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1 INTRODUCTION

The unprecedented popularity of online social media platforms over the past decade combined
with the availability of location information through GPS-equipped devices has led to significant
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attention for supporting geo-social queries at scale [6, 7, 16] in order to serve applications effi-
ciently on such big data. These queries are used in various applications and services such as social
recommendations [9, 40, 49], community and event detection [11, 24, 46], and urban planning [20].
A major category of these queries is personalized search queries that use the social information to
tailor the query answer per the issuing user. For example, a user who is concerned about COVID-19
infections in her social circle wants to find recent posts that contain coronavirus or COVID-19
keywords from her friends in the city of Los Angeles, California. To allow finding recent posts at
a fine temporal granularity, it is required to manage geo-social data as a data stream. In fact, the
modern geo-social data has a streaming nature due to the large number of its data items that arrive
every second around the clock. Latest assessments estimate Twitter to receive approximately 8,500
tweets/second [22] while Facebook posts are even an order of magnitude larger in size [17, 22]. This
streaming nature has already motivated several streaming queries on this data, such as keyword
queries [3, 30, 42], spatial queries [28, 32], and social queries [26, 35], with plenty of applications.
Although several geo-social queries, including keyword predicates, have been addressed in the
literature [6, 7, 16, 23, 27, 44, 50], querying streaming data combining social, geographical location,
and textual information is still an unaddressed challenge.

Geo-social queries have got a little attention in the streaming environments although several
applications that are powered by these queries will significantly benefit from the real-time nature of
geo-social data, e.g., providing real-time search on friends’ posts during emergency situations and
detecting real-time events based on friends’ updates. In such streaming environments, hundreds of
millions of items arrive at high pace every day, which puts major challenges on real-time indexing
and query processing based on social, geographical, and textual information. These challenges
include sustainable digestion of new data in real-time index structures and exploiting the social
information, which is usually complex in structure and huge in size, to serve incoming queries
that have certain locations of interest. State-of-the-art techniques [8, 27, 38, 39] are still limited
to address these challenges, either for inefficient indexing for real-time data or inefficient query
processing navigating highly-complex graph structures, which limits using streaming geo-social
textual information in scalable applications.

This paper introduces scalable real-time indexing and query processing for geo-social person-
alized search queries over streaming data. The index and query processing design are made to
support efficient snapshot queries and can be used as an efficient initial phase for continuous
querying modules. We first define two queries that combine three aspects: spatial, temporal, and
the social connectivity between users. They are socio-temporal extensions of the two fundamental
spatial queries, range query and k-nearest-neighbor query, to effectively serve the streaming data
applications that are timely by nature. Example of such queries is to “find what my friends/friends-
of-friends have recently posted in Los Angeles”, where a spatial range encapsulates Los Angeles city
boundaries, or “find what my friends/friends-of-friends post now nearby Tampa, Florida” in case of
hurricane emergency. Such queries are obviously useful for various applications that make use of
personalized real-time content, such as improving emergency response by involving the close social
circle of individuals or getting personalized recommendations from friends. To limit query answer
to top relevant items, the queries use ranking functions based on timestamp and discrete social
distance, similar in spirit to hop count, to retrieve only top-k items that satisfy the query predicates.
We further extend these queries to incorporate the textual aspect. The extended queries take a
set of keywords as input and produce objects that only contain one or more of these keywords.
Example of extended keyword search queries could be “find what my friends/friends-of-friends post
now about coronavirus or COVID-19 nearby Los Angeles” where “coronavirus or COVID-19” serves as
the keyword set to further filter out the most textually relevant to such a pandemic disease.
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In support of these queries in real time, we propose a geo-social indexing framework that distin-
guishes highly-streaming data from relatively-stable data. Then, it employs memory-based light
indexing for incoming streams and disk-based indexing for stable data. Based on this framework,
we propose novel geo-social indexes that effectively organize real-time data for efficient querying
based on either pure temporal aspect or combining temporal and textual aspects. The indexes
consist of three components: an in-memory spatio-temporal index, an in-disk social index, and
an in-memory buffer. During query processing, both in-memory and in-disk data are combined
to retrieve relevant data from direct friends in the social graph. If the retrieved data items are
less than k, then the query search expands to search indirect friends at one or more levels of
social expansions to retrieve the final top-k answer. Due to the awareness of social aspect, the
query processor smartly prunes the search space based on social connectivity in addition to spatial,
temporal, and textual information. Such multi-dimensional pruning significantly reduces the query
response time and reduces contention on the real-time index structure to maintain high real-time
data digestion rates.

This work is a significant extension from our previous work [4] to enable keyword search
on geo-social streaming data. The extension adds a new query predicate to the original queries
definitions. The new predicate takes a set of keywords to produce output that only contains one or
more of these keywords. Supporting such new predicate by trivially extending the query processor
to employ a keyword filter after getting the results provides unacceptable performance. Such simple
filtering leads to processing significantly large number of objects to produce an answer of size k,
where k is relatively small. Consequently, keyword support must be inherent in both indexing and
query processing modules to enable efficient keyword search. This leads to radical extensions to
different modules of this work, both indexing and query processor. Extending these modules is
challenging and have different considerations and trade-offs. For example, existing indexes already
have three-dimensional structures to efficiently handle spatial, temporal, and social aspects of
the data. So, it is not clear if adding the textual within the same structure provides reasonable
trade-off between indexing efficiency in real time and fast query processing. In nutshell, this new
query predicate introduces several technical challenges to be supported efficiently through existing
indexing and query processing. Thus, this extended work addresses these challenges to enable
efficient keyword search on geo-social streaming data in real time. Our extended experimental
evaluation studies trade-offs of using existing modules versus the newly proposed extensions.

The extensive experimental evaluation of our proposed techniques on real datasets has shown
superiority over competitor techniques that are incorporated from the literature. Using a single
machine setting, our indexes can digest up to 220K object/second of streaming data while providing
an order of milli-seconds query latency for both average and 99% of the queries. In addition, the in-
memory component of our proposed indexes consistently maintains low memory usage compared
to competitor techniques. Our contributions in this paper can be summarized as follows:

e We extend the fundamental spatial queries to define temporal geo-social personalized search
queries that retrieve data objects based on spatial, temporal, and social predicates on streaming
data in real time.

e We further extend the temporal geo-social personalized search queries to enable keyword
search in real time.

e We propose a novel real-time indexing framework that efficiently digests geo-social streaming
data based on different attributes.

e We study various considerations and trade-offs of instantiating the indexing framework for
different attribute combinations on real-time indexing.
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e We develop query processing techniques that exploit the index content and further prune
the search space to provide low query latency.

e We extensively evaluate the proposed techniques compared to existing competitors on real
Twitter datasets showing their superiority and effectiveness for streaming environments.

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3
presents the problem definition. Sections 4 and 5 detail the proposed geo-social indexing and query
processing techniques. Section 6 provides an extensive experimental evaluation. Finally, Section 7
concludes the paper.

2 RELATED WORK

There is no current research work that addresses geo-social queries on user-generated streaming
data in real time to the best of our knowledge. However, social-aware queries are supported
independently on both spatial user-generated data and streaming user-generated data in the
literature. This section covers this literature and distinguishes it from our proposed work.

Queries on user-generated streaming data. User-generated streaming data has got significant
attention over the past few years due to the popularity of online social media platforms and similar
online services. In addition to continuous queries [34, 42] that was the only focus of traditional
machine-generated streaming data, user-generated streaming data has been exploited for various
applications and snapshot queries, such as geo-textual queries [3, 12-14, 25, 30], location-based
search [8, 10, 32], trend detection [1, 18, 36], time-sensitive recommendations [47], and news and
topic extraction [19, 37, 43]. In this literature, the spatial and social aspects of the queries are
addressed independently. So, geo-textual queries, e.g.,[3, 12-14, 25, 30] and location-based search
queries, e.g., [8, 10, 32], do not support any social or personalized aspect, and personalized queries,
e.g., [27], do not consider the spatial dimension. A recent attempt to combine both spatial and
social dimension is proposed in [38]. However, their solution creates a complete disk-based spatial
index for each user, which is extremely expensive for streaming data and cannot even scale to be
a baseline approach to compare with. Our work distinguishes itself from existing techniques to
be the first to combine both spatial and social aspects in one query while considering streaming
environments and keyword search for both lightweight real-time indexing and efficient query
processing. This was not addressed by any of the existing techniques.

