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We consider the use of decision trees for decision-making problems under the predict-then-optimize frame-
work. That is, we would like to first use a decision tree to predict unknown input parameters of an optimiza-
tion problem, and then make decisions by solving the optimization problem using the predicted parameters.
A natural loss function in this framework is to measure the suboptimality of the decisions induced by the
predicted input parameters, as opposed to measuring loss using input parameter prediction error. This natu-
ral loss function is known in the literature as the Smart Predict-then-Optimize (SPO) loss, and we propose a
tractable methodology called SPO Trees (SPOTSs) for training decision trees under this loss. SPOTs benefit
from the interpretability of decision trees, providing an interpretable segmentation of contextual features into
groups with distinct optimal solutions to the optimization problem of interest. We conduct several numerical
experiments on synthetic and real data including the prediction of travel times for shortest path problems
and predicting click probabilities for news article recommendation. We demonstrate on these datasets that
SPOTs simultaneously provide higher quality decisions and significantly lower model complexity than other

machine learning approaches (e.g., CART) trained to minimize prediction error.
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1. Introduction

Many decision-making problems of interest to practitioners can be framed as optimization prob-
lems containing uncertain input parameters to be estimated from data. For example, personalized
advertising requires estimation of click/conversion probabilities as a function of user features, port-
folio optimization problems necessitate accurate predictions of asset returns, and delivery routing
problems require forecasts of travel times. A convenient and widely-utilized framework for address-
ing these problems is the predict-then-optimize framework. Predict-then-optimize is a two step
approach which (7) first predicts any uncertain input parameters using a machine learning (ML)
model trained on historical data, and (i) then generates decisions by solving the corresponding
optimization problem using the predicted parameters. Typically, the ML models in this framework
are trained using loss functions measuring prediction error (e.g., mean squared error) without con-
sidering the impact of the predictions on the downstream optimization problem. However, for many
practitioners, the primary interest is in obtaining near-optimal decisions from the input param-
eter estimates rather than minimizing prediction error. In this work, we provide a methodology
for training decision trees, under the predict-then-optimize framework, to minimize decision error
rather than prediction error.

A natural idea is to integrate the prediction task with the optimization task, training the ML
models using a loss function which directly measures the suboptimality of the decisions induced
by the predicted input parameters. ( ) propose such a loss function
for a broad class of decision-making problems, which they refer to as the Smart Predict-then-
Optimize loss (SPO loss). However, the authors note that training ML models using SPO loss is
likely infeasible due to the SPO loss function being nonconvex and discontinuous (and therefore
not differentiable). The authors therefore propose a convex surrogate loss function they refer to as
SPO+ loss, which they show is Fisher consistent with respect to SPO loss under some assumptions.

( ) also note the nondifferentiability of SPO loss and modify the objective function

of the nominal optimization problem to derive a differentiable, surrogate loss function. Both works
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demonstrate empirically that training ML models using the surrogate loss functions yields better
decisions than models trained to minimize prediction error. However, the surrogate loss functions
are not guaranteed to recover optimal decisions with respect to SPO loss and merely serve as
approximations for computational feasibility. A practical and general methodology for training ML
models using SPO loss directly has not yet been proposed.

In this work, we present algorithms for training decision trees to minimize SPO loss, which we
call SPO Trees (SPOTSs). Despite the nonconvexity and discontunity of the SPO loss function, we
show that the optimization problem for training decision tree models with respect to SPO loss can
be greatly simplified through exploiting certain structural properties of decision trees. Therefore,
to the best of our knowledge, we provide the first tractable methodology for training an ML model
using SPO loss for a general class of decision-making problems. Decision trees are typically trained
using “greedy” recursive partitioning approaches to minimize prediction error such as the popular
CART algorithm ( ); several recent works have also proposed integer program-
ming strategies for training decision trees to optimality ( ,

, , , ). We propose tractable extensions
of the greedy and integer programming methodologies from the literature to train decision trees
using SPO loss. We also provide methodology for training an ensemble of SPO Trees to boost
decision performance, which we refer to as SPO Forests. We conduct several numerical experiments
on synthetic and real data demonstrating that SPOTs simultaneously find higher quality deci-
sions while exhibiting significantly lower model complexity (i.e., depth) than other tree-building
approaches trained to only minimize prediction error (e.g., CART). Implementations of our algo-
rithms and experiments may be found at https://github.com/rtm2130/SPOTree.

We remark that the use of decision trees for decision-making problems has seen increased atten-
tion in practice and recent literature due to their interpretability ( ,

, ) , , ). Deci-

sion trees for decision-making are seen as interpretable since their splits which map features to
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decisions are easily visualized. One of our key findings is that SPOTs end up being even more inter-
pretable than trees trained to minimize prediction error as they require significantly less leaves to
yield high-quality decisions. Finally, we note that decision trees exhibit several desirable properties
as estimators. Namely, they are nonparametric, allowing them to capture nonlinear relationships
and interaction terms which would have to be manually specified in other models such as linear
regression.
1.1. Literature Review
There have been several approaches proposed in the recent literature for training decision tree
models for optimal decision-making. ( ) show how to properly leverage
ML algorithms, including decision trees, in order to yield asymptotically optimal decisions to a
class of stochastic optimization problems. However, their decision trees are trained in the same
procedure as CART (but applied differently) and thus do not take into consideration the structure
of the underlying decision-making problem. There has also been several recent works on training
decision trees for personalizing treatments among a finite set of possible options. ( )
uses a loss function for training their trees which maximizes the efficacy of the recommended
treatments rather than minimizing prediction error. ( ) consider a similar
treatment recommendation problem, but their approach uses an objective function involving a
weighted combination of prediction and decision error. Our approach considers a more general
class of decision-making problems potentially involving a large number of decisions represented by
a general feasible region. ( ) propose methodology for training decision trees for
decision-making problems using a loss function which penalizes predictions that discriminate on
sensitive features such as race or gender. However, their loss function does not consider the impact
of predictions on downstream decisions, instead seeking to minimize prediction error.

