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Abstract— The optimal power flow (OPF) problem is a well-
known non-convex optimization problem that aims to minimize
the cost of electric power generation subject to consumer de-
mand, the physics of power flow, and technological constraints.
To find an optimal solution to this problem, local search
techniques such as interior point methods are typically used.
However, due to the non-convex nature of the problem, these
methods are likely to result in a sub-optimal solution. The goal
of this paper is to characterize the worst-case performance
of local search on the OPF problem. To accomplish this,
we formulate the OPF problem as a canonical quadratically-
constrained quadratic program (QCQP). Then, we study the
problem of finding the worst-case local minimum of this QCQP,
which is non-convex and hard to solve in general. We find a
relaxation of this problem into a semidefinite program (SDP)
and show that it is exact for certain cases. Using some test cases
which are known to have multiple local minima, we demonstrate
the effectiveness of the proposed relaxation to bound the worst-
case local minimum. We compare the obtained upper bound
on local minima to the lower bound provided by the standard
SDP relaxation of the OPF problem to understand how much
SDP outperforms local search for a given problem.

I. INTRODUCTION

The fundamental problem of minimizing the cost to gen-
erate and transport electricity over the power grid is called
the optimal power flow (OPF) problem. By solving the
OPF problem, we find the optimal steady-state operating
point for the electric grid. The solution to the OPF problem
must satisfy consumer demand for power as well as the
physical and technological constraints of power flow through
the network. Due to the nonlinear nature of the physics
of alternating current, coupled with the existence of lower
bounds on voltage magnitude, the OPF problem is non-
convex. As a result, there are no universal methods to solve
the problem to global optimality in polynomial time.

Nevertheless, the issue of solving the OPF problem to
global optimality remains highly critical for the operation of
the U.S. power grid, which connects 145 million customers
to over 7,300 power plants [1]. The cost of a sub-optimal
solution to the OPF problem is estimated at billions of dollars
annually in the U.S. [2]. Furthermore, adding renewable
energy sources to the power system increases the complexity
of the OPF problem. For example, consumers with solar
panels on their homes may add power back into the power
network, making the network structure more cyclic and
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leading to a greater number of local optima in the OPF
problem. As renewable energy sources generate an increasing
share of U.S. electrical power [3], the importance of solving
the OPF problem will grow.

The OPF problem is the basis for a whole range of
other optimization problems, such as security-constrained
optimal power flow (SCOPF) and unit commitment, which
are the problems typically solved in industry practice. In this
paper, we examine the OPF problem, noting that the results
developed here could be applied to any of these OPF-based
problems. Additionally, since we develop results for the OPF
problem formulated as a canonical quadratically-constrained
quadratic program (QCQP), it is clear that many of these
results can apply to the broader class of non-convex problems
that can be formulated as QCQPs.

A. Survey of Existing Methods

Two categories of well-studied techniques for solving the
OPF problem are interior point methods and conic relax-
ations. Modern interior point methods, which are contained
in the broader class of local search methods, have been
shown to efficiently find a solution to the OPF problem,
if a feasible point is available. These methods provide no
guarantee on the quality of the solution and may find a local
minimum. They are highly dependent on a good choice of the
initial point, which can be hard to find in general. There have
been some advances in using numerical methods to improve
the solution quality of interior point methods, such as in [4].

Another area of research concerns optimization methods
with global guarantees, typically in the form of conic re-
laxations of the original OPF problem. The paper [5] first
developed the semidefinite programming (SDP) relaxation
for the OPF problem in the real domain. In the following
years, the SDP relaxation of the OPF problem has gained
attention due to several papers which show that the relaxation
has a zero duality gap in certain cases [6], implying that
the SDP relaxation yields an exact solution to the original
problem for many real-world networks (see [7], [8], [9],
[10]). However, these conditions are not met for all power
networks. Thus, the solution to the SDP relaxation may not
be feasible for the original OPF problem, although it provides
a lower bound on the original solution.