Social queries on spatial data. Due to the importance and various applications that benefit
from combining social and spatial aspects, several researchers have recently developed indexing and
query processing techniques for different geo-social queries, e.g., [2, 6, 7, 16, 35, 50]. This includes
recommending POIs [2, 39, 40, 48, 49], finding cliques [21, 29, 45], finding top-k spatial-keyword
objects [2, 44], and finding top-k influential users [2, 23]. Some of the works, e.g. [2, 35, 44, 50]
support geo-social keyword search queries. However, none of these techniques address geo-social
personalized search queries on streaming data. Thus, our work is distinguished from all existing
techniques in multiple ways. First, we are the first to extend geo-social queries and geo-social
keyword queries with the temporal aspect due to the nature of streaming data that is the main
focus of this paper. Second, we are the first to consider lightweight real-time indexing and query
processing for geo-social data. This real-time aspect of the streaming environment puts significant
overhead on both indexing and query processing, which cannot be handled by any of the existing
techniques.

3 PROBLEM DEFINITION

We evaluate the geo-social queries on a streaming dataset D that consists of geo-social objects.
Each object o € D is represented with the four main attributes (uid, loc, keywords, timestamp),
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UID| OID| Keywords Timestamp

ul | o1 | Fantastic, Comeback, Play | 05-08-2021 20:18:30
u2 | 02 | Love, Pineapple, Pizza 05-08-2021 20:18:27
u3 | 03 | Sunny, Day, Good, Running | 05-08-2021 20:18:23
ul | o4 | Freeway, Traffic, Bad 05-08-2021 20:18:19
u4 | o5 | University, Graduation 05-08-2021 20:18:17
u2 | o6 | USA, Japan, Summit 05-08-2021 20:18:14
u5 | o7 | Airport, Flight, Time, Ready | 05-08-2021 20:18:09
u6 08 NBA, Lakers, LeBron 05-08-2021 20:18:06

Table 1. Content of Objects in Figure 1

where uid is the identifier of user who posted this object, loc is the location where the object is
posted in the two-dimensional space represented with latitude/longitude coordinates, keywords is
the set of keywords extracted from the textual content of the object, and timestamp is the time
when the user posts the object. Dr is a snapshot of the dataset D at time T, so every object o € Dr
has o.timestamp < T. Table 1 shows a sample of the dataset that consists of eight objects. Each
object, identified by oid, is composed of a user id who posted the object, a set of keywords that
represent the textual content, a timestamp, and located in the space as shown in Figure 1. In addition,
the social connectivity between the users is represented as a hashtable where the <key,value>
pair is <user id, list of friend ids>. The social network and the hashtable of the sample are shown
in Figure 2. Each entry of the hashtable consists of the given user id as the key, and the list of
user’s friends ids as the value. We can easily navigate from a user’s friends to the friends of friends
by expanding the immediate friends and retrieving their friends. This process can be repeated to
navigate to higher levels of the social graph. The simplicity of representation and navigation of the
social graph helps the query processors to achieve high query throughput, especially in a tight
streaming environment.

The two fundamental spatial queries, in particular range query and k-nearest neighbor, that are
common in the literature have been extended to support temporal geo-social aspects in this work.
The query definitions of the two extended queries are as follows:

Definition 1: Spatial-social Temporal Range Query (SSTRQ): given q = <user u, spatial range
R, integer k, and timestamp T'>, and Dr that is a snapshot of the dataset D at time T, SSTRQ retrieves
the most recent k objects o; € Dr, 1 < i < k, that are posted within R and are posted by u’s friends
or friends of friends based on a discrete social distance.

The k objects are ranked based on time to retrieve the most recent objects in Dy from u’s direct
friends. Because of the overwhelming number of objects, setting k value helps to provide users
with the most relevant objects, which makes the answer useful. In addition, limiting answer size
to k objects helps to prune the search space. This still serves all applications as it provides the
flexibility to adjust the value of k based on the interest of the application to retrieve more results.
If g fails to retrieve all k objects from u’s friends, the search is expanded to u’s friends of friends
recursively to retrieve the rest of objects. So, the social relevance of objects in q answer are assessed
based on a discrete social distance that takes only integer values (1,2,3, etc) and no fractional values
in between.

This enables scalable query processing on streaming data in real time as detailed in the following
sections.
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Example 1: Given ql=<u5,spatial range R, k=2, T=05-08-2021 20:18:30>, q1 is an SSTRQ query
that finds the two most recent objects (k=2) from u5’s friends or friends of friends that are posted
in the area R as shown in Figure 1. According to the hashtable in Figure 2, the only friend u5 has
followed is u4, hence the only object 05 from u4 in Table 1 is included in the result. The objects
from the friends of u4, i.e. u2 and u6, are checked and the most recent object 02 is added to the
result. As a result, the answer to the example query is {05, 02}.

Definition 2: Spatial-social Temporal kNN Query (SSTkQ): given q = <user u, spatial point
location L, integer k, and timestamp T>, and Dr that is a snapshot of the dataset D at time T, SSTkQ
retrieves top-k objects 0; € Dr, 1 < i < k, that are posted by u’s friends or friends of friends, and
ranked based on a spatio-temporal distance F, from L and T as follows:

Fy(0,q) = a X SpatialScore(o, q) + (1 — a) X TemporalScore(o, q)

Where « is a weighting parameter, 0 < o < 1, that weights the relative importance of spatial and
temporal scores in the object proximity. SpatialScore and TemporalScore are defined as follows:

distance(o.loc, q.L)

SpatialScore(o,q) = R
Max

q.T — o.timestamp

TemporalScore(o, q) =
TMax

Where Ryjq and T,y are the maximum allowed spatial and temporal ranges for any object, and
distance is the spatial distance between object and query locations in the Euclidean space. The social
relevance is assessed using the same discrete social distance that is used in SSTRQ for scalability
on streaming data in real time.

Example 2: Given q2=<ul,spatial point location 01.L, k=1, T=05-08-2021 20:18:30>, q2 is an SSTkQ
query that finds the object o (k=1) ranked by the ranking function F, (o, q2) from u1’s friends or
friends of friends.As shown in the hashtable in Figure 2, the friend list of u1 is {u6, u4, u3}. According
to Table 1, the set of objects posted by the friends of u1 is {03, 05, 08}. Because 03 is closer to the
specified location and is also newer than the other two objects, 03 gets the highest SpatialScore
and TemporalScore hence is ranked the highest by F (0, q2). As a result, {03} is returned as the
answer to the query.

The two queries are further extended to include keyword predicates. The extended queries are
formally defined as follows:

Definition 3: Spatial-social Temporal Keyword Range Query (SSTRQx ): given q = <user
u, spatial range R, integer k, keyword set kw, and timestamp T>, and Dr that is a snapshot of
the dataset D at time T, SSTRQgyy retrieves the most recent k objects 0; € Dy, 1 < i < k, that
are posted within R by ’s friends or friends of friends based on a discrete social distance and
o;.keywords N q.kw # ¢.

The k objects out of SSTRQkyy are still ranked based on time to retrieve the most recent objects
in Dr from u’s direct friends. The social relevance is assessed using the same discrete social distance
that is used in SSTRQ. The new addition in SSTRQkyy is the keyword predicate kw. This predicate
has a Boolean OR conjunction semantic for query keywords. If the keyword set kw of an object o;
contains at least one keyword in the query keyword set gq.kw, o; is eligible to be included in the
final answer. Keyword similarity is based on exact string matching.
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Fig. 1. Spatial Quadtree (SQ)

Example 3: Given q3=<u5,spatial range R, k=2, keyword set kw={"Love", "Watch", "NBA"}, T=05-
08-2021 20:18:30>, q3 is a SSTRQkw query that retrieves the two most recent objects (k = 2) posted
by the friends or the friends of friends of u5 containing at least one keyword in the kw set in range
R. Because the object 05 posted by the only friend of u5 from social distance 1 does not contain any
of the keywords, the search space is expanded to social level 2, i.e. the friends of friends. Among the
objects posted by the friends of u4, only the object 02 contains the keyword "Love" and the object
08 contains the keyword "NBA". As a result, {05, 02} is returned as the top-k results, k equals 2.