We also summarize a few additional approaches proposed in the literature which successfully
apply other types of ML models to decision-making problems. ( ) propose a loss

function for training linear regression models which minimizes a convex combination between the
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prediction error and decision error. In addition to not considering decision tree models, their
setting considers only quadratic optimization problems with no constraints. ( )
provide a more general methodology related to this line of work that relies on differentiating the
optimization problem. ( ) consider the problem of optimizing a function whose
input is a graph structure that is unknown but can be estimated through prediction. Their end-to-
end learning procedure involves constructing a simpler optimization problem in continuous space
as a differentiable proxy for the more complex graph optimization problem. ( ),

( ) consider training ML models using “decision-focused” loss functions for various
combinatorial optimization problems; their methods do not attempt to minimize SPO loss directly
but rather employ simpler surrogate loss functions. ( ) propose methodology
for training linear regression models to directly minimize SPO loss, but their approach is specialized
for ranking optimization problems. By contrast, we propose methodology for training decision
trees under SPO loss for a more general class of optimization problems (which subsumes ranking

problems as a special case).

2. The Predict-then-Optimize Framework
In this section, we summarize the predict-then-optimize framework and the SPO loss proposed in
( ). We focus on a general class of decision-making problems which
can be described by an optimization problem with known constraints and an unknown linear
objective function (at the time of solving) which can be predicted from feature data. Many relevant
problems of interest fall under this general structure, include predicting travel times for shortest
path problems, predicting demand for inventory management problems, and predicting returns for
portfolio optimization.
We let S C R¢ denote the feasible region for the decisions, where d is the dimension of the decision
space. The decision-making problem can then defined mathematically as z*(c) = min,e 5 ¢’ w, where
c € R? is a cost vector of the optimization problem and w € R? is the vector of decision variables.

Let W*(c) = argmin, .q{c"w} denote the set of optimal decisions corresponding to z*(c), and let
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w*(c) denote an arbitrary individual member of the set W*(c). It is assumed that S is specified
in such a way that the computation of w*(c) and z*(c) are tractable for any cost vector ¢; for
example, commercial optimization solvers are known to capably solve optimization problems with
linear, conic, and/or integer constraints.

In the predict-then-optimize framework, the true cost vector is not known at the time of solving
w*(+) for an optimal decision, and thus a predicted cost vector ¢ is used instead. Our predictions
will rely on training a ML model from a given dataset {(z1,¢1), (22,¢2),..., (Tpn,¢,)}, where x € R?
denote a vector of p features available for predicting c. The n feature-cost samples in the dataset are
assumed to be independently and identically distributed according to an unknown joint distribution
on z and c. Let H denote a hypothesis class of candidate ML models f : R? — R< for predicting cost
vectors from feature vectors, where ¢ = f(x) is interpreted as the predicted cost vector associated
with feature vector z for model f. Finally, let £(-,-) : R? x R? — R, denote the loss function used
to train the ML models, where (¢, c) scores the loss incurred by a prediction of ¢ when the true
cost vector is c¢. Given a specified hypothesis class H and loss function £(-,-), the ML models are

trained through solving the following empirical risk minimization problem:

fr=argmin > U(f (). 0

feH

In words, the trained ML model f* is the model in the hypothesis class H which achieves the
smallest average loss on the training data with respect to the given loss function #(-,-). When
presented with a new feature vector x, the model f* can be applied in predicting a cost vector
¢= f*(x), and an optimal decision w*(¢) is then proposed using the prediction é.

One common loss function is mean squared error (MSE) loss, defined as £y;s(¢, ¢) := ||¢—¢||3. By
comparison, SPO loss scores predicted costs not by their prediction error but rather by the quality
of the decisions that they induce. Mathematically, SPO loss measures the excess cost ¢” w* (&) —2*(c)
incurred from making the (potentially) sub-optimal decision w*(¢) implied by prediction ¢ when

the true cost is c. Note that W*(¢) may contain more than one optimal solution associated with ¢.
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Therefore, ( ) define SPO loss with respect to the worst-case decision

from a predicted cost vector ¢, defined mathematically below:

lsro(é,¢):= max {c'w}—=2"(c). (2)

The authors note that training ML models under SPO loss directly is likely infeasible, as SPO loss
is nonconvex and discontinuous (and thus not differentiable) with respect to a given prediction
¢. Therefore, the authors instead provide an algorithm for training linear models using a convex
surrogate loss function called SPO+ loss. ( ) also note the nondifferentiability
of SPO loss and modify the objective function of the nominal optimization problem to derive a
differentiable, surrogate loss function. In contrast to prior work, we provide multiple strategies
for training decision trees using the SPO loss function directly. Our methodology is presented in

Section 4.

3. Decision Trees for Decision-Making

In this work, we utilize decision trees under the predict-then-optimize framework. To illustrate this
concept, we consider a simple shortest path problem in a graph with two nodes and two candidate
roads between them, each with unknown travel times (edge costs) ¢; and c¢,. We assume that there
are p = 3 features available for predicting edge costs: x; is a binary feature to indicate a weekday, x,
is the current hour of the day, and x3 is a binary feature to indicate snowfall. The goal is to choose
the path with the smallest cost given the observed features. An example of a decision tree applied
to this problem is provided in Figure 1, although we note the same logic applies to an arbitrarily
sized shortest path graph. Decision trees partition the feature space R? through successive splits on
components of the feature vector x. Each split takes the form of a yes-or-no question with respect
to a single component. Continuous or ordinal features are split using inequalities, and categorical
features are split using equalities. The partitions of R? resulting from the decision tree splits are
referred to as the leaves of the tree. Each leaf assigns a single predicted cost vector ¢ and associated

decision w*(¢) to all feature vectors which map to that leaf. We define the depth of a leaf as the



8 Elmachtoub, Liang, McNellis: Decision Trees for Decision-Making under the Predict-then-Optimize Framework

xz<1o

(Tue] 2 = 1{Fake] (T } x; = 1{Fae |

E

(e} x, < 7 {Fae]

¢:(1.2,0.7) 6:(233.0) | | (1511 | | 6:(42,53) é:(1.3,1.0)
w*(8): (0,1) w*(©):(1,0) | | w(®:(0,1) | | w*(&):(1,0) w*(8): (0,1)

Figure 1 Decision tree for a shortest path problem with two edges.

number of splits taken to reach that leaf. The depth of the tree is defined as the maximum of the
depths of its leaves.

