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Abstract— The paper is concerned with the theoretical ex-
planation of the recent empirical success of solving the low-
rank matrix sensing problem via nonconvex optimization. It is
known that under an incoherence assumption (namely, RIP) on
the sensing operator, the optimization problem has no spurious
local minima. This assumption is too strong for real-world
applications where the amount of data cannot be sufficiently
high. We develop the notion of Kernel Structure Property
(KSP), which can be used alone or combined with RIP in this
context. KSP explains how the inherent structure of an operator
contributes to the non-existence of spurious local minima. As
a special case, we study sparse sensing operators that have
a low-dimensional representation. Using KSP, we obtain novel
necessary and sufficient conditions for no spurious solutions in
matrix sensing and demonstrate their usefulness in analytical
and numerical studies.

I. INTRODUCTION

Even under the ideal condition of no noise and zero
approximation error, many highly-efficient machine learning
techniques involve solving potentially hard or intractable
computational problems while learning from data. In prac-
tice, they are tackled by heuristic optimization algorithms,
based on relaxations or greedy principals. The lack of guar-
antees on their performance limits their use in applications
with significant cost of an error, impacting our ability to im-
plement progressive data analysis techniques in crucial social
and economic systems, such as healthcare, transportation,
and energy production and distribution. Commonly, non-
convexity is the main obstacle for a guaranteed learning of
continuous parameters.

It is well known that many fundamental problems with
a natural non-convex formulation can be NP-hard [2]. So-
phisticated techniques for addressing this issue, like generic
convex relaxations, may require working in an unrealis-
tically high-dimensional space to guarantee exactness of
the solution. As a consequence of complicated geometrical
structures, a non-convex function may contain an exponential
number of saddle points and spurious local minima, and
therefore local search algorithms may become trapped in
such points. Nevertheless, empirical observations show pos-
itive results regarding the application of these approaches
to several practically important instances. This has led to a
large branch of research that aims to explain the success of
experimental results in order to understand the boundaries
of applicability of the existing algorithms and develop new
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ones. A recent direction in non-convex optimization consists
in studying how simple algorithms can solve potentially hard
problems arising in data analysis applications. The most
commonly applied class of such algorithms is based on local
search, which will be the focus of this work.

Consider searching over some given domain X . For a
twice continuously differentiable objective function f : X →
R that attains its global infimum f∗, if the point x attains
f(x) = f∗, then we call it a global minimizer. The point x is
said to be a local minimizer if f(x) ≤ f(x′) holds for all x′

within a local neighborhood of x. If x is a local minimizer,
then it must satisfy the first- and second-order necessary
optimality conditions. Conversely, a point x satisfying only
the first-order condition is called a first-order critical point,
while a point satisfying both of the conditions is called a
second-order critical point. We also call it a solution. We
call a solution spurious if it is not a global minimum. In this
work, we study how existence of a spurious solution depends
on the size/volume of the domain as well as the underlying
structure of the problem.

The analysis of the landscape of the objective function
around a global optimum may lead to an optimality guarantee
for local search algorithms initialized sufficiently close to
the solution [3], [4], [5], [6], [7], [8]. Finding a good
initialization scheme is highly problem-specific and difficult
to generalize. Global analysis of the landscape is harder, but
potentially more rewarding.

Both local and global convergence guarantees have been
developed to justify the success of local search methods
in various applications like dictionary learning [9], basic
non-convex M-estimators [10], shallow [11] and deep [12]
artificial neural networks with different activation [13] and
loss [14] functions, phase retrieval [15], [16], [17] and more
general matrix sensing problems [18], [19]. Particularly,
significant progress has been made towards understanding
different variants of low-rank matrix recovery, although
explanations of the simplest version called matrix sensing
are still under active development [20], [21], [22], [18], [23],
[24]. Given a linear sensing operator A : Sn → Rm and a
ground truth matrix z ∈ Rn×r (r < n), an instance of the
rank-r matrix sensing problem consists in minimizing over
Rn×r the nonconvex function

fz,A(x) = ‖A(xxT − zzT )‖22 = ‖A(xxT )− b‖22, (1)

where b = A(zzT ). Recent work has generally found a
certain assumption on the sensing operator to be sufficient
for the matrix sensing problem to be “computationally easy



to solve”. Precisely, this assumption works with the notion
of RIP.