Definition 4: Spatial-social Temporal Keyword kNN Query (SSTkQxw ): given q = <user u,
spatial point location L, integer k, keyword set kw, and timestamp T>, and Dr that is a snapshot of
the dataset D at time T, SSTkQky retrieves top-k objects 0; € Dr, 1 < i < k, that are posted by
u’s friends or friends of friends, ranked based on a spatio-temporal distance F, from L and T, and
o;.keywords N q.kw # ¢.

Where F,, is the same ranking function that is detailed in SSTkQ definition and the social relevance
is assessed in the same way as well. The new keyword predicate also has a Boolean OR conjunction
semantic for query keywords, so an object that has any of the keywords is eligible to be included
in the final answer.

"won

Example 4: Given q4=<u2,spatial point location 06.L, k=1, keyword set kw={"LeBron", "James",
"University"}, T=05-08-2021 20:18:30>, q4 is a SSTkQgkw query that find the highest ranked object
(k=1) by the ranking function F, (o, g4) from u2’s friends or friends of friends. The list of friends
for u2 is {u6, u4, ul, u3}, as shown in Figure 2. According to Table 1, the list of objects from the
fiends of u2 is {01, 03, 04, 05, 08}. Among the list of objects from the friends of u2, 05 contains the
keyword "University" and 08 contains the keyword "LeBron". Object 05 is ranked higher than 08 by
the ranking function F, (o, g4) because 05 is posted closer to the location specified by the query
and is also more recent than 08. Because the k is 1, {05} is the result returned.

4 GEO-SOCIAL REAL-TIME INDEXING

This section presents geo-social data indexing in real time. This data is rich with spatial, temporal,
textual, and social information. The two main challenges in indexing such rich data in real time
are: (1) encoding the incoming information in highly-scalable data structures that are efficient for
insertions with tens of thousands of data objects each second, and (2) removing old data from the
main memory to sustain digesting new incoming data objects at all times. Traditional insertion
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Fig. 2. Example of In-disk Social Structure

(b) Tightly-coupled Spatial-social Quadtree (TCSSQ)

Fig. 3. Structure of geo-social real-time indexes

procedures in spatial and social index structures incur significant overhead that limits scalable data
digestion. In addition, straight forward deletion procedure that scan every index cell in different
spatial regions or different parts of the social graph to expel old data incur significant overhead

that will also affect the indexing scalability in real time.

To address these challenges, we introduce a generic indexing framework (Section 4.1) that
separates highly-dynamic data from relatively-stable data, so real-time data structures are tailored
to digest only the needed information in real time to reduce both insertion and deletion overheads.
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Based on this framework, we propose a scalable index (Section 4.2) that enables efficient handling
for geo-social data in real time, and adapt two baseline index structures (Section 4.3) from the
literature of spatial and spatial-social indexing. Finally, we extend the proposed index in two
different ways to support the keyword queries more efficiently (Section 4.4). The rest of this section
details the indexing framework as well as the five indexes.

4.1 Indexing Framework

The proposed indexing framework depends on the observation that incoming geo-social data
objects are highly dynamic while the social graph information is relatively static. Each second,
tens of thousands of geo-social objects are flowing, which requires real-time digestion. These
objects are posted by hundreds of millions of users that are connected to each other with social
bonds, represented as a social graph. This social graph is not updated frequently compared to the
geo-social objects. In real Twitter dataset, an active user posts on average seven tweets per day [41],
which leads to hundreds of millions of tweets every day. However, the number of new friends or
unfollowed friends are not even close to this daily number. It is usual not to accept new friends
or follow new people for several days, weeks, or even months. Consequently, the frequency of
updates in social graph information is way less than the incoming geo-social objects in real time.
Our indexing framework exploits this observation to dedicate the necessary resources to index
each type of data.

The proposed indexing framework consists of three components: (1) in-memory index that
digests streaming geo-social objects in real time, (2) in-disk index that organizes relatively stable
social graph information, and (3) in-memory buffer that swaps social graph information from
and to the disk index. The in-memory index is equipped with optimized insertion and deletion
techniques that minimize the real-time overhead and is able to scale for handling streaming data. As
main-memory is a scarce resource, data cannot be digested infinitely with excessive amounts and
have to be expelled to a secondary storage on a regular basis. For that reason, the in-memory index
employs a temporal duration Ty, that indicates the maximum allowed past data to store. Tyzax is a
system parameter and can be adjusted by the administrators based on the available main-memory
resources and the streaming rates of incoming data.

The second component is an in-disk index that stores the social graph information. Two reasons
are behind storing this information on disk. First, the excessive size of this information consumes
significant memory storage that is not frequently utilized, due to the long-tail distribution where
the majority of users are inactive in queries [31]. For example, a subset of our experimental Twitter
social graph with 3.3 million users consumes approximately 62.5 GB of main-memory as each
user has an average of 500 friends. Second, the relative stability of social graph information as
discussed earlier in this section. This makes the social graph index structure needs infrequent
updates, which is not challenging to be handled on the disk storage. However, for query processing,
it is inefficient to visit the disk for every retrieval of a user friend list, especially for active users
who post frequent queries. This has motivated the third component of our indexing framework,
which is the in-memory buffer for social graph information. This component acts similar to the
database buffer, where certain disk pages are swapped in the main-memory buffer from the disk
index only when needed. As disk pages keep accumulating in the buffer, it becomes full and needs
to evict some of its content to swap in new pages. Eviction policies that are used for the buffer are
the same ones studies in the literature of database buffer management and operating system virtual
memory. We choose to use the famous least recently used (LRU) policy in our realization. However,
other policies could be used based on the underlying application requirements.
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4.2 SSQ Index

Based on the described framework in Section 4.1, we propose Spatial-Social Quadtree (SSQ) index for
scalable real-time indexing of geo-social objects without recording the keyword sets. Conformed
to the framework, the index has three components, an in-memory component for digesting objects
in real-time, a disk-resident component for the social graph indexing, and an in-memory buffer, as
described in Section 4.1. This section describes the details of index structures and update operations
for different index components.

Index structure. The in-memory component adopts a spatial quadtree [5] as a highly-scalable
space-partitioning index for real-time data digestion [33]. Spatial quadtree adapts with skewness
in spatial distribution and could adapt with dynamic data with low indexing cost in real-time. As
a space-partitioning index, it does not need heavy restructuring with changing its data content.
In addition, it allows the index cell split and merge operations to be modified to reduce real-time
indexing overhead and scale up for high rates of real-time data as shown in [33].

An example of spatial quadtree is depicted in Figure 1 for eight geo-social objects that are
presented in Table 1. The tree divides the space into multi-level disjoint cells that either have four
or zero children cells. An incoming object is located in the cell that contains its location. A cell is
divided into four quadrants only if the number of objects exceeds a specific cell capacity, which
is a system parameter that determines the tree height, so a small cell capacity leads to a deeper
tree while a large cell capacity generates a shallow tree. Only leaf nodes hold data objects, while
intermediate nodes provide routing information. SSQ index extends the quadtree to be aware of the
user aspect of the spatial objects. In specific, each leaf cell is equipped with a hash index structure
that organizes the cell’s objects based on the issuing users. This hash structure is light for real-time
digestion, and still provides effective pruning for the search space based on the social information.
The hash structure uses the user id as a key and the value is a list of objects that are posted by this
user ordered based on their timestamps. Including the social information within the spatial cell
significantly helps the query processor to retrieve candidate objects that could potentially make it
to the final answer.

Figure 3a depicts an example of the SSQ in-memory index. The depicted index represents the
same set of objects that are depicted in Figure 1, and the same quadtree organization, with adding
the light hash structure to each leaf node that enables effective social-based pruning while sustains
high digestion rates in real time as verified in our experimental evaluation.