Decision trees are widely regarded as being very interpretable machine learning models, as the
mapping from features to costs/decisions may be easily visualized and analyzed for insights. For
example, in the decision tree of Figure 1, the second leaf from the left corresponds to the splits
Ty <10, z1 =1, and x5 > 7, which may be interpreted as the tree determining whether it is currently
morning rush hour (i.e., a weekday between 7am and 10am).

3.1. An Illustrative Example

We provide a simple example to illustrate the behavior of decision trees trained using SPO loss
versus MSE loss (i.e., SPOTs versus CARTSs). We again consider the two edge shortest path problem
from before, although we now assume there is only a single continuous feature x available for
predicting the travel times of the two edges. We generate a dataset of 10000 feature-cost pairs
by (1) sampling 10000 feature values from a Uniform(0,1) distribution, and (2) computing each
feature’s associated edge cost by the equations ¢; = 5z 4+ 1.9 and ¢, = (5 + 0.4)? with no noise
for the sake of illustration. We then train a decision tree to minimize SPO loss on this dataset,
employing the SPOT training methods detailed in the next section. For sake of comparison, we
also train a CART decision tree on the same dataset. CARTSs are trained to minimize prediction
error, specifically, mean-squared error in our experiments.

The predictive and decision performance of the SPOT and CART training algorithms are given

in Figure 2. Figures 2a-2c visualize the cost predictions of the SPOT and CART algorithms and
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Figure 2  Predictive and decision performance of SPOT and CART decision trees. Figures (a)-(c) visualize the
cost predictions of SPOT (blue) and CART (orange) alongside the true cost values (grey). Figure (d) plots the

normalized extra travel time of the algorithms as a function of their trained tree depth.

compare them against the true unknown edge costs. The two edge costs are equal at = =0.28, at
which point the optimal decision switches from taking edge 2 to taking edge 1. We therefore refer
to the point & = 0.28 as the optimal or true decision boundary, and is referenced in the figures
as a grey vertical line. We also include in the figures the decision boundaries implied by the cost
predictions of the SPOT and CART algorithms.

As shown in Figure 2a, the SPO Tree immediately identifies the correct decision boundary
through the split “x < 0.28”. This behavior is unsurprising, as any other individual split would

have resulted in a suboptimal SPO loss incurred on the training set. Each leaf of the SPO tree
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yields a single predicted cost vector, which is visualized by the flat prediction lines in the regions
“r <0.28” and “x >0.28” of the figure.

Figures 2b and 2c¢ show the cost vector predictions of the CART algorithm. When trained to a
depth of 1 (i.e., a single split), CART results in a severely incorrect decision boundary at x = 0.
This occurs because CART splits at < 0.62, and in each of the resulting leaves from this split
edge 2 is predicted to have a higher cost than edge 1. Therefore the CART algorithm incorrectly
predicts that path 1 is always optimal, resulting in the decision boundary of x =0. The CART
algorithm does not split on the optimal decision boundary because this is not the split which
minimizes cost prediction error on the training set. Consequently, although the cost predictions of
CART may be more accurate, the implied shortest path decisions are suboptimal for a significant
percentage (28%) of feature values.

As shown in Figure 2¢, when CART is permitted to utilize more splits up to a tree depth of 4,
it is able to nearly recover the optimal decision boundary. Even though each individual split taken
by CART has less value for decision-making, the splits in combination finely partition the feature
space into small enough regions that the predicted cost vectors are highly accurate within each
region. Therefore, when trained to a significant depth, CARTs — and more generally, decision trees —
potentially have a high enough model complexity to achieve near perfect predictions which translate
into near perfect decisions. However, in settings with limited training data, it is no longer possible
to train decision trees to a suitably high depth, as a sufficient number of training observations
per leaf are required to estimate the leaf cost predictions accurately. Therefore, in these settings,
maximizing the contribution of each decision tree split to optimal decision-making becomes a
higher priority. Moreover, lower depth decision trees are often preferred for their interpretability
and reduced risk of overfitting.

Figure 2d assesses the decisions from the SPOT and CART algorithms when trained to different
tree depths. The decisions are scored on a held out set of data using the metric of “normalized extra

travel time”, defined as the cumulative SPO loss normalized by the cumulative optimal decision
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costs. Y1 Lspo(Ci,c;)/ Y, 2*(¢;). Unsurprisingly, the SPO Tree achieves zero decision error at
all training depths since it correctly identified the decision boundary at depth 1. By comparison,
the CART algorithm exhibits comparatively high decision error at depths 1-3 and only begins to
reach a decision error near zero at depth 4. Therefore, the SPO Tree achieves high quality decisions
while also being significantly less complex than the CART tree required for comparable decision
quality. We show in Section 5 that this behavior is consistently observed across a range of synthetic

and real datasets.

4. Methodology

We now propose several algorithms for training decision trees using the SPO loss function, and
we call the resulting models SPO Trees (SPOTSs). The objective of any decision tree training algo-
rithm is to partition the training observations into L leaves, Ry, ..., Ry := Ry.;, whose predictions

collectively minimize a given loss function:

L

1 . .

1=1 i€Ry

Above, the constraint R;.; € T indicates that the allocation of observations to leaves must follow
the structure of a decision tree (i.e., determined through repeated splits on the feature compo-
nents). The CART algorithm greedily selects tree splits which individually minimize this objective
with respect to mean squared error prediction loss ( ). More recently, integer
programming strategies have been proposed for optimally solving (3) with respect to classifica-
tion loss ( , ) ) )

). We next describe tractable extensions of these greedy and integer programming
methodologies from the literature to train decision trees using SPO loss, which has been shown to
have favorable generalization bounds in several settings ( )

( ) note that training machine learning models under SPO loss is
likely infeasible due to the loss function being nonconvex and discontinuous in the predicted cost
vectors. However, we show that optimization problem (3) for training decision trees under SPO
loss can be greatly simplified through Theorem 1, which states that the average of the cost vectors

corresponding to a leaf node minimizes the SPO loss in that leaf node.
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THEOREM 1. Let ¢ : |R | ZzeRl ¢; denote the average cost of all observations within leaf . If ¢
has a unique minimizer in its corresponding decision problem, then ¢, minimizes within-leaf SPO

loss. More simply, if W ()| =1, then & =argming >, p lspo(G,ci).