Definition 1 (Restricted Isometry Property). The linear map
A : Sn → Rm is said to satisfy δr-RIP for some constant
δr ∈ [0, 1) if there is γ > 0 such that

(1− δr)‖X‖2F ≤ γ‖A(X)‖22 ≤ (1 + δr)‖X‖2F

holds for all X ∈ Sn satisfying rank(X) ≤ r.

The existing results proving absence of spurious local
minima using this notion (such as [25], [26], [27], [28], [29],
[18], [30], [20]) are based on a norm-preserving argument:
the problem turns out to be a low-dimensional embedding
of a canonical problem known to contain no spurious local
minima. While the approach is widely applicable in its scope,
it requires fairly strong assumptions on the data. In contrast,
[24], [31] introduced a technique to find a certificate to
guarantee that any given point cannot be a spurious local
minimum of the problem of minimizing fz,A over Rn×r,
where z ∈ Rn×r and A satisfies δ2r-RIP. Since fz,A depends
on z and A, this introduces a class of optimization problems
defined as{

minimize
x∈Rn×r

fz,A(x)
∣∣∣ A satisfies δ2r-RIP, z ∈ Rn×r

}
.

(ProblemRIP)
(ProblemRIP) consists of infinitely many instances of an
optimization problem, each corresponding to some point z
in Rn×r and some operator A satisfying δ2r-RIP. The state-
of-the-art results for (ProblemRIP) are stated below.

Theorem 1 ([28], [18], [31]). The following statements hold:
• If δ2r < 1/5, no instance of (ProblemRIP) has a

spurious second-order critical point.
• If r = 1 and δ2 < 1/2, then no instance of (ProblemRIP)

has a spurious second-order critical point.
• If r = 1 and δ2 ≥ 1/2, then there exists an instance

of (ProblemRIP) with a spurious second-order critical
point.

Non-existence of a spurious second-order critical point
effectively means that any algorithm that converges to a
second-order critical point is guaranteed to recover zzT

exactly. Examples of such algorithms include variants of the
stochastic gradient descent (SGD) that is known to avoid
saddle or even spurious local minimum points under certain
assumptions [32], and widely used in machine learning [33],
[34]. Besides SGD, many local search methods have been
shown to be convergent to a second-order critical point
with high probability under mild conditions, including the
classical gradient descent [35], alternating minimizations
[36] and Newton’s method [37]. In this paper, we present
guarantees on the global optimality of the second-order
critical points, which means that our results can be combined
with any of the algorithms mentioned above to guarantee the
global convergence.

Theorem 1 discloses the limits on the guarantees that
the notion of RIP can provide. However, linear maps in

applications related to physical systems, such as power
system analysis, typically have no RIP constant smaller than
0.9, and yet the non-convex matrix sensing still manages
to work on those instances. This gap between theory and
practice motivates the following question.

What is the alternative property practical problems
satisfy that makes them easy to solve via simple local
search?

We address this problem by developing a theoretical
framework that precisely characterizes when a structured
linear map has no spurious solution. It allows us to relax
the bounds on δ2r in Theorem 1. More precisely, we obtain
different theoretical bounds on the RIP constant δ2r that
guarantee the absence of a spurious second-order critical
point by leveraging the underlying structure of a given
mapping. Since the existing methods have not studied this
fundamental problem, we compare our bounds with the
baseline δ2r < 1/2, which is the best known bound in the
literature. In Section II, we motivate the need for a new
notion replacing or improving RIP with real-world examples.
Section III introduces some formal definitions and develops
a mathematical framework to analyze spurious solutions and
relate them to the underlying sparsity and structure of the
problem, using techniques in conic optimization. Sections IV
and V give the theory behind this notion and examples of
its application. In Section VI, we present numerical results
of the application of the developed theory to a real-world
problem appearing in power systems analysis. Concluding
remarks are given in Section VII. Some of the proofs,
technical details and lemmas can be found in the technical
report [1].

