
Geo-Social Personalized Keyword Search Over Streaming

Data∗

ABDULAZIZ ALMASLUKH†, 𝑎College of Computer and Information Sciences, King Saud University,

Riyadh, Saudi Arabia

YUNFAN KANG, 𝑏Department of Computer Science and Engineering, 𝑐Center for Geospatial Sciences,

University of California, Riverside

AMR MAGDY, 𝑏Department of Computer Science and Engineering, 𝑐Center for Geospatial Sciences,

University of California, Riverside

The unprecedented rise of social media platforms, combined with location-aware technologies, has led to

continuously producing a significant amount of geo-social data that flows as a user-generated data stream. This

data has been exploited in several important use cases in various application domains. This paper supports geo-

social personalized queries in streaming data environments. We define temporal geo-social queries that provide

users with real-time personalized answers based on their social graph. The new queries allow incorporating

keyword search to get personalized results that are relevant to certain topics. To efficiently support these

queries, we propose an indexing framework that provides lightweight and effective real-time indexing to digest

geo-social data in real time. The framework distinguishes highly-dynamic data from relatively-stable data

and uses appropriate data structures and storage tier for each. Based on this framework, we propose a novel

geo-social index and adopt two baseline indexes to support the addressed queries. The query processor then

employs different types of pruning to efficiently access the index content and provide real-time query response.

The extensive experimental evaluation based on real datasets has shown the superiority of our proposed

techniques to index real-time data and provide low-latency queries compared to existing competitors.

CCS Concepts: • Information systems → Multidimensional range search; Streammanagement; Data

streaming; Query operators.

Additional Key Words and Phrases: Spatial, Temporal, Geo-social, Real-time, Indexing, Query Processing

ACM Reference Format:

Abdulaziz Almaslukh, Yunfan Kang, and Amr Magdy. 2020. Geo-Social Personalized Keyword Search Over

Streaming Data.ACMTrans. Spatial Algorithms Syst. 0, 0, Article 0 (2020), 28 pages. https://doi.org/10.1145/xxxx

1 INTRODUCTION

The unprecedented popularity of online social media platforms over the past decade combined

with the availability of location information through GPS-equipped devices has led to significant

∗This work is partially supported by the National Science Foundation, USA, under grants IIS-1849971, SES-1831615, and

CNS-1837577.
†The work has been performed while the first author was at the University of California, Riverside

Authors’ addresses: Abdulaziz Almaslukh, 𝑎College of Computer and Information Sciences, King Saud University, Riyadh,

Saudi Arabia, aalmaslukh@ksu.edu.sa; Yunfan Kang, 𝑏Department of Computer Science and Engineering, 𝑐Center for

Geospatial Sciences, University of California, Riverside, ykang040@ucr.edu; Amr Magdy, 𝑏Department of Computer Science

and Engineering, 𝑐Center for Geospatial Sciences, University of California, Riverside, amr@cs.ucr.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2374-0353/2020/0-ART0 $15.00

https://doi.org/10.1145/xxxx

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:2 A. Almaslukh, et al.

attention for supporting geo-social queries at scale [6, 7, 16] in order to serve applications effi-

ciently on such big data. These queries are used in various applications and services such as social

recommendations [9, 40, 49], community and event detection [11, 24, 46], and urban planning [20].

A major category of these queries is personalized search queries that use the social information to

tailor the query answer per the issuing user. For example, a user who is concerned about COVID-19

infections in her social circle wants to find recent posts that contain coronavirus or COVID-19
keywords from her friends in the city of Los Angeles, California. To allow finding recent posts at

a fine temporal granularity, it is required to manage geo-social data as a data stream. In fact, the

modern geo-social data has a streaming nature due to the large number of its data items that arrive

every second around the clock. Latest assessments estimate Twitter to receive approximately 8,500

tweets/second [22] while Facebook posts are even an order of magnitude larger in size [17, 22]. This

streaming nature has already motivated several streaming queries on this data, such as keyword

queries [3, 30, 42], spatial queries [28, 32], and social queries [26, 35], with plenty of applications.

Although several geo-social queries, including keyword predicates, have been addressed in the

literature [6, 7, 16, 23, 27, 44, 50], querying streaming data combining social, geographical location,

and textual information is still an unaddressed challenge.

Geo-social queries have got a little attention in the streaming environments although several

applications that are powered by these queries will significantly benefit from the real-time nature of

geo-social data, e.g., providing real-time search on friends’ posts during emergency situations and

detecting real-time events based on friends’ updates. In such streaming environments, hundreds of

millions of items arrive at high pace every day, which puts major challenges on real-time indexing

and query processing based on social, geographical, and textual information. These challenges

include sustainable digestion of new data in real-time index structures and exploiting the social

information, which is usually complex in structure and huge in size, to serve incoming queries

that have certain locations of interest. State-of-the-art techniques [8, 27, 38, 39] are still limited

to address these challenges, either for inefficient indexing for real-time data or inefficient query

processing navigating highly-complex graph structures, which limits using streaming geo-social

textual information in scalable applications.

This paper introduces scalable real-time indexing and query processing for geo-social person-

alized search queries over streaming data. The index and query processing design are made to

support efficient snapshot queries and can be used as an efficient initial phase for continuous

querying modules. We first define two queries that combine three aspects: spatial, temporal, and

the social connectivity between users. They are socio-temporal extensions of the two fundamental

spatial queries, range query and 𝑘-nearest-neighbor query, to effectively serve the streaming data

applications that are timely by nature. Example of such queries is to łfind what my friends/friends-
of-friends have recently posted in Los Angelesž, where a spatial range encapsulates Los Angeles city
boundaries, or łfind what my friends/friends-of-friends post now nearby Tampa, Floridaž in case of

hurricane emergency. Such queries are obviously useful for various applications that make use of

personalized real-time content, such as improving emergency response by involving the close social

circle of individuals or getting personalized recommendations from friends. To limit query answer

to top relevant items, the queries use ranking functions based on timestamp and discrete social

distance, similar in spirit to hop count, to retrieve only top-𝑘 items that satisfy the query predicates.

We further extend these queries to incorporate the textual aspect. The extended queries take a

set of keywords as input and produce objects that only contain one or more of these keywords.

Example of extended keyword search queries could be łfind what my friends/friends-of-friends post
now about coronavirus or COVID-19 nearby Los Angelesž where łcoronavirus or COVID-19ž serves as
the keyword set to further filter out the most textually relevant to such a pandemic disease.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:3

In support of these queries in real time, we propose a geo-social indexing framework that distin-

guishes highly-streaming data from relatively-stable data. Then, it employs memory-based light

indexing for incoming streams and disk-based indexing for stable data. Based on this framework,

we propose novel geo-social indexes that effectively organize real-time data for efficient querying

based on either pure temporal aspect or combining temporal and textual aspects. The indexes

consist of three components: an in-memory spatio-temporal index, an in-disk social index, and

an in-memory buffer. During query processing, both in-memory and in-disk data are combined

to retrieve relevant data from direct friends in the social graph. If the retrieved data items are

less than 𝑘 , then the query search expands to search indirect friends at one or more levels of

social expansions to retrieve the final top-𝑘 answer. Due to the awareness of social aspect, the

query processor smartly prunes the search space based on social connectivity in addition to spatial,

temporal, and textual information. Such multi-dimensional pruning significantly reduces the query

response time and reduces contention on the real-time index structure to maintain high real-time

data digestion rates.

This work is a significant extension from our previous work [4] to enable keyword search

on geo-social streaming data. The extension adds a new query predicate to the original queries

definitions. The new predicate takes a set of keywords to produce output that only contains one or

more of these keywords. Supporting such new predicate by trivially extending the query processor

to employ a keyword filter after getting the results provides unacceptable performance. Such simple

filtering leads to processing significantly large number of objects to produce an answer of size 𝑘 ,

where 𝑘 is relatively small. Consequently, keyword support must be inherent in both indexing and

query processing modules to enable efficient keyword search. This leads to radical extensions to

different modules of this work, both indexing and query processor. Extending these modules is

challenging and have different considerations and trade-offs. For example, existing indexes already

have three-dimensional structures to efficiently handle spatial, temporal, and social aspects of

the data. So, it is not clear if adding the textual within the same structure provides reasonable

trade-off between indexing efficiency in real time and fast query processing. In nutshell, this new

query predicate introduces several technical challenges to be supported efficiently through existing

indexing and query processing. Thus, this extended work addresses these challenges to enable

efficient keyword search on geo-social streaming data in real time. Our extended experimental

evaluation studies trade-offs of using existing modules versus the newly proposed extensions.

The extensive experimental evaluation of our proposed techniques on real datasets has shown

superiority over competitor techniques that are incorporated from the literature. Using a single

machine setting, our indexes can digest up to 220K object/second of streaming data while providing

an order of milli-seconds query latency for both average and 99% of the queries. In addition, the in-

memory component of our proposed indexes consistently maintains low memory usage compared

to competitor techniques. Our contributions in this paper can be summarized as follows:

• We extend the fundamental spatial queries to define temporal geo-social personalized search

queries that retrieve data objects based on spatial, temporal, and social predicates on streaming

data in real time.

• We further extend the temporal geo-social personalized search queries to enable keyword

search in real time.

• We propose a novel real-time indexing framework that efficiently digests geo-social streaming

data based on different attributes.

• We study various considerations and trade-offs of instantiating the indexing framework for

different attribute combinations on real-time indexing.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:4 A. Almaslukh, et al.

• We develop query processing techniques that exploit the index content and further prune

the search space to provide low query latency.

• We extensively evaluate the proposed techniques compared to existing competitors on real

Twitter datasets showing their superiority and effectiveness for streaming environments.

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3

presents the problem definition. Sections 4 and 5 detail the proposed geo-social indexing and query

processing techniques. Section 6 provides an extensive experimental evaluation. Finally, Section 7

concludes the paper.

2 RELATED WORK

There is no current research work that addresses geo-social queries on user-generated streaming

data in real time to the best of our knowledge. However, social-aware queries are supported

independently on both spatial user-generated data and streaming user-generated data in the

literature. This section covers this literature and distinguishes it from our proposed work.

Queries on user-generated streaming data. User-generated streaming data has got significant

attention over the past few years due to the popularity of online social media platforms and similar

online services. In addition to continuous queries [34, 42] that was the only focus of traditional

machine-generated streaming data, user-generated streaming data has been exploited for various

applications and snapshot queries, such as geo-textual queries [3, 12ś14, 25, 30], location-based

search [8, 10, 32], trend detection [1, 18, 36], time-sensitive recommendations [47], and news and

topic extraction [19, 37, 43]. In this literature, the spatial and social aspects of the queries are

addressed independently. So, geo-textual queries, e.g.,[3, 12ś14, 25, 30] and location-based search

queries, e.g., [8, 10, 32], do not support any social or personalized aspect, and personalized queries,

e.g., [27], do not consider the spatial dimension. A recent attempt to combine both spatial and

social dimension is proposed in [38]. However, their solution creates a complete disk-based spatial

index for each user, which is extremely expensive for streaming data and cannot even scale to be

a baseline approach to compare with. Our work distinguishes itself from existing techniques to

be the first to combine both spatial and social aspects in one query while considering streaming

environments and keyword search for both lightweight real-time indexing and efficient query

processing. This was not addressed by any of the existing techniques.