Proof: Let ¢ be defined as stated in the theorem. We will show that the within-leaf SPO loss
associated with predicting ¢ lower bounds that of predicting any other feasible cost vector ¢ € R9.

Let N; = |R;| denote the number of observations within leaf I. The following holds for any ¢ € R%:

~ E gSPO Cl, E ES’PO 017

lERl 1€Rl
S max {c w}—i max {c w}
Nl : wEW*(c Nl weW* (&)
1€ i€ER;

= Z c; w* Z max {c w}  (W*(¢)={w"(¢)} is a singleton)

wEW*(c
ZGRZ
< S E clw*(¢) — max E clw
N, - ) weW*(¢;) Nl
1€ER; 1ER;
ST, *(= -T
= G W (¢)— max c w
t ( ) wGW*(él){ t }

< 0 (by definition of w*(¢))

We have thus demonstrated that ¢, achieves a within-leaf SPO loss lower or equal to that of any
other cost vector ¢ € R?, thereby proving the theorem. [J

Note that the optimal solution to the underlying decision problem has a unique solution except
in a few degenerate cases (e.g., the supplied cost vector is the zero vector). To ensure that these
degenerate cases have measure 0, it is sufficient to assume that the marginal distribution of ¢ given
x is continuous and positive on R%. Empirically, to guarantee uniqueness of an optimal solution,
one can simply add a small noise term to every cost vector in the training set. Therefore, in what
follows, we assume that W*(¢,) is a singleton for any feasible ¢; and utilize Theorem 1 throughout.

Theorem 1 expresses that the cost vector which minimizes within-leaf SPO loss may be expressed

in closed form as the average of the cost vectors belonging to the given leaf. We utilize this
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information to greatly simply optimization problem (3):

L
1
I N I ¢ Aa )
A2 2 (H;}HZ srolé C>>

1€ER;

4.1. SPOT: Recursive Partitioning Approach

To obtain a quick and reliable solution to optimization problem (4), we propose using recursive
partitioning to train SPO Trees with respect to the above objective function. CART employs
the same procedure to find decision trees which approximately minimize training set prediction
error. Define x; ; as the j-th feature component corresponding to the i-th training set observation.
Beginning with the entire training set, consider a decision tree split (j, s) represented by a splitting

feature component j and split point s which partitions the observations into two leaves:
Ri(j,s)={ie[n]|z;; <s} and Ry(j,s)={i € [n]|z;; > s},

if variable j is numeric, or
Ri(j,s)={i€n]|z;; =5} and Rs(j,s)={i € [n]|x;; # s},

if variable j is categorical. Here, we define [n] as shorthand notation for the set {1,2,...,n}. The
first split of the decision tree is chosen by computing the pair (j,s) which minimize the following
optimization problem:

min% Z (ciw* (@) —2"(c:)) + Z (ciw (@) —z"(ci)) | - (5)

i€R1(4,9) 1€R(j,5)

In words, the training procedure “greedily” selects the single split whose resulting decisions obtain
the best SPO loss on the training set. Problem (5) can be solved by computing the objective function
value associated with every feasible split (j,s) and selecting the split with the lowest objective
value. Leveraging Theorem 1, a split’s objective value may be determined by (1) partitioning
the training observations according to the split, (2) determining the average cost vectors ¢; and

¢ and associated decisions w*(¢;) and w*(¢2) in each leaf, (3) computing the SPO loss in each
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leaf resulting from the decisions, and (4) adding the SPO losses together and dividing by n. We
observe empirically that the computation of a split’s objective value is very fast due to the decision
oracle w*(-) only needing to be called once in each partition. Checking all possible split points s
associated with continuous feature components j may be computationally prohibitive, so instead
we recommend the following heuristic. All unique values of the continuous feature observed in the
training data are sorted, and the consideration set of potential split points is determined through
only considering certain quantiles of the feature values.

After a first split is chosen, the greedy split selection approach is then recursively applied in the
resulting leaves until one of potentially several stopping criteria is met. Common stopping criteria
to be specified by the practitioner include a maximum depth size for the tree and/or a minimum
number of training observations per leaf. The decision tree pruning procedure from
( ) (using SPO loss as the pruning metric) may be further applied to reduce model complexity
and prevent overfitting.

4.2. SPOT: Integer Programming Approach

We also consider using integer programming to solve optimization problem (3) to optimality for
training decision trees using SPO loss. Here we leverage the simplified form (4) of optimization
problem (3) derived using Theorem 1. We show that the optimization problem (4) may be equiva-
lently expressed as a mixed integer linear program (MILP). MILPs are generally regarded as being
computationally feasible in many settings due to an incredible increase in the computational power
and sophistication of mixed-integer optimization solvers such as Gurobi and CPLEX over the past

decade. Let r;; denote a binary variable which indicates whether training observation ¢ belongs to

leaf R;. Then,
1 L 1 L n
R?lLigTﬁ ; GZR (cfw*(@) — 2" (i) = Tl:n;i&_ﬁ ; Zlm (cfw*(e) — 2" (ei))
=1 1i€Ry =1 i=

Recall that the constraint r,.;, € 7 indicates that the allocation of observations to leaf nodes must

follow the structure of a decision tree (i.e., determined through repeated splits on the feature
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components). There have been several frameworks proposed in the literature for encoding decision
trees using integer and linear constraints ( , ,
, ). We have chosen to apply the framework proposed by
( ), as it naturally accommodates both continuous and categorical splits
and also automatically pools together leaf nodes which do not contribute to minimizing the objec-
tive function (provided a small regularization parameter is introduced). We provide the complete
formulation of r1.;, € T as integer and linear constraints in Appendix A.

