheless,
understanding the vulnerability of state estimation with regards
to cyberattacks, which is a special instance of graph-structured
quadratic sensing problem, has been hindered by the lack of
tools for studying the topological and data-analytic aspects of
networks. Algorithmic robustness is critical in extracting reliable
information from abundant but untrusted grid data. For a
large-scale power grid, we quantify, analyze, and visualize the
regions of the network that are not robust to cyberattacks in
the sense that there exists a data manipulation strategy for each
of those local regions that misleads the operator at the global
scale and yields a wrong estimation of the state of the network
at almost all buses. We also propose an optimization-based
graphical boundary defense mechanism to identify the border
of the geographical area in which data have been manipulated.
The proposed method does not allow a local attack to have a
global effect on the data analysis of the entire network, which
enhances the situational awareness of the grid, especially in the
face of adversity. The developed mathematical framework reveals
key geometric and algebraic factors that can affect algorithmic
robustness and is used to study the vulnerability of the U.S. power
grid in this paper.

Index Terms—Power system state estimation, CPS security,
robust algorithm, smart grid.

I. INTRODUCTION

HILE real-world data abound for many complex sys-
Wtems, they are often noisy and corrupted. Acquiring
reliable information from abundant but untrusted data is
key to enhancing cybersecurity for mission-critical systems
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such as the power grid [1]. Since many of these systems
are inherently network structured, data analytics cannot be
satisfactorily understood without incorporating their underly-
ing graph topologies.

For instance, consider the power system state estima-
tion (SE) problem, which constantly monitors the operating
status of the grid by filtering and fusing a large volume of
data every few minutes [2]. The significance of a functioning
SE could be inferred from the 2003 large-scale blackout,
in which the failure of SE contributed to the inability of the
operator to provide real-time diagnostic support [3]. Despite
substantial advances in algorithm design [2], [4]-[17], a major
obstacle still remains: the lack of a framework for the design
of a robust and scalable algorithm together with a realistic
evaluation of its vulnerability. Developing such a framework
is challenging for three reasons: (a) the model of a power
system is highly nonlinear and nonconvex due to physi-
cal laws, (b) computational resources required by existing
algorithms grow rapidly with the size of the system, and
(c) the number of scenarios involving adversarial conditions
is too large for an individual assessment of each scenario to
be possible (it is higher than the number of atoms in the
observable universe for systems with as low as 500 possible
attack points). These challenges have limited the scope of
previous studies to simple approximate models or conservative
methods that ignore the topology-dependent characterization
of vulnerabilities [2], [4]-[21]. Fundamentally, there is a lack
of tools to deal with untrusted data associated with nonlinear
and structured (rather than random) graphical models.

A. Graph-Structured Quadratic sensing

The graph-structured quadratic sensing problem includes SE
as a special instance and is stated as follows. Let v € C™ be
an unknown nj-dimensional complex-valued state vector. The
goal is to find v from a set of noisy quadratic measurements

Yi = v*"Miv +o; + bi, Vi€ [numl, (1)

where v* indicates the complex conjugate, M; is a known
np x np dimensional Hermitian matrix, e; denotes a zero-mean
Gaussian random noise with standard deviation o, and b;
denotes bad data that can take arbitrary values. Here, we use
the shorthand notation [n] = {1, ..., n}.

Based on the set of measurement matrices {M;}icn,]-
we construct an undirected graph G = {N, L}, where ' =
[np] and £ = [n;] represent the sets of nodes and edges,
respectively. The graph is constructed such that there is an
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edge £ = {f,t} that connects nodes f and f if there
exists a sensing matrix M; whose (f, 3 entry is nonzero,
ie, [Milfy # 0. We are interested in the case where
the measurement matrices are sparse and produce a sparse
computational graph G.

For SE, v consists of the voltages at all nodes of the network
and the measurements, such as voltage magnitudes and real
and reactive power flows over edges, are quadratic [17], [22].
The bad data b; is either zero corresponding to a correct
measurement or nonzero corresponding to cyberattack, com-
munication failure, sensor fault, or deployment of a model
(i.e., measurement matrices M) that does not match the reality
(e.g., a disconnected line is wrongly assumed to be in service
by the operator). It is not known a priori which b;’s are
nonzero. The graph G of SE coincides with or is a subset
of the physical topology of the gird, and therefore it is sparse.

B. Related work

Different types of quadratic sensing problems have been
studied in the literature, which can be cateogrized based on
the assumptions made on the measurement matrices M;’s:
(i) matrix completion [23], [24] and robust principal compo-
nent analysis [25], [26] assume that each matrix M; has a
single nonzero element at a random location; and (ii) phase
retrieval [27] assumes that each matrix M; is rank-1. Existing
approaches to solve these problems include convex relax-
ation [23], [25], [26] and iterative algorithms [24]. To obtain
guarantees of performance, a common theoretical condition is
called restricted isometry property [24]; however, this condi-
tion only applies to dense and/or random matrices M;’s, while
the measurement matrices in our study are deterministic and
structured (due to the existence of an inherent graph structure).

Due to the prominence of SE, extensive works have been
conducted in the power system community. These methods
include: (i) linearization (a.k.a., DC approximation) [5], [28];
(ii) iterative algorithms such as Newton’s method [2], [29],
feasible point pursuit [30], and iterative convex program [8];
and (iii) global optimization techniques such as particle swarm
optimization [31], and semidefinite relaxation [11], [13], [14].
However, for methods in (i), the approximation error could
be arbitrarily large when the unknown voltage vector deviates
from the nominal state around which the linearization is per-
formed. For methods in (ii), due to the nonconvexity of solving
quadratic measurement equations, the algorithms can become
trapped at meaningless local minima or saddle points, which
do not provide a useful estimate of the state. For methods
in (iii), the primary disadvantage is their heavy computational
requirement or lack of theoretical guarantees on their ability to
reject bad data. Existing literature on cyberattack and defense,
such as the false data injection attack, has also been limited
to DC approximation models [4], [6], [12], with the exception
of a few works on the nonlinear AC model [10], [32], [33].
However, it has been found that the mismatch caused by the
DC approximation of the AC grid renders either the defense
or the attack efforts futile [7], [9], [10]. Recently, a two-stage
linear/quadratic programming approach has been proposed
in [17], which advances the state of the art by providing a
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computationally efficient algorithm with theoretical guarantees
of recovering the true state. However, the proposed condition is
hard to be satisfied and its verification requires the knowledge
of the support of the bad data, which is not known a priori.

C. Gap in the Literature and Our Conftributions

One common drawback of all the existing methods is that
the theoretical certificates used to reject bad data are provided
on a scenario-by-scenario basis, where each scenario corre-
sponds to one specific set of measurements that are corrupted
by bad data. Since there are an exponential number of ways
to attack the grid data (namely, 2™ ways to decide on the
zero-nonzero pattern of b;’s in the case with m measurements),
it is impossible to make a meaningful general assessment of
the vulnerability of a grid based on a single scenario.

Another important missing factor is that the prior literature
aims to find the state of the system correctly under attacks,
while this is theoretically impossible when the data for a
sub-network of the system is strategically manipulated. In this
case, the state for that region becomes unobservable (not
recoverable) from the clean data for the rest of the system.
To elaborate, let v and ¥ be the true and the estimated states,
respectively. Let R denote the subnetwork under a cyberattack,
and vp and v\p be the voltages for the attacked region and
the remainder of the system, respectively. The existing works
aim to find ¥ such that the global metric ||v —¥|| is minimized,
i.e., global recovery, which is not possible since [[vg — Dp||
can be arbitrarily large; therefore, it is more realistic to focus
on ||lvy\g — D\g||, i.e., local recovery.

This paper is the first work to develop a mathematical
framework for local recovery. On the application impact, our
method provides the first vulnerability map for the entire U.S.
grid, as shown in Fig. 1. Based on the graphical mutual
incoherence condition to be discussed next, we can categorize
each edge as either robust or vulnerable. On this map, if the
connections between the region R and the rest of the grid are
all robust edges, then no matter how the measurements inside
the region are modified, the estimation error is only limited to
this region and cannot propagate out of the boundary formed
by the robust lines to affect the rest of the grid in terms of
lv\r — D\r|l- If even one edge in the surrounding subnetwork
is vulnerable, then it is possible for the estimation error to
propagate to the rest of the grid. Importantly, this vulnerability
map is obtained without knowing the attack locations, and
therefore it provides a universal measure that applies to an
exponential number of possible attack scenarios.