Other types of conic relaxations, such as quadratic pro-
gramming and second-order cone programming relaxations,
of the OPF problem have been proposed [11], but these are
typically dominated by the SDP relaxation [8]. More recent
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work has aimed to strengthen existing conic relaxations by
adding valid inequalities or using branch-and-cut approaches
[12], [13]. However, these methods cannot promise an exact
solution to the original problem in general.

B. Existence of Local Optima

In practice, OPF solutions have been shown to be unique,
i.e. there is typically only one globally optimal solution
to the problem [14]. Due to the non-convex nature of the
OPF problem, there also may be many local optima. It has
been shown that several realistic OPF test cases have many
local minima [14]. Typical networks with many local minima
include cyclic networks with losses or networks with large
phase angle differences. While conic relaxation methods may
work for many cases with local minima, they fail in some of
these cases, such as when there is excess real power in the
network or when the system is under stress [15], [16].

There is no efficient way to characterize all the local min-
ima of the OPF problem. (Note that if there were, the original
problem would be easy to solve to global optimality.) To find
a collection of local minima, Monte-Carlo simulations with
a randomization of the initial point used in the local search
method could be implemented. With this procedure, one may
find many local minima but cannot guarantee that all the local
minima of the problem have been detected.

C. Contributions

This paper proposes a new method to characterize the
worst-case local minimum of the OPF problem. This allows
us to quantify the quality of the solution obtained from a
local search method, independent of the initial point. In order
to find the worst-case local minimum of the OPF problem,
we formulate a new maximization problem based on the
first-order and second-order optimality conditions applied
to a QCQP model of the OPF. Since this problem is also
non-convex, we propose an SDP relaxation to find an upper
bound on the worst-case local minimum of the original OPF
problem. We prove that this SDP relaxation is exact in
a special case. The proposed SDP relaxation is tested on
different networks. By comparing this upper bound on the
unknown local minima with the lower bound on the global
minimum obtained from the SDP relaxation of the original
problem, one can bound the range of solutions obtained
from a local search method. We interpret this distance as
a measure of the hardness of the problem, i.e. an estimate
of how far apart the global minimum is from the worst-case
local minimum, and thus as a measure for the usefulness of
convex relaxation techniques to improve solution quality.

D. Notations

The symbols R and C denote the sets of real and complex
numbers, respectively. RN and CN denote the spaces of
N -dimensional real and complex vectors, respectively. The
symbol SN denotes the space of N × N symmetric real
matrices. The symbols (·)T and (·)∗ denote the transpose
and conjugate transpose of a vector or matrix. Re{·} and
Im{·} denote the real and imaginary part of a given scalar

Fig. 1. The worst-case local minimum problem for a one-dimensional
unconstrained optimization problem. The feasible set of the worst-case local
minimum problem is the collection of local minima, shown in orange. The
objective of the worst-case local minimum problem is the maximum of these
minima, highlighted by a dashed yellow line.

or matrix. The symbol | · | is the absolute value operator if
the argument is a scalar, vector, or matrix; otherwise, it is
the cardinality of a measurable set. The imaginary unit is
denoted by j =

√
−1.

II. PROBLEM FORMULATION

In this section, we present the mathematical formulations
for the OPF problem and the new problem of the worst-case
local minimum OPF.

A. Classical AC-OPF Problem

Let the power network be defined by a graph N = (V, E),
where V is the set of buses and E is the set of transmission
lines. Let G ⊆ V be the buses that are attached to generators.
The classical OPF problem can be written as:

min
v∈C|V|

∑
i∈G

fi(p
g
i ) (1a)

s.t. P gi ≤ p
g
i ≤ P

g
i ∀i ∈ G (1b)

Qgi ≤ q
g
i ≤ Q

g
i ∀i ∈ G (1c)

Vi ≤ |vi| ≤ Vi ∀i ∈ V (1d)

pgi − P
d
i =

∑
(i,j)∈E

Re{vi(vi − vj)∗Y ∗ij}, ∀i ∈ G (1e)

qgi −Q
d
i =

∑
(i,j)∈E

Im{vi(vi − vj)∗Y ∗ij}, ∀i ∈ G (1f)