Define M, := max{max; ,cs ¢ w,0} and M, := max{max; ,cs —c! w,0} as sufficiently large non-
negative constants. We assume that the decision feasibility constraint set S is bounded, guaran-
teeing that M; and M, are finite. Note that M; and M, may also be defined in terms of z*(-) as
max{max; —z*(—¢;),0} and max{max; —z*(¢;),0}, respectively. Theorem 2 shows that optimiza-
tion problem (4) may be equivalently expressed as a mixed integer linear program (MILP) and

therefore can be tractably solved to optimality for a modest number of integer variables.

THEOREM 2. Assume that the decision feasibility constraints w € S consist of only linear and
integer constraints and that S is bounded. Then, optimization problem (4) may be equivalently
expressed as the following MILP:

L n n
DR B

=1 i=1

s.t. inZC,LT’LUl—Ml(l—T,’l), VzE{ln},lG{lL},

Y > —Mary Vie {l.n}l€e{l..L}, (6)
w €S Vie{l...L},
ru €T Vie{l..n},le{l..L}

Proof: Let N, = |R,;| denote the number of observations within leaf [. We first perform the

following algebraic operations starting with optimization problem (4):
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L
. 1 =T x(= *
= min_— g (Nlcl w*(¢) — g z (cl))

1ER;

L
1
— min ~3 (N S
RrpeT n ( lmm{cl wi} = )

i€R;

: 1 . =T *
- i 13~ (et 3 )

wy., €S =1 i€ER;

Let r;; denote a binary variable which indicates whether training observation ¢ belongs to leaf R;.

Then,
L
. 1 T *
min_— E E (ciwi—2"(cy))
Ry.LeETN :
wy.1, €S =1 €Ry

= rlnngﬁZ (ch wl) —EZ*(CZ')

wi.1, €S =1 =1

= min — E E Yir — E 2" Cz y
TlLGTn

wy., €S =1 i=1
Y1:L
where in the last step we add the constraint that y; = mciTwl for every ¢ and [. First, note that
this constraint may be equivalently expressed as y; > mciTwl, as y; will always be set equal to its
minimum feasible value (r;clw;) since it is being minimized in the objective function. However,

this constraint is still not linear since it involves the multiplication of two decision variables r; and

w;. We may rewrite it as the two linear constraints below:
yiu > cfw — My(1—7yy) and  yy > —Mory .

Above, M; and M, are constants which upper bound c/w; and —clw;, respectively, for
all 4 € {1,2,...,n} and w; € S. We therefore define M; := max{max; ,esc; w,0} and M, :=
max{max; ,es —c w,0} which are finite due to S being bounded. Note that when the cost vectors
are all nonnegative (nonpositive), then M, =0 (M; = 0) assuming the decision variables w are
nonnegative for all feasible w € S. Thus, the optimization problem for training decision trees under

SPO loss may be written as the following mixed integer linear program:

T 9 SIS o

=1 =1
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s.t. yilZc?wl—Ml(l—T,;l), VzE{ln},lG{lL},

Yir > — Moy Vze{ln},le{lL},
w, €8 Vie{l..L},
ra €T Vie {l..n},le{l1...L}

O

Empirically, we have noticed a significant computational speed up in solving the MILP if it is
warm started with the solution recovered from the greedy algorithm. Furthermore, since the greedy
algorithm produces a feasible solution for the MILP, then the MILP is guaranteed to recover a
solution which is at least as optimal as the greedy solution, even if the MILP solver is prema-
turely terminated. Therefore, in settings where training the MILP to optimality is computationally
infeasible, we recommend warm-starting the MILP algorithm with the greedy algorithm and using
the MILP as a “solution improvement tool”, allowing the solver to continually improve the solu-
tion until being terminated after it has exceeded a specified time limit. This is the procedure we
employ in our numerical experiments, specifying a maximum time limit of 12 hours. Other strate-
gies we employ for improving the computation time of the SPOT MILP approach as well as other
implementation details (including regularization procedures to prevent overfitting) may be found
in Appendix B.
4.3. SPO Forests
We also consider training an ensemble of SPO Trees, a methodology which we call SPO Forests.
SPO Forests are constructed using (greedy) SPO Trees through the same procedure as random
forests are constructed using CARTs. Random forests are known to have less variance than indi-
vidual decision trees, at the price of sacrificing interpretability ( ). To construct
an SPO Forest, B SPO Trees are trained on bootstrapped samples of the training dataset, where B
represents the number of desired trees in the SPO Forest. To further reduce the correlation between

trees, we implement feature bagging, defined as only considering a random subset of features when
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deciding splits in the learning process. When presented with a new feature vector x,.,, the cost
vectors predicted by the SPO Trees are averaged, and the SPO Forest returns the optimal decision

associated with this average cost vector.

5. Experimental Results
5.1. Noisy Shortest Path:

We first study the empirical performance of SPO Trees and SPO Forests on a synthetic dataset
for the shortest path problem studied in ( ). For sake of comparison,
we also train CART decision trees and CART random forests on the same datasets using the loss
function of mean squared prediction error. The shortest path problem considered is with respect
to a 4 x 4 grid network consisting of edges (“roads”) which are only directed north and east.
The driver starts at the southwest corner of the grid, and the goal of the driver is to travel to
the northeast corner via the shortest path available. The costs (“travel times”) associated with
the 24 edges of the network are unknown but can be predicted using five numerical features.
Datasets of n € {200,10000} feature-cost pairs are generated by (1) sampling n feature vectors
x1,...,x, each from a Uniform(0,1)? distribution where p=>5, (2) sampling matrix B € {0,1}4*?
by sampling each entry By ; from Bernoulli(1,0.5), and (3) computing each feature vector x;’s
associated cost vector ¢; according to c;, = (% (Bx;), + 1) i -e® where (Bz;), denotes the kth
component of Bx;, deg is a fixed positive integer that controls the amount of nonlinearity present
in the mapping from features to cost vectors, and ¥ are multiplicative i.i.d. noise terms sampled
from Uniform([1 —&,1+ €]) for some parameter £ > 0. We consider several combinations of the
parameters n, deg and €. For each combination of parameters, 10 datasets are generated with
uniquely sampled B matrices. The algorithms are tested on a set of 1000 observations generated
using the same B as the training set. Algorithmic performance on the test set is assessed with
respect to normalized extra travel time defined in Section (3.1), which is equivalent to (normalized)
SPO loss.

