
Exploring Neural Network Models for LncRNA 
Sequence Identification 

Jason Rafe Miller  
Shepherd University 

Shepherdstown WV USA 
jmil02@shepherd.edu 

Donald A. Adjeroh 
West Virginia University 
Morgantown WV USA 

donald.adjeroh@mail.wvu.edu 

ABSTRACT 
Distinguishing long non-coding RNA from     
protein-coding RNA is important to molecular      
and cellular biology. The problem can be       
addressed with machine learning in general and       
with artificial neural networks in particular. We       
explore the effects of various network design       
choices on the accuracy of human LncRNA       
identification. Perceptron-based neural network    
models were found to be almost as accurate as         
more complex recurrent neural networks, and      
K-mer representations of the data seemed to      
assist both. Size selection of training data      
affected results. These explorations could assist     
in neural network design for RNA analysis.

1 INTRODUCTION 
The discovery that the human genome is       
extensively transcribed [1–3], with a majority of       
its bases being involved in some primary       
transcripts, including transcripts from both     
protein-coding and non-protein coding regions,     
changed traditional views of gene regulation and       
gene function. A significant portion of      
transcription is now known to involve long       
non-coding ribonucleic acids (LncRNAs).    
LncRNAs are known to be involved in gene        
regulation, gene imprinting, chromatin    
remodeling, and embryonic development (see     
[4–6] for reviews), and in diseases such as        
cancer, neurodegenerative diseases, and heart     
disease (see [7, 8]). Some individual LncRNAs       
are well-studied (e.g. HOTAIR [8], MALAT-1      
[9], Xist [10]) but understanding of the nature       
and functions of LncRNAs remains incomplete.

Genome databases such as Ensembl [11] and       
GenCode [2, 12, 13] catalog tens of thousands of         
protein-coding genes from human and other      
species. They also house DNA gene sequences       

and RNA transcript sequences for many      
LncRNA, which are defined as transcribed      
sequences with minimum length 200     
unassociated with any protein product. In many       
cases, the LncRNA designation is based on       
bioinformatic analysis of the sequence itself.      
Several computer programs exist to identify      
LncRNA (reviewed in [14]) but the task remains        
challenging, even within the extensively studied      
human genome [15]. 

Artificial neural networks (ANNs) provide an      
attractive software model for approaching the      
RNA classification problem. In contrast to      
expert systems that incorporate domain     
expertise, ANNs are generic learners capable of       
being trained with labeled data. Given the       
labeled RNA sequences from public databases,      
ANNs infer distinguishing features that they use       
in combination to classify other, unlabeled RNA       
sequences. For example, the LncADeep [16]      
software package includes ANNs trained on      
either full-length or partial transcript sequences      
plus their annotation i.e. features besides the       
primary sequence, whether experimentally    
derived or computationally predicted, that are      
also available in public databases. Many of the        
annotated features used by LncADeep were      
measures of protein-coding potential i.e.     
indicators that an RNA is mRNA not LncRNA.  

In contrast, the classifier by Hill et al. [17]         
was trained on primary sequence alone without       
reliance on the annotation, which could be       
erroneous or biased. Trained and tested on       
labeled, full-length, human sequence data from      
GenCode, the classifier achieved 95% accuracy.      
Perturbation analysis indicated the trained model      
relied heavily on the coding regions of       
protein-coding mRNA, as LncADeep had been      
programmed to do. Some non-ANN methods      

2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-7281-6215-7/20/$31.00 ©2020 IEEE 2920



2921

applied to LncRNA identification include     
alignment based approaches [18], logistic     
regression [19], support vector machine [20],      
and random forest [21]. 