The rest of the paper is organized as follows. A two-stage
algorithm for quadratic sensing is introduced in Sec. II. Sec. III
discusses the graphical mutual incoherence conditions. The
boundary defense mechanism is introduced in Sec. IV. Sec. V
develops an important application in SE to map the geographic
vulnerabilities and how the network and optimization proper-
ties can influence vulnerability. Concluding remarks are given
in Sec. VL. All the proofs are provided in the Appendix.

Notations: We use R and C as the sets of real and complex
numbers. The cardinality |7| of a set 7 is the number of
elements in a set. The support supp(x) of a vector x is the
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Fig. 1.

Vulnerability map of the modified U.S. power grid, which consists of three AC interconnections, West, East, and ERCOT, and shows the lines that

satisfy the graphical mutual incoherence condition proposed in the study (green lines) those that do not (red lines).

set of indices of the nonzero entries of x. For a set J C [m],
we use J¢ = [m]\ J to denote its complement. The symbols
()" and ()* represent the transpose and conjugate transpose
operators. We use R(-), J(-) and Tr (-) to denote the real part,
imaginary part and trace of a scalar/matrix. The imaginary unit
is denoted as /—1. The notations /x and |x| indicate the angle
and magnitude of a complex scalar. We use Amin(A) to denote
the smallest eigenvalue of A, and A > 0 to indicate that A is
a positive semidefinite matrix. We denote x5 as the subvector
with entries of x indexed by R, Ag as the submatrix with
R rows of A, and A g5 as the submatrix with R rows and
J columns of A. We use || - || to denote the matrix infinity
norm and | - ||r to denote the Frobenius norm.

II. TwWO-STEP PIPELINE OF ROBUST QUADRATIC SENSING

This section describes a two-stage robust quadratic sensing
algorithm, where the first stage involves a conic optimization
and the second stage can be computed with a closed-form
equation. We will analyze this algorithm in Sec. III, which
will be shown to be more robust to bad data than the algorithm
in [17]. Since v, b and w are unknown, henceforth we use
these notations to show the corresponding variables and use
the notations vy, by and wy to denote their true values.

The proposed algorithms leverage the following facts:
(i) there is a physical graph associated with the measurements
that overlaps with the sparsity graph of the corresponding
mathematical problem; (ii) when there is a attack, its effect
will be propagated in the parameters of the learning problem
via the sparsity graph that coincides with the physical graph;
and (iii) by considering a boundary around the attacked region
in the physical graph, we can separate the mathematical model
of the learning problem outside of the attacked graph from
analyzing inside the region assuming that we have correctly
identified the parameters on the boundary.

A. Stage 1: Estimation in the Lifted Space

In the first stage, we estimate a set of variables in a
lifted space that are linked through the underlying state v.
Specifically, for a given computational graph G = {N, L}
based on the measurements {M;}ie[n,]. We introduce two
groups of variables: (i) nodal variables, x;= := |vk|2, for
each node k < Ar , and (ii) edge variables, denoted as x:f =
R(vsof) and x;" = I(vyso}) for each edge £ € L with the
endpoints f and f (note that in this case we do not create
separate edge variables corresponding to the (t, f)-th entry).
Let x(v) € X € R™ be the collection of the lifted variables
in a vector form (we often omit the dependence on v and just
write x), where A" is the corresponding lifted space. By the
construction of the lifted variables, the measurement model (1)
can be written as:

y = Ax(vy) +wy + by, (2)

where A € R"»*"x is the sensing matrix, vy € C"™ and x; :=
x(vy) € X are the true voltage state and the corresponding
state in the lifted space, y € R"" is the set of measurements,
wy € R™ denotes random noise, and by € R™ is the bad data.
Note that the it row of A, denoted by a;, is constructed by
taking the entries in M; corresponding to the lifted variables
such that a¥x (v) = v*M;v for all v.

First, we solve a convex optimization to minimize the Huber
loss subject to second-order cone constraints (SOCs):

miEZfHuber(}'f —[Ax];; 4), (3)
xXec =

%rz Irl <4
A(r| = 34) Il > 2
Huber loss parametrized by A, and the feasible set K is

{x ‘ He(x) = 0, V&:={i, ]} e L‘},

where fruber(r; 4) = is the standard

“)
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where

o x® + /—1xim .
mg (5)

He(x) = [x? — J/=Txim .

is a 2 x 2 matrix constructed for line £ := {i, j}. By standard
techniques in convex analysis, the SOC can be equivalently
written as:

Hi(x) >0 < c¢/x>|D¢x|,, (6)

where ¢, € R"™ is defined such that ¢/ x = %(x;“g + x;.ng)

1

for all x € X (i.e,, ¢/ has coefficients B at locations

corresponding to x;'® and x7'), and Dy € R*™ is defined

. aT
such that Dex = [%I,-mg %X}ng X xg" | forall x e X.
Let the solution to (3) be denoted by x. We can estimate

the bad data vector by
b; = sign(y; — af%) max (0, |y; —a}%| - 1),

which turns out to be optimal for a mixed £, £2 optimization
that is equivalent to (3) (see Lemma 4 in the appendix).

Remark: Despite the wide usage of Huber loss in the
literature, existing studies are limited to unconstrained cases
and are ignorant of the computational graph [2], [16], [34].
We will analyze the SOC constrained case and study its
robustness on a graph.

B. Stage 2: Projection to the Lower-Dimensional Space

Based on the solution in Stage 1, the next stage reconstructs
the state by projecting a solution ¥ of (3) back to the original
lower-dimensional space. To do so, we construct a vector ¥
such that: (i) the magnitude at each node k € AN can be
obtained by |6x| = /%;""; and (ii) select an acyclic subgraph
of G with the maximum number of edges and define the phase
difference along each edge £ := (i, j) of this subgraph as
é,-j = arctan.f}mff‘f. To estimate the phases at all nodes,
we compute the following least-square solution:

6=(L"L)y"'L704, (7
where @ 5 is the collection of é;j and L € R>™ jg g sparse
matrix with L(£,i) := 1 and L(£, j) := —1 for each edge
¢ = {i, j} of the acyclic subgraph and zero elsewhere (7;
denotes the number of edges of the subgraph). Finally, we can
reconstruct an estimate of the true state vy, denoted as v, via
the formula:

V=10 ke N. (8)
If the regression vector from Step 1 is exact, i.e., ¥ = xp,
then (8) accurately recovers the system state, i.e., » = v;. If the
X is not exact, as long as the effect of bad data is significantly
controlled, (7) has favorable properties and allows controlling
the estimation error.

Remark: The proposed algorithm is applicable to the stan-
dard state estimation procedure performed in the control rooms
of the transmission grids. The algorithm uses the data of
power and voltage measurements that are available in the
supervisory control and data acquisition (SCADA) systems of

Ok = |ok|e
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- Attacked inner

- boundary By,

P Aftacked boundary
' Byg = By U By,

Unaffected outer
boundary By,
Unaffected region
o Bgg =G\ (B U Bpq)

' Attacked inner

region By,

=, Affected region
=Bz U By

Fig. 2. Illustration of the partition introduced in Def. 1. Lines or buses whose
measurements are under attack are marked red.

control rooms. The information it requires about the grid is
also standard and readily available, e.g., line parameters and
the topology of the grid. The key features of our algorithm that
justify its deployment in practice is the efficiency of finding
a solution to the nonconvex optimization problem and the
robustness guarantee against bad data and model mismatch,
as analyzed and validated in the subsequent sections.

ITI. GRAPHICAL MUTUAL INCOHERENCE

In this section, we discuss the proposed graphical mutual
incoherence condition. A node k is said to be under attack
and is denoted as k € N if any measurement that depends
on the nodal variable x;"* or edge variables x{° and x}™ (with
¢ incident with k) is corrupted by bad data. For a given attack
scenario, we define a partition of the network below.

Definition 1: Given a measurement graph G = {N, L},
we partition the graph as follows:

o Attacked region By :== {Na, La} is the subgraph induced

by attacked nodes Ny

s Inner boundary By is the subgraph induced by the
nodes adjacent to the attacked nodes, defined as Ny; ==
[i e N\ N |3j € Na, sit. {i, j} e L)

e Outer boundary By, is the subgraph induced by the
set of nodes adjacent fo the inner boundary nodes but
not including the attacked nodes, defined as Ny, =
{i e N\ War UNG) | 3j € Nii, sit. {i, j} € £}

o Boundary region By := {Npd, Lba} is the subgraph
induced by the nodes in Npg := Npi U Npo

o Safe region Bg == {Ni, Lss} is the subgraph induced by
the remaining nodes, i.e., N = N\ (Nat U Npd)

Moreover, we define Lynvi as the set of edges that connect
nodes in Ny to nodes in Ny, and Lyinpo as the set of edges
that connect nodes in Ny; to nodes in Nyo.