Notation

Cn, Rn and Rn×r denote the sets of complex and real
n-dimensional vectors, and n× r matrices, respectively. Sn
denotes the set of n × n symmetric matrices. Tr(A), ‖A‖F
and 〈A,B〉 are the trace of a square matrix A, its Frobenius
norm, and the Frobenius inner product of matrices A and
B of compatible sizes. For a square matrix A, we define
the symetric part Sym(A) = (A+AT )/2. For a symmetric
matrix A, its null space is denoted with Ker(A). For square
matrices A1, A2, . . . , An, the matrix diag(A1, . . . , An) is
block-diagonal, with Ai’s on the block diagonal. The nota-
tion A◦B refers to the Hadamard (entrywise) multiplication,
and A ⊗ B refers to the Kronecker product of matrices.
The vectorization operator vec : Rn×r → Rnr stacks the
columns of a matrix into a vector. The matricization operator
mat(·) is the inverse of vec (·). Let � denote the positive
semidefinite sign.

For a linear operator L : Rn×r → Rm, the adjoint operator
is denoted by LT : Rm → Rn×r. The matrix L ∈ Rm×nr
such that L(x) = Lvec (x) is called the matrix representation
of the linear operator L. Bold letters are reserved for matrix
representations of corresponding linear operators.

Sparsity pattern S of a set of matrices M ⊂ Rm×n is a
subset of {1, . . . ,max{n,m}}2 such that (i, j) ∈ S if and
only if there is X ∈ M with the property that Xij 6= 0.



Given a sparsity pattern S, define its matrix representation
S ∈ Sm×n as

Sij =

{
0 if (i, j) ∈ S,
1 if (i, j) /∈ S,

The orthogonal basis of a given m×n matrix A (with m ≥
n) is a matrix P = orth(A) ∈ Rm×rank(A) consisting of
rank (A) orthonormal columns that span range(A):

P = orth(A) ⇐⇒ PPTA = A, PTP = Irank (A).

Positive part means (·)+ = max{0, ·}, and eigenvalues in an
arbitrary order are denoted by λi(·).

II. MOTIVATING EXAMPLE

In this section, we motivate this work by offering a case
study on data analytics for energy systems. The state of
a power system can be modeled by a vector of complex
voltages on the nodes (buses) of the network. Monitoring the
state of a power system is obviously a necessary requirement
for its efficient and safe operation. This crucial information
should be inferred from some measurable parameters, such
as the power that is generated and consumed at each bus
or transmitted through a line. The power network can be
modeled by a number of parameters grouped into the ad-
mittance matrix Y ∈ Cn×n. The state estimation problem
consists in recovering the unknown voltage vector v ∈ Cn
from the available measurements. In the noiseless scenario,
these measurements are m real numbers of the form

v∗Miv, ∀ i ∈ {1, . . . ,m}, (2)

where Mi = Mi(Y ) ∈ Cn×n are sparse Hermitian matri-
ces representing power-flow and power-injection as well as
voltage magnitudes measurements. The sparsity pattern of
the measurement matrices is determined by the topology of
the network, while its nonzero entries are certain known
functions of the entries of Y . Since the total number of
nonzero elements in matrices Mi exceeds the total number of
parameters contained in Y, we can think of Y → {Mi}mi=1 as
an embedding from a low-dimensional space. For a detailed
discussion on the problem formulation and approaches to its
solution see e.g. [38].

To formulate the problem as a low-rank matrix recovery,
we introduce a sparse matrix A = A(Y ) ∈ Cm×n2

with
i-th row equal to vec(Mi)

T . The measurement vector can
be written as Avec(vvT ). To find v from the measurements,
one can solve the non-convex optimization problem:

minimize
x∈Cn

‖Avec (xxT − vvT )‖2 (3)

In practice, this non-convex optimization problem is usually
solved via local search methods, which converge to a second-
order critical point at best. Since f(x) = ‖Avec (xxT −
vvT )‖2F = 〈xxT − vvT ,ATAvec (xxT − vvT )〉, the set
of critical points for the problem is defined by the linear
map represented with the matrix H = ATA, which thus
is the key subject of the study. Problems arising in power
systems analysis are based on operators that possess a
specific structure. An example of a structure for the matrix

(a) (b)

Fig. 1: Examples of the structure patterns of operators A
(left plot) and H (right plot) in power system applications.
The positions of the identical nonzero entries of a matrix are
marked with the same markers.