Social queries on spatial data. Due to the importance and various applications that benefit

from combining social and spatial aspects, several researchers have recently developed indexing and

query processing techniques for different geo-social queries, e.g., [2, 6, 7, 16, 35, 50]. This includes

recommending POIs [2, 39, 40, 48, 49], finding cliques [21, 29, 45], finding top-𝑘 spatial-keyword

objects [2, 44], and finding top-𝑘 influential users [2, 23]. Some of the works, e.g. [2, 35, 44, 50]

support geo-social keyword search queries. However, none of these techniques address geo-social

personalized search queries on streaming data. Thus, our work is distinguished from all existing

techniques in multiple ways. First, we are the first to extend geo-social queries and geo-social

keyword queries with the temporal aspect due to the nature of streaming data that is the main

focus of this paper. Second, we are the first to consider lightweight real-time indexing and query

processing for geo-social data. This real-time aspect of the streaming environment puts significant

overhead on both indexing and query processing, which cannot be handled by any of the existing

techniques.

3 PROBLEM DEFINITION

We evaluate the geo-social queries on a streaming dataset 𝐷 that consists of geo-social objects.

Each object 𝑜 ∈ 𝐷 is represented with the four main attributes (𝑢𝑖𝑑 , 𝑙𝑜𝑐 , 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝),

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:5

UID OID Keywords Timestamp

𝑢1 𝑜1 Fantastic, Comeback, Play 05-08-2021 20:18:30

𝑢2 𝑜2 Love, Pineapple, Pizza 05-08-2021 20:18:27

𝑢3 𝑜3 Sunny, Day, Good, Running 05-08-2021 20:18:23

𝑢1 𝑜4 Freeway, Traffic, Bad 05-08-2021 20:18:19

𝑢4 𝑜5 University, Graduation 05-08-2021 20:18:17

𝑢2 𝑜6 USA, Japan, Summit 05-08-2021 20:18:14

𝑢5 𝑜7 Airport, Flight, Time, Ready 05-08-2021 20:18:09

𝑢6 𝑜8 NBA, Lakers, LeBron 05-08-2021 20:18:06

Table 1. Content of Objects in Figure 1

where 𝑢𝑖𝑑 is the identifier of user who posted this object, 𝑙𝑜𝑐 is the location where the object is

posted in the two-dimensional space represented with latitude/longitude coordinates, 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 is

the set of keywords extracted from the textual content of the object, and 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is the time

when the user posts the object. 𝐷𝑇 is a snapshot of the dataset 𝐷 at time 𝑇 , so every object 𝑜 ∈ 𝐷𝑇
has 𝑜.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≤ 𝑇 . Table 1 shows a sample of the dataset that consists of eight objects. Each

object, identified by 𝑜𝑖𝑑 , is composed of a user id who posted the object, a set of keywords that

represent the textual content, a timestamp, and located in the space as shown in Figure 1. In addition,

the social connectivity between the users is represented as a hashtable where the <key,value>

pair is <user id, list of friend ids>. The social network and the hashtable of the sample are shown

in Figure 2. Each entry of the hashtable consists of the given user id as the key, and the list of

user’s friends ids as the value. We can easily navigate from a user’s friends to the friends of friends

by expanding the immediate friends and retrieving their friends. This process can be repeated to

navigate to higher levels of the social graph. The simplicity of representation and navigation of the

social graph helps the query processors to achieve high query throughput, especially in a tight

streaming environment.

The two fundamental spatial queries, in particular range query and 𝑘-nearest neighbor, that are

common in the literature have been extended to support temporal geo-social aspects in this work.

The query definitions of the two extended queries are as follows:

Definition 1: Spatial-social Temporal Range Query (SSTRQ): given 𝑞 = <user𝑢, spatial range

𝑅, integer 𝑘 , and timestamp𝑇>, and𝐷𝑇 that is a snapshot of the dataset𝐷 at time𝑇 , SSTRQ retrieves

the most recent 𝑘 objects 𝑜𝑖 ∈ 𝐷𝑇 , 1 ≤ 𝑖 ≤ 𝑘 , that are posted within 𝑅 and are posted by 𝑢’s friends

or friends of friends based on a discrete social distance.

The 𝑘 objects are ranked based on time to retrieve the most recent objects in 𝐷𝑇 from 𝑢’s direct

friends. Because of the overwhelming number of objects, setting 𝑘 value helps to provide users

with the most relevant objects, which makes the answer useful. In addition, limiting answer size

to 𝑘 objects helps to prune the search space. This still serves all applications as it provides the

flexibility to adjust the value of 𝑘 based on the interest of the application to retrieve more results.

If 𝑞 fails to retrieve all 𝑘 objects from 𝑢’s friends, the search is expanded to 𝑢’s friends of friends

recursively to retrieve the rest of objects. So, the social relevance of objects in 𝑞 answer are assessed

based on a discrete social distance that takes only integer values (1,2,3, etc) and no fractional values

in between.

This enables scalable query processing on streaming data in real time as detailed in the following

sections.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:6 A. Almaslukh, et al.

Example 1: Given q1=<𝑢5,spatial range 𝑅, 𝑘=2, 𝑇=05-08-2021 20:18:30>, q1 is an SSTRQ query

that finds the two most recent objects (𝑘=2) from 𝑢5’s friends or friends of friends that are posted

in the area 𝑅 as shown in Figure 1. According to the hashtable in Figure 2, the only friend 𝑢5 has

followed is 𝑢4, hence the only object 𝑜5 from 𝑢4 in Table 1 is included in the result. The objects

from the friends of 𝑢4, i.e. 𝑢2 and 𝑢6, are checked and the most recent object 𝑜2 is added to the

result. As a result, the answer to the example query is {𝑜5, 𝑜2}.

Definition 2: Spatial-social Temporal kNN Query (SSTkQ): given q = <user 𝑢, spatial point

location 𝐿, integer 𝑘 , and timestamp𝑇>, and 𝐷𝑇 that is a snapshot of the dataset 𝐷 at time𝑇 , SSTkQ

retrieves top-𝑘 objects 𝑜𝑖 ∈ 𝐷𝑇 , 1 ≤ 𝑖 ≤ 𝑘 , that are posted by 𝑢’s friends or friends of friends, and

ranked based on a spatio-temporal distance 𝐹𝛼 from 𝐿 and 𝑇 as follows:

𝐹𝛼 (𝑜, 𝑞) = 𝛼 × 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑐𝑜𝑟𝑒 (𝑜, 𝑞) + (1 − 𝛼) ×𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒 (𝑜, 𝑞)

Where 𝛼 is a weighting parameter, 0 ≤ 𝛼 ≤ 1, that weights the relative importance of spatial and

temporal scores in the object proximity. 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑐𝑜𝑟𝑒 and 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒 are defined as follows:

𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑐𝑜𝑟𝑒 (𝑜, 𝑞) =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜.𝑙𝑜𝑐, 𝑞.𝐿)

𝑅𝑀𝑎𝑥

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒 (𝑜, 𝑞) =
𝑞.𝑇 − 𝑜.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑇𝑀𝑎𝑥

Where 𝑅𝑀𝑎𝑥 and 𝑇𝑀𝑎𝑥 are the maximum allowed spatial and temporal ranges for any object, and

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the spatial distance between object and query locations in the Euclidean space. The social

relevance is assessed using the same discrete social distance that is used in SSTRQ for scalability

on streaming data in real time.

Example 2: Given q2=<𝑢1,spatial point location 𝑜1.𝐿, 𝑘=1,𝑇=05-08-2021 20:18:30>, q2 is an SSTkQ

query that finds the object 𝑜 (𝑘=1) ranked by the ranking function 𝐹𝛼 (𝑜, 𝑞2) from 𝑢1’s friends or

friends of friends.As shown in the hashtable in Figure 2, the friend list of𝑢1 is {𝑢6,𝑢4,𝑢3}. According

to Table 1, the set of objects posted by the friends of 𝑢1 is {𝑜3, 𝑜5, 𝑜8}. Because 𝑜3 is closer to the

specified location and is also newer than the other two objects, 𝑜3 gets the highest 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑐𝑜𝑟𝑒

and 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒 hence is ranked the highest by 𝐹𝛼 (𝑜, 𝑞2). As a result, {𝑜3} is returned as the

answer to the query.

The two queries are further extended to include keyword predicates. The extended queries are

formally defined as follows:

Definition 3: Spatial-social Temporal Keyword Range Query (SSTRQ𝐾𝑊): given 𝑞 = <user

𝑢, spatial range 𝑅, integer 𝑘 , keyword set 𝑘𝑤 , and timestamp 𝑇>, and 𝐷𝑇 that is a snapshot of

the dataset 𝐷 at time 𝑇 , SSTRQ𝐾𝑊 retrieves the most recent 𝑘 objects 𝑜𝑖 ∈ 𝐷𝑇 , 1 ≤ 𝑖 ≤ 𝑘 , that

are posted within 𝑅 by 𝑢’s friends or friends of friends based on a discrete social distance and

𝑜𝑖 .𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 ∩ 𝑞.𝑘𝑤 ≠ 𝜙 .

The 𝑘 objects out of SSTRQ𝐾𝑊 are still ranked based on time to retrieve the most recent objects

in 𝐷𝑇 from𝑢’s direct friends. The social relevance is assessed using the same discrete social distance

that is used in SSTRQ. The new addition in SSTRQ𝐾𝑊 is the keyword predicate 𝑘𝑤 . This predicate

has a Boolean 𝑂𝑅 conjunction semantic for query keywords. If the keyword set 𝑘𝑤 of an object 𝑜𝑖
contains at least one keyword in the query keyword set 𝑞.𝑘𝑤 , 𝑜𝑖 is eligible to be included in the

final answer. Keyword similarity is based on exact string matching.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:7

Fig. 1. Spatial Quadtree (SQ)

Example 3: Given q3=<𝑢5,spatial range 𝑅, 𝑘=2, keyword set 𝑘𝑤={"Love", "Watch", "NBA"}, 𝑇=05-

08-2021 20:18:30>, q3 is a SSTRQ𝐾𝑊 query that retrieves the two most recent objects (𝑘 = 2) posted

by the friends or the friends of friends of 𝑢5 containing at least one keyword in the 𝑘𝑤 set in range

𝑅. Because the object 𝑜5 posted by the only friend of 𝑢5 from social distance 1 does not contain any

of the keywords, the search space is expanded to social level 2, i.e. the friends of friends. Among the

objects posted by the friends of 𝑢4, only the object 𝑜2 contains the keyword "Love" and the object

𝑜8 contains the keyword "NBA". As a result, {𝑜5, 𝑜2} is returned as the top-k results, k equals 2.

Definition 4: Spatial-social Temporal Keyword kNN Query (SSTkQ𝐾𝑊): given q = <user 𝑢,

spatial point location 𝐿, integer 𝑘 , keyword set 𝑘𝑤 , and timestamp𝑇>, and 𝐷𝑇 that is a snapshot of

the dataset 𝐷 at time 𝑇 , SSTkQ𝐾𝑊 retrieves top-𝑘 objects 𝑜𝑖 ∈ 𝐷𝑇 , 1 ≤ 𝑖 ≤ 𝑘 , that are posted by

𝑢’s friends or friends of friends, ranked based on a spatio-temporal distance 𝐹𝛼 from 𝐿 and 𝑇 , and

𝑜𝑖 .𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 ∩ 𝑞.𝑘𝑤 ≠ 𝜙 .