The partition set notations are illustrated in Fig. 2. Now,
we introduce a partition of the measurements and variables.

Definition 2: Given a partition of the graph according to
Def. 1, we partition the variables in x as follows:
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« Attacked variables x4, consisting of nodal variables for
Nt (i-e., x;% for k € Ny) and edge variables for Ly U
Larwi (ie., xi° and x?“ for £ € Ly U Laynbi)

s Boundary variables xvq4, consisting of nodal variables for
Nbd and edge variables for Lyg

o Safe variables x g, consisting of all other variables

Accordingly, we denote xyqa, Xybd and xys¢ as the partition of
the true state vector xi; and X, X¥pg and X as the partition
of the estimated state vector X. We also denote ny, npq and ng
as the number of variables in xg, xpg and xg, respectively.
The measurements are partitioned as follows:

s Attacked measurements My, consisting of those that
depend on x;'® for some k € Ny, and/or x¥ and x™
for some € € Ly

o Inner boundary measurements Moy;, consisting of those
that depend on x;° for some k € Ny; and xF and xi™
for some € € Lyrpi

o Outer boundary measurements Myo, consisting of those
that depend on x;"® for some k € Nyo and x¥* and xi™
for some £ € Lpg

s Boundary measurements Mpg := Mpi U Myo, including
both the inner and outer boundary measurements

« Safe measurements Mg, consisting of the remaining
measurements

The above definition allows one to “rearrange” the matrix A

in the following form such that the attacked and safe regions
become “weakly coupled” through the boundary region:

AMg X AMy, X 9
0 A M, X 0
A= i 9
0 AMyiXoa  AMii, Xay =l
0 0 AMElsXEI

Remark: The above partition exploits the sparsity of the
computational graph to weakly isolate the attacked region and
the safe region. We will illustrate the direct benefit of such
partitioning below. However, the challenge is that the partition
is not known a priori, which motivates the graphical mutual
incoherence condition in Sec. III-B.

A. Preliminary Results

We first introduce some regularity conditions.

Condition 1 (Measurement Normalization): Let a; be the
i™  row of A. Assume that all rows are normalized,
e, |lailla =1 for all i € [n,].

This condition is straightforward to implement in practice,
since the sensing matrix A is fixed for a given set of measure-
ments. This is also known as preconditioning, which assists
with the statistical performance of regression.

Condition 2 (Lower Eigenvalue): Let  Qaq,, x,,

LA My Vg TM.,i]- Then, the lower eigenvalue bound Cpy is
efined as

min I‘lmi“ (QTMbd,de QMbd,de) >
'?'min (ATMbD,de AMmebd) ?

Amin (A g, 0 AMer ) ] > Cmin. (10)
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The value Cpy;i, characterizes the identifiability of xy outside
the attacked region for a given set of measurements. If Cp,ip is
strictly positive and one can accurately detect the support of
bad data, then this condition ensures the accurate estimation of
X, outside the attacked region. To analyze the algorithm that
incorporates SOCs, we also need to introduce the following
condition.

Condition 3 (Non-Binding SOCs at Boundary): Define the
sets

(11)
Hy(x) =0, VEe LyU r:mm,i] ., (12)

K e [xbd | Hy(x) =0, VEc de},
Ka = [xat

Jor boundary and attacked variables, respectively, and let

J’i:alt(fl:id) = Ixat H{(I) >0, Ve f':<1t U f'atﬂbis

and x such that xpg = Xpd ],

be the confined feasible set for x o with the boundary variables
fixed at Xpq in the SOC constraints. We say that the solution
Xt satisfies the non-binding condition if X € }Cat(xbbd).

This condition simply requires that the values of the esti-
mated attack variable and the true boundary variable lie within
the set defined by SOCs. When there is an attack on a local
region, a subset of the local measurements are compromised.
Our goal is to recover the states outside the attacked region,
namely local recovery, rather than for the entire network,
namely global recovery. The following lemma provides a
preliminary result for solving the estimation problem in the
absence of dense noise.

Lemma 1 (SOCP): Suppose that there is no dense noise
(i.e., w =0 in (2)), and that the lower eigenvalue condition is
satisfied. Assume that for an arbitrary baq,, with its support
limited to the inner boundary, the solution Xpg € Xpg fo the
program

min |2 a4y, — AMyg, XpgXbdll1, (13)
xde}de
is unique and satisfies Xpqg = Xibd, Where Zpa, =
A My, XpgXtbd + DMy, and that the solution %y to
min ||y aq, — AMg, Xy Xatlll, (14)

xaelly

also satisfies the non-binding condition. Then, the solution X
fo the conic program:

min [|y — Ax||; (15)
xekl
satisfies Xpq = Xybd and Xsf = Xif.

Intuitively, conditioning on the boundary variables xpg,
the attacked variables x, and safe variables x  are inde-
pendent, which can be regarded as decoupling the “weakly
coupled” system. Therefore, if the boundary variables are cor-
rect (by assumption), then the safe variables can be recovered.
The proof of this lemma is based on carefully analyzing the
Karush-Kuhn-Tucker (KKT) conditions. Since the proof can
be derived based on the proof of Theorem 1 in Sec. IV, which
is more general, we omitted the details.
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The key assumption in the previous results is the unique-
ness and correctness of solving (13). However, verifying this
assumption requires enumerating over the support of bad data,
which can have an exponential number of possibilities. This
motivates the development of a new condition below.

B. Graphical Mutual Incoherence

We propose the notion of graphical mutual incoher-
ence (gMI) as a sufficient condition to certify the recovery of
the boundary variables in the presence of arbitrary bad data.
To this end, we introduce the following concepts.

Definition 3: Given an edge £ = {i, j} with node i in the
attacked region and node j in the inner boundary, define local
partitions as follows:

o Local attack region B = {{i}, ¥} has only one node

s Local inner boundary B = {{Jj}, B} has only one node

o Local outer boundary B, := (N *_” L"_” } is the sub-

graph induced by nodes orher rium i rhat are connected
to j, ie., N’*j’ =1k e N\ {i} | {j,k} € L}
o We also use ‘de j to represent the union of edges that
connect nodes in Bh and those in Bbo
Similarly, we introduce the local versions of the partitions of
variables and measurements:

l—>J‘

l—)j

s Local boundary variables X;:j include
{x:]g}kEBi—»jUsj—»j and {Ir :?m qeﬁH-’

o Local boundary measurements .MH’ = ML;:;’ UJ‘VI::E:E
include those that depend only on rhe boundary variables
X;g"’ denoted by M, , and those that depend on both

X;d /" and variables {x[*,xi™} for € = {i, j}, denoted

by Mig!
We also let n’_” !Migﬂ n i = |Mbd /|, and n =
|;CH‘F | be the number of correct measurements, the number
of wrong measurements, and the number of boundary lines,
respectively. The above terms can be similarly defined for the
direction j — i. Thus, for each line, we have two sets of
boundary variables and measurements.

With the above notations, we can now define the graphical
mutual incoherence (gMI). To begin with, we introduce the
gMI for the estimation problem (3) without the SOCs, which
coincides with the algorithm in [17].

Definition 4 (gMI for Estimation Without SOCs): For each
line £ = {i, j} € L, define the graphical mutual incoherence
ai_,j along the direction i — j as the globally optimal
objective value of the following optimization problem:

max min  «a (16a)
Ee[—1,41)"x ¢ acR,heR"v J
T Ty o ow S
s.t. AM:;} X;d_,Jh+A QJ’A%_,JE_O (16b)
Rl < a (16c)

Similarly, we can define gMI aj_,; for the direction j — i.
Intuitively, gMI measures the correlation between the
correct data and the corrupted data. The name “mutual
incoherence” originates from the compressed sensing litera-
ture [35], [36]. However, the gMI proposed in this study is
different. First, gMI is defined on a single line, and we build
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a theoretical certificate from bottom up by leveraging the graph
topology. This alleviates the dependence on each instance of
the bad data support. Second, as we will introduce in Sec. IV,
gMI can be applied to local recovery, while existing conditions
in the literature are all designed for global recovery. Also,
gMI can be solved efficiently (see Sec. III-D), while other
conditions cannot be easily verified for large-scale systems.
Moreover, we show that gMI is much less conservative than
the existing conditions. Next, we extend the definition to the
estimation problem (3) proposed in this work.