A is given in Fig. 1a, and the structure of the corresponding
H is described in Fig. 1b. The respective power network will
be considered in more details in Section VI. As discussed
previously, given H, it is practically important to know if
there exist v, x ∈ Cn such that x is a critical point of (3)
while xxT 6= vvT . Absence of these points proves that a
local search method recovers v exactly, certifying safety of
its use. It is equivalent to the following problem having its
optimal objective value equal to zero:

maximize
v, x∈Cn

‖A(xxT − vvT )‖2

subject to ∇xf(x, v) = 0
∇2
xf(x, v) � 0

However, this is an NP-hard problem in general and cannot
be solved efficiently. Even if we solved it, the sensing
operator A could change over time without changing its
structure, and therefore any conclusion made for a specific
problem cannot be generalized to other ones that should be
solved for real-world problems where data analysis is to be
performed periodically. One way to circumvent this issue is
to develop a sufficient condition for all mappings H with the
same structure.

III. INTRODUCING KERNEL STRUCTURE

Consider a linear operator A : Sn → Rm with the
matrix representation A ∈ Rm×n2

and a sparsity pattern SA.
Assume that there is a set of hidden parameters ξ ∈ Rd, d�
m, such that A is the image of ξ in the space of a much
higher dimension. In this way, A has a low-dimensional
structure beyond sparsity, which is captured by A = A(ξ)
and A(0) = 0. The motivating example in Section II is
a special case of this construction since it could be stated
entirely with the real vectors and matrices of a bigger size
than the complex ones. We define the nonconvex objective

f : Rn×r → R such that f(x) = ‖A(xxT − zzT )‖2

parametrized by A and z ∈ Rn×r. Its value is always
nonnegative by construction, and the global minimum 0 is



attainable. To emphasize the dependence on certain param-
eters, we will write them in the subscript. To align the
minimization problem with the problem of reconstructing
zzT , we need to introduce a regularity assumption:

Assumption 1. The 2r-RIP constant δ2r of A exists (and by
definition is strictly smaller than 1).

Note that we do not assume any particular value for the
RIP constant here. We will rely on Assumption 1 throughout
the paper. This assumption implies that for all x, z ∈ Rn×r:

‖A(xxT − zzT )‖ = 0 if and only if xxT = zzT

Another way to express the objective is

f(x) = 〈xxT − zzT ,H(xxT − zzT )〉.

Here, H = ATA is the linear kernel operator that has
the matrix representation H = ATA and sparsity pattern
SH. Namely, (i, j) ∈ SH if and only if there exists k
such that (k, i) ∈ SA and (k, j) ∈ SA. Sparsity of H
is controlled by the out-degree of the graph represented
by SA, and tends to be low in applications like power
systems. SH is represented by a matrix S, so that SH-sparse
operators are exclusively those satisfying the linear equation
S(H) = S ◦H = 0. Besides sparsity, H inherits the low-
dimensional structure from A, which can be captured by
H = A(ξ)TA(ξ) = H(ξ) where ξ ∈ Rd. This dependence
can be locally approximated in the hidden parameter space
with a linear one. More precisely, suppose that there is a
linear operator W defined over Sn2

such that W(H(ξ)) ≈ 0
for the values of ξ under consideration. Thus, from now on
we focus exclusively on low-dimensional structures of the
form W(H) = 0. Together, the sparsity operator S and the
low-dimensional structure operator W form the combined
structure operator T = (S,W) that accumulates the structure
of the kernel operator.

Definition 2 (Kernel Structure Property or KSP). The linear
map A : Sn → Rm is said to satisfy T -KSP if it satisfies
Assumption 1 and there is a linear structure operator T :
Sn2 → Rt such that

T (ATA) = 0

where A is the matrix representation of A.