All trees and forests are trained using a minimum leaf size of 20 observations. To prevent over-

fitting, SPOTs and CART trees are pruned on a validation set consisting of 20% of the training
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Figure 3  Test set normalized extra travel times on 10 different shortest path datasets of size n = 200.

data using the pruning algorithm from Breiman et al. (1984). The forest algorithms are trained
using B = 100 trees with no depth limit, and the number of features f € {2,3,4,5} to use in feature
bagging is tuned using the validation set above.

We begin by considering the performance of the decision tree algorithms in an experimental
setting with limited training data. We fix the number of training observations at n =200 and vary
the experimental parameters deg € {2,10} and £ € {0,0.25}. We evaluate the performance of SPOT
and CART trees when trained to fixed depths of 1, 2, and 3 on the training set. We also include the
performance of the SPOT and CART algorithms when imposing no restrictions on their training
depth (but still employing the pruning algorithm to prevent overfitting). Note that the SPOT
MILP approach requires a fixed training depth and is therefore not included in the algorithms
with no depth restriction. Figure 3 visualizes the test-set performance of the SPOT algorithms
and benchmarks on the shortest path problem with n = 200 observations for all combinations of

experimental parameters deg and €.
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We observe that SPO Trees significantly outperform CART in all settings of the experimental
parameters. In particular, the greedy SPOT algorithm achieves percentage improvements in nor-
malized extra travel time over the CART algorithm of 26.7%, 26.8%, 23.1%, and 23.6% when both
are trained to depths of 1, 2, 3, and unrestricted depth, respectively (with the above percentage
improvements averaged across the four combinations of deg and €). In general, the SPO Trees
trained to depth 1 often achieve a lower SPO loss than the CART trees trained with unrestricted
depth. Therefore, the SPO Trees lead to better decisions than CART while also being more concise
and therefore more interpretable. The failure of CART to achieve competitive decision performance
can be explained by its focus on prediction (rather than decision) error coupled with the limited
amount of training data. Recall that a minimum of 20 training observations are required to be
mapped to each leaf of the decision trees — this constraint is imposed to ensure that the costs within
each leaf are estimated with sufficient accuracy. Even with no depth limit, we observe empirically
that the CART trees cannot be trained past a depth of 4 without the minimum leaf size criterion
being satisfied. Therefore, in small data settings, the number of splits which decision trees may uti-
lize are limited, and thus it becomes imperative to maximize the contribution of each split towards
decision quality. A comparison of the random forest algorithms mirrors these findings — forests
of SPO Trees consistently outperform forests of CART trees by 20.5% averaged across the four
parameter settings, notably also achieving less variance in performance (i.e., boxplot width) than
CART trees. The SPO Tree MILP approach offers additional improvements in decision quality
when compared to the SPOT greedy approach, outperforming even the random forest algorithms
in some cases.

We also investigate the decision performance of the algorithms on the shortest path problem when
trained on larger datasets of n = 10000 observations. Since there are more training observations
available, it is now feasible to train the decision tree algorithms to higher depths than in the
previous experiment. Therefore, we train and evaluate the algorithms on depth sizes up to 6, and

we also report the performance of SPOT and CART when trained without any depth restrictions.
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the number of leaves associated with the trained trees from 10 different shortest path datasets of size n = 10000.
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We also increase the level of noise from £ =0.25 to £ =0.5 to make the estimation problem more
challenging for the algorithms given the increased amount of data.

The test set normalized extra travel times incurred by the algorithms for n = 10000 are given in
Figure 4. As in the previous set of experiments, we observe that the SPO Trees achieve stronger
empirical performance over CART when the training depths are restricted to small or modest
values, with SPOTs attaining both better average performance and lower variance in performance
across the 10 experimental trials. However, when the training depths increase to six or more, CART
begins to achieve comparable performance to SPOT and even slightly outperforms SPOT in some
cases. Although individual CART splits have little value for decision-making, in combination they
finely partition the feature space to a sufficient degree that the predicted cost vectors are highly
accurate within each of the resulting leaves. Therefore, CART is eventually able to achieve highly
accurate predictions — and therefore near-optimal decisions — as its depth increases. However, its
interpretabilty is sacrificed as a result, as the trees eventually grow to a size which is too large to
be easily visualized and interpreted.

Figure 5 reports the number of leaves contained within the learned CART and SPOT trees as a
function of their training depths. As the figure demonstrates, when the training depths of CART
and SPOT are large or unrestricted, the SPO Trees contain less than half the number of leaf nodes
as CART'. Therefore, SPO Trees achieve comparable accuracy to CART in these settings while also
being more concise and therefore more interpretable. We find that the random forest algorithms
achieve similar performance, with CART random forests having a very slight edge over SPO Forests
in the normalized extra travel times observed on the test set. The greedy SPOT approach also
appears to perform similarly to the MILP approach.

5.2. News Article Recommendation:
We also examine the performance of the SPO Trees and benchmark algorithms on a real dataset.
In particular, we consider a news article recommendation problem constructed from the publicly-

available Yahoo! Front Page Today Module dataset ( ). In the problem we
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construct, a news aggregation service recommends an article belonging to one of d article types
to arriving users with the objective of maximizing the probability of each user clicking on the
recommended article. User click probabilities for different article types are unknown to the news
aggregator but can be estimated using contextual features that characterize user preferences. Given
article click probability estimates p € R? for an individual user (i.e., the “costs” ¢ for this decision

problem), the news aggregator solves the following article recommendation problem:

2" (p) = Ii}lgé(pTw st.alw<b,, Vme{l...M},
Tw=1
where w,, represents the probability that the news aggregator recommends article k£ to the user for
ke{l,..,d}, and a,, € R4 b, €R for m € {1... M} are the corresponding constraints represent
certain restrictions on article recommendations (e.g. ensuring that all article types have some
non-zero probability of being recommended). The restrictions could naturally involve budgetary
constraints — for example, Facebook intends to pay certain news publishers as much as $3 million
per year to display their news headlines and article previews to visiting users (
).