Definition 5 (gMI for Estimation With SOCs): For  each
edge £ = (i, j} € L and a given x € K, define the gMI

Socp(x) along the direction i — j as the globally optimal
value of the following optimization problem:

max mz’n a (17a)
xge{_1,+1}";x_'J aeR,meR"£ keR"HJ
st oo <@ (17b)
wr>0, Vle ,CHJ’ (17¢c)
ATMW,XHJ!: AT iz i€ T > oTx=0
fe £“”
(17d)

D/ D¢. The gMI a5°SP (x) for direction

where Ty = Cfo i

J — i can be defined similarly.

The closest condition that measures the alignment of the
sensing directions of the corrupted measurements (i.e., A7,
where 7 is the support of the bad data) with those of the
clean data (i.e., A c) has been proposed in [17]. For each
edge ¢ € L, the mutual incoherence metric defined in [17] is
given by:

pPMg)) = nA};ﬂ i ANz yizilloo
where A} - (A}A J)—IA} denotes the pseudo-inverse.
We next show the relationship among these measures.
Proposition 1: For each edge € € L, it holds that

(MI_)J) - a{_)}

for any x € K.

As we will see in Sec. IV, boundary defense requires a
low value for gMI or mutual incoherence. The above result
implies that gMI is always less conservative than the mutual
incoherence proposed in [17], and the incorporation of SOCs
can certifiably improve robustness.

SOCP(x)

o j

C. Graphical Mutual Incoherence on a Simple Graph

In this section, we provide an illustration of the proposed
gMI condition on a simple line graph, as shown in Fig. 3. The
application to real-world graphs with many nodes and cyclic
structures can be found in Sec. V. For practical relevance,
we also set up the parameters and measurements in the exper-
iment to be consistent with a typical power system model;
therefore, the line graph can be regarded as a small-scale
power grid with four buses connected sequentially.

In this example, the states we aim to recover are the complex
voltages v; € C at nodes j € {1,2,3,4}. Let {1, {2 and £3
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Fig. 3. We assume the true underlying states are ]eém i leémD 09e£2t]

and 1. lSeém for nodes 1 to 4, respectively. We will study the scenarios
where either nnde 1 or node 4 is under attack (shaded red), and investigate
whether we can certify the boundary defense robustness for state estimation.

denote the lines (1,2), (2,3), and (3,4), respectively. The
set of available measurements includes (i) squared voltage

magnitude at each node, namely [v; |2 for j € {1,2,3,4};

¢ ¢ ¢ ¢ ¢ i
(i) power flows pgll), qill), pgf), q§22), ng), and q§43} for

each £ € {£1, {2, {3}, where

¢ :
p}t) _ ggx;]g — ggx?” — ng}m

q}? = —(be + 3bF)XFE + bexp — gex”
prf = g{x;ng

s
a9\ = —(be + Jb)xE

— 8exf + bex(®
+ bex + gex,™

and (iii) real and reactive yower injections at node 3, i.e., p3 =
pg{"Z) -- pg?), g = q{gz () We set the parameters to
be close to reality: g = 5 (lme conductance is 5 p.u.),
by = —20 (line susceptance is -20 p.u.), and bf,h =05
(shunt susceptance is 0.5 p.u.) for all three lines. Note that
the number of measurements in this experiment is 12, which is
reasonable compared to the degree of freedom in the quadratic
system of equations, which is 7 (4 voltage magnitudes and
3 voltage phases after selecting one of the nodes to be the
phase reference).

First, consider the scenario that node 1 is under attack
(i.e., the measurements |v1|?, pgi and qgi are maliciously
manipulated). In this case, nodes 1, 2, 3 and 4 correspond to
the single-node local attack region, local inner boundary, local
outer boundary, and local safe region, respectively. It is desir-
able to find the gMI from node 1 to node 2, i.e., aj_,2. Accord-
ing to Def. 3, one can partition the relevant variables into the
local attacked vanables (Jcl : xf ,and x; ), the local boundary
variables X {12 > X3 e .1:1,',2 xt,z} and the local safe
variable x4 . Similarly, one can partition the measurements

into the local attacked measurements ([vl|2) and the local

boundary measurements (mcludlng) the set of compromised
(£1)

measurements My ! = {p$i?, gV}, and the remaining mea-
i—j 2 2 (€2) (£2) (€ (£3)
surements JMbd,/ = {|v2]%, 03], p322 19322 , P343} UL & D.

By solving the optimization problems (16) and (17), we find
that the gMIs with or without SOCs are both equal to 0.9229,
which is less than 1. So it satisfies the gMI condition for
robustness (see Condition 4). Similarly, it can be verified that
the gMIs from node 4 to node 3 with or without SOCs are
both equal to 1.8458, which indicates that the gMI condition
is not satisfied, and we cannot certify the robustness if node 4
is under attack.

Due to the above elementary calculations, we know that
no matter how the measurements |01|?, p;; ], and qag D are
manipulated, by using our proposed algorithm in Sec. II,
we can always correctly recover the states vy, v3 and »3 at
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nodes 2 3 and 4, respectively. In contrast, this is not true if
loa|2, p{V, and q:,fm are manipulated.

If this is a small-scale grid owned by a utility company,
one natural natural planning question is how to improve
the robustness of the system through the upgrade of the
infrastructure. In this example, we can show that the removal
of the power injection measurements at node 3, i.e., p3 and
g3, will change the gMI a4_.3 to 0.9229, which will make
the state estimation algorithm robust to any attacks on node 4.
In general, we can optimize the gMI metric to decide a robust
sensor placement strategy for grid hardening.

D. Computational Aspect

The minimax programs (16) and (17) used to define gMIs
consist of a convex optimization in the inner minimization
and a discrete optimization in the outer maximization. For
problems where the number of measurements in My is
not large, it is computationally tractable to enumerate all the
feasible points in the outer maximization. This is the case
in our experiments for the power system state estimation.
Based on standard convex analysis, we have develop«_:d a
more scalable method for the case with a large n'’ by
reformulating the problem as a linear complimentarity problem
(LCP) [37], which can be solved readily using off-the-shelf
solvers such as PATH Solver [38] or YALMIP. Alternatively,
we can reformulate the complimentarity slackness conditions
as a mixed-integer program, and solve the problem using
standard packages such as Gurobi.

IV. BOUNDARY DEFENSE MECHANISM

In this section, we first establish that global defense is
certified if the gMI conditions are satisfied for all the lines
on the boundary. Then, we derive theoretical guarantees for
bad data detection and estimation error. Although we focus on
the estimation problem (3), the technical proof can be easily
adapted to the case without the SOCs, which corresponds to
the unconstrained program of (3).

Define
AMy, Xy AMy, X
A° = 0 A Mo, Xod
0 A M, Xoa

as a subset of A that removes the rows and columns cor-
responding to My and xg, respectively. Similarly, define
¢z and Dj as the subvector and submatrix of ¢, and Dy
that remove the entries or rows corresponding to x,, respec-
tively We also define Q% = [A° Iﬂb T and Qﬁﬁ -
(0% A0 Mb.)_ Q"T as its pseudo-inverse, and let I, and I
be the matrices that consist of the first npq + nsr rows and the
last | Mp;| rows of the identity matrix of size npq+nss+| Mpil,
respectively.

Condition 4 ( gMI Condition): The gMI condition is satis-
fied if af9SP < 1—y for all {i, j} € Larwi with i € Ny and
j € Nhi, for some positive constant y.

Given an attack scenario Ny, the gMI condition can be
verified by checking every line in the boundary. Since the gMI
considers the worst-case guarantee and is independent of the
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attack scenario, a single map of gMI can be used to verify an
exponential number of attack scenarios. If the condition is not
satisfied, one can artificially increase the set \;; by adding the
nodes of violated gMI into the attack set until the condition
is met. We will provide a vulnerability map of the U.S. grid
in Sec. V based on this concept. The main result of this paper
is provided below.

Theorem 1: Assume that the gMI condition is satisfied with
a constant y > 0, and that the lower eigenvalue condition and
the non-binding SOCs condition are satisfied. Suppose that the
hyperparameter A in Huber loss is chosen such that

(18)

A5 2 202logn,y,.
Nmy
Then, the following properties hold for the solution to (3),
denoted as (x,b):
(1) The solution (2,5) has no false bad data inclusion
(i.e., supp(b) < supp(by)) with probability greater than
1— ;—0, Jor some constant ¢y > 0.

(2) Define g(1) as

1 o+

N A (zm + 115 QMbi ||oo) .
and let b My = AMy;, Xy (Xrat — Xat) be the mismatch
at the boundary caused by a potentially false estimate
of Xy Then, all bad data with magnitude greater than
g(A) will be detected (i.e., if [5,’| > g(4), then |b;| = 0)
with probability greater than 1 — L.