The in-disk component of SSQ index stores the social graph represented by a set of adjacency
lists. Our social graph representation adopts the famous form that represents users as nodes and
friendship relations as directed edges. The adjacency list representation stores this information as
a hash structure that uses user id as a key and list of friends as a value for each hash entry. Figure 2
demonstrates an example for a social graph with six users, u1 to u6. Figure 2a shows the high-level
graph model for the social relations among the six users while Figure 2b shows the adjacency list
representation that is stored on the disk-resident index structure. The disk structure consists of
two parts, the data part and the index part. The data part stores consecutive blocks of long integer
lists that contain the user ids as depicted in Figure 2b. The index part stores all the distinct user ids,
each user id is associated with a disk pointer to the block in which the user friend list is stored.
Compared to the data part, the index part is small in size and can be easily loaded during the query
processing for efficient access of user information as described in Section 5.

To reduce the overhead of reading back and forth from the disk, the third component of SSQ
index is a dedicated in-memory buffer that is utilized to store the retrieved user friend lists from
the disk for further recycling during future queries. The in-memory buffer is a hash structure that
stores key-value pairs of user ids and friend lists, similar in format to the disk index from which
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data is retrieved. When the in-memory buffer is full, it adopts the least recently used (LRU) policy
to free up content to continue serving incoming queries.

Index insertion. Insertion in both the in-disk component of SSQ index and its corresponding
buffer adopts traditional one-by-one insertion due to the low insertion rates in the stable social
structure. On the contrary, the in-memory index component, that adopts a social-aware quadtree,
incurs an excessive insertion rate as tens of thousands of objects arrive every second. Traditional
insertion procedure that navigates the tree hierarchy for each incoming object and inserts it in the
corresponding cell does not scale to cope up with such high insertion rate. To overcome this problem,
we employ a batch insertion process that collects a few seconds worth of data in a temporary
buffer and inserts them as one batch in the quadtree structure. During the buffering, a minimum
bounding rectangle (MBR) is maintained around the location of incoming objects. Then, the MBR
boundaries are compared to the index cell boundaries, instead of comparing location of each object,
and the tree navigation is performed based on this cheap comparison. With thousands of objects
buffered, thousands of comparison operations are saved, which significantly boost the digestion
performance and allows to ingest streaming data with high arrival rates.

As the tolerable buffering delay depends on the underlying application, the buffering time
is adjustable by system administrators to meet the application needs. The main motivating use
cases for our techniques work on streaming user-generated data, such as social media and other
content that is generated by human users online. In this context, a few seconds of delay is usually
tolerable. For example, when users search major social media platforms, the most recent results are
usually posted a few seconds ago. It is worth noting that the high rate of streaming data in these
applications enables a very small buffering delay while still buffering thousands of data items. So, a
typical buffering delay of 1-2 seconds is enough to enable scalable indexing in real time, which is a
reasonable delay that fits most of the mainstream applications.

The index insertion and the queries can be handled concurrently while still maintaining high
real-time data ingestion through employing a single-writer-multiple-readers concurrency model as
detailed in [32] and [3]. This model is slightly modified in this work to enable queries to expire data
that is beyond Ty, time units as pointed out in index deletion below. The data that is potential for
concurrent access from reader threads is already expired and removed from the index shortly after,
so they minimally affect the real-time index update operations.

The speculative cell splitting module [33] is used to reduce insertion and query processing time.
A leaf cell is split if it exceeds its capacity and the objects in the leaf cell will span at least two
quadrants.

Index deletion. To sustain digesting incoming data in the scarce memory resources, the in-
memory index expels objects that are older than Ty, time units ago to the disk, where T,y is a
system parameter that is based on the availability of memory resources and arrival rates of the
underlying streaming data. To expel this data, a straight forward way is to exhaustively iterate
over all index cells, either every few time units or when a certain memory budget fills up, and
clean up all expired data objects that are older than Tyy,,. However, such exhaustive and frequent
cleaning process puts an overhead on real-time operations of the index. To avoid such overhead,
we employ a combination of regular and periodic cleaning processes that are lighter than the
exhaustive cleaning and still sustain memory consumption. The regular cleaning is piggybacked
on the real-time insertion and querying, so whenever an index cell is accessed for either insertion
or query processing, the accessed entries are checked for expired content to be expelled from
main-memory. This reduces the cleaning overhead as it shares the index traversal overhead with
the other operations.

This regular cleaning process does not guarantee to expel all the expired data proactively as it
depends on the spatial distributions of both data and queries, so some index cells might be left
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without cleaning due to infrequent access to those cells. To address this, we employ a light periodic
cleaning that goes over all index cells every Ty, time units. For each cell, if it is not cleaned
during the past Tysx time units, which means no insertions happened during this period, all the
cell content is wiped as all objects are expired. Otherwise, the cell is skipped. This process is very
light and mainly addresses cells that are infrequently accessed. In addition, it can be easily invoked
in a separate thread to reduce the contention over index cells in real time. We adopt the lazy cell
merging strategy to manage the leave nodes after deletion. If a leaf node becomes empty after the
deletion, the siblings of the leaf node are examined. If two of the siblings are empty, the content
of the third sibling is moved to their parent node and the four leaf nodes are removed. The lazy
cell merging saves 90% of the split empirically and merge operations and reduces the index update
overhead significantly. The details for the lazy cell merging is given in [33] and it is not considered
a novel contribution for this paper.

4.3 Baseline Indexes

In addition to our proposed SSQ index (Section 4.2), we adopt two baseline indexes based on
the proposed indexing framework that is described in Section 4.1. The two baseline indexes are
alternatives to address the supported queries based on existing techniques in the literature. The
two baseline indexes are Spatial Quadtree (SQ) and Tightly-Coupled Spatial-Social Quadtree (TCSSQ).
The rest of this section describes each index and highlight its differences compared to the proposed
SSQ index.

(1) Spatial Quadtree (SQ). This index has a similar structure to the SSQ index with the exception
of the in-memory index component that adopts a pure spatial quadtree structure without any
extended structures to organize the data based on the posting users. Figure 1 shows an example of
the spatial quadtree index. It is worth noting that all data objects in the leaf nodes are sorted based
on their arrival timestamp at no additional cost due to the nature of streaming data that comes
ordered by time. For the index insertion and deletion, the same procedures that are developed for
SSQ index are used in SQ index with the exception of navigation the leaf nodes content that does
not have the hash structure anymore. So, inserted data are appended to a long list of chronologically
ordered objects, and all the cleaning processes are performed on the same list, which reduces the
real-time indexing overhead while increases the query processing overhead as will be detailed in
Sections 5 and 6.

(2) Tightly-Coupled Spatial-Social Quadtree (TCSSQ). This index has a similar structure to
the SSQ index with the exception of the in-memory index component that includes extra user
information in all intermediate and leaf nodes of the quadtree structure instead of having a hash
structure in only leaf nodes. In specific, each leaf node C has an additional list of users C.L,, who
posted in the spatial region of C. Then, the content of C.L,, is replicated to the parent nodes up to
the root node. So, the root’s L, has all the users who posted in any region, and each intermediate
node has a list of all users who posted in the sub-tree that is rooted in this intermediate node. This
organization is a modified version of [44] that is suitable for real-time indexing. This is built based
on the core ideas of the IR-tree structure [15]. Figure 3b depicts an example of TCSSQ index for the
eight objects of Table 1. Each node, including root, intermediate, and leaf nodes, has an additional
list C.L,, of users who posted in the node C spatial region.

The additional user lists L, affect the index insertions and deletions in real time. On insertion,
after the insertion procedure is performed in node C as described for SSQ index, the posting user id
uid is added to C.L,. To this end, uid is searched in C.L, using binary search. If uid does not exist
in C.Ly, it is inserted into the ordered list, otherwise, C.L, remains intact. Then, the same process
repeats for parent nodes’ L, until it propagates to the root node. On index deletion, object deletions
are performed for certain user entries in the node’s hash structure. For each user entry, if the list
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of objects remains non-empty, i.e., there are still remaining objects for this user in the node, C.L,
remains intact. On the contrary, if the list of objects becomes empty, i.e., the deleted objects are
the last objects for this user in the node, then the user id is removed from C.L,. Then, the removal
checks are propagated to parent levels of the tree. For C’s parent L, the three siblings nodes of C
are checked. If uid exists in any of their L, lists, then the parent’s L, remains intact. If uid does
not exist in any of these lists, then uid is removed from the parent’s L,, and the removal check is
propagated to the higher levels up to the root node.