Where 𝐹𝛼 is the same ranking function that is detailed in SSTkQ definition and the social relevance

is assessed in the same way as well. The new keyword predicate also has a Boolean𝑂𝑅 conjunction

semantic for query keywords, so an object that has any of the keywords is eligible to be included

in the final answer.

Example 4: Given q4=<𝑢2,spatial point location 𝑜6.𝐿, 𝑘=1, keyword set 𝑘𝑤={"LeBron", "James",

"University"}, 𝑇=05-08-2021 20:18:30>, q4 is a SSTkQ𝐾𝑊 query that find the highest ranked object

(𝑘=1) by the ranking function 𝐹𝛼 (𝑜, 𝑞4) from 𝑢2’s friends or friends of friends. The list of friends

for 𝑢2 is {𝑢6, 𝑢4, 𝑢1, 𝑢3}, as shown in Figure 2. According to Table 1, the list of objects from the

fiends of 𝑢2 is {𝑜1, 𝑜3, 𝑜4, 𝑜5, 𝑜8}. Among the list of objects from the friends of 𝑢2, 𝑜5 contains the

keyword "University" and 𝑜8 contains the keyword "LeBron". Object 𝑜5 is ranked higher than 𝑜8 by

the ranking function 𝐹𝛼 (𝑜, 𝑞4) because 𝑜5 is posted closer to the location specified by the query

and is also more recent than 𝑜8. Because the k is 1, {𝑜5} is the result returned.

4 GEO-SOCIAL REAL-TIME INDEXING

This section presents geo-social data indexing in real time. This data is rich with spatial, temporal,

textual, and social information. The two main challenges in indexing such rich data in real time

are: (1) encoding the incoming information in highly-scalable data structures that are efficient for

insertions with tens of thousands of data objects each second, and (2) removing old data from the

main memory to sustain digesting new incoming data objects at all times. Traditional insertion

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:8 A. Almaslukh, et al.

(a) Example Social Network
(b) Social Structure on Disk

Fig. 2. Example of In-disk Social Structure

(a) Spatial-social Quadtree (SSQ)

(b) Tightly-coupled Spatial-social Quadtree (TCSSQ)

Fig. 3. Structure of geo-social real-time indexes

procedures in spatial and social index structures incur significant overhead that limits scalable data

digestion. In addition, straight forward deletion procedure that scan every index cell in different

spatial regions or different parts of the social graph to expel old data incur significant overhead

that will also affect the indexing scalability in real time.

To address these challenges, we introduce a generic indexing framework (Section 4.1) that

separates highly-dynamic data from relatively-stable data, so real-time data structures are tailored

to digest only the needed information in real time to reduce both insertion and deletion overheads.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:9

Based on this framework, we propose a scalable index (Section 4.2) that enables efficient handling

for geo-social data in real time, and adapt two baseline index structures (Section 4.3) from the

literature of spatial and spatial-social indexing. Finally, we extend the proposed index in two

different ways to support the keyword queries more efficiently (Section 4.4). The rest of this section

details the indexing framework as well as the five indexes.

4.1 Indexing Framework

The proposed indexing framework depends on the observation that incoming geo-social data

objects are highly dynamic while the social graph information is relatively static. Each second,

tens of thousands of geo-social objects are flowing, which requires real-time digestion. These

objects are posted by hundreds of millions of users that are connected to each other with social

bonds, represented as a social graph. This social graph is not updated frequently compared to the

geo-social objects. In real Twitter dataset, an active user posts on average seven tweets per day [41],

which leads to hundreds of millions of tweets every day. However, the number of new friends or

unfollowed friends are not even close to this daily number. It is usual not to accept new friends

or follow new people for several days, weeks, or even months. Consequently, the frequency of

updates in social graph information is way less than the incoming geo-social objects in real time.

Our indexing framework exploits this observation to dedicate the necessary resources to index

each type of data.

The proposed indexing framework consists of three components: (1) in-memory index that

digests streaming geo-social objects in real time, (2) in-disk index that organizes relatively stable

social graph information, and (3) in-memory buffer that swaps social graph information from

and to the disk index. The in-memory index is equipped with optimized insertion and deletion

techniques that minimize the real-time overhead and is able to scale for handling streaming data. As

main-memory is a scarce resource, data cannot be digested infinitely with excessive amounts and

have to be expelled to a secondary storage on a regular basis. For that reason, the in-memory index

employs a temporal duration𝑇𝑀𝑎𝑥 that indicates the maximum allowed past data to store.𝑇𝑀𝑎𝑥 is a

system parameter and can be adjusted by the administrators based on the available main-memory

resources and the streaming rates of incoming data.

The second component is an in-disk index that stores the social graph information. Two reasons

are behind storing this information on disk. First, the excessive size of this information consumes

significant memory storage that is not frequently utilized, due to the long-tail distribution where

the majority of users are inactive in queries [31]. For example, a subset of our experimental Twitter

social graph with 3.3 million users consumes approximately 62.5 GB of main-memory as each

user has an average of 500 friends. Second, the relative stability of social graph information as

discussed earlier in this section. This makes the social graph index structure needs infrequent

updates, which is not challenging to be handled on the disk storage. However, for query processing,

it is inefficient to visit the disk for every retrieval of a user friend list, especially for active users

who post frequent queries. This has motivated the third component of our indexing framework,

which is the in-memory buffer for social graph information. This component acts similar to the

database buffer, where certain disk pages are swapped in the main-memory buffer from the disk

index only when needed. As disk pages keep accumulating in the buffer, it becomes full and needs

to evict some of its content to swap in new pages. Eviction policies that are used for the buffer are

the same ones studies in the literature of database buffer management and operating system virtual

memory. We choose to use the famous least recently used (LRU) policy in our realization. However,

other policies could be used based on the underlying application requirements.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:10 A. Almaslukh, et al.

4.2 SSQ Index

Based on the described framework in Section 4.1, we propose Spatial-Social Quadtree (SSQ) index for
scalable real-time indexing of geo-social objects without recording the keyword sets. Conformed

to the framework, the index has three components, an in-memory component for digesting objects

in real-time, a disk-resident component for the social graph indexing, and an in-memory buffer, as

described in Section 4.1. This section describes the details of index structures and update operations

for different index components.

Index structure. The in-memory component adopts a spatial quadtree [5] as a highly-scalable

space-partitioning index for real-time data digestion [33]. Spatial quadtree adapts with skewness

in spatial distribution and could adapt with dynamic data with low indexing cost in real-time. As

a space-partitioning index, it does not need heavy restructuring with changing its data content.

In addition, it allows the index cell split and merge operations to be modified to reduce real-time

indexing overhead and scale up for high rates of real-time data as shown in [33].

An example of spatial quadtree is depicted in Figure 1 for eight geo-social objects that are

presented in Table 1. The tree divides the space into multi-level disjoint cells that either have four

or zero children cells. An incoming object is located in the cell that contains its location. A cell is

divided into four quadrants only if the number of objects exceeds a specific cell capacity, which

is a system parameter that determines the tree height, so a small cell capacity leads to a deeper

tree while a large cell capacity generates a shallow tree. Only leaf nodes hold data objects, while

intermediate nodes provide routing information. SSQ index extends the quadtree to be aware of the

user aspect of the spatial objects. In specific, each leaf cell is equipped with a hash index structure

that organizes the cell’s objects based on the issuing users. This hash structure is light for real-time

digestion, and still provides effective pruning for the search space based on the social information.

The hash structure uses the user id as a key and the value is a list of objects that are posted by this

user ordered based on their timestamps. Including the social information within the spatial cell

significantly helps the query processor to retrieve candidate objects that could potentially make it

to the final answer.

Figure 3a depicts an example of the SSQ in-memory index. The depicted index represents the

same set of objects that are depicted in Figure 1, and the same quadtree organization, with adding

the light hash structure to each leaf node that enables effective social-based pruning while sustains

high digestion rates in real time as verified in our experimental evaluation.

The in-disk component of SSQ index stores the social graph represented by a set of adjacency

lists. Our social graph representation adopts the famous form that represents users as nodes and

friendship relations as directed edges. The adjacency list representation stores this information as

a hash structure that uses user id as a key and list of friends as a value for each hash entry. Figure 2

demonstrates an example for a social graph with six users, 𝑢1 to 𝑢6. Figure 2a shows the high-level

graph model for the social relations among the six users while Figure 2b shows the adjacency list

representation that is stored on the disk-resident index structure. The disk structure consists of

two parts, the data part and the index part. The data part stores consecutive blocks of long integer

lists that contain the user ids as depicted in Figure 2b. The index part stores all the distinct user ids,

each user id is associated with a disk pointer to the block in which the user friend list is stored.

Compared to the data part, the index part is small in size and can be easily loaded during the query

processing for efficient access of user information as described in Section 5.

To reduce the overhead of reading back and forth from the disk, the third component of SSQ

index is a dedicated in-memory buffer that is utilized to store the retrieved user friend lists from

the disk for further recycling during future queries. The in-memory buffer is a hash structure that

stores key-value pairs of user ids and friend lists, similar in format to the disk index from which

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:11

data is retrieved. When the in-memory buffer is full, it adopts the least recently used (LRU) policy

to free up content to continue serving incoming queries.

Index insertion. Insertion in both the in-disk component of SSQ index and its corresponding

buffer adopts traditional one-by-one insertion due to the low insertion rates in the stable social

structure. On the contrary, the in-memory index component, that adopts a social-aware quadtree,

incurs an excessive insertion rate as tens of thousands of objects arrive every second. Traditional

insertion procedure that navigates the tree hierarchy for each incoming object and inserts it in the

corresponding cell does not scale to cope up with such high insertion rate. To overcome this problem,

we employ a batch insertion process that collects a few seconds worth of data in a temporary

buffer and inserts them as one batch in the quadtree structure. During the buffering, a minimum

bounding rectangle (MBR) is maintained around the location of incoming objects. Then, the MBR

boundaries are compared to the index cell boundaries, instead of comparing location of each object,

and the tree navigation is performed based on this cheap comparison. With thousands of objects

buffered, thousands of comparison operations are saved, which significantly boost the digestion

performance and allows to ingest streaming data with high arrival rates.

As the tolerable buffering delay depends on the underlying application, the buffering time

is adjustable by system administrators to meet the application needs. The main motivating use

cases for our techniques work on streaming user-generated data, such as social media and other

content that is generated by human users online. In this context, a few seconds of delay is usually

tolerable. For example, when users search major social media platforms, the most recent results are

usually posted a few seconds ago. It is worth noting that the high rate of streaming data in these

applications enables a very small buffering delay while still buffering thousands of data items. So, a

typical buffering delay of 1-2 seconds is enough to enable scalable indexing in real time, which is a

reasonable delay that fits most of the mainstream applications.

The index insertion and the queries can be handled concurrently while still maintaining high

real-time data ingestion through employing a single-writer-multiple-readers concurrency model as

detailed in [32] and [3]. This model is slightly modified in this work to enable queries to expire data

that is beyond 𝑇𝑀𝑎𝑥 time units as pointed out in index deletion below. The data that is potential for

concurrent access from reader threads is already expired and removed from the index shortly after,

so they minimally affect the real-time index update operations.

The speculative cell splitting module [33] is used to reduce insertion and query processing time.

A leaf cell is split if it exceeds its capacity and the objects in the leaf cell will span at least two

quadrants.