(3) (Bounded error) The estimator error is bounded by

I Uy — X XU ll2
- r‘\/|~;¥sf[ + [Xpd| + [Mbpil
o Cmin

+ 1Al Q% lloo2

2
with probability greater than 1 — exp (—'1—;‘,—)

The proof of the theorem is shown in Appendix C. Inspired
by Sec. III-A, a key step in establishing the result is to ensure
that local defense is sufficient to guard against attacks when
solving the problem globally. In appendix B, we prove that as
long as the gMI condition is met, we have a desirable property
in terms of defending against bad data on the boundary.
While the theorem only focuses on (3), the result for the
unconstrained optimization can be derived similarly. The main
advantage of (3) over the case without SOCs is that the gMI
condition is more likely to be satisfied due to Prop. 1.

Theorem 1 provides formal guarantees of bad data detection.
From the measurements, we first estimate the variables in the
lifted space using first-stage algorithm (3). Then, we thresh-
old the estimated bad data vector to determine its support.
By result (1) above, for large n,,, with high probability the
support will be confined within the attacked region; by (2),
corrupted measurements with large enough magnitudes will be
detected. Thus, our approach can be used to detect the attacked
region and guarantee the lifted variables in the boundary and
safe region can be recovered accurately by result (3). Finally,
the recovered lifted variables are fed into the second-stage
algorithm (7) and (8) to produce a state estimation.
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V. EXPERIMENTS

A. Power System State Estimation

Power system state estimation is an important instance
of graph-structured quadratic sensing. The electric grid is
modeled as a graph G = {N, L}, where N' = [np] and
L = [n;] represent its sets of buses (i.e., nodes) and branches
(i.e., edges). The power system state is described by the
complex voltage v = [v1,...,0,,] € C™, where v; € C
is the complex voltage at bus k € A" with magnitude |ox| and
phase O := Zo;. By Ohm’s law, the measurements obtained
by the supervisory control and data acquisition (SCADA)
system, including voltage magnitude squares, real and reactive
power injection at each bus, and real and reactive power
flow along each branch can be represented in the form of
quadratic measurements (1), as shown in Sec. III-C. The Her-
mitian matrix M; follows the graph-induced sparsity pattern;
therefore, the physical graph coincides with the computational
graph. The goal of SE is to reliably infer about the underlying
state v given noisy and corrupted measurements y;.

Here, we focus on the U.S. grid, which is the largest
machine on earth with more than 200,000 miles of trans-
mission lines. Due to confidentiality requirements, we report
our findings on modified grids provided in [39], which match
statistical characteristics found in actual power grids, includ-
ing connectivity, Delaunay triangulation overlap, DC power
flow analysis, and line intersection rate. More details can be
found in [39].

B. Adversary Model

For the adversary model, we assume that the bad data by
can take arbitrary values. In practice, this includes a wide
range of attack possibilities, such as bad data injection at
substations and over communication links, or more distributed
attacks by manipulating endpoint devices such as smart meters
and smart appliances, or even a more powerful attack that
takes over the control center [40]. Among all the possibilities,
some of the attacks can be more severe (e.g., taking over
control centers) than others (e.g., attacking smart appliances).
As a consequence, the attack may range in severity due to
the ability of the attacker. Our assumption is much weaker
than the existing false data injection works (e.g., [6]), which
assumes that the bad data is “sparse” and that the network
is still observable. In contrast, we can allow an adversary
that injects dense bad data into the system,to the extent of
even causing an entire region of network to lose observability,
which is more realistic in the face of a strong adversary.

C. Boundary Defense Against Zonal Attack

Here, we are concerned with the scenario where the data
for an entire subregion are compromised. We assume that the
attacker has access to the model and can manipulate every
measurement within the region under attack in an arbitrary
way. Specifically, we consider the “zonal attack™ (Fig. 4),
where all measurements within a zone—usually governed by
a single utility—are corrupted.
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Fig. 4. Evaluation of the boundary defense mechanism. (A) The grid is under
“zonal attack,” where the measurements within a zone are corrupted (shown
in red). SE based on (B) Newton’s method for nonlinear least squares, and
(C) the proposed method with SOCs, where in both cases, buses with an
estimation error greater than 0.002 are marked in red.

Fig. 5. Vulnerability maps based on the proposed gMI (A) without SOCs (16)
and (B) with SOCs (17), which marked robust lines (in green) and vulnerable
lines (in red).

In this example, we consider the ERCOT network with
2,000 nodes, where a subgraph around Houston with about
19 nodes are under attack. The ground truth for the true
unknown state of the system is provided by the dataset [39].
As shown in subplot (B), Newton’s method is seriously
affected by the bad data and it generates a large-scale mis-
match. In comparison, as shown in subplot (A), our proposed
method can recover the state outside the attacked zone cor-
rectly, and all the state estimation errors are contained within
the zonal boundary.

In the case of a stealth attack, there is a problem of symme-
try, namely, without additional information, it is impossible to
decide which zone is under attack since the only inconsistency
is observed at the boundary. To avoid this case, we arbitrarily
break the symmetry by introducing some sensors within the
attacked zone that are more secure than others in such a way
that their values cannot be modified.

D. Geographic Mapping of Vulnerabilities

Based on the mathematical tools developed in the study,
we assess the robustness of the synthetic U.S. grid.

Definition 6: A line {i, j} € L is said to be a robust line
if aisj < 1 and aj_,; < 1; otherwise, it is said to be a
vulnerable line (V-line).

First, we visualize the geographic distribution of robust and
vulnerable lines for the Eastern U.S. grid in Fig. 5. Due to the
dependence on the underlying state, subplot (B) is generated
for a snapshot of the operating status given by the dataset,
which serves as an illustration of how much improvement in
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Fig. 6.

Comparison of bus critical index with and without SOCs. Since
the bus critical indices are no larger than 3, we only show the locations with
values 2 (yellow) and 3 (red) for gMIs (A) without SOCs and (B) with SOCs.

robustness is achieved by incorporating SOCs into the state
estimation algorithm. The plot shows a geographic distribution
of robust and vulnerable lines for the Eastern U.S. grid.

It can be seen that the density of vulnerable lines is rela-
tively high for populated areas, such as Boston and New York,
where we also observe a high density of robust lines. On aver-
age, 59% lines are robust across the states, which are then
split further into independent synchronous regions, as shown
in Table I. In addition, the map validates Proposition 1 that the
incorporation of SOCs can help rectify SE and better detect
bad data.

The vulnerability map can be used in various ways. For
instance, it can be used to investigate whether topological
errors for a line or a substation can be contained locally,
corresponding to the case in which there is a model mismatch
for a transmission line or substation that causes the associated
measurements to be largely biased. While this is a challeng-
ing problem, it could be addressed systematically using the
vulnerability map.

Definition 7 (Critical Bus and Critical Line): For a node
i € N, if there exists a neighboring node j such that
a;_.; = 1, then the node i is called a critical bus (C-bus).
A branch {i, j} € L is a critical branch (C-line) if there exists
a node k adjacent fo either i or j such that a;_,; = 1 or
a;j_k = 1 (or both conditions are satisfied).

Specifically, if the erroneous line/substation is surrounded
by robust lines, then it is guaranteed by Theorem 1 that
the error will be contained locally via the boundary defense
mechanism. Otherwise, there is a possibility that the error
will *“escape” outside the boundary to affect the outside
region. In particular, for topological errors such as line mis-
specification, it can be regarded as a pair of gross injection
errors at the two ends of the line; hence, we can identify it as
long as the line is not a C-line. Summary statistics are shown
in Table 1.

E. Criticality Index for Substations Under cyberattack

Furthermore, we can extend the case study by defining a
criticality index (CI) for each substation.