Some bioinformatics software goes beyond     
the problem of LncRNA identification. The      
DeepLncRNA [22] software uses an ANN to       
predict the subcellular localization of LncRNA.      
In contrast, SEEKR [23] is non-ANN software       
that predicts LncRNA cellular function. SEEKR      
suggests function for uncharacterized LncRNAs     
based on correlations to well-characterized     
LncRNAs. The correlations are computed from      
K-mer profiles, which are histograms containing     
the frequencies of each contiguous substring of      
length K. (For example, at K=2, the sequence       
‘AAACGT’ has one K-mer with frequency ⅖,      
namely ‘AA’. Like the RNA in most databases,       
this example uses the 4-nucleotide alphabet of      
DNA.)

We consider the problem of ANN-based      
LncRNA identification with the hope of gaining       
insights for ANN application to other questions       
of LncRNA biology. We build on the approach        
of Hill et al. [17] in which a variety of ANN           
designs were tested on the way to building one         
successful classifier. Although ANNs are trained      
automatically, they are typically designed by      
investigators who select the overall architecture      
as well as a large number of hyperparameters. It         
is therefore important to understand whether      
certain architectures are most applicable to the       
problem domain. 

We focus on two ANN architectures. The       
most basic architecture is the multilayer      
perceptron (MLP) [24, 25] which consists of       
components called neurons organized into an      
ordered list of layers. The neurons are       
fully-connected between successive layers but     
not within layers. The connections receive initial       
weights which get adjusted during training.      
While this architecture is capable of machine       
learning, it is not tailored for any specific task.         
In contrast, the recurrent neural network (RNN)       
[26, 27] incorporates the notion of a time series.         
Whereas an MLP would process an RNA as one         
bag of features, an RNN could process it as a          
time-ordered sequence of nucleotides. Two     
RNN variants enhance the long-term memory of       
the basic RNN design: the long short-term       
memory (LSTM) model [28] and the gated       

recurrent unit (GRU) model [29]. Training these       
models involves automatically adjusting weights     
that control the portion of past information that        
is carried forward.  

Using both the MLP and RNN architectures,       
we explore hyperparameters such as number of       
layers and number of neurons per layer. Our        
study is similar to parts of Hill et al. [17] and it            
differs in the following ways. We explore the        
MLP architecture in addition to the RNN. We        
experiment with preprocessing that presents     
K-mers rather than nucleotides to the model; this       
extends the analysis of the initial embedding      
layer included in the RNN. We test RNNs with        
more than one recurrent layer and we test LSTM        
and bidirectional GRU in addition to GRU      
layers. We implemented our models with the      
open-source Keras and TensorFlow software    
libraries [30]. Unlike Hill et al., we have not        
explored data augmentation, ensemble methods,    
or permutation analysis, and we have not built or        
tested a final model for LncRNA identification.

Sequence length is a defining characteristic      
of long non-coding RNAs, and length may be        
characteristic of certain functional roles [31, 32],       
a fact that has been exploited previously to        
predict LncRNA protein interaction [33].     
Whereas Hill et al. trained models on only        
sequences of lengths 200 to 1000, and tested        
only on sequences of all lengths, we explored        
the effect of training and testing on different        
length-based subsets of the data. We hope that        
some of our results would assist in neural        
network design for future RNA studies.  

2 METHODS:  
2.1 Data Preparation 
GenCode release 34 data was preprocessed      
using our custom script (preprocess2.py) that      
roughly follows the GenCode release 25      
procedure in Hill et al. [17]. Coding and        
non-coding sets were filtered to remove short       
(<200) sequences and sequences with letters      
other than {A,C,G,T}. From the remaining data,       
the median-length transcript per gene was      
identified as a candidate, and 16K coding and        
16K non-coding candidates were selected for      
training and validation; the remainder was held       
for testing in future work.  

Except for the length-effect study, only      
sequences of length 200 to 1000 were used as         

2921



2922

Hill et al. trained on this subset exclusively. This         
subset was imbalanced, being 64% non-coding      
(Table I). Prior to every experiment, a random        
10% of the data was set aside for validation with          
the rest used for training. Every sequence was        
‘N’ padded to the maximum length of the subset.         
For embeddings, any K-mer containing an ‘N’       
was encoded as zero and masked. For K-mer        
profiles, any K-mer with at least one ‘N’        
counted as the Kmer with 100% ‘N’.  