Index deletion. To sustain digesting incoming data in the scarce memory resources, the in-

memory index expels objects that are older than 𝑇𝑀𝑎𝑥 time units ago to the disk, where 𝑇𝑀𝑎𝑥 is a

system parameter that is based on the availability of memory resources and arrival rates of the

underlying streaming data. To expel this data, a straight forward way is to exhaustively iterate

over all index cells, either every few time units or when a certain memory budget fills up, and

clean up all expired data objects that are older than 𝑇𝑀𝑎𝑥 . However, such exhaustive and frequent

cleaning process puts an overhead on real-time operations of the index. To avoid such overhead,

we employ a combination of regular and periodic cleaning processes that are lighter than the

exhaustive cleaning and still sustain memory consumption. The regular cleaning is piggybacked

on the real-time insertion and querying, so whenever an index cell is accessed for either insertion

or query processing, the accessed entries are checked for expired content to be expelled from

main-memory. This reduces the cleaning overhead as it shares the index traversal overhead with

the other operations.

This regular cleaning process does not guarantee to expel all the expired data proactively as it

depends on the spatial distributions of both data and queries, so some index cells might be left

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:12 A. Almaslukh, et al.

without cleaning due to infrequent access to those cells. To address this, we employ a light periodic

cleaning that goes over all index cells every 𝑇𝑀𝑎𝑥 time units. For each cell, if it is not cleaned

during the past 𝑇𝑀𝑎𝑥 time units, which means no insertions happened during this period, all the

cell content is wiped as all objects are expired. Otherwise, the cell is skipped. This process is very

light and mainly addresses cells that are infrequently accessed. In addition, it can be easily invoked

in a separate thread to reduce the contention over index cells in real time. We adopt the lazy cell

merging strategy to manage the leave nodes after deletion. If a leaf node becomes empty after the

deletion, the siblings of the leaf node are examined. If two of the siblings are empty, the content

of the third sibling is moved to their parent node and the four leaf nodes are removed. The lazy

cell merging saves 90% of the split empirically and merge operations and reduces the index update

overhead significantly. The details for the lazy cell merging is given in [33] and it is not considered

a novel contribution for this paper.

4.3 Baseline Indexes

In addition to our proposed SSQ index (Section 4.2), we adopt two baseline indexes based on

the proposed indexing framework that is described in Section 4.1. The two baseline indexes are

alternatives to address the supported queries based on existing techniques in the literature. The

two baseline indexes are Spatial Quadtree (SQ) and Tightly-Coupled Spatial-Social Quadtree (TCSSQ).
The rest of this section describes each index and highlight its differences compared to the proposed

SSQ index.

(1) Spatial Quadtree (SQ). This index has a similar structure to the SSQ index with the exception

of the in-memory index component that adopts a pure spatial quadtree structure without any

extended structures to organize the data based on the posting users. Figure 1 shows an example of

the spatial quadtree index. It is worth noting that all data objects in the leaf nodes are sorted based

on their arrival timestamp at no additional cost due to the nature of streaming data that comes

ordered by time. For the index insertion and deletion, the same procedures that are developed for

SSQ index are used in SQ index with the exception of navigation the leaf nodes content that does

not have the hash structure anymore. So, inserted data are appended to a long list of chronologically

ordered objects, and all the cleaning processes are performed on the same list, which reduces the

real-time indexing overhead while increases the query processing overhead as will be detailed in

Sections 5 and 6.

(2) Tightly-Coupled Spatial-Social Quadtree (TCSSQ). This index has a similar structure to

the SSQ index with the exception of the in-memory index component that includes extra user

information in all intermediate and leaf nodes of the quadtree structure instead of having a hash

structure in only leaf nodes. In specific, each leaf node 𝐶 has an additional list of users 𝐶.𝐿𝑢 who

posted in the spatial region of 𝐶 . Then, the content of 𝐶.𝐿𝑢 is replicated to the parent nodes up to

the root node. So, the root’s 𝐿𝑢 has all the users who posted in any region, and each intermediate

node has a list of all users who posted in the sub-tree that is rooted in this intermediate node. This

organization is a modified version of [44] that is suitable for real-time indexing. This is built based

on the core ideas of the IR-tree structure [15]. Figure 3b depicts an example of TCSSQ index for the

eight objects of Table 1. Each node, including root, intermediate, and leaf nodes, has an additional

list 𝐶.𝐿𝑢 of users who posted in the node 𝐶 spatial region.

The additional user lists 𝐿𝑢 affect the index insertions and deletions in real time. On insertion,

after the insertion procedure is performed in node𝐶 as described for SSQ index, the posting user id

𝑢𝑖𝑑 is added to 𝐶.𝐿𝑢 . To this end, 𝑢𝑖𝑑 is searched in 𝐶.𝐿𝑢 using binary search. If 𝑢𝑖𝑑 does not exist

in 𝐶.𝐿𝑢 , it is inserted into the ordered list, otherwise, 𝐶.𝐿𝑢 remains intact. Then, the same process

repeats for parent nodes’ 𝐿𝑢 until it propagates to the root node. On index deletion, object deletions

are performed for certain user entries in the node’s hash structure. For each user entry, if the list

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:13

(a) Spatial-Social Quadtree Keyword (SSQ𝐾𝑊)

(b) Spatial-Social Quadtree 4D (SSQ4𝐷)

Fig. 4. Geo-Social Keyword Index Structure for Cell 6 Based on Figure 3a

of objects remains non-empty, i.e., there are still remaining objects for this user in the node, 𝐶.𝐿𝑢
remains intact. On the contrary, if the list of objects becomes empty, i.e., the deleted objects are

the last objects for this user in the node, then the user id is removed from 𝐶.𝐿𝑢 . Then, the removal

checks are propagated to parent levels of the tree. For 𝐶’s parent 𝐿𝑢 , the three siblings nodes of 𝐶

are checked. If 𝑢𝑖𝑑 exists in any of their 𝐿𝑢 lists, then the parent’s 𝐿𝑢 remains intact. If 𝑢𝑖𝑑 does

not exist in any of these lists, then 𝑢𝑖𝑑 is removed from the parent’s 𝐿𝑢 , and the removal check is

propagated to the higher levels up to the root node.

4.4 Keyword Indexing

This section presents the geo-social indexes that incorporate the keywords while indexing the

geo-social objects in order to process keyword-extended geo-social queries in streaming data

environment efficiently. First, we present Spatial-Social Quadtree Keyword (SSQ𝐾𝑊), and then

Spatial-Social Quadtree 4D (SSQ4𝐷).

(1) Spatial-Social Quadtree Keyword (SSQ𝐾𝑊). This index is adopted from Spatial-Social

Quadtree (𝑆𝑆𝑄) since the experiments have shown its superior performance compared with baseline

indexes. It has different index structure of the in-memory component while it has exactly the same

other components of 𝑆𝑆𝑄 including the in-disk and in-memory buffer components. More specifically,

it attaches a hash index called the inverted keyword index for each leaf cell of 𝑆𝑆𝑄 in-memory

quadtree in order to effectively prune the objects based on the keywords. This makes each leaf cell

to have two separate hash indexes, one is for the social as in 𝑆𝑆𝑄 where the <key,value> pair is

<user id, list of friend ids>, and the additional one is for the keywords where the <key,value> pair

is <keyword, list of objects>. The objects are organized based on the social information as in 𝑆𝑆𝑄

and additionally based on the keywords. Therefore, the index structure helps the query processor

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:14 A. Almaslukh, et al.

to significantly reduce the query latency with minimal overhead on the digestion rate and the

memory resource. Figure 4a shows the index structure of SSQ𝐾𝑊 for a cell with two hash indexes.

The leaf cell has both the social information that represented with a hash index that organizes the

objects based on the issuing users and another hash index that indexes the objects based on the

keywords appeared in the objects. For insertion and deletion, the same procedures of 𝑆𝑆𝑄 detailed

in Section 4.2 are applied to maintain a high digestion rate for the new incoming data. However,

additional operations are needed to insert/remove the objects to/from the accompany keyword

inverted index to be consistent with the user hash index. Any object inserted/removed to/from

the user hash index must be inserted/removed accordingly to/from the keywords hash index. So,

the object is being inserted into the posting user’s list of the user index and inserted also into

all keyword lists, which contain the object’s keywords, of the keyword index. Once the object is

removed from the user index, as being older than 𝑇𝑀𝑎𝑥 time units ago as detailed in Section 4.2, all

the lists of objects where the object’s keywords are the keys shall be retrieved in order to remove

the object from to be synchronized with the user index.

(2) Spatial-Social Quadtree 4D (SSQ4𝐷). SSQ4𝐷 is another index structure adopted from Spatial-

Social Quadtree (𝑆𝑆𝑄) that adds the keyword dimension differently to support the keyword queries

more efficiently. Only the in-memory index structure is different from 𝑆𝑆𝑄 while the other com-

ponents remain the same. At the leaf cell of 𝑆𝑆𝑄 tree, SSQ4𝐷 indexes the objects based on the

social information first, then for each indexed user 𝑢, 𝑢 points to the inverted keyword list that

organizes the objects based on the keywords appeared in the objects. The hash index has the

structure <key,value> where the key is the user id, and the value is another nested hash index

where the <key,value> pair is <keyword, list of objects>. In another words, each user 𝑢 has her

dedicated inverted keyword index which is only indexing the objects that been posted by 𝑢 in the

given cell. Thus, the query processor takes the advantage of the index structure to prune the objects

spatially, socially, and textually at the same time. Figure 4b depicts the index structure of SSQ4𝐷

for a cell. The cell has the user index as the first level, and for each user in the user index has her

own inverted keywords index as the second level. For insertion and deletion, SSQ4𝐷 follows similar

steps as 𝑆𝑆𝑄 detailed in Section 4.2 with taking into account the objects are being indexed in a

nested hash index based on the keywords. Thus, the object is being inserted into multiple entries

of the 𝑢 keyword hash index based on the object keywords. When removing the object which is

older than 𝑇𝑀𝑎𝑥 , all entries of user keyword hash index should be accessed to remove the object

from these lists.

5 QUERY PROCESSING

This section details the query processing of the four queries that are defined in Section 3 exploiting

the proposed SSQ index, the baseline SQ and TCSSQ indexes, and the keyword-extended indexes

SSQ𝐾𝑊 and SSQ4𝐷 that are introduced in Section 4. In Section 5.1, we introduce a high-level query

processing framework that is generic for all indexes. Sections 5.2 and 5.3 detail the query processing

of SSTRQ and SSTkQ queries, respectively, without involving the textual features. Then, Sections 5.4

and 5.5 explain the processing of SSTRQ𝐾𝑊 and SSTkQ𝐾𝑊 , respectively, in SQ, SSQ, SSQ𝐾𝑊 , and

SSQ4𝐷 .

5.1 Query Processing Framework

Our query processor consists of two generic steps:

(1) Step 1: Given the user id 𝑢𝑖𝑑 of the query issuing user 𝑢, step 1 retrieves a list of friends

𝑢.𝐿𝑓 that contains a set of user ids for 𝑢’s direct friends. To this end, the in-memory buffer of

the social graph is checked with the key value 𝑢𝑖𝑑 . If it exists, 𝑢.𝐿𝑓 is directly retrieved from the

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:15

buffer. Otherwise, the in-disk social index is accessed in a traditional way to retrieve 𝑢.𝐿𝑓 to the

in-memory buffer. If the in-memory buffer is full, the least recently used (LRU) replacement policy

is used to free up some of the buffer content. Then, 𝑢.𝐿𝑓 is fed to step 2 of the query processor.