Notice that a particular sensing operator A can be kernel
structured with respect to an entire family of structure
operators, and we can possibly select any of them for our
benefit in the following section.

IV. USING KSP
After fixing the kernel structure of the sensing operators,

we can state the problem under study as follows:{
minimize
x∈Rn×r

fz,A(x)
∣∣∣ A satisfies Assumption 1

and T -KSP , z ∈ Rn×r
}
,

(ProblemKSP)
Note that (ProblemKSP) consists of infinitely many instances
of an optimization problem, each corresponding to some
point z ∈ Rn×r and some operator A satisfying T -KSP.

If X is regarded as an input and the operator A is
regarded as a system with its output being A(X), the RIP
constant aims at characterizing the input-output behavior
of the system. This input-output relationship can also be
controlled by imposing the following constraint on the matrix
H:

(1− δ)I � H � (1 + δ)I,

where I is the identity operator. More precisely, the above
inequality guarantees that the operator A has an RIP constant
less than or equal to δ. Inspired by this observation, we
introduce the function O(x, z; T ) to be the optimal objective
value of the convex optimization problem:

minimum
δ∈R,H

δ

subject to Lx,z(H) = 0 (4a)
Mx,z(H) � 0 (4b)
T (H) = 0 (4c)
(1− δ)I � H � (1 + δ)I (4d)

where Lx,z(H) = ∇fz,H(x) and Mx,z(H) = ∇2fz,H(x).
This optimization is performed over all operators H satis-
fying the KSP. We will later show that the function O sets
an upper bound on the δ2r such that none of the functions
fz;A with A satisfying T -KSP and δ2r-RIP has a spurious
second-order critical point at x.

Since fz,H(x) is linear in H, the operators Lx,z andMx,z

are both linear. Thus, the problem defining the function O is
convex.

To relax the δ2r-RIP condition, we consider those oper-
ators that have a bounded effect on a linear subspace of
limited-rank inputs. Indeed, for any 2r linearly independent
vectors, the linear span of them is a linear subspace of
the manifold of the 2r-rank matrices. Thus, for any linear
operator P from a 2r-dimensional (or lower) vector space
to Rn2

, the following condition on H holds if A satisfies
δ-RIP:

(1− δ)PTP � PTHP � (1 + δ)PTP. (5)

Based on this observation, we define the function
OP (x, z; T ) as the optimal objective value of the following
convex optimization problem:

minimum
δ∈R,H

δ

subject to Lx,z(H) = 0 (6a)
Mx,z(H) � 0 (6b)
T (H) = 0 (6c)

(1− δ)PTP � PTHP � (1 + δ)PTP (6d)

where P is the linear operator from Rrank([x z])2 to Rn2

that
is represented by the matrix P = orth([x z]) ⊗ orth([x z]).
Note that (6) is obtained from (4) by replacing its constraint
(4d) with the milder condition (5). We will show that the
function OP sets a lower bound on the δ2r such that none



of the functions fz;A with A satisfying T -KSP and δ2r-RIP
has a spurious second-order critical point at x.

Now, we are ready to state one of the main results of this
paper.

Theorem 2 (KSP necessary and sufficient conditions). For
all instances of (ProblemKSP), there are no spurious second-
order critical points if

OP (x, z; T ) ≡ 1 over Rn×r × Rn×r \ {xxT = zzT } (7)

and only if

O(x, z; T ) ≡ 1 over Rn×r × Rn×r \ {xxT = zzT } (8)

To elaborate on implications and practicality of the result,
we present its application for a specific structure of the
sensing operator below.

A. Ellipsoid norm: Rank 1

In this subsection, we prove a special case of Theorem
2 for the ellipsoid norm objective function. This proof first
provides useful intuition behind the proof of the general case
and then simplifies the conditions of Theorem 2 to show that
they always hold for a specific class of operators.