Table I. Data set preprocessing 

2.2 Neural Network Implementation 
Machine learning programs were developed     

in Python 3.8 using numpy 1.18.4, pandas 1.0.5,        
matplotlib 3.2.2, sklearn 0.23.1, tensorflow     
2.2.0, and keras 2.4.3. All models used the Keras         
Sequential API [30] plus combinations of the       
Bidirectional, GRU, LSTM, Dense, and Dropout      
[34] layers. All layers used Keras default values      
unless otherwise noted. Training used    
mini-batch gradient descent with the default     
batch size of 16, binary cross entropy loss, and        
the Adam [35] optimizer, unless otherwise     
noted. Models were run in Jupyter 6.1.4      
notebooks on Google CoLab virtual machines     
using its standard GPU configuration: K80, 12      
GB RAM. Models were trained and evaluated      
using 5-fold cross validation with 200 epochs      
per fold. The highest validation accuracy per      
fold was recorded, and the mean and standard       
deviation of these five numbers was reported.      
Unless otherwise noted, each fold randomly     
partitioned the sequences into 90% training and      
10% validation. Statistics were computed with     
Scipy 1.5.3: Pearson correlation or Student     
two-tailed t-test at p<0.05 assuming independent     
samples but not assuming equal variance.

The MLP model design was selected after       
two preliminary explorations. With K values 1       
through 5, a 2-layer, 16-neuron model (2x16)       
outperformed simpler models and about as well       
as more complex models. Then, with the 2x16        
model and K=3, a search over various       
hyperparameters led to these choices: activation      

= elu, regularizer = adam with the following        
learning rate decay schedule: initial learn rate =        
0.01 (10 times the default), decay rate = 0.99,         
decay steps = 10K, and staircase = true. For the          
RNN study, the basic design was inspired by        
Hill et al., which settled on a 128-dimension        
embedding layer, a 1x32 GRU layer and a        
32-neuron FC layer, with 40% dropout. Source      
code is available online at https://github.com/     
ShepherdCode/IEEE.BIBM.2020.

3 RESULTS 
3.1 High Accuracy with a Basic ANN 
We developed a basic ANN using the MLP        
architecture and hyperparameters for 2 layers      
and 16 neurons per layer (2x16 MLP). The        
inputs were K-mer profiles containing either      
single-nucleotide frequencies or 3-nucleotide    
frequencies (i.e. K-mers with K=1 or 3,       
stride=1). The K-mer profiles, including one      
K-mer of ‘N’s, consist of d=4K+1 frequencies,      
i.e. d=5 at K=1 and d=65 at K=3. The model         
incorporates a weight on each connection from      
every profile dimension to all 16 neurons of the        
initial layer, so the model incorporates more      
trainable parameters at K=3. Thus the MLP      
receives more information and has more     
capacity to analyze it at K=3 and, as expected,        
performed better; the difference in validation     
accuracy between K=1 and K=3 was significant.      
When the study was extended to additional      
values of K, accuracy increased as K increased       
from 1 to 3 and it remained high as K increased          
from 3 to 5 (Table II). We inferred that MLP         
training should use K ≥ 3.

Table II. MLP accuracy vs K 

The training data was 64% LncRNA. To       
assess the impact of data imbalance, we       
down-sampled the LncRNAs. A 2x16 MLP was       
trained and validated on 5785 coding and 5781        
non-coding sequences with K=4. Validation     
accuracy was measured as 85.57% ± 0.43, a        
slight reduction that is possibly due to the        
overall reduction in training set size. We       

GenCode34 # Coding # Non-coding Total 
Original 100566 48479 149045 
Filtered 95319 45597 140916 
Candidates 19170 16742 35912 
Selected 16000 16000 32000 
200-1Kbp 5781 10323 16104 

K Params Val Acc Std Dev 
1 385 75.06% 0.26 
2 577 80.50% 0.55 
3 1345 85.86% 0.46 
4 4417 86.80% 0.82 
5 16705 86.48% 0.67 

2922



2923

concluded that the data imbalance would not       
confound further use of the full training data set.  