(2) Step 2: Given a list of friends 𝐿𝑓 , that is retrieved in step 1, and spatio-temporal predicates, in

step 2, the query processor accesses the in-memory spatial index to retrieve the top-𝑘 objects based

on the query semantic and the underlying index structure. The specifics of this step is different for

each <query,index> combination, as detailed in the rest of this section.

If the execution of these two steps retrieves 𝑘 objects, then they are considered a final query

answer and returned to the user. If the computed answer has less than 𝑘 , the search is expanded

recursively beyond 𝑢’s social level 1 (direct friends) to social level 2 (friends of friends) or higher

social levels until 𝑘 objects are retrieved. To this end, the two steps are repeated for each user id in

𝐿𝑓 for expansion to social level 2, and the same repeats for higher social levels.

5.2 SSTRQ Query Processing

This section details the specifics of step 2 of Section 5.1 for SSTRQ query. In this step, the query

processor retrieves the most recent 𝑘 objects within a spatial region 𝑅, per the query definition,

that are posted by users in the friend list 𝐿𝑓 that is computed in step 1. The rest of this section

details this procedure using SSQ, SQ, and TCSSQ indexes.

SSTRQ in SSQ index. SSTRQ query is processed on three phases in SSQ index: (a) spatial

retrieval, (b) social filtering, and (c) temporal pruning. First, the spatial retrieval phase navigates the

quadtree to retrieve the tree nodes that intersect with the query region 𝑅. Second, for each node,

the social filtering phase accesses the hash index and retrieve lists of objects that are associated

with user ids in the friend list 𝐿𝑓 . Each of these lists is ordered based on timestamp due to the

streaming nature of incoming objects. Third, the retrieved lists are enqueued in a priority queue

𝑄 that orders lists based on their most recent object. Then, the lists are traversed in 𝑄 order to

compute an initial answers 𝐴𝑛𝑠 of 𝑘 objects. Based on 𝐴𝑛𝑠 , a temporal boundary 𝑇𝑘 is computed

as the timestamp of the k𝑡ℎ object in 𝐴𝑛𝑠 . Any object older than 𝑇𝑘 cannot be part of the final

answer. So, 𝑇𝑘 is used as a temporal pruning boundary to process the rest of the objects in 𝑄 . In

specific, each list in𝑄 is retrieved in order. Then, the list’s objects are traversed in time order. If the

current object 𝑜.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 < 𝑇𝑘 , then 𝑜 is added to 𝐴𝑛𝑠 replacing the k𝑡ℎ object, and 𝑇𝑘 is updated.

Otherwise, 𝑜 is skipped. Once we reach an object 𝑜.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≥ 𝑇𝑘 , the rest of the list is pruned as

no more objects can make it to the final answer. This repeats for all lists in𝑄 before𝐴𝑛𝑠 is returned

as a final query answer.

SSTRQ in SQ index. In SQ index, SSTRQ is processed using the first and third phases, spatial

retrieval and temporal pruning, that are used in SSQ index. As SQ index does not include any user

information, the social filtering phase cannot be employed. So, the list of objects in each quadtree

node is scanned to select the objects associated with user ids in the friend list 𝐿𝑓 and fed directly

to the temporal pruning phase that produces the final answer using the same procedure that is

described above.

SSTRQ in TCSSQ index. In TCSSQ index, SSTRQ is processed using the same three phases that

are used in SSQ index, with an extended social filtering phase. In particular, TCSSQ index maintains

extra user list information𝐶.𝐿𝑢 in each quadtree node𝐶 . So, the social filtering phase goes through

two stages. The first stage is intersecting the user friend list 𝑢.𝐿𝑓 with the node user list 𝐶.𝐿𝑢 . If

the intersection is empty, then 𝐶 and all its descendants are immediately pruned. Otherwise, 𝐶 is

considered for the second stage that is exactly similar to the social filtering phase in SSQ index.

The other two phases, spatial retrieval, and temporal pruning, remains identical to the ones in SSQ

index.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:16 A. Almaslukh, et al.

5.3 SSTkQ Query Processing

This section details step 2 of the query processing framework that is presented in Section 5.1

for SSTkQ query. This query retrieves the closest 𝑘 objects, based on a spatio-temporal distance

function 𝐹𝛼 , nearby a point location 𝐿 and relative to a query timestamp 𝑇 that are posted by users

in the friend list 𝐿𝑓 that is computed in step 1, per the query definition in Section 3. The rest of this

section details the query processing using SSQ, SQ, and TCSSQ indexes.

SSTkQ in SSQ index. SSTkQ query is processed on two phases in SSQ index: (a) computing

initial answer, and (b) answer refinement. The first phase navigates the quadtree structure to the

tree node𝐶 that contains the query location 𝐿. Then, initial 𝑘 objects that are associated with users

in the friend list 𝐿𝑓 are retrieved as an initial answer 𝐴𝑛𝑠 . If 𝐶 has less than 𝑘 objects posted by 𝐿𝑓
users, then neighbor nodes are checked until 𝐴𝑛𝑠 has 𝑘 objects.

The second phase uses the k𝑡ℎ 𝐹𝛼 score of the initial answer (namely 𝐹𝛼,𝑘) as a refinement

boundary to compute the final answer 𝐴𝑛𝑠 so any object with 𝐹𝛼 ≥ 𝐹𝛼,𝑘 cannot make it to the final

answer. This could be done in a traditional way by visiting all nodes within the maximum spatial

range 𝑅𝑀𝑎𝑥 and check objects that are associated with 𝐿𝑓 . However, with excessive amounts of data,

this could be very expensive and has high query latency. To compute the final answer efficiently,

a spatio-temporal pruning procedure is employed to significantly reduce the number of checked

objects. To this end, two pruning boundaries are calculated and updated throughout the second

phase based on the equation of 𝐹𝛼 : a spatial boundary 𝑅𝑢 and a temporal boundary 𝑇𝑢 . The spatial

upper bound 𝑅𝑢 is calculated by assuming zero temporal score in the spatio-temporal ranking

function, so 𝑅𝑢 =
𝐹𝛼,𝑘
𝛼

× 𝑅𝑚𝑎𝑥 . Similarly, the temporal upper bound 𝑇𝑢 is calculated by assuming

zero spatial score in spatio-temporal ranking function, so 𝑇𝑢 = 𝑞.𝑡𝑖𝑚𝑒 −
𝐹𝛼,𝑘
1−𝛼

×𝑇𝑚𝑎𝑥 . Any object

or cell that are outside 𝑅𝑢 and 𝑇𝑢 can be safely pruned. So, neighbor quadtree nodes to location

𝐿 are visited in spatial order with 𝑅𝑢 , and objects of each node are checked as long as within 𝑇𝑢 .

With each new object added to 𝐴𝑛𝑠 , 𝐹𝛼,𝑘 is updated and then 𝑅𝑢 and 𝑇𝑢 are updated accordingly.

So, the pruning boundaries are continuously tightened, which reduces the total number of checked

objects and significantly reduces the query latency. When all nodes and objects within 𝑅𝑢 and 𝑇𝑢
are exhausted, 𝐴𝑛𝑠 is returned as a final answer.

SSTkQ in SQ index. In SQ index, SSTkQ is processed using the same two phases as in SSQ

index with exception to user filtering in quadtree nodes. As SQ index does not include any user

information, the list of objects in each quadtree node is used as a whole and fully scanned for

filtering objects that are posted by 𝐿𝑓 users.

SSTkQ in TCSSQ index. In TCSSQ index, SSTkQ is processed using the same two phases that

are used in SSQ index, with an extended user filtering step. As TCSSQ index maintains extra user

list information 𝐶.𝐿𝑢 in each quadtree node 𝐶 , when a quadtree node is accessed, the user friend

list 𝑢.𝐿𝑓 is intersected with the node user list 𝐶.𝐿𝑢 . If the intersection is empty, then 𝐶 and all its

descendants are immediately pruned. Otherwise,𝐶 is considered for further processing as described

in the two phases of SSQ index.

5.4 SSTRQ𝐾𝑊 Query Processing

This section explains the query processing of SSTRQ𝐾𝑊 which includes the keywords as predicates

for the four indexes, 𝑆𝑄 , 𝑆𝑆𝑄 , SSQ𝐾𝑊 , and SSQ4𝐷 . The query processor retrieves the most recent

𝑘 objects within a spatial region 𝑅, and the objects contain the keywords query. The candidate

objects are posted by friends of the query issuer.

SSTRQ𝐾𝑊 in 𝑆𝑄 and 𝑆𝑆𝑄 indexes. Since 𝑆𝑄 and 𝑆𝑆𝑄 indexes do not support the keyword

pruning as the indexes are not aware of the presence of the keywords, we adopted the simple

on-the-fly keyword filtering that examines the candidate objects for the presence of the given query

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:17

keywords. In specific, objects that satisfy the spatial and social predicates are retrieved as detailed

in Section 5.2. Then, before the object is added to the answer list, the query processor checks for

the keywords presence by applying the on-the-fly keyword filter. If any query keyword overlaps

with the object text, the query processor will add the object to the answer list to consider it for

further processing; otherwise the object will not be selected.

SSTRQ𝐾𝑊 in SSQ𝐾𝑊 . The query processor generally follows the same phases as SSTRQ in 𝑆𝑆𝑄

which are detailed in section 5.2 with some modifications. First, the query processor retrieves the

objects that contain the query keywords from the keyword inverted index. If there is no object

in the keyword index, the query processor stops processing the cell. Second, the query processor

performs the social filtering to retrieve the objects that are posted by the query issuer’s friends and

are exist in the list of objects that retrieved from the keyword index from the previous step with

the same steps as 𝑆𝑆𝑄 query processor mentioned in Section 5.2. Thus, the objects will be added to

the initial answer 𝐴𝑛𝑠 . The query processor will refine the initial answer 𝐴𝑛𝑠 with the same logic

as in 𝑆𝑆𝑄 . This will expedites the process of retrieving the candidate objects that contain the query

keywords by exploiting the additional hash index for the keyword indexing.

SSTRQ𝐾𝑊 in SSQ4𝐷 . In SSQ4𝐷 , the query processor performs the same 𝑆𝑆𝑄 phases as detailed

in Section 5.2 with an additional phase called the keyword filtering. Instead of retrieving all objects

from the given user, the query processor accesses the keyword inverted index that each user has and

retrieves objects that contain only the keywords query. Spatial and temporal pruning are employed

to prune objects that would not make to the final answer in the same way detailed before.

5.5 SSTkQ𝐾𝑊 Query Processing

This section explains the query processing of SSTkQ𝐾𝑊 which includes the keywords as predicates

for the four indexes. This query retrieves the closest 𝑘 objects that contain the keywords query,

based on a spatio-temporal distance function explained in Section 3.

SSTkQ𝐾𝑊 in SQ and SSQ indexes. The query processor is similar to the query processor of

𝑆𝑄 and 𝑆𝑆𝑄 explained in Section 5.3. However, on-the-fly keyword filtering is employed to retrieve

objects that contain the keywords query similar to the way described in Section 5.4. Therefore, any

objects that did not pass the keyword filtering will not be considered for the initial answer list 𝐴𝑛𝑠 .