Consider the ellipsoid norm of xxT − zzT given by a
full-rank matrix Q ∈ Rn×n, denoted with h :

h(x) = ‖Q(xxT − zzT )‖2F = fz,A(x)

With no loss of generality, assume that Q ∈ Sn since
h(·) really depends only on QTQ. The function can be
implemented with a block-diagonal sensing operator ma-
trix A = diag(Q, . . . , Q) ∈ Sn2

, which generates a
block-diagonal kernel matrix H = diag(QQ, . . . , QQ).
Thus, the kernel matrix is a block-diagonal matrix H =
diag(H11, . . . ,Hnn) ∈ Sn2

with blocks of size n×n equal
to each other; in other words, Hii = Hjj for all i, j ∈
{1, . . . , n}. This generates a kernel structure. By applying
the theory introduced above, we obtain the following result
for the rank-one case.

Proposition 1. Consider a kernel structure operator T =
(S,W) such that
• S(H) = 0 iff H = diag(H11, . . . ,Hnn)
• W(H) = 0 iff Hii = Hjj , i, j ∈ {1, . . . , n},

Then, no instance of the (ProblemKSP) has a spurious second-
order critical point over Rn.

The proposition implies that the function h(x) can never
have a spurious solution for rank-1 arguments.

V. COMBINING KSP WITH RIP

After fixing the kernel structure of the sensing operators
and the RIP constant, we can state the problem under study
in this section as follows:{

minimize
x∈Rn×r

fz,A(x)
∣∣∣ A satisfies δ2r-RIP and T -KSP,

z ∈ Rn×r
}
,

(ProblemKSP+RIP)
Note that (ProblemKSP+RIP) consists in minimization of a
class of functions fz,A that correspond to some point z ∈

Rn×r and some operator A that satisfies T -KSP and δ2r-RIP
simultaniously. This is a generalization of both (ProblemRIP)
and (ProblemKSP). For (ProblemKSP+RIP), we provide neces-
sary and sufficient conditions for having no spurious second-
order critical point, and consequently no spurious local
minimum.

Theorem 3 (KSP+RIP necessary and sufficient conditions).
For all instances of (ProblemKSP+RIP), there are no spurious
second-order critical points if

δ2r < min
x∈BR(ω),z∈BR(ω)

xxT 6=zzT

OP (x, z; T ) (9)

and only if

δ2r < min
x∈BR(ω),z∈BR(ω)

xxT 6=zzT

O(x, z; T ) (10)

Following from the results of [31], the necessary and
sufficient conditions coincide for the trivial structure operator
T ≡ 0.

A. Sparse structure and normalization

Due to Theorem 1 for the rank-1 case, the instances of
(ProblemKSP+RIP) have no spurious solutions with T ≡ 0 as
long as δ2 is upper bounded by 1

2 . In this subsection, we are
concerned with the question of how much sparsity can impact
the best bound on RIP that certifies global convergence.
Formally, we set W ≡ 0 and T ≡ S and find a tighter
upper bound for δ2. After enforcing sparsity, it is natural to
expect that the bound grows and becomes less restrictive.
However, this turns out not to be the case.

Let n = 2 and r = 1, and consider the smallest sparsity
pattern possible forH = ATA � 0. It consists exclusively of
elements (i, i), and thus enforces H to be diagonal. Consider
the point x with respect to the instance of the problem given
by z and A as in the example below:

Example 1. Assume that

x = (1, 1); z = (
√
2,−
√
2); A = diag(

√
3, 1, 1,

√
3)

Then, x is spurious for fz,A since it satisfies the second-
order necessary conditions:

∇fz,A(x) = 0, ∇2fz,A(x) = 16

[
1 1
1 1

]
� 0

which makes it a spurious second-order critical point (note
that xxT 6= zzT ). Notice that H = ATA is indeed diagonal.
Moreover, for all X ∈ S2, the operator A satisfies the

tight bound ‖X‖2F ≤ ‖A(X)‖2 = ‖
[ √

3 1

1
√
3

]
◦ X‖ ≤

3‖X‖2F . Therefore, the largest number δ2 for this instance
is equal to 1/2, which coincides with the upper bound
for unstructured problems. Somewhat counter-intuitively, the
tight bound established in [24], [31] holds even when a very
restrictive sparsity pattern of the kernel operator is enforced.
Nevertheless, for an arbitrary low-dimensional structure W,
a tighter sparsity constraint entails a less restrictive bound
on incoherence as discussed below.