Definition 8 (Crificality Index): Given a node iy, an arbi-
trary node i, is path-connected to iy if there is a path
i1,i2,...,ip Such that ey, > 1 fork =1,...,n— 1
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TABLE I

SUMMARY STATISTICS OF NETWORK PROPERTIES AND VULNERABILITY CHARACTERISTICS. WE SHOW THE PERCENTAGE OF V-LINES AND
C-LINES AMONG ALL NETWORK LINES, AND THE PERCENTAGE OF C-BUSES AMONG ALL NETWORK BUSES FOR QP AND SOCP.
WE ALSO SHOW THE AVERAGE BUS CRITICAL INDEX, WHICH MEASURES THE INFLUENCE OF
A SINGLE-BUS ATTACK ON THE REST OF THE NETWORK

Basic properties

Properties of gMI (16)

Properties of gMI (17)

Buses Lines V-lines C-lines C-bus Bus CI V-lines C-lines C-bus Bus CI

Texas 2,000 3206 3762 4251 4775 .20 2979 3674 4225 06

Western 10,000 12,706 4715 5231 5313 15 3979 4636 4860 06

Eastern 70,000 88,207 4932 5415 5327 .14 4104 4780 4810 05
The criticality index at node i is defined as the number of A B oo o o et
nodes that are path-connected fo i. e . /"‘M‘ == Method2

The CI gauges how many nodes near a substation will be % oan: m 2o /-"‘"”'" =

affected if the substation is under attack. The higher the value h -
is, the more crucial the situation is when the substation is : Ridundanf;y i ¢ sy &
compromised. This situation is analogous to the cascading
failures of generators, but the difference is clear—our focus Fig. 7. Comparison of different measurement profiles and redundancy.

is on the algorithmic robustness rather than the physical
dynamics. We visualize the distribution of the CIs on the map
shown in Fig. 6. It can be observed that (i) the highest number
is 3; and (ii) the incorporation of SOCs improve Cls.

E. Network and Optimization Properties

So far, our study has been conducted with respect to a
specific measurement profile. Important questions are: How
do the number and locations of measurement sensors affect
line vulnerability? In particular, does decreasing the number of
sensors make the network significantly more vulnerable? What
type of sensor measurements can bolster boundary defenses?

For this purpose, we examine three methods used for “mea-
surement selection.” The first method (Method 1) starts from a
spanning tree of the network and adds a set of lines to the tree
incrementally to obtain a subgraph that will be used for taking
measurements. In this method, each bus is equipped with only
voltage magnitude measurements and each line has three out of
four branch flow measurements. The second method (Method
2) starts with the full network, where each node has voltage
magnitude measurements, and each line has one real and one
reactive power measurement, and it grows the set of sensors
by randomly adding branch measurements. The third method
(Method 3) differs from Method 2 only in that it grows the set
of sensors by randomly adding branch measurements as well
as nodal power injections.

To evaluate these three methods, we devise a “scattered
attack™ strategy, where we randomly select 25 lines from the
2000-bus Texas interconnection and corrupt all of its branch
measurements, which amounts to roughly 100 bad pieces of
data. For each simulation, we randomly generate dense noise
w for all the measurements, and bad data b for the selected
subset. The dense noise for each measurement is a zero-mean
Gaussian random variable, with standard deviation of 1 x 10—3
(per unit) for voltage magnitude measurements and 5 x 10~3
(per unit) for all the other measurements. The difference in
standard deviation is due to the fact that voltage magnitude

The redundancy value is calculated as the number of sensors divided by
2 x np(number of buses) — 1, which represents the degrees of freedom
in the traditional power flow problem. Each point for the (A) RMSE and
(B) F1 score is obtained by averaging over 100 independent simulations. The
average value is shown by the solid line, and the 5% and 95% quantiles are
shown by the shaded region.

sensors have higher standards of accuracy compared to power
meters. The values for the sparse noise can be arbitrarily large,
and we assume that these parameters are uniformly chosen
from the set [—4.25, —3.75] U [3.75, 4.25] (per unit).

We then employ our proposed SE method. The observation
is that, in general, both the root mean squared error (RMSE)
and the F1 score for bad data detection are enhanced as more
sensors are added to the network, as shown in Fig. 7. The
F1 score is given by %, where precision is the rate
of true positives (i.e., correctly identified bad data) among all
data that are claimed to be bad, whereas recall is given by
the percentage of true positives identified as bad data among
all ground truth bad data. Specifically, an F1 score close to
1 indicates that the algorithm detects all corrupted data (high
recall rate) and does not falsely blame the correct data (high
precision rate).

There is also a major discrepancy among the above methods
for the same level of measurement redundancy. For instance,
Method 1 significantly outperforms the other two methods at
a low redundancy rate, whereas Method 2 steadily outmatches
Method 3 with more sensors. To explain this phenomenon,
we need to examine the types of available measurements.
Thus, we select five typical measurement profiles as snapshots
of Fig. 7 and calculate the percentage of V-lines and C-lines,
and the average CI in each case (Fig. 8). It turns out that
the inclusion of voltage magnitude or branch flow mea-
surements can enhance the robustness, whereas the addition
of nodal power injections is a major factor in weakening
the defense. For example, with only voltage magnitude and
branch flow measurements, the network is almost “everywhere

Authonzed licensed use limited to: Univ of Calif Berkeley. Downloaded on July 31,2021 at 17:38:57 UTC from IEEE Xplore. Restrictions apply.



1762

A B C
v
< % %
i=
(=Y
B
5 m
g # #
g
2 F F
3
! e e
0 0. 1 0 0.5 1 0 0. 1
V-lines C-lines C-buses

Fig. 8. Characterization of vulnerability based on measurement profiles. The
five measurement profiles are: full nodal measurements and two/three/four
branch flows per line (I/III/IV); real and reactive power injections per bus
and three branch flows per line (II); and voltage magnitude per bus and three
branch flows per line (V). For SEs with (green bar) and without (red bar)
SOCs, we show the percentage of (A) V-lines, (B) C-lines, and (C) C-buses
within the Texas interconnection.

defendable’,” namely, the locations of scattered attack can be
detected accurately with high probability.

On the contrary, with the inclusion of nodal injections, even
with a high rate of branch flow measurements, the network is
still vulnerable. Intuitively, this situation occurs because nodal
power injections are highly coupled measurements that depend
on state variables for all lines connected to the node. When
one or a few of the branches are under attack, this scenario
can lead to miscalculations for all incident lines. In contrast,
voltage magnitudes and branch flows are more localized in
nature, and, when corrupted, they have a smaller effect on
adjacent buses/lines.

Furthermore, we can verify this effect by examining the CI
for substations across the grid, as shown in Fig. 9. By compar-
ing subplots (B, G) with subplots (C, H), it can be observed
that the inclusion of nodal power injections is likely to increase
the percentage of vulnerable lines. By including more branch
flow measurements as shown in subplots (A, C, D) and
(F, H, I), or more voltage magnitude measurements as shown
in subplots (B, C, E) or (G, H, J), the network is more likely
to have a high percentage of robust lines for local boundary
defense.

In addition to the measurement set, network vulnerability
also depends on topological properties. In particular, our
findings show that the connectivity degree for each node
is positively correlated with line vulnerability (Fig. 10(A)).
A boundary defense node is increasingly likely to defend
against attacks as the degree increases. However, this trend is
less obvious when the node is under attack, since high-degree
nodes have more measurements from the region not under
attack to leverage in order to rectify the corrupted lines. On the
other hand, it is more likely that a line will be critical if it is
connected to a high-degree bus, as shown in Fig. 10(B). This
criticality can be explained via the definition of a critical line,
and as long as at least one of the remaining lines incident to
that bus is vulnerable, the error will propagate out through that
vulnerable line. Similarly, a high-degree node is more likely
to be a critical bus.
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Bus critical
index

I >=10

Fig. 9. Critical index maps for different measurement profiles and opti-
mization techniques. (A-E) and (F-J) are series of maps without and with
the SOCs, respectively. (A, F), (C, H) and (D, I) correspond to PV (real
power injection and voltage magnitude squared) or PQ (real and reactive
power injection) nodal measurements together with 2, 3, and 4 branch power
flows, respectively. (B, G) and (E, J) correspond to only PQ or only voltage
magnitude nodal measurements with 3 branch power flows, respectively. Color
indicates low (yellowish) to high (reddish) critical index. If the critical index
is 0 (marked with grey color), then attacking the substation measurements
does not affect any of its neighbors.
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Fig. 10. Characterization of vulnerability through nodal degrees.

(A) Percentage of V-lines when the nodes are at the boundary or in the attacked
region. In this case, we distinguish the two directions of a line. Percentage of
(B) C-lines and (C) C-buses averaged over nodes with the same degree. Since
the distribution of nodal degrees is light-tailed, we group nodes of degree eight
or higher in the same bin.

As for the optimization property, Proposition 1 indicates that
the incorporation of SOCs always improves line robustness,
which can be verified visually in Fig. 5 and observed in Fig. 8
for different measurement profiles.
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G. Discussions

The vulnerability map produced by our framework reveals
the robustness property of our proposed algorithm, and there
is no ground truth provided in the dataset [39] since gMI is
a completely new metric in the literature. Our mathematical
proof shows the correctness of the robustness of the identified
line. Nevertheless, we have shown in Proposition 1 that our
robustness condition is less restrictive than the mutual incoher-
ence condition proposed in [17]. For future works, we expect
that our result can be used as a baseline for comparison.