4.4 Keyword Indexing

This section presents the geo-social indexes that incorporate the keywords while indexing the
geo-social objects in order to process keyword-extended geo-social queries in streaming data
environment efficiently. First, we present Spatial-Social Quadtree Keyword (SSQky ), and then
Spatial-Social Quadtree 4D (SSQup).

(1) Spatial-Social Quadtree Keyword (SSQky ). This index is adopted from Spatial-Social
Quadtree (SSQ) since the experiments have shown its superior performance compared with baseline
indexes. It has different index structure of the in-memory component while it has exactly the same
other components of SSQ including the in-disk and in-memory buffer components. More specifically,
it attaches a hash index called the inverted keyword index for each leaf cell of SSQ in-memory
quadtree in order to effectively prune the objects based on the keywords. This makes each leaf cell
to have two separate hash indexes, one is for the social as in SSQ where the <key,value> pair is
<user id, list of friend ids>, and the additional one is for the keywords where the <key,value> pair
is <keyword, list of objects>. The objects are organized based on the social information as in SSQ
and additionally based on the keywords. Therefore, the index structure helps the query processor
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to significantly reduce the query latency with minimal overhead on the digestion rate and the
memory resource. Figure 4a shows the index structure of SSQx for a cell with two hash indexes.
The leaf cell has both the social information that represented with a hash index that organizes the
objects based on the issuing users and another hash index that indexes the objects based on the
keywords appeared in the objects. For insertion and deletion, the same procedures of SSQ detailed
in Section 4.2 are applied to maintain a high digestion rate for the new incoming data. However,
additional operations are needed to insert/remove the objects to/from the accompany keyword
inverted index to be consistent with the user hash index. Any object inserted/removed to/from
the user hash index must be inserted/removed accordingly to/from the keywords hash index. So,
the object is being inserted into the posting user’s list of the user index and inserted also into
all keyword lists, which contain the object’s keywords, of the keyword index. Once the object is
removed from the user index, as being older than Ty, time units ago as detailed in Section 4.2, all
the lists of objects where the object’s keywords are the keys shall be retrieved in order to remove
the object from to be synchronized with the user index.

(2) Spatial-Social Quadtree 4D (SSQ4p ). SSQ4p is another index structure adopted from Spatial-
Social Quadtree (SSQ) that adds the keyword dimension differently to support the keyword queries
more efficiently. Only the in-memory index structure is different from SSQ while the other com-
ponents remain the same. At the leaf cell of SSQ tree, SSQ,p indexes the objects based on the
social information first, then for each indexed user u, u points to the inverted keyword list that
organizes the objects based on the keywords appeared in the objects. The hash index has the
structure <key,value> where the key is the user id, and the value is another nested hash index
where the <key,value> pair is <keyword, list of objects>. In another words, each user u has her
dedicated inverted keyword index which is only indexing the objects that been posted by u in the
given cell. Thus, the query processor takes the advantage of the index structure to prune the objects
spatially, socially, and textually at the same time. Figure 4b depicts the index structure of SSQ4p
for a cell. The cell has the user index as the first level, and for each user in the user index has her
own inverted keywords index as the second level. For insertion and deletion, SSQq4p follows similar
steps as SSQ detailed in Section 4.2 with taking into account the objects are being indexed in a
nested hash index based on the keywords. Thus, the object is being inserted into multiple entries
of the u keyword hash index based on the object keywords. When removing the object which is
older than Ty, all entries of user keyword hash index should be accessed to remove the object
from these lists.

5 QUERY PROCESSING

This section details the query processing of the four queries that are defined in Section 3 exploiting
the proposed SSQ index, the baseline SQ and TCSSQ indexes, and the keyword-extended indexes
SSQxw and SSQqp that are introduced in Section 4. In Section 5.1, we introduce a high-level query
processing framework that is generic for all indexes. Sections 5.2 and 5.3 detail the query processing
of SSTRQ and SSTkQ queries, respectively, without involving the textual features. Then, Sections 5.4
and 5.5 explain the processing of SSTRQky and SSTkQxk, respectively, in SQ, SSQ, SSQxw, and
SSQqp.

5.1 Query Processing Framework
Our query processor consists of two generic steps:

(1) Step 1: Given the user id uid of the query issuing user u, step 1 retrieves a list of friends
u.lLs that contains a set of user ids for «’s direct friends. To this end, the in-memory buffer of
the social graph is checked with the key value uid. If it exists, u.Ly is directly retrieved from the
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buffer. Otherwise, the in-disk social index is accessed in a traditional way to retrieve u.L¢ to the
in-memory buffer. If the in-memory buffer is full, the least recently used (LRU) replacement policy
is used to free up some of the buffer content. Then, u.Ly is fed to step 2 of the query processor.

(2) Step 2: Given a list of friends Ly, that is retrieved in step 1, and spatio-temporal predicates, in
step 2, the query processor accesses the in-memory spatial index to retrieve the top-k objects based
on the query semantic and the underlying index structure. The specifics of this step is different for
each <query,index> combination, as detailed in the rest of this section.

If the execution of these two steps retrieves k objects, then they are considered a final query
answer and returned to the user. If the computed answer has less than k, the search is expanded
recursively beyond u’s social level 1 (direct friends) to social level 2 (friends of friends) or higher
social levels until k objects are retrieved. To this end, the two steps are repeated for each user id in
Ly for expansion to social level 2, and the same repeats for higher social levels.

5.2 SSTRQ Query Processing

This section details the specifics of step 2 of Section 5.1 for SSTRQ query. In this step, the query
processor retrieves the most recent k objects within a spatial region R, per the query definition,
that are posted by users in the friend list Ly that is computed in step 1. The rest of this section
details this procedure using SSQ, SQ, and TCSSQ indexes.

SSTRQ in SSQ index. SSTRQ query is processed on three phases in SSQ index: (a) spatial
retrieval, (b) social filtering, and (c) temporal pruning. First, the spatial retrieval phase navigates the
quadtree to retrieve the tree nodes that intersect with the query region R. Second, for each node,
the social filtering phase accesses the hash index and retrieve lists of objects that are associated
with user ids in the friend list L. Each of these lists is ordered based on timestamp due to the
streaming nature of incoming objects. Third, the retrieved lists are enqueued in a priority queue
Q that orders lists based on their most recent object. Then, the lists are traversed in Q order to
compute an initial answers Ans of k objects. Based on Ans, a temporal boundary Tj is computed
as the timestamp of the k" object in Ans. Any object older than T; cannot be part of the final
answer. So, Ty is used as a temporal pruning boundary to process the rest of the objects in Q. In
specific, each list in Q is retrieved in order. Then, the list’s objects are traversed in time order. If the
current object o.timestamp < T, then o is added to Ans replacing the k" object, and Ty is updated.
Otherwise, o is skipped. Once we reach an object o.timestamp > Tx, the rest of the list is pruned as
no more objects can make it to the final answer. This repeats for all lists in Q before Ans is returned
as a final query answer.

SSTRQ in SQ index. In SQ index, SSTRQ is processed using the first and third phases, spatial
retrieval and temporal pruning, that are used in SSQ index. As SQ index does not include any user
information, the social filtering phase cannot be employed. So, the list of objects in each quadtree
node is scanned to select the objects associated with user ids in the friend list Ly and fed directly
to the temporal pruning phase that produces the final answer using the same procedure that is
described above.

SSTRQ in TCSSQ index. In TCSSQ index, SSTRQ is processed using the same three phases that
are used in SSQ index, with an extended social filtering phase. In particular, TCSSQ index maintains
extra user list information C.L, in each quadtree node C. So, the social filtering phase goes through
two stages. The first stage is intersecting the user friend list u.L¢ with the node user list C.L,,. If
the intersection is empty, then C and all its descendants are immediately pruned. Otherwise, C is
considered for the second stage that is exactly similar to the social filtering phase in SSQ index.
The other two phases, spatial retrieval, and temporal pruning, remains identical to the ones in SSQ
index.
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5.3 SSTkQ Query Processing

This section details step 2 of the query processing framework that is presented in Section 5.1
for SSTkQ query. This query retrieves the closest k objects, based on a spatio-temporal distance
function F,, nearby a point location L and relative to a query timestamp T that are posted by users
in the friend list L that is computed in step 1, per the query definition in Section 3. The rest of this
section details the query processing using SSQ, SQ, and TCSSQ indexes.