Proposition 2. If the sparsity pattern S has a sub-pattern S′

meaning that S′ ⊂ S, then O(x, z;W,S ′) ≤ O(x, z;W,S)
for all x, y ∈ Rn×r. Thus, the necessary bound on incoher-
ence for H with S′ is not more restrictive than the bound
for H with S.

In other words, a more restricting assumption on the
sparsity of the kernel operator can only push the upper bound
on the RIP constant higher up. Consequently, Example 1
shows that there is no sparsity pattern of cardinality > 3
that can itself compensate the lack of isometry. Note that
the example is given for the case n = 2, but there is
a straightforward extension to an arbitrary n by adding
zero components to x and z. It is common in practice to
normalize the rows of the sensing matrix before proceeding
to recovery. In the context of power systems, it is expressed
as xTMix → xTMix

‖Mi‖F . For Example 1, after normalization,
A turns into the identity. The corresponding instance of the
problem is known to have no spurious critical points. This
illustrates how normalization helps to improve the isometry
property of the sensing operator and removes the spurious
second-order critical points out of the corresponding instance
of the problem. Normalization in this case can be regarded
as inducing structure on top of sparsity.

VI. NUMERICAL RESULTS

In this section, we present numerical studies of the matrix
recovery problems for structured sensing operators. One
objective is to demonstrate how the analytical framework
developed in Section III can be applied to evaluate the
hardness of a real-world problem, namely the power system
state estimation discussed in Sections II and V. We calculate
a numerical estimation of the minimal value of the function
OP for different structural patterns T . After that, we estimate
the best RIP constant of a sensing operator satisfying the
KSP, which is sufficient to guarantee the absence of spurious
local second-order critical points. We call this constant the
sufficient best RIP constant or just the sufficient RIP. There is
a clear connection between the hardness of a matrix sensing
problem and the sufficient RIP, and the study we conduct
eventually aims to find out the role of structure in non-convex
optimization.

In general, the optimization problem (9) is non-convex.
Thus, we propose to use Bayesian optimization [39] in order
to obtain a numerical estimation of its solution. We have
empirically observed that Bayesian optimization tends to
obtain the same optimal solution to this problem much faster
than random shooting or cross-entropy.

Recall that the structure operator is defined by two op-
erators stack together: T = (S,W). Here, W captures the
underlying structure that is not captured by the sparsity op-
erator S. We will consider a particular form of this operator.
Given the matrix representation H of the kernel operator,
denote the unique nonzero values in this matrix with the
scalars h1, . . . , hdW . It means that H is representable in the
form H = h1E1 + . . . + hdWEdW , where Ei is a matrix
of the same size as H, with 0 and 1 entries. The operator

Fig. 2: The average sufficient best RIP constant obtained
from the developed analytic framework (Theorem 3) for
random structures generated from the distribution RS(p0, U)
(each colored line stands for one specific value of p0),
compared with the baseline method from Theorem 1 (shown
as black and dashed). Shaded area represents the standard
deviation window.

W that we use in this section is any operator that has the
subspace {β1E1 + . . .+ βdWEdW : β1, . . . βdW ∈ R} as its
kernel. This is inspired by the kernel operators for real-world
power systems.

A. Synthetic data

We generate a class of randomly generated structures
by introducing a distribution RS(p0, U) over the space
of structure operators. First, we generate the measurement
structure matrix Ast such that each of its components takes
value 0 with probability p0 and any of the values 1, . . . , U
with the equal probability of 1−p0

U . We then form the kernel
structure matrix as Hst = AT

stAst and construct the sparsity
operator S and the extra structure operator W as discussed
previously. The obtained structure operator T is such that the
operator represented with Ast satisfies the T -KSP. Note that
the average sparsity of Ast is p0 and the number of unique
nonzero values is U with high probability, which implies
that p0 is the parameter for the amount of sparsity structure
in the problem, and U is the parameter for the amount of
additional structure.