The Yahoo! Front Page dataset contains 45,811,883 interaction records between users and news
articles from May 1, 2009 to May 10, 2009. We used records from May 1-5 for training data and
from May 6-10 as test data; 50% of the training set records were additionally held out to construct
a validation set for parameter tuning. The users and displayed articles are each characterized by
five continuous features, which were constructed using a conjoint analysis with a bilinear model;
see ( ) for more details. We clustered the articles into d =6 categories, and we
clustered the historical users into 10000 clusters. Each user cluster was used to construct a feature-
cost pair (z,p) for the predict-then-optimize problem, in which we (1) computed the average user
feature vector for that cluster (x), and (2) computed the average click probability for each article
type within that cluster (p). After filtering out clusters with an insufficient number of interaction

records, we were left with 5130, 5105, and 8768 feature-cost pairs in the training, validation, and

test sets, respectively. We also define sample weights for the feature-cost pairs as the number of
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interaction records associated with each pair, and we utilize these sample weights in training and
testing the algorithms. The full details of our preprocessing methodology are given in Appendix C.

The tree and forest algorithms are trained using a minimum leaf size of 10000 interaction records
(computed using the sample weights), and the SPOT and CART algorithms are additionally pruned
using the held-out validation set. The forest algorithms are trained using B = 50 trees with no
depth limit, and the number of features f € {2,3,4,5} to use in feature bagging is tuned on the
validation set. The empirical runtimes of our algorithms are discussed in Appendix C. We generate
M =5 decision feasibility constraints by sampling each element of a,, from an Ezponential(1)
distribution and setting b,, =1 for m € {1,...,5}. Figure 6 visualizes the test set performance of the
algorithms on 9 different constraint sets generated using the above procedure. Test set performance
is defined as the average test set click probabilities of an algorithm’s recommended articles, where
the average is weighted over test set instances according to the sample weights (equivalent to
measuring SPO loss). As in the previous section, we find that SPO Trees of very shallow depth
outperform CART trees of unrestricted depth. Specifically, a greedy SPO Tree of depth 2 achieves
percentage improvements in average click probability of 4.3%, 1.6%, 0.05%, and 0.17% over CART
trained to depths of 2, 4, 6, and unrestricted depth, respectively. The MILP SPOT approach
appears to perform similarly to the greedy approach. The CART Forest and SPO Forest methods
also perform similarly, but surprisingly achieve slightly lower click probabilities than an individual

SPO Tree, which may be due to the forest methods overfitting on the training set.
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6. Conclusion

We propose tractable methodologies for training decision trees under SPO loss within the predict-
then-optimize framework. Our results demonstrate that SPOTs capably produce trees that simul-
taneously provide higher quality decisions and lower model complexity than de facto tree-building
methods designed to minimize prediction error.
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Appendices for

Decision Trees for Decision-Making under the
Predict-then-Optimize Framework

Appendix A: Encoding Decision Trees using Integer and Linear Constraints

Here we provide the complete formulation of r; € T as integer and linear constraints using the decision
tree encoding proposed in ( ). As it is only covered briefly here, we encourage the
reader to examine ( ) for a more thorough treatment of the materials below. We
assume that the practitioner has specified the following parameters regulating the growth of the tree during
the training procedure: (1) the depth H of the tree being trained, and (2) the minimum number of training
observations N,,;, permitted to be in each leaf of the tree. We consider training a complete tree of depth H,
define as a tree in which all leaves have a depth of H. Let L denote the number of leaves in the tree, and index
each leaf by I € Ty, :={1,2,...,L}. Further, let B denote the number of branch nodes (i.e., splitting nodes)
within the tree, and index each branch node by t € Tp :={1,2,..., B}. Note that L =27 and B =27 —1.
Not all leaves in the tree are required to be active (i.e., contain training observations), and not all branch
nodes are required to be active splits (i.e., partition the training observations). Indeed, leaves may be pooled
together if their parent splits do not contribute significantly to minimizing the objective function. To keep
track of the active leaves and branch nodes, let k;= I{leaf [ is not empty} and d,= I{branch node ¢ is an
active split}. If a branch node is not an active split, then it effectively considered as a leaf with respect
to the complete tree by (1) having all observations take the path corresponding to its left branch, and (2)
constraining all child branch nodes to also not be active splits.

We assume without loss of generality that all feature components are numeric and belong to the interval
[0,1]. Note that categorical features can be easily transformed to fit this assumption through binarization.
Each decision tree split is encoded through the variables a, € {0,1}? and b, € [0, 1]. The variable a, indicates
which feature component is involved with the split, and b, indicates the splitting point. For example, if there
are three feature components, then the split “zy < 0.4” is encoded by az < b where a =[0,1,0] and b= 0.4.
Since decision tree splits only consider one feature component at a time, only one entry of a; is permitted to
be nonzero. Note that the quantities a, and b, are treated as additional decision variables in the SPO Tree

MILP as well as k; and d,.
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Let p(t) denote the parent node of t. Further, let A (¢) be the set of left ancestor nodes of node ¢, defined
as the set of ancestors of ¢ whose left branch has been followed on the path from the root node to t. Define
Arg(t) similarly as the set of right ancestor nodes of t.

The constraint r; € T in the SPO Tree MILP may be replaced with the set of linear and integer constraints

below developed by ( ) to encode the splitting logic of decision trees:

L
doru=1, Vie{l,2,.,n} (7a)
=1

ra <k, Vie{l,2,.n}leT; (7b)
Zril 2 Nminkla Vl S 7—L (7C)
=1

alz; >b,—(1—ry), V€T, i€{l,2,..,n},me Ag(l) (7d)
A (@4 €) Sbp+ (L4 €maa) (1 —12), VIETL,i€{1,2,..,n},me AL(l) (7e)
p

> a=d, VteTy (7f)
j=1

1—d, <b,<1, VieTs (7g)
a;,d; €{0,1}, Vje{l.p},teTly (71)
ru, ki €{0,1}, Vie{l.n}leT, (73)

Above, €; = {x§q+1) —x;q)\xgqﬂ) ;éazg.q) 1=1,2,...n— 1} is the smallest nonzero difference between

(a)

observed values of feature component j, where z;* is the ¢** largest value observed for feature z; and
€mar = Max; €;. We encourage the reader to consult ( ) for intuition regarding e and
its role in the constraints.