− P di =
∑

(i,j)∈E

Re{vi(vi − vj)∗Y ∗ij}, ∀i ∈ V \ G (1g)

−Qdi =
∑

(i,j)∈E

Im{vi(vi − vj)∗Y ∗ij}, ∀i ∈ V \ G (1h)

where fi(·) is the power generation cost at bus i, typically a
convex polynomial or piecewise linear function. The decision
variable v is a vector of complex voltages, where vi is the
complex voltage at bus i. The variables pgi and qgi are the
real and reactive power generated at bus i and can be derived
from the vector v. The fixed quantities P di and Qdi are the
real and reactive power demanded at bus i. The parameters
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P gi , P gi , Qgi , Qgi , Vi, Vi are respectively the minimum real
power generated, maximum real power generated, minimum
reactive power generated, maximum reactive power gener-
ated, minimum voltage magnitude, and maximum voltage
magnitude at bus i. The network parameters Yij , Gij , and
Bij are respectively the complex admittance, conductance,
and susceptance for the transmission line between buses i
and j, where Yij = Gij + jBij .

Note that we can also add constraints on line flow capacity
to Problem (1). To be consistent with the following QCQP
formulation, these constraints should have the form
Pij ≤ pij ≤ Pij , where pij is the real power flow over line
(i, j) ∈ E and Pij and Pij are its upper and lower bounds.

B. OPF Problem as a Canonical QCQP

It is well-known that the OPF problem has a QCQP
formulation [6]. In order to streamline the reformulation of
the OPF problem (1) as a canonical QCQP, we assume that
the cost functions fi(·) are linear in pgi for all i ∈ G and thus
are quadratic in terms of the decision vector v. A similar
approach could be used to develop a reformulation for cost
functions that are polynomial in pgi .

By considering linear costs in pgi , both the objective
function and all constraints can be written as quadratic
functions of the decision vector u ∈ R2|V| defined as:

u =
[
Re{v1} . . .Re{v|V|} Im{v1} . . . Im{v|V|}

]T
We also introduce a vector of slack variables z ∈ R4|G|+2|V|

whose entries are associated with the inequality constraints
in the OPF formulation. Using the slack variables, one
can convert inequality constraints to equality constraints (by
adding z2i ) and rewrite the OPF problem (1) as the general
non-convex QCQP:

min
x∈Rn

xTM0x+ k

subject to: xTMix = ai ∀i = 1, . . . , p
(2)

where x =

[
u
z

]
, n = 4|V| + 4|G| and p = 4|V| +

2|G|. The matrices M0, . . . ,Mp ∈ Rn×n and the scalars
k, a1, . . . , ap ∈ R can be easily derived from the power flow
equations in the OPF formulation. Note that the matrices
M0, . . . ,Mp are symmetric by construction.

We use this canonical QCQP as the baseline problem
throughout the rest of the paper. Note that any arbitrary
QCQP can be reformulated in this form. Therefore, the
results of this paper extend beyond the OPF problem to a
wide variety of non-convex problems that can be formulated
as QCQPs. The QCQP in (2) may have many local minima,
local maxima, and saddle points and is NP-hard to solve in
general.

C. Worst-case Local Minimum

To formulate the problem of finding the worse-case local
minimum, which is the focus of this paper, we note that
any regular local minimum will satisfy the Karush-Kuhn-
Tucker (KKT) conditions. A local minimum x∗ is called

a regular point if the gradients of the constraints, namely
M1x

∗,..., Mpx
∗, are linearly independent. We make the mild

assumption that all local minima of the OPF problem are
regular. The Lagrangian of Problem (2) is:

L(x, λ) = xTM0x+ k +

p∑
i=1

λi(x
TMix− ai) (3)

where λi are the Lagrange multipliers associated with the
equality constraints. Then, the KKT conditions are given by
the following equations:

0 = ∇xL(x, λ) = 2M0x+ 2

p∑
i=1

λiMix (4a)

0 =
∂L(x, λ)

∂λi
= xTMix− ai ∀i = 1, . . . , p (4b)