Figure 2 depicts the estimated sufficient RIP for random
problems with different values for the sparsity (p0) and
the unique counter (U ). Observe that the sparsity and the
additional structure (the number of unique nonzero values
in the measurement matrix in this particular case) both have
a significant impact on the sufficient RIP. Note that higher
p0 means more sparsity and lower U means more extra
structure. Although it was observed theoretically that sparsity
alone cannot guarantee the increase in the sufficient best RIP
constant, it appears to be an important characteristic when
combined with the additional structure.

Even for structures with a considerably low sparsity (0.85),
the tight extra structure (U = 2) has the sufficient best RIP of



Fig. 3: The distribution of the sufficient best RIP constant
obtained for random structure operators (blue) and the suf-
ficient best RIP constant obtained for the structure operator
from real-world data (red) for the 9-bus (top) and 14-bus
(bottom) power systems. Green shaded region depicts the
standard deviation window of the sufficient RIP for the
synthetic data.

1, which is a counter-intuitive result. The the sufficient RIP
seems to decay exponentially as we relax extra structure by
increasing U , but with different bases for different p0. This
behaviour coincides with the one predicted in Proposition 2.
If the goal is to make the RIP higher than a certain threshold,
the amount of extra structure needed to achieve this reduces
dramatically with the increase of the sparsity structure.

The key takeaway from this experiment is that our method
captures the structural properties of a given mapping and
shows that it significantly affects the sufficient RIP, which
leads to certifying the absence of spurious solutions under
far less restrictive requirements (by improving the previous
bound 0.5 for arbitrary mappings).

B. Power systems data

In this subsection, we estimate the sufficient best RIP
bound for the matrix sensing formulation of different cases
of the power system state estimation problem using Theorem
3. After that, we compare the bounds against the sufficient
best RIP of random problems generated from RS with the
same p0 and U parameters as in power systems. .

We focus our attention on two networks named case9
and case14, which are provided in the MATPOWER
package. For case9, the A and H matrices are visualized
in Figure 1. The sufficient best RIP constant in both cases
leads to the bound 0.64, which is substantially better that

the previously best known bound 0.5, although our bound
does not yet fully explain the success of the non-convex
optimization approach for the power system state estimation
(as discussed below, one may exploit more structures in the
Y matrix to tighten the bound).

Figure 3 shows the distribution of the sufficient RIP for
structures both randomly generated and originated from real-
world data. The distribution parameters are set in a way
that sparsity and extra structure parameters in both cases
are likely to coincide. Observe that the sufficient RIP values
for power systems are regularly larger than the ones for
the synthetic data. Consequently, the original structure has
considerably different properties from the randomly gen-
erated structures, which gives us the opportunity to build
better bounds for the real-world system than for a randomly
generated system, by finding a more detailed structure. For
example, our model just used the number of unique nonzero
values, but one may also model the relationship between the
nonzero elements.

The above simulations were based on the networks pro-
vided in the package MATPOWER 7.0b1 [40]. All of
the presented simulations were done using the MATLAB
bayesopt toolbox for non-convex optimization and MATLAB
modeling toolbox CVX [41], [42] with SDPT3 [43], [44] as
the underlying convex solver.

VII. CONCLUSION

In this work, we study the optimization landscape of
the non-convex matrix sensing problem that is known to
have many local minima in the worst case. Since the ex-
isting results are related to the notion of restricted isometry
property (RIP) that cannot directly capture the underlying
structure of a given problem, they can hardly be applied
to real-world problems where the amount of data is not
exorbitantly high. To address this issue, we develop the
notion of kernel structure property to obtain necessary and
sufficient conditions for the inexistence of spurious local
solution of any class of matrix sensing problems over a given
search space. This notion precisely captures the underlying
sparsity and structure of the problem, based on tools in conic
optimization.We simplify the conditions for a certain class of
problems to show their satisfaction and apply them to data
analytics for both power systems and a class of randomly
generated structured systems.
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