 
3.2 Effect of Model Complexity 
In the previous results, the number of MLP        
trainable parameters increased with K. To      
estimate whether the increased accuracy was due       
to parameter expansion only, we designed six       
MLPs that would apply high parameter counts to        
low values of K. Three models trained on K=1         
data using 1281 to 1713 parameters. The       
maximum accuracy was 75.20%, short of the       
80.50% achieved previously by setting K=2.      
Another three models trained on K=2 data with        
1121 to 1666 parameters. The maximum      
accuracy was 80.83%, short of the 85.86%       
achieved previously by setting K=3. Similar      
results were observed with models designed to       
approximate the K=5. These results indicate that       
model complexity was less critical than K, i.e.        
feature dimensionality, for boosting MLP     
accuracy.  

We also tested an MLP with K-mers formed        
by skipping the middle nucleotide of each       
consecutive five nucleotides i.e. a spaced seed.       
We saw no improvement over K=4 (data not        
shown). 

A trained model is overfitting if it performs        
better on the training data than on the validation         
data. We observed overfitting at K=5 as training        
accuracy hit 100% in every round, and to a         
lesser extent, at K=4. This cost CPU cycles but         
did not change results since we always selected        
the model with the maximum validation      
accuracy over 200 epochs, analogous to early       
stopping. However, models that overfit at some       
early epoch never improved their validation      
accuracy later. Dropout is a design feature that        
can reduce overfitting by inactivating a random       
subset of neurons before each training epoch       
[34]. Overfitting was reduced after we applied       
50% dropout, though accuracy did not improve.       
At K=5, validation accuracy declined by 0.3       
percentage points.  

In summary, our basic MLP models achieved       
up to 87% accuracy at identifying the LncRNAs        
within our validation set. These models were       
trained on K-mer profiles, i.e. word frequencies.       
Accuracy was highest using K values of 3 to 5          
and this was not merely due to model        
complexity. (Larger values of K were not tested        

since the 4K feature dimensions would approach       
the training data size.) Since primary sequences       
contain more information than K-mer profiles,      
these results provide a lower bound for what        
should be achievable with networks designed for       
primary sequences.  
 
3.3 Exploiting Nucleotide Order 
To test whether sequence-aware ANNs could      
out-perform the basic ANNs used so far, we        
designed a recurrent neural network (RNN).      
This model included an embedding layer to learn        
a helpful transformation of nucleotides or      
K-mers into vectors. It included one GRU layer        
using 32 neurons, and one fully connected (FC,        
i.e. dense) layer with 32 neurons, both       
incorporating 50% dropout. The model used      
tanh activation in intermediate layers and      
sigmoid activation in the output layer; other       
activations tested sometimes led to numerical      
instability i.e. loss equal to zero or infinity.  

The input to an RNN is usually an ordered         
list. For the RNA data, we input each RNA as a           
sequence of nucleotides. This is equivalent to       
using K-mers with K=1. We also tested K=3 by         
presenting the model with overlapping 3-letter      
“words” extracted in order from consecutive      
RNA positions i.e. stride=1. In contrast to the        
MLP experiment, the RNN inputs consisted of       
K-mer sequences not frequencies. Holding the      
other layer dimensions constant, we tested      
several values for the embedding dimension.      
The RNN accuracy ranged from 87% to 91%        
(Table III). The maximum accuracy from any       
one fold of training was 92.05% using K=3 and         
the 16-dimensional embedding.  
 

Table III. Various embeddings with a 1x32 GRU RNN. 