The points that satisfy these KKT conditions may be
local minima, local maxima, or saddle points. Thus, we
add a second-order necessary condition which only local
minima and certain saddle points will satisfy. Such points
are called second-order critical points. The second-order
condition ensures that the feasible space of the worst-case
local minimum problem contains only second-order critical
points of the original problem (2). From [17], we have the
second-order necessary condition:

yT (∇2
xxL(x, λ))y ≥ 0

for all y such that yTMix = 0, ∀i = 1, . . . , p
(5)

where ∇2
xxL(x, λ) = 2M0 + 2

∑p
i=1 λiMi. This second-

order condition involves a possibly infinite number of con-
straints. Thus, it is more useful to reformulate the second-
order necessary condition as a finite-dimensional constraint.
Combining the KKT first-order necessary conditions with
a modified second-order necessary condition for a local
minimum, we define the feasible space of the worst-case
local minimum problem. In this worst-case problem, the
objective is to maximize the local minimum, as stated below.

Theorem 1. Let x∗ be a second-order critical point of the
OPF problem with the highest objective value. Then, x∗

is a globally optimal solution of the following optimization
problem if c is selected to be greater than a certain threshold:

max
x∈Rn,λ∈Rp

xTM0x+ k (6a)

subject to: xTMix = ai ∀i = 1, . . . , p (6b)(
M0 +

p∑
i=1

λiMi

)
x = 0 (6c)

M0 +

p∑
i=1

λiMi + c

p∑
i=1

Mixx
TMi � 0 (6d)

Proof: Condition (5) =⇒ Condition (6d): Define P =
M0 +

∑p
i=1 λiMi and Q =

∑p
i=1Mi(x

∗)(x∗)TMi, where
P is positive semidefinite on the nullspace of Q. It follows
from Lemma 4.2.1 in [17] that (5) and (6d) are equivalent
for all large values of c.
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Condition (6d) =⇒ Condition (5): (6d) is equivalent to:

yT

(
M0 +

p∑
i=1

λiMi + c

p∑
i=1

Mixx
TMi

)
y ≥ 0, ∀y ∈ Rn

If y is selected to satisfy the equations yTMix = 0 for all
i = 1, . . . , p, then the above inequality reduces to:

yT

(
M0 +

p∑
i=1

λiMi

)
y ≥ 0

which is (5).
Note that Problem (6), which is non-convex, finds the

worst-case second-order critical point. As a result, its optimal
objective value serves as an upper bound on the objective
value at the worst-case local minimum.

D. Decision Version of Worst-case Local Min Problem

In the study of the worst-case local minimum problem, it
is useful to also examine the related feasibility problem:

max
x∈Rn,λ∈Rp

0 (7a)

subject to: xTMix = ai ∀i = 1, . . . , p (7b)(
M0 +

p∑
i=1

λiMi

)
x = 0 (7c)

M0 +

p∑
i=1

λiMi + c

p∑
i=1

Mixx
TMi � 0 (7d)

xTM0x+ k ≥ α (7e)

If there is a local minimum to the OPF problem whose
corresponding cost is greater than or equal to α, then the
optimal value of the above problem will be 0. Otherwise,
the optimal value of this problem will be −∞. Thus, the
problem (7) asks whether or not there exists any local minima
to the OPF problem above a threshold α. The interpretation
of this problem is to certify that any local search solution is
a “near-global” solution, i.e. below a given threshold.

For the rest of this paper, we will focus on the optimization
version (6) of the worst-case local minimum problem since
the decision version (7) can be easily deduced from the
result of the optimization version. However, we remark that
notions from algebraic geometry such as sum of squares and
Positivstellensatz could be used to certify that there is no
solution to the decision problem. If there is no solution to
the above problem, then there exists a certificate that no real
solution exists. However, the degree of this certificate may
be arbitrarily large, thus those techniques are not efficient in
general. See [18]–[20] for more details.

III. SDP RELAXATION OF WORST-CASE LOCAL MIN
PROBLEM

To bound the worst-case local minimum, Theorem 1
requires solving the non-convex problem (6) to global opti-
mality, which cannot be achieved using local search methods.
However, any upper bound on the optimal objective value
will still serve the same purpose, and this can be accom-
plished using convex relaxations. In this paper, we develop

a tightened SDP relaxation of the worst-case local minimum
problem.