In general, even though we have focused on power networks
as the primary example, the proposed framework for vulner-
ability analysis can be broadly applied to systems that can
be modeled as a sparse graph with polynomial measurements.
One family of such systems is flow networks [41] that can be
widely seen in industrial control systems. Future work would
be needed to study the generalization to other flow networks,
such as traffic networks [42], water networks [43], [44], and
natural gas networks [45].

VI. CoNCLUSION

Our vulnerability analysis of graph-structured quadratic
sensing is distinguished from previous works by its scalability
but also by the strong formal guarantees of a boundary
defense against cyberattacks and a localized vulnerability
assessment that accounts for network and optimization prop-
erties. This study provides a set of notions and tools—the
development of graphical mutual incoherence, the boundary
defense mechanism, and the analysis of topological and opti-
mization relations to vulnerability—that are applicable to a
wide range of graph-structured data. Furthermore, our result
offers a scientific foundation for vulnerability-based resource
allocation, which, in the case of a power grid, would be based
on prioritizing the upgrade of sensing infrastructure for critical
locations.

APPENDIX
A. Proof of Proposition 1

For the first inequality, notice that the inner minimization
of (16) can be written as

min _ |lhllo (19a)
acR, keR"
i T ooxo w i
St AML: X;d—\rjk—’_A |—\p-)11 |—y}€—0. (Igb)
Since for any &, the vector IAi(aE) = —A—H]_\,Jl i
. o M)
AMQ{,A@"’EE is a feasible point, and

IIh(E)EIoo = P(Mbd J),
fe[— 1+1} x

we have proved the first inequality.

For the second inequality, for any given &, let I be the
optimal solution of the inner minimization of (16) with the
property that ||k||oo 5 a;_ ;. Then, the tuple (als_[:(fp =

ai,j,0 = 0,h = h) is a feasible solution for the inner

1763

minimization of (17). Therefore, for any given &, the optimal
solution of (16) is always included in the feasible set of the
inner optimization of (17), and we have a?ﬂ‘}p(x) i 5

B. Statement of Lemma 2

Lemma 2: If the gMI condition is satisfied, then for
any th e [—1, 1Msil - there  exist th;UMbo and

{Ve, ﬁf}feﬁmmiUCmU£sr with the properties that ||k um,, |l
AMSfUMbOkMSfUMbU + AMb.hMbi

q z bec? + DS it = 0.
felormiULlpadUL

(20)

First, we provide the following result, which simplifies the
proof of Lemma 2.

Lemma 3: The gMI asocp(x) coincides with the optimal
objective value of the followmg minimax program:

max min @ (21a)
Ee[—1,+1T"x ‘ acR,veR"C ¢ fxeR"(J
T 7 B
s.i. ILILML;:J/r A.’;d_”h + AM;E,A;;”E
+ D veee+Djug=0 (21b)
Eeﬁg’f
ve > [luell, VEeLig’ Qlc)
veef x +ul Dex =0, Vee L' (21d)
Ihlloo < & (21e)

Proof of Lemma 3: The equivalence between optimizing
over [—1, —|—1]”"><_”l and {—1, +1 }"';J is due to the convexity of
the feasibility region given x € X and é Since x satisfies the
primal feasibility, which can be expressed as in (6), a standard
result (c.f., [46, Lemma 15]) in analogy to linear programming
indicates that (21d) is equivalent to:

l—)j

ngfx—i—cfxug_O veel",

which indicates I:hat'vg — cugcg—x and uy = —w¢Dex for
wg > 0and £ € £/ 1t can be verified that this also satisfies
the SOCs (21c). By the definition of T¢ = ¢,c] — D/ Dy,
the equivalence to (17) is established. g
Proof of Lemma 4: First, we show that a sufﬁcieqrt
condition for the existence of & pq upty, = [’A’TMsr }}TMM]

such that |!f1 MUMi,lloo = 1—7 and (20) are satisfied is that

for any hMb there exists an hMbo and {Vg, H{}fef_mmb’. such
that i|hMbo|!°0 <1—y and
AMbD,de kao - AMbj,de hMbi

+ D vee+Djug=0. (22)

feLlanbi
This is immediate by simply choosing h MgUMp, =
T
[oT iiTMbo and {0y = 0, ity = 0}pc, UL, - In What follows,
we prove (22) by induction.

The induction rule is as follows: we start by arbltrarlly

choosing one line {i, j} € Lynpi to initialize f,ambx, where

Authonzed licensed use limited to: Univ of Calif Berkeley. Downloaded on July 31,2021 at 17:38:57 UTC from IEEE Xplore. Restrictions apply.



1764

i € N?t and j € Ny, aqd im’tialize the measurement set M&)_:
= M3 MY = Mi77 and the variable set X} = X777

For each step k, we add a new line {f, 1} € Lanbi to ﬁat%

and the assoc1a!cd measurements and variables to Mbu 3

and de . respectively. We also construct c(k) and Dg ) w1£h

entries and columns corresponding to Xéd) forall £ e Cs(nﬁbl’

respectively. In each step, we check whether there exist h M®
bo

a(k
and {vé ), ! ug }f £o. such that |IhMm loo =1—7 and

AT b+ AT h
(k) (k ) k) (k (k)
MbDJadeJ Mbo MbiJsthJ Mbi

+ > PP+ pPTaP —0. (23

(k)
tel )i hi

The base case for k = 1 follows directly from the condition
that aisgqp <1—y.Forany k = 1, let {f, 1} € Lanpi denote
the line to be added and consider two possible cases:

1) the new line does not share any nodes with the lines that
have been already added; or

2) the new line shares the attacked node f with one (or
more) of the lines already added

For each case, there are also three events that may occur:

a) one or more of the nodes in Nbo_” are connected to one
or more of the nodes in the inner boundaries of lines that
have already been added

b) one or more of the nodes in the outer boundary of the
lines that have already been added are connected to f

c) none of the above
To prove the claim, we need to consider all the combinations

between the two cases and the three events. Fortunately, they
can be reduced to two typical scenarios, where the proofs can
be directly applied. We consider these scenarios now.

The first ty 1cal scenarlo applles to combmatxons lc and

2¢, where M Mbo “fo_}t M ‘\/I(k Dy

ML, 2 2 pD uxf*‘ MED nM{;}’ - @
X ? = = ¥,

M(k D ‘\/i,“:d_: = (4, and Xéj ”ﬂXbﬂ_’t = (). Therefore, for

- » -T1T -
any given hM(k} = [thk—l) gT] with ||&]lec < 1, we can

T T
always find hM(kJ = [hM(k y h l
that satisfy (22), where h and {vg ,uf }g ch.
by (21).

The second scenario applies to the remaining combinations.
Let Ao be the set of nodes in the outer boundary shared by
the new line in B{D and those of the lines that have been
added. Then, we have M(k} MU‘ Dumf d_::, J\/I{H

(k 1 f=t (k) (k-1 f—t =)
Ml UM At = by de_’ where Mb N
Mf ! is the set of measurements that only depend
on noda] variables of N, .M(k Dn M{d_: = @, and

Xb(k D n Xf_” is the set of nodal variables of Ao

-

For any given h M® and é we can always find h

)}t’eﬁm
are glven

and {ﬁf‘), i,

th
and h, where hMm is given by (23) and hM“"‘ is given
by (16). Let h M® be further divided into the parts
corresponding to the voltage magnitude measurements (if

available) of nodes in Nb., (i.e. [h .M“"] _ ) and the rest
bo Nbo
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(i.e. [fz M.‘}?],rcrc ); similarly, let & be further divided into

. Then, by setting h

fz] _ and the rest [fz] i =
i, e o i, -

bo

" i . 1 Nt T

h ] T [h ] _ [h] - [h] _ ] where
[[ M | e degwbo)o( ME Lo T i ) L,
deg(Nyo) is the connectivity degree for each node in N,
and o indicates the Hadamard (element-wise) product, we can

. . - G &
satisfy (23) for any given h {wgﬂ; = [h M® 3 ] . Moreover,

by construction, we have HhM(kH} loc < 1 —7y for all k. This
bo
completes the induction proof.