 
As expected, the RNNs achieved higher      

accuracy than the MLPs. The increase was not        
due to model complexity, since the RNNs were        
more accurate even with fewer parameters than       

 

Embed Dim K Params Val Acc Std Dev 
4 1 4757 86.68% 1.24 

3 4997 89.26% 2.32 
16 1 5969 87.66% 0.95 

3 6929 90.59% 2.01 
64 1 10817 87.92% 0.62 

3 14657 88.80% 2.09 
128 1 17281 88.19% 0.95 

3 24961 87.56% 0.55 



2924

the MLP with the equivalent value of K. The         
differences due to the dimensionality of the       
embedding layer were not significant. Although      
the MLP with 16-dimensional embedding using      
K=3 scored highest, the overall effect due to K         
was not significant.  

These results indicate that the RNNs were       
able to extract more information from sequences       
than the MLPs could extract from profiles.  
 
3.4 Effect of RNN Model Complexity  
To test whether RNN adjustments would      
increase RNN accuracy, we varied some of our        
RNN’s hyperparameters. We held constant the      
16-dimensional embedding and the K=3 data      
treatment, while varying the numbers of internal       
layers and neurons per layer. We also tested a         
bidirectional GRU which uses forward and      
backward GRU layers of the same dimension.       
Accuracy peaked with the 2x64 unidirectional      
GRU (Table IV) and this model also produced        
the maximum accuracy in any one fold of        
training, 94.54%. (Because that maximum and      
variance were high on this configuration, this       
test was repeated. The table reflects statistics for        
10 train+validation folds for this model, and 5        
for the others.)  

The additional layers and neurons increased      
the number of trainable parameters, and there       
was a slight positive correlation of validation       
accuracy to parameter count (r=0.58). Inclusion      
of the bidirectional GRU provided no significant       
improvement. 

 
Table IV. Variations on GRU depth. 

 
These results indicate that increasing model      

complexity should improve RNN accuracy. We      
did test a more complex 2x128 GRU network        
but numerical instability was observed     
(loss=“nan”). More fine tuning will be required       
to explore such models.  

 

3.5 Effect of LSTM vs GRU Models 
The LSTM model is an RNN layer with more         
parameters than the GRU. In order to compare        
networks based on these two models, we tested        
both using five values of K, a 16-dimensional        
embedding layer, 2 recurrent layers with 64       
neurons each, and 2 fully connected layers with        
64 neurons each (Table V). 

 
Table V. Variations on K and RNN type.  

 
Of these configurations, the highest accuracy      

was achieved by the GRU with K=3, which was         
already reported in Table IV. The LSTMs did        
not provide a significant improvement over the       
GRUs. Overfitting was observed with both      
model types trained on K=5 data, though not as         
pronounced as with the MLP.  

In summary, the performance of our LSTM       
models on our data was not significantly       
different from that of the GRU models, despite        
their extra complexity.  
 
3.6 Effect of LncRNA Sequence Length 
The prior experiments used the subset of       
sequences of length 200 to 1000, which may not         
be representative of the full data set (see Fig. 1).          
To explore the effect on sequence length on        
training and validation, the 32K sequences      
selected from GenCode (Table I) were      
partitioned six ways using arbitrary thresholds      
chosen for balance (Table VI).  

After 20% of each subset was set aside for         
validation, a network was trained on each of five         
partitions and validated on six. The network       
used K=3, a 16-dimensional embedding layer,      
and 1x16 GRU and FC layers with 50% dropout.         
Each validation used the parameters that      
maximized training accuracy in one fold of 100        
epochs of training. 
 

 

GRU & FC BiDir Params Val Acc Std Dev 
2x16 no 2961 87.98% 1.32 

yes 4849 88.14% 2.05 
1x32 no 6929 90.59% 2.01 

yes 12753 89.72% 2.23 
2x32 no 14321 89.67% 1.38 

yes 32625 91.66% 1.84 
2x64 no 50129 91.27% 2.65 

yes 119505 91.25% 3.26 

 K Params Val Acc Std Dev 
LSTM 
2x64 

1 62225 88.85 0.39 
2 62417 88.58 n/a 
3 63185 88.34 1.12 
4 66257 88.21 n/a 
5 78545 87.21 0.77 

GRU 
2x64 

1 49169 87.83 1.96 
2 49361 87.44 1.43 
3 50129 91.27 2.65 
4 53201 87.61 0.77 
5 65489 86.52 0.91 



2925

 
Fig. 1. Distribution of sequence lengths in GenCode 34 data. 
 