We define a matrix W ∈ Sn+p+1 based on x ∈ Rn and
λ ∈ Rp as follows:

W =

1x
λ

 [1 xT λT
]
=

1 xT λT

x xxT xλT

λ λxT λλT

 (8)

We regard W as a 3× 3 block matrix with the block entries
Wij for all i, j ∈ {1, 2, 3}.

Theorem 2. Having selected a sufficiently large c, the
optimal objective value of the following SDP provides an
upper bound on the cost of the worst-case local minimum of
the OPF problem:

max
W∈Sn+p+1

trace{M0W22}+ k (9a)

subject to: trace{MiW22} = ai ∀i = 1, . . . , p (9b)

M0W21 +

p∑
i=1

Mi(W23)i = 0 (9c)

M0 +

p∑
i=1

(W31)iMi + c

p∑
i=1

MiW22Mi � 0

(9d)

trace{M0W22}+
p∑
i=1

ai(W31)i = 0 (9e)

W11 = 1 (9f)
W � 0 (9g)

where (W23)i is the ith column of W23 and (W31)i is the
ith entry of W31 for all i ∈ {1, . . . , p}.

Proof: The objective (9a) and constraints (9b), (9c) and
(9d) follow directly from the objective (6a) and constraints
(6b), (6c) and (6d), along with the definition of W (8).
To control the structure of matrix W , we have the con-
straints (9f) and (9g), as well as the non-convex constraint
rank(W ) = 1. We drop the constraint rank(W ) = 1 to
obtain a convex feasible region for the problem. Thus, the
obtained relaxation (9) is an upper bound on (6), which is
an upper bound on the worst-case local minimum. Finally,
to strengthen the SDP relaxation of the worst-case local
minimum problem, we also add the valid constraint, which
follows from constraints (6b) and (6c):

trace{M0xx
T }+

p∑
i=1

λiai = 0 (10)

This constraint becomes constraint (9e) in the strengthened
SDP relaxation.

IV. ANALYSIS OF SDP RELAXATION

Because the worst-case local minimum problem is a non-
convex problem, there could be a nonzero gap between the
optimal objective values of the non-convex problem (6) and
the tightened convex relaxation (9). However, it is desirable
to show that the gap is zero in a fundamental class of QCQPs,
and therefore the SDP relaxation yields an exact solution to
the worst-case local minimum problem for this class.
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Fig. 2. The three-dimensional curve shows the non-convexity of a particular
case of the canonical QCQP, given by Equation (11), for a 3×3 symmetric
matrix M0 with the eigenvalues −0.4, 1.6, and 3.6. The maximum and
minimum eigenvalues are plotted as surfaces in the plane. There are also
saddle points in between. The objective value of the worst-case local min
problem is the same as the minimum eigenvalue, i.e. −0.4.

A. Particular Case with Exact SDP Relaxation

Consider a particular case of the canonical QCQP in (2):

min
x∈Rn

xTM0x

subject to: xTx = 1
(11)

where M0 is an arbitrary symmetric matrix with n distinct
eigenvalues, ordered as µ1 < · · · < µn. associated with the
normalized eigenvectors y1, . . . , yn ∈ Rn. For this problem,
one can analytically compute all of the points that satisfy
the KKT conditions of (11). It can be shown that there
are 2n KKT points: ±y1 are local minima, ±yn are local
maxima, and ±y2, ...,±yn−1 are saddle points. Thus, the
cost corresponding to the worst-case local minimum problem
is equal to yT1 M0y1. The optimization problem (6) provided
in Theorem 1 can be written as:

max
x∈Rn,λ∈R

xTM0x (12a)

subject to: xTx = 1 (12b)
(M0 + λI)x = 0 (12c)

M0 + λI + cxxT � 0 (12d)

In light of (12b) and (12c), the only possible solutions are
x = ±yi and λ = −µi for i = 1, 2, ..., n. However, the
only solution satisfying (12d) is λ = −µ1 and x = ±y1. In
addition, (12d) is satisfied for any c greater than or equal to
zero. This leads to the following result.