SSTkQ in SSQ index. SSTKQ query is processed on two phases in SSQ index: (a) computing
initial answer, and (b) answer refinement. The first phase navigates the quadtree structure to the
tree node C that contains the query location L. Then, initial k objects that are associated with users
in the friend list Ly are retrieved as an initial answer Ans. If C has less than k objects posted by Ly
users, then neighbor nodes are checked until Ans has k objects.

The second phase uses the k" F, score of the initial answer (namely F, ;) as a refinement
boundary to compute the final answer Ans so any object with F, > F, ; cannot make it to the final
answer. This could be done in a traditional way by visiting all nodes within the maximum spatial
range Ryqx and check objects that are associated with L. However, with excessive amounts of data,
this could be very expensive and has high query latency. To compute the final answer efficiently,
a spatio-temporal pruning procedure is employed to significantly reduce the number of checked
objects. To this end, two pruning boundaries are calculated and updated throughout the second
phase based on the equation of Fy: a spatial boundary R, and a temporal boundary T,,. The spatial
upper bound R, is calculated by assuming zero temporal score in the spatio-temporal ranking

function, so R, = % X Rmax. Similarly, the temporal upper bound 7, is calculated by assuming

zero spatial score in spatio-temporal ranking function, so T;, = q.time — fﬁ—; X Tinax. Any object
or cell that are outside R, and T,, can be safely pruned. So, neighbor quadtree nodes to location
L are visited in spatial order with R,, and objects of each node are checked as long as within T,,.
With each new object added to Ans, F,x is updated and then R, and T,, are updated accordingly.
So, the pruning boundaries are continuously tightened, which reduces the total number of checked
objects and significantly reduces the query latency. When all nodes and objects within R, and T,,
are exhausted, Ans is returned as a final answer.

SSTkQ in SQ index. In SQ index, SSTKQ is processed using the same two phases as in SSQ
index with exception to user filtering in quadtree nodes. As SQ index does not include any user
information, the list of objects in each quadtree node is used as a whole and fully scanned for
filtering objects that are posted by Ly users.

SSTKkQ in TCSSQ index. In TCSSQ index, SSTkQ is processed using the same two phases that
are used in SSQ index, with an extended user filtering step. As TCSSQ index maintains extra user
list information C.L, in each quadtree node C, when a quadtree node is accessed, the user friend
list u.Ly is intersected with the node user list C.L,,. If the intersection is empty, then C and all its
descendants are immediately pruned. Otherwise, C is considered for further processing as described
in the two phases of SSQ index.

5.4 SSTRQgw Query Processing

This section explains the query processing of SSTRQxy which includes the keywords as predicates
for the four indexes, SQ, SSQ, SSQxw, and SSQ4p. The query processor retrieves the most recent
k objects within a spatial region R, and the objects contain the keywords query. The candidate
objects are posted by friends of the query issuer.

SSTRQkyw in SQ and SSQ indexes. Since SQ and SSQ indexes do not support the keyword
pruning as the indexes are not aware of the presence of the keywords, we adopted the simple
on-the-fly keyword filtering that examines the candidate objects for the presence of the given query
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keywords. In specific, objects that satisfy the spatial and social predicates are retrieved as detailed
in Section 5.2. Then, before the object is added to the answer list, the query processor checks for
the keywords presence by applying the on-the-fly keyword filter. If any query keyword overlaps
with the object text, the query processor will add the object to the answer list to consider it for
further processing; otherwise the object will not be selected.

SSTRQxw in SSQky . The query processor generally follows the same phases as SSTRQ in SSQ
which are detailed in section 5.2 with some modifications. First, the query processor retrieves the
objects that contain the query keywords from the keyword inverted index. If there is no object
in the keyword index, the query processor stops processing the cell. Second, the query processor
performs the social filtering to retrieve the objects that are posted by the query issuer’s friends and
are exist in the list of objects that retrieved from the keyword index from the previous step with
the same steps as SSQ query processor mentioned in Section 5.2. Thus, the objects will be added to
the initial answer Ans. The query processor will refine the initial answer Ans with the same logic
as in SSQ. This will expedites the process of retrieving the candidate objects that contain the query
keywords by exploiting the additional hash index for the keyword indexing.

SSTRQxw in SSQup. In SSQ4p, the query processor performs the same SSQ phases as detailed
in Section 5.2 with an additional phase called the keyword filtering. Instead of retrieving all objects
from the given user, the query processor accesses the keyword inverted index that each user has and
retrieves objects that contain only the keywords query. Spatial and temporal pruning are employed
to prune objects that would not make to the final answer in the same way detailed before.

5.5 SSTkQgw Query Processing

This section explains the query processing of SSTkQgw which includes the keywords as predicates
for the four indexes. This query retrieves the closest k objects that contain the keywords query,
based on a spatio-temporal distance function explained in Section 3.

SSTkQkyw in SQ and SSQ indexes. The query processor is similar to the query processor of
SQ and SSQ explained in Section 5.3. However, on-the-fly keyword filtering is employed to retrieve
objects that contain the keywords query similar to the way described in Section 5.4. Therefore, any
objects that did not pass the keyword filtering will not be considered for the initial answer list Ans.

SSTkQxkw in SSQxw. The query processor retrieves the list of objects that contain the keywords
query by accessing the keyword hash index. Then, the query processor utilizes the underlying
index structure to retrieve the objects, from the user hash index, that socially overlap with the
query issuer friends list and intersect with the list of objects which obtained from the previous
step. The other steps and the pruning techniques are similar to the query processor of SSQ that is
explained in Section 5.3.

SSTkQxw in SSQup. In SSQ4p, the query processor performs similar steps detailed in Section
5.3. However, the query processor does not retrieve all the objects. It retrieves only objects that
contain the keywords query by making the use of the keyword inverted index that is associated
with every user entry. The pruning techniques are similar to the SSQ query processor.

6 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of geo-social real-time indexing and query
processing that are discussed in previous sections. Section 6.1 explains the experimental settings.
Sections 6.2-6.4 evaluate indexing scalability, memory consumption, and query evaluation, respec-
tively, for SSTRQ and SSTkQ queries. Section 6.5 gives the evaluation for the keyword search
queries SSTRQgw and SSTkQgyy .
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Fig. 5. Indexing Scalability

6.1 Experimental Setup

We evaluate the indexes that are discussed in Section 4 for indexing scalability, storage overhead,
and query processing. The proposed Spatial-Social Quadtree index is denoted as SSQ, its keyword
extensions denoted as SSQkw and SSQy4, the baseline Spatial Quadtree index is denoted as SQ, and
the Tightly-Coupled Spatial-Social Quadtree index is denoted as TCSSQ, a modified version of [44]
for real-time operations. Our parameters include quadtree node size, dataset size, query answer size
k, query range, the space-time weighting parameter @, and the maximum allowed temporal range
Trax- Unless mentioned otherwise, the default node size is 2000, dataset size is 80 million objects, k
is 100, query range is 50 km, « is 0.2, Ryqx is 500 km, Ty14x is one day, number of keywords is 2,
and buffer size is 500K entries.The two keywords are selected randomly from the keyword set
of the dataset for each keyword query. Our performance measures include index digestion rate
(the average number of indexed objects per second), index memory footprint, and query latency.
All experiments are based on Java 8 implementation and using an Intel Xeon(R) server with CPU
E5-2637 v4 (3.50 GHz) and 128GB RAM running Ubuntu 16.04.

Evaluation datasets and query workloads. We have collected 6+ billion geotagged tweets
from public Twitter Streaming APIs over the course of five years. Then, five datasets, of sizes 20,
40, 60, 80, and 100 million tweets, are composed for our evaluation. Each Tweet is represented with
a latitude/longitude coordinates that represent either an exact location or a centroid of a place,
e.g., a city or a landmark. Users of all tweets have been extracted from each of the five datasets.
The data includes only the number of friends of each user and not the actual friend list. Thus, we
randomly generate a list of friends for each user, where the majority are close to her location while
the rest are scattered around the world. Table 2 summarizes the number of users and the average
number of friends in each dataset. In order to generate the query workload, we randomly select a
thousand users, and their home locations are the query points. For keyword queries, a hundred
users are randomly selected and two keywords are randomly selected for a given user from her
nearby home location. A random word from the tweet textual content is associated as a keyword.