SSTkQ𝐾𝑊 in SSQ𝐾𝑊 . The query processor retrieves the list of objects that contain the keywords

query by accessing the keyword hash index. Then, the query processor utilizes the underlying

index structure to retrieve the objects, from the user hash index, that socially overlap with the

query issuer friends list and intersect with the list of objects which obtained from the previous

step. The other steps and the pruning techniques are similar to the query processor of 𝑆𝑆𝑄 that is

explained in Section 5.3.

SSTkQ𝐾𝑊 in SSQ4𝐷 . In SSQ4𝐷 , the query processor performs similar steps detailed in Section

5.3. However, the query processor does not retrieve all the objects. It retrieves only objects that

contain the keywords query by making the use of the keyword inverted index that is associated

with every user entry. The pruning techniques are similar to the 𝑆𝑆𝑄 query processor.

6 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of geo-social real-time indexing and query

processing that are discussed in previous sections. Section 6.1 explains the experimental settings.

Sections 6.2-6.4 evaluate indexing scalability, memory consumption, and query evaluation, respec-

tively, for SSTRQ and SSTkQ queries. Section 6.5 gives the evaluation for the keyword search

queries SSTRQ𝐾𝑊 and SSTkQ𝐾𝑊 .

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:18 A. Almaslukh, et al.

80
100
120
140
160
180
200
220
240
260

10
0

20
0

40
0

80
0

10
00

20
00D

ig
e

s
ti
o

n
 R

a
te

 (
K

 o
b

j/
s
e

c
)

Node Size

SSQ

SQ

TCSSQ

(a) Varying Node Sizes

80
100
120
140
160
180
200
220
240
260

20 40 60 80 100

D
ig

e
s
ti
o

n
 R

a
te

 (
K

 o
b

j/
s
e

c
)

Dataset Size (millions)

SSQ

SQ

TCSSQ

(b) Varying Dataset Sizes

Fig. 5. Indexing Scalability

6.1 Experimental Setup

We evaluate the indexes that are discussed in Section 4 for indexing scalability, storage overhead,

and query processing. The proposed Spatial-Social Quadtree index is denoted as SSQ, its keyword
extensions denoted as SSQ𝐾𝑊 and SSQ4𝑑 , the baseline Spatial Quadtree index is denoted as SQ, and
the Tightly-Coupled Spatial-Social Quadtree index is denoted as TCSSQ, a modified version of [44]

for real-time operations. Our parameters include quadtree node size, dataset size, query answer size

𝑘 , query range, the space-time weighting parameter 𝛼 , and the maximum allowed temporal range

𝑇𝑀𝑎𝑥 . Unless mentioned otherwise, the default node size is 2000, dataset size is 80 million objects, 𝑘

is 100, query range is 50 km, 𝛼 is 0.2, 𝑅𝑀𝑎𝑥 is 500 km, 𝑇𝑀𝑎𝑥 is one day, number of keywords is 2,

and buffer size is 500K entries.The two keywords are selected randomly from the keyword set

of the dataset for each keyword query. Our performance measures include index digestion rate

(the average number of indexed objects per second), index memory footprint, and query latency.

All experiments are based on Java 8 implementation and using an Intel Xeon(R) server with CPU

E5-2637 v4 (3.50 GHz) and 128GB RAM running Ubuntu 16.04.

Evaluation datasets and query workloads. We have collected 6+ billion geotagged tweets

from public Twitter Streaming APIs over the course of five years. Then, five datasets, of sizes 20,

40, 60, 80, and 100 million tweets, are composed for our evaluation. Each Tweet is represented with

a latitude/longitude coordinates that represent either an exact location or a centroid of a place,

e.g., a city or a landmark. Users of all tweets have been extracted from each of the five datasets.

The data includes only the number of friends of each user and not the actual friend list. Thus, we

randomly generate a list of friends for each user, where the majority are close to her location while

the rest are scattered around the world. Table 2 summarizes the number of users and the average

number of friends in each dataset. In order to generate the query workload, we randomly select a

thousand users, and their home locations are the query points. For keyword queries, a hundred

users are randomly selected and two keywords are randomly selected for a given user from her

nearby home location. A random word from the tweet textual content is associated as a keyword.

Dataset 20M 40M 60M 80M 100M

Users 3379403 4589750 5323808 5862339 6319263

Avg. Friends 531 513 504 497 492

Table 2. Evaluation Dataset Statistics

6.2 Indexing Scalability

This section evaluates the scalability of the real-time indexing measured as the number of objects

being digested in a second. Figure 5a shows the indexing scalability with different quadtree node

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:19

 0
 5

 10
 15
 20
 25
 30
 35
 40

100 200 400 800 1000 2000

M
e

m
o

ry
 F

o
o

tp
ri
n

t
(G

B
)

Node Size

SSQ

SQ

TCSSQ

(a) Varying Node Sizes

 5

 10

 15

 20

 25

 30

 35

 40

20 40 60 80 100

M
e

m
o

ry
 F

o
o

tp
ri
n

t
(G

B
)

Dataset Size (millions)

SSQ

SQ

TCSSQ

(b) Varying Dataset Sizes

Fig. 6. Memory Footprint

size. 𝑆𝑄 can digest on average 250K objects/sec which is the highest among the three indexes. 𝑆𝑆𝑄

digestion rate is reduced to 210K objects/sec, due to incorporating social information in the index

structure, which still maintains 84% of 𝑆𝑄 digestion rate and digests an order of magnitude higher

than Twitter rate. On the other hand, 𝑇𝐶𝑆𝑆𝑄 has the lowest digestion rate of 100K objects/sec

due to the overhead of summarizing all sub-tree social information. It is though noticeable that

different node sizes have no real impact on the digestion rate.

Figure 5b shows the impact of different dataset sizes on the digestion rate. The digestion rate

is slightly decreasing when the number of objects increases for all indexes due to the larger

index contents, which makes it heavier to digest new data. However, the overall reduction is still

acceptable. For example, 𝑆𝑆𝑄 digests 220K objects/sec with 20 millions objects and 190K objects/sec

with 100 millions objects, which represents 14% reduction of digestion rate and both are still an

order of magnitude higher than Twitter rate.

6.3 Memory Consumption

Figure 6 shows the memory consumption for the three indexes with varying the quadtree node size

(Figure 6a) and varying dataset size (Figure 6b). Varying node size in Figure 6a does not significantly

affect the memory consumption for all the three indexes despite an order of magnitude higher node

capacity, which leads to significantly less number of index nodes. This shows the minor effect of

the index nodes’ memory on storage overhead as the majority of memory consumed for data that

is being stored inside the nodes. 𝑆𝑄 consumes the lowest memory, 22 GB, while 𝑆𝑆𝑄 consumes a

slightly higher memory resource, 24 GB, since the index structure keeps more information about

the social aspect. 𝑇𝐶𝑆𝑆𝑄 consumes the highest memory resource, 33 GB, with different index node

sizes. The additional social information of 𝑇𝐶𝑆𝑆𝑄 index structure increases the memory overhead

by ∼50% of the baseline 𝑆𝑄 index.

Varying the dataset size in Figure 6b affects the memory resources to be increased linearly for

all alternatives. For example, 𝑆𝑆𝑄 consumes 7 GB when the dataset size is 20 million objects, and

when the dataset size triple, 𝑆𝑆𝑄 consumes 19 GB. The same pattern repeats for 𝑆𝑄 and 𝑇𝐶𝑆𝑆𝑄 ,

where always 𝑇𝐶𝑆𝑆𝑄 still consumes the largest memory. This also confirms that the majority of

the memory resources are being consumed by the data that resides in the main-memory.

6.4 Query Evaluation

This section evaluates the query processing of the Spatial-Social Temporal Range Query (SSTRQ)

and the Spatial-Social Temporal kNN Query (SSTkQ), called for short range query and kNN query,

respectively. The query latency is presented as an average and percentiles, e.g., the 99% percentile

latency that shows the maximum query latency for 99% of the queries.

(a) SSTRQ Query Evaluation:

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:20 A. Almaslukh, et al.

 0

 50

 100

 150

 200

 250

 300

 350

10 30 100 500 1000

Q
u
e
ry

 L
a
te

c
n
y
 (

m
s
e
c
)

k

SSQ

SQ

TCSSQ

(a) AverageQuery Latency

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(b) 99𝑡ℎ Percentile

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(c) 95𝑡ℎ Percentile

 0

 100

 200

 300

 400

 500

 600

 700

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(d) 90𝑡ℎ Percentile

 0

 100

 200

 300

 400

 500

 600

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(e) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 100 500 1000

P
e

rc
e

n
ta

g
e

 (
%

)

k

Query Workload

(f) Social Expansion

Fig. 7. Range query latency with varying 𝑘

Effect of varying 𝑘 . Figure 7 shows the effect of varying 𝑘 on range query latency, both

in-memory and disk processing. Figure 7a shows in-memory range query latency measured in

milli-seconds (msec) for all alternatives. Generally, query latency is increasing with increasing 𝑘

due to the more processing needed for getting larger answer. However, the latency of 𝑇𝐶𝑆𝑆𝑄 is

significantly higher than the other two alternatives. After monitoring the statistics, we find that

the average number of tree nodes visited per query is 175 in our query workload. 𝑇𝐶𝑆𝑆𝑄 checks

whether the friends list 𝐶.𝐿𝑓 of each visited node 𝐶 intersects with the friends list 𝑢.𝐿𝑓 of the

given user 𝑢 and prune 55 nodes on average. Although the search space is reduced by more than

1/4 through social pruning, the social pruning leads to great overhead and causes the 𝑇𝐶𝑆𝑆𝑄 to

have much higher latency than the other two alternatives. As a result, even though this process is

effective in disk-based processing of traditional queries, in streaming environments, this process

increases the real-time overhead tremendously. As shown in the figure, our proposed 𝑆𝑆𝑄 index

performs the best with 2 msec latency at 𝑘=10, and it is increasing to 25 msec at 𝑘=1000. 𝑆𝑆𝑄

index combines both social-aware pruning and lightweight structure that is suitable for real-time

environments. 𝑆𝑄 index has no social awareness, so it is three times slower than 𝑆𝑆𝑄 index on

average. It starts with 10 msec latency at 𝑘=10, and it is increasing steadily to reach 65 msec

at 𝑘=1000. The superiority of 𝑆𝑆𝑄 index is further confirmed by measuring the 99th, 95th, 90th

percentile latency as depicted in Figures 7b, 7c, and 7d, respectively. 𝑆𝑆𝑄 constantly performs the

best in terms of query latency, and the advantage is even obvious in Figures 7c and 7d.

Figure 7e shows the disk overhead to retrieve the users’ friends or friends of friends in order

to retrieve the 𝑘 objects for the given user. All indexes need to access the disk to fetch the social

data. Therefore, all alternatives perform similarly, with increasing latency with larger 𝑘 value, as

all indexes use the same disk-based social structure. The increase with 𝑘 value is explained by the

percentage of the query being expanded beyond the first social level (direct friends) as shown in

Figure 7f. The larger 𝑘 , the less probability that direct friends can satisfy the query answer, and

hence expansion to higher social levels is necessary.