Theorem 3. The SDP relaxation (9) returns the cost cor-
responding to the worst-case local minimum of the QCQP
(12) for c = 0, and provides an upper bound for c > 0.

Proof: The SDP relaxation turns out to be:

max
W∈Sn+2

trace{M0W22} (13a)

subject to: trace{W22} = 1 (13b)
M0W21 +W23 = 0 (13c)

M0 +W31I + cW22 � 0 (13d)
trace{M0W22}+W31 = 0 (13e)
W11 = 1 (13f)
W � 0 (13g)

Since (13) is a relaxation of (12) we have (12) ≤ (13).
For the constraint M0 +W31I � 0 to hold, W31 must be
greater than or equal to −µ1. Since trace{M0W22} = −W31,
the optimal objective value of (13) is less than or equal to
µ1. In addition, the optimal objective value of (12) is equal
to µ1. Combining these inequalities yields the fact that the
SDP relaxation (13) meant to provide an upper bound on the
optimal value of (12) also provides a lower bound. Thus, the
relaxation is exact.

Figure 2 exemplifies the non-convexity of the QCQP
(11) for n = 3. This problem has 6 KKT points, and
an SDP relaxation that does not incorporate the second-
order optimality condition will return the global maximum.
However, in light of Theorem 3, the SDP relaxation (13) will
be able to correctly eliminate the local maxima and saddle
points with a negative curvature when c = 0.

B. Choice of Parameter “c”

The parameter c is used to convert the infinite-dimensional
second-order optimality condition to a finite-dimensional
one. The exact value of c is not needed in the non-convex
model (6) since Theorem 2 states that every sufficiently
large c enables finding the worst-case second-order critical
point. However, since (9) is a relaxation of (6), selecting
an exorbitantly large value for c affects the quality of the
solution to the SDP relaxation of the worst-case local min
problem (9).

For example, in the particular QCQP case described above,
the relaxation is exact at c = 0 and gradually becomes
loose as c increases. This is due to the fact that the second-
order necessary condition (6d) holds for c = 0 at the local
minima ±y1. In general, the smallest c needed in Theorem
2 or 3 coincides with the smallest number c satisfying the
second-order condition (6d) at the worst-case second-order
critical point x∗. Note that x∗ is high dimensional in general,
whereas c is a single scalar. Finding a good upper bound
on this scalar requires a careful analysis of the matrices
M1, ...,Mp and is left as future work.

V. SIMULATIONS

To test the tightened SDP relaxation of the worst-case
local minimum problem on benchmark systems, we use
MATPOWER to compute the line admittance values and then
formulate the matrices M0, . . . ,Mp and scalars k, a1, . . . , ap
based on the given OPF constraints (see Section II-A). We
then solve the SDP relaxation of the worst-case local min-
imum problem in MATLAB using the solver SDPT3. Note
that each of the simulations took less than 30 seconds on a
standard laptop. We also remark that sparse SDP constraints,
as described in [21] and [22], could be implemented to
efficiently solve problem (9) on larger networks.
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Fig. 3. WB2 2-bus (top) and WB5 5-bus (bottom) networks.

Fig. 4. Objective value of the worst-case local min SDP relaxation on the
WB2 network (top) and WB5 network (bottom) for varying values of the
parameter c, shown by blue circles. The simulation results are compared to
the objective values at two known local minima for these networks, shown
as dashed lines.

A. Cases with Known Local Optima

First, we test the worst-case local minimum SDP relax-
ation on small networks with known local minima. Using test
networks from the online database [23], which are known to
have multiple local minima, we run a series of simulations
of the worst-case local min SDP relaxation, sweeping over a
range of the parameter c (the networks are given in Figure 3).
From the simulations, it can be observed that the objective
value of the relaxation increases with c, until a saturation
point is reached. The objective value at this saturation point
provides an upper bound on the worst-case local minimum,

Fig. 5. Objective value of the worst-case local min SDP relaxation for the
IEEE 9-bus (top) and 14-bus (bottom) networks for varying values of the
parameter c, shown by blue circles, compared to “discovered” local minima
from randomized initializations of local search, shown as dashed lines.

and it is not tight for the WB2 and WB5 networks given in
Figure 4. With an understanding of a good choice of c, one
can tighten this bound.