Table VI. Data subset characteristics.  

 
The results (Table VII) show sensitivity of       

GRU accuracy to length of the training and        
validation data. Models trained on subsets B       
(600-900 nucleotides) and D (1.3K-1.9K) were      
the most versatile. The model trained on D        
provided highest accuracy on the longest subset,       
F, while the model trained on E (1.9K-3K)        
performed poorly on every subset. LncRNA      
identification was more accurate on the longer       
validation sequences. LSTM and MLP models      
also classified longer sequences better if they       
were trained on longer sequences (not shown).       
Thus, sequence length should be considered      
when training models and when applying trained       
models to unlabeled sequences.  
 

Table VII. Variation of accuracy with sequence length.  

3.7 Computation 
Most experiments used 5-fold cross-validation     
and 200 epochs per fold. MLP training used 1-2         

GB RAM and 261±92 elapsed sec per 200        
epochs. RNN training, excluding single-layer     
models, used 1-4 GB RAM and 9828±2807 sec        
per 200 epochs.  
 
4 DISCUSSION 
We explored neural network designs for the       
LncRNA identification problem for which prior      
solutions achieved 95% accuracy [16, 17]. We       
explored two architectural types: MLP and RNN       
(Fig. 2).  
 

 
Fig. 2. Schematic of the two architectures explored. For brevity, 
the figure shows a hypothetical 5-nucleotide RNA input, only 4 of 
16 possible K-mers at K=2, and only 8 neurons per layer. (a) Each 
RNA sequence was presented as a K-mer frequency profile to an 
MLP having 2 fully connected layers. (b) Each RNA sequence was 
presented as a list of K-mers in sequence order to an RNN having 
an embedding layer (triangles), 2 recurrent layers (rectangles), and 
2 fully connected layers (ovals). 
 

The MLP is a basic neural network with no         
special adaptation for handling sequences. Our      
MLP models ran on K-mer profiles of RNA        
sequences, a “bag of words” approach that       
discards word order. By setting K=1, we also        
tested a “bag of nucleotides” approach and       
achieved less accuracy, as expected. In contrast,       
the RNN is a neural network specially adapted        
for time-ordered sequences. RNNs have been      
applied to language translation [29] but it is        
unclear how they perform on very long RNA        
sequences of up to 30K nucleotides. RNNs       

 

 Min Len Max Len Coding NonCoding Total 
A 200 600 1793 6372 8165 
B 600 900 3114 3328 6442 
C 900 1300 2492 1986 4478 
D 1300 1900 2642 1779 4421 
E 1900 3000 2918 1672 4590 
F 3000 30000 3041 859 3900 

Validation 
Subset 

Train Subset  
A B C D E Avg 

A 88 83 63 81 32 69 
B 78 81 75 75 47 71 
C 70 81 78 76 56 72 
D 66 81 81 82 60 74 
E 64 85 86 87 60 76 
F 76 85 74 90 69 79 

Avg 74 83 76 82 54 74 



2926

retain prior information as their focus moves       
forward through each sequence, and     
bidirectional RNNs also do the reverse. While       
this “sequence of nucleotides” approach receives      
sufficient information to construct K-mer     
profiles in theory, we also tested it with a         
“sequence of words” approach by providing      
RNNs with consecutive K-mers, ordered     
according to the primary sequence. 

Our MLP networks achieved high accuracy      
e.g. 87% with a 2x16 MLP and K=4 inputs.         
While our results may not generalize to all        
datasets and test conditions, they demonstrate      
that the “bag of words” approach is sufficient for         
a great deal of inference about RNAs,       
confirming previous K-mer based studies of      
LncRNA function [23]. Our RNN networks      
achieved higher accuracy, although the gain was       
less than we expected from sequence-based      
approaches.  