C. Proof of Theorem 1

The following lemma indicates a connection between
Huber’s loss and a mixed £, {2 loss. R

Lemma 4: Let X1 be the solution to (3) and let (X7, by) be
the solution to the following problem:

~—Ily — Ax — b3+ 2Bl (24a)

min
beRrm yeRnx 21,

s.t. cg x > ||Dex|la, VEeL. (24b)

Then, we have ¥| = X, and the i-th component of 32 is
given by:

[by]; = sign(y; — a; £2) max (0, ¥i — a,-T.i‘g| - A) .
where sign(y) denotes the sign of y.

Proof: Given a feasible x, the inner optimization can be
decomposed into a series of smaller optimization problems
—a] x — b)) + lbil,

min 7. (i (25)

for i € [ny], which has a closed-form solution

b¥ = sign(y; — a; x) max (0, P — ar-Tx| — ,1) ,  (26)

Now, we substitute (26) into the outer minimization to see the
equivalence to minimization of a Huber’s loss. Furthermore,
for the solution ¥, the optimal b of (24) is given by (26). O

Due to the above connection, hereafter we will analyze the
equivalent problem (24). For an arbitrary set of attacked mea-
surements My, the corresponding boundary Mypq := My U
My, and safe measurements Mqr, we design a primal-dual
witness (PDW) process as follows:

1) Set bpg, =0 and bpq,, = 0;

2) Determine & = [i}z

2
[O,T 0T f,Lbi j}Lm] by solving the following program:

&7 ‘T]T and b =

Xpd Xat

2
1M -~ 0
min — ||} Y Mo —A | Xpd |—
bejangpx znm thi Xat be‘J
yMai bMat 2
b g,
+2 [ b-] . (27a)
bMal 1
st.c}x > |Dex|,, VEeL, (27b)
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and ﬁMhi = 8||I;_Mb,- [l and IA:_MEI c Eill!.?u\/tnl l1 satisfying the
optimality conditions

1 . ;
L at— Ar B g, =0, (280)
m
1 3 :
= (J’Mbi = A My, Xoa Xbd — AMy;, Xy Xat
m
—bpty) + 2hpgy = 0. (28b)

3) Solve (IA: Mg i Ms,) Via the zero-subgradient equation:

_é(y_Af—B)qLAﬁ:O, 29)

where ¥ = [igsr .i‘gbd .i‘gm]—r and b = [OT o7 E,TMH BJ—[/[at:IT
the 27), and h =
Rk R, B o) (haty hm,)  are
given in (28). We check whether strict feasibility conditions
lhpgllo < 1 and ||hMb loo < 1 hold.

The next lemma relates the PDW procedure to the solution
properties of (24).

Lemma 5: If the PDW procedure succeeds, then (, b) that
is optimal for (27) is also optimal for (24). Furthermore,
for any optimal solution (%,b), it holds that supp(b) <
JM bi U Mat-

Proof: It can be checked that if PDW succeeds, then
the optimality conditions of (24) corresponding to (¥, b) are
satisfied, which certify the optimality.

The subgradlent h satisfies |fk;\4$f|ic,<J =i IEkM.,D loo <1

and <h, b) = IIbill Now, let (%, b) be any other optimal, and
let F(x,b) = 2n ly — Ax — bi|2, then,

are solutions obt?ned in

where

F@E,b)+ z(ia, B) — F(%,b)+ Albll1,
and hence,
F@& b)+ z(ﬁ,é —3) — F(F,b)+ 4 (li5|i1 » (i:,z})) .

By the statlonanty condition of KKT, we have Ah =
—VpF(x,b) = —(y AX — b) which implies that

F(&,b) — (va(fr, by, b — 5} _ F(%,b)
=2 (181 — (i, ) <0

due to convexity. We thus have |i5i|1 = <}A1,5> Since by
Holder’s inequality, we also have {f:,fv) = ||ﬁ||oo|[5||1, and

Ifllo < 1, it holds that [|B]; = (f}, 5). Since by the success

of PDW, [l p lloo < 1, ipgylloo < 1, We have bj =0 for
j € Mg U M. O

In the following, we denote x° as the subvector of x that
removes the entries corresponding to x4, w° as the subvector
of w that removes entries corresponding to My, and I° as
the identity matrix of size n, — | May.
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Proof of Theorem 1

Part 1): By the construction of PDW, we have b My =
byr, = 0 and 3Mbn = bypq,, = 0. The optimal solution X4
and b g, of (27) can take any value as long as the nonbinding
SOCAconstraint condition is satisfied. Thus, for any given X
and bpq,, we can fix xy and bpq, in (27) and solve the
following smaller program:

2
min — g _A° [ K| g
b pdqy; s XsfaXhd 2nm yMbo Xbd
b T M R e by | "2
-\-O
+ 2 |bayi | (30a)
st.cjx > | Dexlly, VEeLl\La, (30b)

where Zaq,;, = Y My — AMy,XaXat = AMy, Xog Xtbd T DAty
and bpg, = A My, Xy (Xt — ¥a). Thus, we have z° =
A°x°—|—w°—|—I°T b.Mb. The solution (¥, Xpd, be ) of (30)
is unique due to the lower eigenvalue condition. By the KKT
condition, (28) is satisfied. We combine (28) and (29) and
partition the relation into equations indexed by My;:

Lt ([

X —x
I°T i o
o [be — by ] " wh) ’

(31

by =

as well as those indexed by M U My, which can be solved
AT  ~T .
[thf l’!A/Ibo:l -

1 I°
Hmzl MgUMp,

for hpq UMy, =

b MM = (4°Gg -2 +ug) . (32)

Since x° is the optimal solution of (30), it satisfies the
optimality condition:

iAoT A° ot xg_io + w?
- MG | B = Fcre h
m M M

+ > Decd +DeTiip =0 (33)
felarbiULlpaULsf

Combining (31), (32) and (33) and after some elementary
operations, it yields that

iAMstMbothrUMbo * AAﬁhihMbi

+ > Decd + DS it = 0. (34)
felarbiULlpaULlsf
By Lemma 2, for any # My € 8llbamylh, there

always exist thfUMbo and {v{,ﬂf}ﬁmnhucwuﬁf such that
||h MgUMpolloe < 1. Thus, the strict feasibility condition of
PDW is satisfied deterministically. Since PDW is successful,
we can conclude the first part based on Lemma 5.
: T po
Part 2): Let Q3 = [4°I%,]| and i° =
T

AT Al . o
[h NS h Mbi] . By the lower eigenvalue condition,
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we can solve (31), (33) and (34):
-bI
b pyi — Dy,
A0
- T 1 A°Th
QMh w" L] nm':l'(Qj\Ahi Q:}Mhi) };’Mbi
T -1 .
= Qj\ﬁ w + ”mA(QjVIh. Qth) QMh.

Then, we can bound the estlmatlon error A in (35). First,
we bound the infinity norm of be‘ —th = I, A. By triangle

inequality,
175Allo0 < 115 Q% W lloo + Am Al 15 @°F lloc-

Since the second term is deterministic, we will now bound the
first term. By the normalized measurement condition and the
lower eigenvalue condition, each entry of Q°* w‘h’ is zero-mean
sub-Gaussian with parameter at most

(35)

(36)

2
T
1@ty Q)™ 2 < — 37
min
Thus, by the union bound, we have
P (||[b Q°+w§||oo > r) <2exp (— Mhil) :
(38)
Then, sett = 5 m and note that by our choice of 1, we have
c

—2—31;“’ > log | Mpi|. Thus, we conclude that
"5Mbi N bei lloo
1
< i | ===+ 116(Q, Q01,.) ' 15 )
- (2 Cmin ” IE;‘(ijlbl QMbI) b ||OO

with probability greater than 1 — 2 exp(—can2, 4%). This indi-
cates that all bad data entries greater than

g(A) = nmA + 116(Q%, Qo) ' 11 ||oo) (39)

1
(2\4" Chin
will be detected by by,

Part 3): From (35), we can upper bound the £ norm of
the signal error x{ — &° = I A by

17x @ w2 + nmAll < (@5, Qo) 13 lloo,2.

For the first term, by the application of standard sub-gaussian
concentration,

P (1127 will2 > I1: @ llF + 111 Q% I12)

is upper bounded by exp (—5;%2). First, we see that

both |1, Q°+||p |I,Q°" |2 are bounded b
o/ | st [ 4| Xbd |+ Mi |

12 l21(Q 5%, @)~ 12l @y IF - <

Ci
due to the lower eigenvalue condm{m and the normalized
measurement condition. Moreover, the probability

VXl + [ Xbd| + IMbi!)
Cmin

and

P (Ilfx(QfJ[bi willz > t

is upper bounded by exp (—%{Tz) for any positive f. Together,
we conclude the proof.
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