In ( ), if a branch node is considered to be inactive, then its associated split
parameters a and b are set to the zero vector and zero, respectively. This design choice was intended by the
authors to force all training observations down the right branch by making the left split direction constraint
(7e) infeasible for all training observations. However, we believe that this logic was implemented incorrectly,
as both constraints (7d) and (7e) are feasible for any training observations when a and b are both zero. We
have corrected for this behavior by modifying constraint (7g) to set b equal to one when a branch node

is inactive, therefore successfully making constraint (7d) infeasible when a is the zero vector and forcing

observations down the left branch.
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Appendix B: SPOT Integer Programming Approach: Additional Implementation
Details

To prevent unnecessarily large trees and overfitting, ( ) recommend adding the
quantity “a’ tery d¢” to the objective function to penalize trees with a large number of active splits. The
parameter « is intended to be chosen by the practitioner to balance the trade-off between concise trees and
low training set error, and this parameter can be tuned through applying methods such as cross-validation.
However, cross-validation might not be feasible in situations where solving the optimization problem is too
computationally expensive to be performed for multiple values of a across multiple folds. In our numerical

experiments, we train the SPO Trees with no regularization and instead apply the well-known CART post-

pruning algorithm (using SPO loss) proposed by ( ) to regularize the tree. To avoid
lengthy technical details, we refer the reader to ( ) for more information about the pruning
algorithm.

Finally, we detail a few strategies for improving the computational time associated with solving the mixed
integer linear program. First, as noted in Section 4.2 of the main paper, we recommend warm starting the
MILP with the solution recovered from the greedy algorithm. Second, we have observed that the computa-
tional time is influenced by the precision of the vector of constants e. Since the magnitude of € is tied to the
smallest (nonzero) differences between feature values, we recommend rounding the features according to a
certain precision (e.g., le~?) in settings where feature rounding would not affect the quality of the resulting
decision tree. Finally, we have observed that the linear programming (LP) relaxation of the MILP often
has large negative solutions, which can slow down MILP solvers which rely on LP relaxations to bound the
objective function (e.g., branch and bound). We recommend including the following constraint to ensure

that the LP relaxation associated with the MILP has at least a lower objective function bound of zero:

L
(Z yil> —2"(c;) >0 Vie{l,2,..,n}
1=1
Appendix C: Additional Experimental Details: News Article Recommendation
First, we provide a more thorough description of how we preprocessed the Yahoo! Front Page Today Module
dataset. The dataset contains 45,811,883 interaction records between users and news articles from May 1,

2009 to May 10th, 2009. Each record entry consists of: a feature vector of dimension 5 that characterizes

the visiting user, a feature vector of dimension 5 encoding the article displayed to the user, and finally a



Elmachtoub, Liang, McNellis: Decision Trees for Decision-Making under the Predict-then-Optimize Framework 31

binary scalar representing whether the user clicked on the displayed article. The user and article features
were constructed using a conjoint analysis with a bilinear model; see ( ) for more details. We
preprocessed the dataset according to the following procedure in order to obtain training, validation, and

test sets of feature-cost pairs for use in our predict-then-optimize problem.
1. Randomly sample without replacement 50% of the interaction records from May 1, 2009 to May 5, 2009
for training, and use the rest for validation. The test data consists of all records from May 6, 2009 to

May 10, 2009.

2. Cluster users into 10,000 clusters ( “user types”) by applying the K-means algorithm to the user features
observed in the training and validation data, and similarly cluster the displayed articles into 7 clusters
(“article types”) using the article features. For each user cluster, record the mean user feature vector

associated with all training and validation set interaction records that map to that cluster.

3. Apply the following procedure separately to the training, validation, and test sets of interaction records.
For each set of data, group the interaction records according to user type using the clustering obtained
in the previous step. Each of these user types corresponds to a feature-cost pair (z,p) for the predict-
then-optimize problem. The features x are derived by looking up the mean user feature vector associated
with the given cluster computed in the previous step. The costs p are derived by computing the average
click probability of each article type across the interaction records associated with the given cluster.
Here, we note that we dropped one article type as well as a number of feature-cost pairs in the training,
validation, and test sets to ensure the average click probabilities for each user and article type were
calculated with at least 50 interaction records. We were left with 6 article types and 5130, 5105, and
8768 feature-cost pairs in the training, validation, and test sets, respectively.

We also note the empirical runtimes of our algorithms on this dataset. The greedy SPO Trees were trained
on a Dell PowerEdge M915 Linux server using 1 processor core and 1 GB of memory per tree. The greedy
SPOT training procedure (using unrestricted depth) terminated after at most 1.3 hours for each constraint
set, yielding trees of depths between 28 and 38 before pruning (after pruning, the trees had an average depth
of 7). SPO Forests were trained on the same server parallelizing fitting trees in the forest across 10 cores
and using 40 GBs of memory. The SPO Forests training procedure terminated after at most 18.4 hours of

computational time per constraint set.



	1 Introduction
	1.1 Literature Review

	2 The Predict-then-Optimize Framework
	3 Decision Trees for Decision-Making
	3.1 An Illustrative Example

	4 Methodology
	4.1 SPOT: Recursive Partitioning Approach
	4.2 SPOT: Integer Programming Approach
	4.3 SPO Forests

	5 Experimental Results
	5.1 Noisy Shortest Path:
	5.2 News Article Recommendation:

	6 Conclusion
	A Encoding Decision Trees using Integer and Linear Constraints
	B SPOT Integer Programming Approach: Additional Implementation Details

	C Additional Experimental Details: News Article Recommendation