Several of our RNN networks exceeded 90%       
accuracy. The maximum accuracy measured on      
any one RNN was 94.5% for a model that scored          
91.3% on average. This RNN model was able to         
incorporate more information than all the MLP       
networks tested. This model used a 2x64 GRU        
and K=3 inputs.  

We observed only slight differences based on       
the RNN’s embedding dimension, despite a      
large range of values tested. However we saw a         
slight trend toward higher accuracy with RNNs       
of increasing neuron counts, so larger models       
should be tested. As with RNNs, one       
dimensional convolutional networks (CNNs) can     
combine information from different parts of a       
sequence, and their filter size parameter might       
play a role similar to the K we used to break           
sequences into K-mers. We observed no      
significant difference between RNN types     
(LSTM, GRU, BiGRU) but we would like to        
explore others such as convolutional LSTMs.  

We have so far not explored the relative        
contributions of the recurrent vs. the fully       
connected layers in our RNN models. We       
observed that overfitting early in a 200-epoch       
training fold was a good predictor of low        
accuracy overall, so it may be helpful to        
implement early stopping followed by a training       
restart on shuffled data.. All the models tested        
here relied on RNA primary sequence data       

alone, but other features could also be       
incorporated [16].  

The data set used here was not particularly        
large for a study of modern machine learning.        
Paucity of data constrained our choices for the        
values of K and led us to use imbalanced data          
sets. Downsampling would have risked     
overfitting, especially by the most complex      
models. Data augmentation has been applied for       
pre-training models [16, 17] but one alternative       
exists in the GenCode data itself in the form of          
multiple transcripts per gene. Although we used       
only one transcript per gene to eliminate       
redundancy, a remaining challenge is to harvest       
non-redundant information from this larger set. 

 
ACKNOWLEDGEMENTS 

This work was supported in part by funding 
from the National Science Foundation (award 
#1747788, #1920920). 

REFERENCES 
1. Djebali S, Davis CA, et al. Landscape of 
transcription in human cells. Nature. 2012; 
489:101–8.  

2. Derrien T, Johnson R, et al. The GENCODE v7 
catalog of human long noncoding RNAs: analysis of 
their gene structure, evolution, and expression. 
Genome Res. 2012;22:1775–89.  

3. Harrow J, Frankish A, et al. GENCODE: the 
reference human genome annotation for The 
ENCODE Project. Genome Res. 2012; 22:1760–74.  

4. Wang KC, Chang HY. Molecular mechanisms of 
long noncoding RNAs. Mol Cell. 2011; 43:904–14.  

5. Moran VA, Perera RJ, Khalil AM. Emerging 
functional and mechanistic paradigms of mammalian 
long non-coding RNAs. Nucleic Acids Res. 2012; 
40:6391–400.  

6. Mercer TR, Mattick JS. Structure and function of 
long noncoding RNAs in epigenetic regulation. Nat 
Struct Mol Biol. 2013; 20:300–7.  

7. Nie L, Wu H-J, et al. Long non-coding RNAs: 
versatile master regulators of gene expression and 
crucial players in cancer. Am J Transl Res. 2012; 
4:127–50. 

8. Wapinski O, Chang HY. Long noncoding RNAs 
and human disease. Trends Cell Biol. 2011; 
21:354–61.  

9. Tripathi V, Ellis JD, et al. The nuclear-retained 

 



2927

noncoding RNA MALAT1 regulates alternative 
splicing by modulating SR splicing factor 
phosphorylation. Mol Cell. 2010; 39:925–38.  

10. Kohlmaier A, Savarese F, et al. A chromosomal 
memory triggered by Xist regulates histone 
methylation in X inactivation. PLoS Biol. 2004; 
2:E171.  

11. Zerbino DR, Achuthan P, et al. Ensembl 2018. 
Nucleic Acids Res. 2018; 46:D754–61.  

12. Jia H, Osak M, et al. Genome-wide computational 
identification and manual annotation of human long 
noncoding RNA genes. RNA. 2010; 16:1478–87.  