Effect of varying query range. Figure 8a shows the average query latency with varying query

range from 10 km to 300 km. 𝑆𝑆𝑄 index still performs the best among the other alternatives. Both

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:21

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SQ

TCSSQ

(a) AverageQuery Latency

 0

 500

 1000

 1500

 2000

 2500

 3000

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SQ

TCSSQ

(b) 99𝑡ℎ Percentile

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SQ

TCSSQ

(c) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 50 100 300

P
e

rc
e

n
ta

g
e

 (
%

)
Range (km)

Query Workload

(d) Social Expansion

Fig. 8. Range query latency with varying range query

𝑆𝑄 and 𝑇𝐶𝑆𝑆𝑄 indexes have an increasing latency with the increasing range due to the larger

search space. On the contrary, the query latency of 𝑆𝑆𝑄 drops with increasing range. As 𝑆𝑆𝑄

employs both temporal and social pruning; the more cells the more recent initial answer, which

in turn produces a tight temporal upper bound. The temporal pruning uses this tight bound to

terminate processing very early in many cells. In addition, the social pruning enables to process

only the posting lists that are socially connected to the query issuer, which prunes a significant

number of objects that do not contribute to the answer. At 10 km range, 𝑆𝑆𝑄 processes queries with

an average of 27 msec latency, while at the range of 300 km, this latency drops four times to 7 msec.

On another hand, 𝑆𝑄 has almost a stable performance with varying ranges as it only employs

the temporal pruning, while 𝑇𝐶𝑆𝑆𝑄 performs the worst despite it employs both the temporal and

social pruning for the same reasons that are discussed before. Figure 8b shows the 99th percentile

latency, which confirms the superiority of 𝑆𝑆𝑄 over all alternatives.

Figures 8c and 8d show the correlation between disk overhead and the percentage of queries

being expanded to higher social levels. Clearly, the disk overhead decreases when the expansion

percentage decreases. With small spatial ranges, the probability to retrieve 𝑘 objects from direct

friends is small, and hence the majority of queries expand. This significantly decreases with

increasing range.

Effect of varying 𝑇𝑀𝑎𝑥 .

Figure 9 illustrates the effect of varying 𝑇𝑀𝑎𝑥 on range query latency, both in-memory and disk

processing. Figure 9f shows the percentage of queries being expanded to higher social levels with

varying𝑇𝑀𝑎𝑥 from 1 day to 5 days. Obviously, the expansion percentage decreases with the increase

of the 𝑇𝑀𝑎𝑥 . When 𝑇𝑀𝑎𝑥 increases, more data objects become available in the main memory and

the number of objects associated with each user increases on average. As a result, it is easier to

retrieve all the k results from the friends with social distance 1 without expanding to higher social

levels. Due to the reduction of the expansion to higher social levels when 𝑇𝑀𝑎𝑥 increases, the disk

overhead is also reduced, as shown in Figure 9e. The correlation between disk overhead and the

social expansion percentage is similar to the previous discussions. Figure 9a shows the average

query latency with varying 𝑇𝑀𝑎𝑥 . 𝑆𝑆𝑄 still performs the best among the alternatives and 𝑇𝐶𝑆𝑆𝑄 is

the worst when 𝑇𝑀𝑎𝑥 is 1 day to 4 days for the same reasons that are discussed before. Both 𝑆𝑆𝑄

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:22 A. Almaslukh, et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5Q
u
e
ry

 L
a
te

c
n
y
 (

m
s
e
c
)

TMax (day)

SSQ

SQ

TCSSQ

(a) AverageQuery Latency

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(b) 99𝑡ℎ Percentile

 0

 50

 100

 150

 200

 250

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(c) 95𝑡ℎ Percentile

 0

 50

 100

 150

 200

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(d) 90𝑡ℎ Percentile

 0

 50

 100

 150

 200

 250

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(e) Disk Overhead

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5

P
e

rc
e

n
ta

g
e

 (
%

)

TMax (day)

Query Workload

(f) Social Expansion

Fig. 9. Range query latency with varying 𝑇𝑀𝑎𝑥

and𝑇𝐶𝑆𝑆𝑄 benefit from the reduction of the social expansion rate as𝑇𝑀𝑎𝑥 increases. The overhead

for loading the social information to perform the search on higher social levels is largely reduced

and both alternatives have a decreasing average query latency when 𝑇𝑀𝑎𝑥 increases. However, the

average query latency increases for 𝑆𝑄 . When more objects become available as 𝑇𝑀𝑎𝑥 increases,

the search space for 𝑆𝑄 is increased because 𝑆𝑄 cannot perform the social pruning as the 𝑆𝑆𝑄 and

𝑇𝐶𝑆𝑆𝑄 do. The increase in the cost by the refinement procedure for 𝑆𝑄 is more significant than

the benefit introduced by the reduced social expansion rate. As a result, the average query latency

increases for 𝑆𝑄 and it performs worse than 𝑇𝐶𝑆𝑆𝑄 when 𝑇𝑀𝑎𝑥 is set to 5 days. The 99th, 95th,

and 90th percentile query latency for the three alternatives in Figure 9b, 9c, and 9d show the same

trend as the average query latency.

(b) SSTkQ Query Evaluation:

Effect of varying 𝑘 . Figure 10a shows the in-memory query latency with varying 𝑘 . 𝑆𝑆𝑄 index

performs consistently better than the other alternatives due to its three-dimensional pruning on

temporal, spatial, and social dimensions. At 𝑘=10, 𝑆𝑆𝑄 has an average query latency of 9 msec,

which increases with larger 𝑘 to 25 msec at 𝑘=1000. This is fifty times better than𝑇𝐶𝑆𝑆𝑄 due to its

social pruning overhead that is not suitable for real-time processing. On the contrary, 𝑆𝑄 is slower

three times compared to 𝑆𝑆𝑄 due to lack of social pruning. Such behavior remains the same for

the 99th percentile of queries, as shown in Figure 10b, which shows the superiority of 𝑆𝑆𝑄 in all

cases. For disk overhead, all alternative incur almost the same latency as shown in Figure 10c due

to using the same disk structure. Also, the percentage of socially expanded kNN queries, depicted

in Figure 10d, are much less than range queries since range queries are restricted by a spatial range,

which obligates to expand the search to higher social levels often.

Effect of varying𝛼 . Figure 11a shows the effect of varying𝛼 that controls the relative importance

of the spatial and temporal scores in the spatio-temporal distance. As the figure shows, the 𝛼 value

has a great impact on the query performance, especially for𝑇𝐶𝑆𝑆𝑄 index. When only the temporal

score is important (at 𝛼=0), all indexes hit their highest query latency because the query processor

has to cover a larger search region. With increasing 𝛼 , the query latency gradually drops to the

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:23

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(a) AverageQuery Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(b) 99𝑡ℎ Percentile

 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(c) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 100 500 1000

P
e

rc
e

n
ta

g
e

 (
%

)
k

Query Workload

(d) Social Expansion

Fig. 10. kNN latency with varying 𝑘

 0

 50

 100

 150

 200

 250

0 .2 .4 .6 .8 1

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

α

SSQ

SQ

TCSSQ

(a) AverageQuery Latency

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

0 .2 .4 .6 .8 1

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

α

SSQ

SQ

TCSSQ

(b) 99𝑡ℎ Percentile

Fig. 11. kNN latency with varying 𝛼

lowest point for all the indexes when only the spatial score is important (at 𝛼=1). For all values of

𝛼 , 𝑆𝑆𝑄 performs the best, while 𝑇𝐶𝑆𝑆𝑄 performs the worst up to 𝛼 < 0.6. Then, 𝑇𝐶𝑆𝑆𝑄 performs

better than 𝑆𝑄 after 𝛼 ≥ 0.6. The key reason behind this behavior is the number of cells that need

to be processed is huge with small 𝛼 , and 𝑇𝐶𝑆𝑆𝑄 is very sensitive to the number of cells as it

checks for overlap with long user lists. This number decreases as the query region shrinks due

to the importance shifts to the spatial closeness. Figure 11b confirms similar behavior and 𝑆𝑆𝑄

superiority on the 99th percentile of queries. For different values of 𝛼 , the disk overhead is almost

stable (approximately 80 msec) for all alternatives except with 𝛼=0 where very few queries expand

the search space, which makes the disk overhead very minimal with a few milliseconds.

Effect of varying 𝑇𝑀𝑎𝑥 . Figure 12a shows the average in-memory query latency with varying

𝑇𝑀𝑎𝑥 . As the figure shows, 𝑆𝑆𝑄 performs better than the other alternatives while 𝑇𝐶𝑆𝑆𝑄 performs

the worst. Query latency tend to increase for all three alternatives. As𝑇𝑀𝑎𝑥 increases, the density of

the object increase both spatially and temporally. Although all three alternatives adopt the spatial

and temporal pruning technique and the search space is reduced to a large extent, more objects are

checked as the density of the objects increases. As a result, the average in-memory query latency

increases when 𝑇𝑀𝑎𝑥 increases. The 99th percentile query latency shown in Figure 12b confirms a

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:24 A. Almaslukh, et al.

 0

 50

 100

 150

 200

 250

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(a) AverageQuery Latency

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(b) 99𝑡ℎ Percentile

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

TMax (day)

SSQ

SQ

TCSSQ

(c) Disk Overhead

 0

 5

 10

 15

 20

1 2 3 4 5

P
e

rc
e

n
ta

g
e

 (
%

)

TMax (day)

Query Workload

(d) Social Expansion

Fig. 12. kNN latency with varying 𝑇𝑀𝑎𝑥

140
160
180
200
220
240
260
280
300
320

10
0

20
0

40
0

80
0

10
00

20
00D

ig
e

s
ti
o

n
 R

a
te

 (
K

 o
b

j/
s
e

c
)

Node Size

SSQ

SSQ
KW

SSQ
4d

SQ

(a) Digestion Rate

 20

 25

 30

 35

 40

 45

10
0

20
0

40
0

80
0

10
00

20
00

M
e

m
o

ry
 F

o
o

tp
ri
n

t
(G

B
)

Node Size

SSQ

SSQ
KW

SSQ
4d

SQ

(b) Memory Footprint

Fig. 13. Indexing Overhead

similar trend. Figure 12c shows that the disk overhead is stable for all alternatives but the latency

caused by the disk overhead is not very low. This is because there are 0.8% to 0.9% failed queries for

all values of 𝑇𝑀𝑎𝑥 . In these rare cases, the social network stored on the disk is loaded for multiple

times until the queries fail after exploiting the search space. However, because there are only a few

failed queries, the percent of queries that are expanded to higher social levels is low for all 𝑇𝑀𝑎𝑥
values according to Figure 12d.

6.5 Keyword Search Evaluation

This section presents evaluation of geo-social keyword search on real-time indexing (𝑆𝑄 , 𝑆𝑆𝑄 ,

SSQ𝐾𝑊 , and SSQ4𝑑) and query processing of the keyword-extended queries SSTRQ𝐾𝑊 and

SSTkQ𝐾𝑊 as discussed in previous sections. The evaluation focuses on the impact of the key-

words query on the digestion rate, memory consumption, and the query latency.