Dataset 20M 40M 60M S8OM 100M
Users 3379403 4589750 5323808 5862339 6319263
Avg. Friends 531 513 504 497 492

Table 2. Evaluation Dataset Statistics

6.2 Indexing Scalability

This section evaluates the scalability of the real-time indexing measured as the number of objects
being digested in a second. Figure 5a shows the indexing scalability with different quadtree node

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.



Geo-Social Personalized Keyword Search Over Streaming Data 0:19

g40

=35

£30§ ?

S6e—9—0—0 09

S 20

L 15

10 sso —e—

g 5 50 —x

g, TCSSQ —6—
100 200 400 800 1000 2000 20 40 60 80 100

Node Size Dataset Size (millions)

(a) Varying Node Sizes (b) Varying Dataset Sizes
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size. SQ can digest on average 250K objects/sec which is the highest among the three indexes. SSQ
digestion rate is reduced to 210K objects/sec, due to incorporating social information in the index
structure, which still maintains 84% of SQ digestion rate and digests an order of magnitude higher
than Twitter rate. On the other hand, TCSSQ has the lowest digestion rate of 100K objects/sec
due to the overhead of summarizing all sub-tree social information. It is though noticeable that
different node sizes have no real impact on the digestion rate.

Figure 5b shows the impact of different dataset sizes on the digestion rate. The digestion rate
is slightly decreasing when the number of objects increases for all indexes due to the larger
index contents, which makes it heavier to digest new data. However, the overall reduction is still
acceptable. For example, SSQ digests 220K objects/sec with 20 millions objects and 190K objects/sec
with 100 millions objects, which represents 14% reduction of digestion rate and both are still an
order of magnitude higher than Twitter rate.

6.3 Memory Consumption

Figure 6 shows the memory consumption for the three indexes with varying the quadtree node size
(Figure 6a) and varying dataset size (Figure 6b). Varying node size in Figure 6a does not significantly
affect the memory consumption for all the three indexes despite an order of magnitude higher node
capacity, which leads to significantly less number of index nodes. This shows the minor effect of
the index nodes’ memory on storage overhead as the majority of memory consumed for data that
is being stored inside the nodes. SQ consumes the lowest memory, 22 GB, while SSQ consumes a
slightly higher memory resource, 24 GB, since the index structure keeps more information about
the social aspect. TCSSQ consumes the highest memory resource, 33 GB, with different index node
sizes. The additional social information of TCSSQ index structure increases the memory overhead
by ~50% of the baseline SQ index.

Varying the dataset size in Figure 6b affects the memory resources to be increased linearly for
all alternatives. For example, SSQ consumes 7 GB when the dataset size is 20 million objects, and
when the dataset size triple, SSQ consumes 19 GB. The same pattern repeats for SQ and TCSSQ,
where always TCSSQ still consumes the largest memory. This also confirms that the majority of
the memory resources are being consumed by the data that resides in the main-memory.

6.4 Query Evaluation

This section evaluates the query processing of the Spatial-Social Temporal Range Query (SSTRQ)
and the Spatial-Social Temporal kNN Query (SSTkQ), called for short range query and kNN query,
respectively. The query latency is presented as an average and percentiles, e.g., the 99% percentile
latency that shows the maximum query latency for 99% of the queries.

(a) SSTRQ Query Evaluation:
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Fig. 7. Range query latency with varying k

Effect of varying k. Figure 7 shows the effect of varying k on range query latency, both
in-memory and disk processing. Figure 7a shows in-memory range query latency measured in
milli-seconds (msec) for all alternatives. Generally, query latency is increasing with increasing k
due to the more processing needed for getting larger answer. However, the latency of TCSSQ is
significantly higher than the other two alternatives. After monitoring the statistics, we find that
the average number of tree nodes visited per query is 175 in our query workload. TCSSQ checks
whether the friends list C.Ly of each visited node C intersects with the friends list u.L¢ of the
given user u and prune 55 nodes on average. Although the search space is reduced by more than
1/4 through social pruning, the social pruning leads to great overhead and causes the TCSSQ to
have much higher latency than the other two alternatives. As a result, even though this process is
effective in disk-based processing of traditional queries, in streaming environments, this process
increases the real-time overhead tremendously. As shown in the figure, our proposed SSQ index
performs the best with 2 msec latency at k=10, and it is increasing to 25 msec at k=1000. SSQ
index combines both social-aware pruning and lightweight structure that is suitable for real-time
environments. SQ index has no social awareness, so it is three times slower than SSQ index on
average. It starts with 10 msec latency at k=10, and it is increasing steadily to reach 65 msec
at k=1000. The superiority of SSQ index is further confirmed by measuring the 99th, 95th, 90th
percentile latency as depicted in Figures 7b, 7c, and 7d, respectively. SSQ constantly performs the
best in terms of query latency, and the advantage is even obvious in Figures 7c and 7d.

Figure 7e shows the disk overhead to retrieve the users’ friends or friends of friends in order
to retrieve the k objects for the given user. All indexes need to access the disk to fetch the social
data. Therefore, all alternatives perform similarly, with increasing latency with larger k value, as
all indexes use the same disk-based social structure. The increase with k value is explained by the
percentage of the query being expanded beyond the first social level (direct friends) as shown in
Figure 7f. The larger k, the less probability that direct friends can satisfy the query answer, and
hence expansion to higher social levels is necessary.

Effect of varying query range. Figure 8a shows the average query latency with varying query
range from 10 km to 300 km. SSQ index still performs the best among the other alternatives. Both
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Fig. 8. Range query latency with varying range query

SQ and TCSSQ indexes have an increasing latency with the increasing range due to the larger
search space. On the contrary, the query latency of SSQ drops with increasing range. As SSQ
employs both temporal and social pruning; the more cells the more recent initial answer, which
in turn produces a tight temporal upper bound. The temporal pruning uses this tight bound to
terminate processing very early in many cells. In addition, the social pruning enables to process
only the posting lists that are socially connected to the query issuer, which prunes a significant
number of objects that do not contribute to the answer. At 10 km range, SSQ processes queries with
an average of 27 msec latency, while at the range of 300 km, this latency drops four times to 7 msec.
On another hand, SQ has almost a stable performance with varying ranges as it only employs
the temporal pruning, while TCSSQ performs the worst despite it employs both the temporal and
social pruning for the same reasons that are discussed before. Figure 8b shows the 99th percentile
latency, which confirms the superiority of SSQ over all alternatives.

Figures 8c and 8d show the correlation between disk overhead and the percentage of queries
being expanded to higher social levels. Clearly, the disk overhead decreases when the expansion
percentage decreases. With small spatial ranges, the probability to retrieve k objects from direct
friends is small, and hence the majority of queries expand. This significantly decreases with
increasing range.

Effect of varying Ty

Figure 9 illustrates the effect of varying Ty, on range query latency, both in-memory and disk
processing. Figure 9f shows the percentage of queries being expanded to higher social levels with
varying T4 from 1 day to 5 days. Obviously, the expansion percentage decreases with the increase
of the Th1ax. When Ty, increases, more data objects become available in the main memory and
the number of objects associated with each user increases on average. As a result, it is easier to
retrieve all the k results from the friends with social distance 1 without expanding to higher social
levels. Due to the reduction of the expansion to higher social levels when Ty, increases, the disk
overhead is also reduced, as shown in Figure 9e. The correlation between disk overhead and the
social expansion percentage is similar to the previous discussions. Figure 9a shows the average
query latency with varying Tyay. SSQ still performs the best among the alternatives and TCSSQ is
the worst when Ty,x is 1 day to 4 days for the same reasons that are discussed before. Both SSQ
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Fig. 9. Range query latency with varying Tyax

and TCSSQ benefit from the reduction of the social expansion rate as Ty, increases. The overhead
for loading the social information to perform the search on higher social levels is largely reduced
and both alternatives have a decreasing average query latency when Tys,x increases. However, the
average query latency increases for SQ. When more objects become available as Tyj4y increases,
the search space for SQ is increased because SQ cannot perform the social pruning as the SSQ and
TCSSQ do. The increase in the cost by the refinement procedure for SQ is more significant than
the benefit introduced by the reduced social expansion rate. As a result, the average query latency
increases for SQ and it performs worse than TCSSQ when Ty, is set to 5 days. The 99th, 95th,
and 90th percentile query latency for the three alternatives in Figure 9b, 9c, and 9d show the same
trend as the average query latency.