13. Frankish A, Diekhans M, et al. GENCODE 
reference annotation for the human and mouse 
genomes. Nucleic Acids Res. 2019; 47:D766–73.  

14. Yotsukura S, duVerle D, et al. Computational 
recognition for long non-coding RNA (lncRNA): 
Software and databases. Brief Bioinformatics. 2017; 
18:9–27.  

15. Abascal F, Juan D, et al. Corrigendum: Loose 
ends: almost one in five human genes still have 
unresolved coding status. Nucleic Acids Res. 2018; 
46:12194.  

16. Yang C, Yang L, et al. LncADeep: an ab initio 
lncRNA identification and functional annotation tool 
based on deep learning. Bioinformatics. 2018; 
34:3825–34.  

17. Hill ST, Kuintzle R, et al. A deep recurrent neural 
network discovers complex biological rules to 
decipher RNA protein-coding potential. Nucleic 
Acids Res. 2018; 46:8105–13.  

18. Kong L, Zhang Y, et al. CPC: assess the 
protein-coding potential of transcripts using sequence 
features and support vector machine. Nucleic Acids 
Res. 2007; 35 Web Server issue:W345-9.  

19. Wang L, Park HJ, et al. CPAT: Coding-Potential 
Assessment Tool using an alignment-free logistic 
regression model. Nucleic Acids Res. 2013; 41:e74.  

20. Li A, Zhang J, Zhou Z. PLEK: a tool for 
predicting long non-coding RNAs and messenger 
RNAs based on an improved k-mer scheme. BMC 
Bioinformatics. 2014; 15:311.  

21. Achawanantakun R, Chen J, et al. LncRNA-ID: 
Long non-coding RNA IDentification using balanced 
random forests. Bioinformatics. 2015; 31:3897–905.  

22. Gudenas BL, Wang L. Prediction of LncRNA 
Subcellular Localization with Deep Learning from 
Sequence Features. Sci Rep. 2018; 8:16385.  

23. Kirk JM, Kim SO, et al. Functional classification 

of long non-coding RNAs by k-mer content. Nat 
Genet. 2018; 50:1474–82.  

24. Rosenblatt F. The perceptron: a probabilistic 
model for information storage and organization in the 
brain. Psychol Rev. 1958; 65:386–408.  

25. Rumelhart DE, Hinton GE, Williams RJ. 
Learning representations by back-propagating errors. 
Nature. 1986; 323:533–6.  

26. Elman JL. Finding Structure in Time. Cogn Sci. 
1990; 14:179–211.  

27. Werbos PJ. Backpropagation through time: what 
it does and how to do it. Proc IEEE. 1990; 
78:1550–60.  

28. Hochreiter S, Schmidhuber J. Long short-term 
memory. Neural Comput. 1997; 9:1735–80.  

29. Cho K, van Merrienboer B, et al. Learning Phrase 
Representations using RNN Encoder–Decoder for 
Statistical Machine Translation. EMNLP; 2014. p. 
1724–34.  

30. Chollet F, Others. Keras. 2015. 
https://github.com/fchollet/keras. Accessed 14 Oct 
2020. 

31. Mattei E, Ausiello G, et al. A novel approach to 
represent and compare RNA secondary structures. 
Nucleic Acids Res. 2014; 42:6146–57.  

32. Rabani M, Kertesz M, Segal E. Computational 
prediction of RNA structural motifs involved in 
posttranscriptional regulatory processes. Proc Natl 
Acad Sci USA. 2008; 105:14885–90.  

33. Adjeroh D, Allaga M, et al. Feature-Based and 
String-Based Models for Predicting RNA-Protein 
Interaction. Molecules. 2018; 23.  

34. Srivastava N, Hinton G, et al. Dropout: a simple 
way to prevent neural networks from overfitting. The 
journal of machine learning research. 2014; 
15:1929–58. 

35. Kingma DP, Ba J. Adam: A method for stochastic 
optimization. arXiv preprint arXiv:14126980. 2014. 

 