B. IEEE Test Cases

Next, we test the worst-case local min SDP relaxation on
some IEEE test networks. Note that for these networks, we
have removed the quadratic cost terms so that the costs are
linear in terms of real power generation (as described in
section II-B). We run a series of simulations of the worst-
case local min SDP relaxation, sweeping over a range of the
parameter c. We also run 200 simulations of local search
on the canonical QCQP in Equation (2) with 200 random,
feasible initial points. Out of these 200 simulations, we take
the solutions of those simulations that converged as the “dis-
covered” local minima. Note that some of these discovered
local minima may in fact be saddle points, depending on
solver performance. For these local search simulations, we
use the FMINCON solver in MATLAB.

It can be observed from the simulation results in Figure
5 that the objective value increases with c until a saturation
point is reached, at which point the value of c is too high
and the relaxation is not exact.

C. Comparison of Worst-case SDP with Original SDP

We compare the objective value of the worst-case local
min SDP relaxation (9) with that of the SDP relaxation of
the original problem (the SDP relaxation of (2)). Table I
shows the objective value of the worst-case local min SDP
relaxation at the saturation point of c for each of the four test
cases. These values provide an upper bound on the worst-
case local minimum.
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TABLE I
OBJECTIVE VALUE OF SDP RELAXATION OF WORST-CASE LOCAL MIN

PROBLEM AT SATURATION WITH RESPECT TO c

Case Worst-case SDP Objective c
WB2 953.85 1
WB5 1742.55 0.3
case9 2537.59 12

case14 12268.8 200

TABLE II
OBJECTIVE VALUE OF SDP RELAXATION OF ORIGINAL PROBLEM

Case SDP Objective value
WB2 877.78
WB5 946.53
case9 1458.91

case14 5371.58

By comparing the worst-case local min SDP relaxation to
the SDP relaxation of the original problem, we can compute
a lower bound on the global optimality degree, which is
defined as:

Global optimality degree =

100%×
(
1− upper bound - lower bound

|upper bound|

)
(14)

The SDP relaxation of the original problem provides a
lower bound on the optimal value of the original non-convex
problem and is given in Table II. The SDP relaxation of the
worst-case local min problem provides an upper bound on
the objective value at any local minima. Thus, by computing
the global optimality degree for these two bounds, we can
find a lower bound on the global optimality degree for the
problem.

This lower bound on optimality degree provides a metric
of how useful the original SDP relaxation is for the given
problem. If the lower bound on optimality degree is high,
then any local search solution will be relatively close to
the SDP solution. For these cases, such as the WB2 case,
the more expensive SDP relaxation is less useful since local
search solutions are relatively high quality. For cases with a
larger gap between the SDP solution and the worst-case local
minimum, there is some benefit in using a convex relaxation
instead of local search for solving the OPF problem.

VI. CONCLUSIONS

This paper formulates the problem of finding the worst-
case local minimum for a canonical QCQP, with a focus on
the application in optimal power flow. Since the problem is
non-convex, an SDP relaxation is designed to find an upper
bound on objective value at the worst-case local minimum.
We show that this SDP relaxation is exact in a particular
case with many saddle points. Additionally, we find that
the tightness of this upper bound depends on the choice
of a parameter in the second-order necessary optimality
condition. By comparing the objective value obtained from
the SDP relaxation of the worst-case local minimum problem
to the objective value of the SDP relaxation of the original

problem, we provide a metric on how much SDP can
outperform local search. These two SDP relaxations for the
upper and lower bounds allow us to evaluate the projected
performance of local search methods when good initial points
are not available. The worst-case local minimum problem is
a useful tool to bound the range of possible solutions to a
given non-convex QCQP.
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