(b) SSTkQ Query Evaluation:

Effect of varying k. Figure 10a shows the in-memory query latency with varying k. SSQ index
performs consistently better than the other alternatives due to its three-dimensional pruning on
temporal, spatial, and social dimensions. At k=10, SSQ has an average query latency of 9 msec,
which increases with larger k to 25 msec at k=1000. This is fifty times better than TCSSQ due to its
social pruning overhead that is not suitable for real-time processing. On the contrary, SQ is slower
three times compared to SSQ due to lack of social pruning. Such behavior remains the same for
the 99th percentile of queries, as shown in Figure 10b, which shows the superiority of SSQ in all
cases. For disk overhead, all alternative incur almost the same latency as shown in Figure 10c due
to using the same disk structure. Also, the percentage of socially expanded kNN queries, depicted
in Figure 10d, are much less than range queries since range queries are restricted by a spatial range,
which obligates to expand the search to higher social levels often.

Effect of varying «. Figure 11a shows the effect of varying « that controls the relative importance
of the spatial and temporal scores in the spatio-temporal distance. As the figure shows, the a value
has a great impact on the query performance, especially for TCSSQ index. When only the temporal
score is important (at @=0), all indexes hit their highest query latency because the query processor
has to cover a larger search region. With increasing «, the query latency gradually drops to the
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Fig. 11. kNN latency with varying a

lowest point for all the indexes when only the spatial score is important (at a=1). For all values of
a, SSQ performs the best, while TCSSQ performs the worst up to a < 0.6. Then, TCSSQ performs
better than SQ after @ > 0.6. The key reason behind this behavior is the number of cells that need
to be processed is huge with small @, and TCSSQ is very sensitive to the number of cells as it
checks for overlap with long user lists. This number decreases as the query region shrinks due
to the importance shifts to the spatial closeness. Figure 11b confirms similar behavior and SSQ
superiority on the 99th percentile of queries. For different values of «, the disk overhead is almost
stable (approximately 80 msec) for all alternatives except with a=0 where very few queries expand
the search space, which makes the disk overhead very minimal with a few milliseconds.

Effect of varying Ty,x. Figure 12a shows the average in-memory query latency with varying
Thax- As the figure shows, SSQ performs better than the other alternatives while TCSSQ performs
the worst. Query latency tend to increase for all three alternatives. As Ty, increases, the density of
the object increase both spatially and temporally. Although all three alternatives adopt the spatial
and temporal pruning technique and the search space is reduced to a large extent, more objects are
checked as the density of the objects increases. As a result, the average in-memory query latency
increases when Ty, increases. The 99th percentile query latency shown in Figure 12b confirms a
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similar trend. Figure 12c shows that the disk overhead is stable for all alternatives but the latency
caused by the disk overhead is not very low. This is because there are 0.8% to 0.9% failed queries for
all values of Ty1,x. In these rare cases, the social network stored on the disk is loaded for multiple
times until the queries fail after exploiting the search space. However, because there are only a few
failed queries, the percent of queries that are expanded to higher social levels is low for all Ty,
values according to Figure 12d.

6.5 Keyword Search Evaluation

This section presents evaluation of geo-social keyword search on real-time indexing (SQ, SSQ,
SSQxkw, and SSQuy) and query processing of the keyword-extended queries SSTRQgky and
SSTkQgw as discussed in previous sections. The evaluation focuses on the impact of the key-
words query on the digestion rate, memory consumption, and the query latency.

Digestion Rate and Memory Consumption. We evaluate the digestion rate and the memory
consumption for varying node sizes for geo-social keyword indexes. Figure 13a shows the digestion
rate for the four indexes. Clearly, SQ and SSQ digest more objects than SSQgw and SSQ4, since
the former indexes do not take into account the overhead of indexing keywords. Although, the
overhead of indexing keywords is still acceptable for real-time application as both indexes can digest
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more than 160K and 170K objects/sec on average for SSQkw and SSQyq, respectively. Figure 13b
shows the memory consumption of the indexes. SSQgw and SSQ44 consume the highest memory
resources with 37 GB and 33 GB, respectively. The node size does not significantly affect the
memory consumption as the data dominates the memory resources rather than the underlying
indexing structure.

Query Evaluation. We evaluate query processing of both extended queries using different
indexes.
(a) SSTRQkw Query Evaluation: Figure 14 shows the the performance of the four indexes for
range query with keywords varying the spatial ranges. Figure 14a shows that SSQgy performs
slightly better than the other alternatives while SQ performs the worst since the SQ index is not
aware of neither the social aspect nor the keyword dimension. This becomes obvious when the
spatial range is increasing where query latency of SQ is increasing significantly while the other are
steadily decreasing. Both SSQ and SSQ,,4 perform about the same with varying spatial ranges in
spite of the fact that the latter is equipped with the keywords indexing. Nevertheless, the social
filtering and the temporal pruning are the dominate factors for pruning. Figure 14b and 14c can
draw the same conclusion as Section 6.4 for range query processing without keyword. Figure 15
shows the impact of the number of keywords on the range query. Both Figure 15a and 15b show a
general trend when the number of keyword is increasing, the query latency is decreasing along
with the social expansion. Therefore, the query processor can find the candidate objects quickly
with increasing number of keywords.

(b) SSTkQxw Query Evaluation: Figure 16 depicts the kNN query latency performance for the
geo-social keyword indexes. Clearly, the indexes that are equipped with inverted keyword indexes
preform significantly better than the indexes that are not aware of the keyword dimension as
shown in Figure 16a. The difference becomes even obvious when the k value is increasing. More
specifically, SSQgw and SSQ,y perform two times better on average than SQ and SSQ. Thus, the
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keywords indexing effect is very obvious in the query processing as it gives an edge over the
indexes that do not support the keywords indexing. For the disk overhead and social expansion,
the same conclusions can be drawn as explained in Section 6.4 as shown in Figure 16b and 16c.
Figure 17 shows the impact of the number of keywords on the kNN query. Both Figure 17a and 17b
show a similar pattern as the range query with increasing number of keywords.

7 CONCLUSION

This paper defined temporal geo-social queries on streaming data as extensions for the fundamental
spatial k-nearest neighbor (kNN) and range queries. It further extended these queries to support
the keyword search feature. To address these queries, we proposed a generic indexing framework
for real-time geo-social data that digests and indexes highly-dynamic data in main-memory and
organizes stable social information in a disk-based structure. Based on this framework, we proposed
spatial-social quadtree (SSQ) index and two keyword-aware variants that are lightweight to handle
real-time data efficiently, while providing scalable query response for both kNN and range queries.
In addition, we adopted two baseline index structures based on the proposed indexing framework.
The experimental evaluation on real datasets has clearly shown the superiority of our proposed
indexes for both real-time indexing and query processing. For keyword search, SSQ index and its
keyword-aware variants provide better performance on streaming data compared to the baseline
SQ index. Meahwhile, SSQ maintains a light indexing by using the essential indexing components
in a novel way to handle streaming data. We see the novelty in the design of the SSQ index and
its variants and consider this as the main contribution of this paper. SSQ performs worse than
its keyword extensions for query latency while performs better for indexing overhead. However,
the querying loss in SSQ for keyword predicates still makes it reasonable for supporting keyword
predicates without extra indexing overhead. On the other hand, the indexing overhead of its
keyword variants is still reasonable to support high-velocity streaming data. This shows the impact
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of the high-level indexing framework that effectively distinguishes dynamic data from stable data
and enables various instantiations to perform efficiently in streaming environments.
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