Digestion Rate and Memory Consumption. We evaluate the digestion rate and the memory

consumption for varying node sizes for geo-social keyword indexes. Figure 13a shows the digestion

rate for the four indexes. Clearly, 𝑆𝑄 and 𝑆𝑆𝑄 digest more objects than SSQ𝐾𝑊 and SSQ4𝑑 since

the former indexes do not take into account the overhead of indexing keywords. Although, the

overhead of indexing keywords is still acceptable for real-time application as both indexes can digest

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:25

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SSQ
KW

SSQ
4d

SQ

(a) AverageQuery Latency

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SSQ
KW

SSQ
4d

SQ

(b) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 50 100 300

P
e

rc
e

n
ta

g
e

 (
%

)

Range (km)

Query Workload

(c) Social Expansion

Fig. 14. Range query latency with varying range query

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Number of Keyword

SSQ

SSQ
KW

SSQ
4d

SQ

(a) AverageQuery Latency

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 (
%

)

Number of Keyword

Query Workload

(b) Social Expansion

Fig. 15. Range query latency with varying no. of keywords

more than 160K and 170K objects/sec on average for SSQ𝐾𝑊 and SSQ4𝑑 , respectively. Figure 13b

shows the memory consumption of the indexes. SSQ𝐾𝑊 and SSQ4𝑑 consume the highest memory

resources with 37 GB and 33 GB, respectively. The node size does not significantly affect the

memory consumption as the data dominates the memory resources rather than the underlying

indexing structure.

Query Evaluation. We evaluate query processing of both extended queries using different

indexes.

(a) SSTRQ𝐾𝑊 Query Evaluation: Figure 14 shows the the performance of the four indexes for

range query with keywords varying the spatial ranges. Figure 14a shows that SSQ𝐾𝑊 performs

slightly better than the other alternatives while 𝑆𝑄 performs the worst since the 𝑆𝑄 index is not

aware of neither the social aspect nor the keyword dimension. This becomes obvious when the

spatial range is increasing where query latency of 𝑆𝑄 is increasing significantly while the other are

steadily decreasing. Both 𝑆𝑆𝑄 and SSQ4𝑑 perform about the same with varying spatial ranges in

spite of the fact that the latter is equipped with the keywords indexing. Nevertheless, the social

filtering and the temporal pruning are the dominate factors for pruning. Figure 14b and 14c can

draw the same conclusion as Section 6.4 for range query processing without keyword. Figure 15

shows the impact of the number of keywords on the range query. Both Figure 15a and 15b show a

general trend when the number of keyword is increasing, the query latency is decreasing along

with the social expansion. Therefore, the query processor can find the candidate objects quickly

with increasing number of keywords.

(b) SSTkQ𝐾𝑊 Query Evaluation: Figure 16 depicts the 𝑘NN query latency performance for the

geo-social keyword indexes. Clearly, the indexes that are equipped with inverted keyword indexes

preform significantly better than the indexes that are not aware of the keyword dimension as

shown in Figure 16a. The difference becomes even obvious when the 𝑘 value is increasing. More

specifically, SSQ𝐾𝑊 and SSQ4𝑑 perform two times better on average than 𝑆𝑄 and 𝑆𝑆𝑄 . Thus, the

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:26 A. Almaslukh, et al.

 0

 100

 200

 300

 400

 500

 600

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SSQ
KW

SSQ
4d

SQ

(a) Average query latency

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SSQ
KW

SSQ
4d

SQ

(b) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 100 500 1000

P
e

rc
e

n
ta

g
e

 (
%

)

k

Query Workload

(c) Social Expansion

Fig. 16. kNN latency with varying 𝑘

 100

 200

 300

 400

 500

1 2 3 4 5 6

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Number of Keyword

SSQ

SSQ
KW

SSQ
4d

SQ

(a) Average query latency

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 (
%

)

Number of Keyword

Query Workload

(b) Social Expansion

Fig. 17. kNN latency with varying no. of Keywords

keywords indexing effect is very obvious in the query processing as it gives an edge over the

indexes that do not support the keywords indexing. For the disk overhead and social expansion,

the same conclusions can be drawn as explained in Section 6.4 as shown in Figure 16b and 16c.

Figure 17 shows the impact of the number of keywords on the 𝑘NN query. Both Figure 17a and 17b

show a similar pattern as the range query with increasing number of keywords.

7 CONCLUSION

This paper defined temporal geo-social queries on streaming data as extensions for the fundamental

spatial 𝑘-nearest neighbor (kNN) and range queries. It further extended these queries to support

the keyword search feature. To address these queries, we proposed a generic indexing framework

for real-time geo-social data that digests and indexes highly-dynamic data in main-memory and

organizes stable social information in a disk-based structure. Based on this framework, we proposed

spatial-social quadtree (SSQ) index and two keyword-aware variants that are lightweight to handle

real-time data efficiently, while providing scalable query response for both kNN and range queries.

In addition, we adopted two baseline index structures based on the proposed indexing framework.

The experimental evaluation on real datasets has clearly shown the superiority of our proposed

indexes for both real-time indexing and query processing. For keyword search, SSQ index and its

keyword-aware variants provide better performance on streaming data compared to the baseline

SQ index. Meahwhile, SSQ maintains a light indexing by using the essential indexing components

in a novel way to handle streaming data. We see the novelty in the design of the SSQ index and

its variants and consider this as the main contribution of this paper. SSQ performs worse than

its keyword extensions for query latency while performs better for indexing overhead. However,

the querying loss in SSQ for keyword predicates still makes it reasonable for supporting keyword

predicates without extra indexing overhead. On the other hand, the indexing overhead of its

keyword variants is still reasonable to support high-velocity streaming data. This shows the impact

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

Geo-Social Personalized Keyword Search Over Streaming Data 0:27

of the high-level indexing framework that effectively distinguishes dynamic data from stable data

and enables various instantiations to perform efficiently in streaming environments.

REFERENCES

[1] Hamed Abdelhaq, Christian Sengstock, and Michael Gertz. Eventweet: Online Localized Event Detection from Twitter.

VLDB, 2013.

[2] Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias, and George J Fakas. Geo-social Keyword Search. In SSTD,

2015.

[3] Abdulaziz Almaslukh and Amr Magdy. Evaluating Spatial-keyword Queries on Streaming Data. In SIGSPATIAL, 2018.

[4] Abdulaziz Almaslukh and Amr Magdy. Temporal geo-social personalized search over streaming data. In Proceedings of

the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 189ś198,

2019.

[5] Walid G Aref and Hanan Samet. Efficient Processing of Window Queries in the Pyramid Data Structure. In SIGACT-

SIGMOD-SIGART symposium on Principles of database systems, 1990.

[6] Nikos Armenatzoglou, Ritesh Ahuja, and Dimitris Papadias. Geo-social Ranking: Functions and Query Processing.

VLDB Journal, 2015.

[7] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. A General Gramework for Geo-social Query

Processing. VLDB, 2013.

[8] Jie Bao, Mohamed F Mokbel, and Chi-Yin Chow. Geofeed: A Location Aware News Feed System. In ICDE, 2012.

[9] Jie Bao, Yu Zheng, and Mohamed F Mokbel. Location-based and Preference-aware Recommendation using Sparse

Geo-social Networking Data. In GIS, 2012.

[10] Ceren Budak, Theodore Georgiou, Divyakant Agrawal, and Amr El Abbadi. Geoscope: Online Detection of Geo-

correlated Information Trends in Social Networks. VLDB, 2013.

[11] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross Maciejewski, David S Ebert, and Thomas Ertl. Spatiotem-

poral Social Media Analytics for Abnormal Event Detection and Examination Using Seasonal-trend Decomposition. In

IEEE VAST, 2012.

[12] Lisi Chen, Gao Cong, and Xin Cao. An Efficient Query Indexing Mechanism for Filtering Geo-textual Data. In SIGMOD,

2013.

[13] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. Temporal Spatial-keyword Top-k Publish/Subscribe. In ICDE, 2015.

[14] Lisi Chen, Yan Cui, Gao Cong, and Xin Cao. SOPS: A System for Efficient Processing of Spatial-keyword Pub-

lish/Subscribe. PVLDB, 7(13), 2014.

[15] Gao Cong, Christian S Jensen, and Dingming Wu. Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects.

VLDB, 2009.

[16] Tobias Emrich, Maximilian Franzke, Nikos Mamoulis, Matthias Renz, and Andreas Züfle. Geo-social Skyline Queries.

In DASFAA, 2014.

[17] The Top 20 Valuable Facebook Statistics. https://zephoria.com/top-15-valuable-facebook-statistics/, 2019. May 2019.

[18] Wei Feng, Chao Zhang, Wei Zhang, Jiawei Han, Jianyong Wang, Charu Aggarwal, and Jianbin Huang. STREAMCUBE:

Hierarchical Spatio-temporal Hashtag Clustering for Event Exploration over the Twitter Stream. In ICDE, 2015.

[19] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J Smola, and Kostas Tsioutsiouliklis. Discovering Geograph-

ical Topics in the Twitter Stream. InWWW, 2012.

[20] Desislava Hristova, Matthew J Williams, Mirco Musolesi, Pietro Panzarasa, and Cecilia Mascolo. Measuring Urban

Social Diversity Using Interconnected Geo-social Networks. In WWW, 2016.

[21] Qian Huang and Yu Liu. On Geo-social Network Services. In 2009 17th International Conference on Geoinformatics,

2009.

[22] Internet Live Stats 2019. http://internetlivestats.com/, 2019. May 2019.

[23] Jinling Jiang, Hua Lu, Bin Yang, and Bin Cui. Finding Top-k Local Users in Geo-tagged Social Media Data. In ICDE,

2015.

[24] Ryong Lee and Kazutoshi Sumiya. Measuring Geographical Regularities of Crowd Behaviors for Twitter-based

Geo-social Event Detection. In SIGSPATIAL LSBN Workshop, 2010.

[25] Guoliang Li, Yang Wang, Ting Wang, and Jianhua Feng. Location-aware Publish/Subscribe. In KDD, 2013.

[26] Yafei Li, Rui Chen, Jianliang Xu, Qiao Huang, Haibo Hu, and Byron Choi. Geo-social k-cover Group Queries for

Collaborative Spatial Computing. TKDE, 2015.

[27] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan. Real Time Personalized Search on Social Networks. In ICDE,

2015.

[28] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. Discovering Spatio-temporal Causal Interactions in

Traffic Data Streams. In SIGKDD, 2011.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:28 A. Almaslukh, et al.

[29] Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang, Yinan Jing, and Kunjie Chen. Circle of Friend Query in Geo-social

Networks. In DASFAA, 2012.

[30] Amr Magdy, Louai Alarabi, Saif Al-Harthi, Mashaal Musleh, Thanaa M Ghanem, Sohaib Ghani, and Mohamed F

Mokbel. Taghreed: A System for Querying, Analyzing, and Visualizing Geotagged Microblogs. In SIGSPATIAL, 2014.

[31] Amr Magdy, Rami Alghamdi, and Mohamed F. Mokbel. On Main-memory Flushing in Microblogs Data Management

Systems. In ICDE, 2016.

[32] Amr Magdy, Mohamed F Mokbel, Sameh Elnikety, Suman Nath, and Yuxiong He. Mercury: A Memory-constrained

Spatio-temporal Real-time Search on Microblogs. In ICDE, 2014.

[33] Amr Magdy, Mohamed F Mokbel, Sameh Elnikety, Suman Nath, and Yuxiong He. Venus: Scalable real-time spatial

queries onmicroblogs with adaptive load shedding. IEEE Transactions on Knowledge and Data Engineering, 28(2):356ś370,

2015.

[34] Ahmed R Mahmood, Ahmed M Aly, and Walid G Aref. FAST: Frequency-Aware Indexing for Spatio-Textual Data

Streams. In ICDE, 2018.

[35] Shunya Nishio, Daichi Amagata, and Takahiro Hara. Geo-Social Keyword Top-k Data Monitoring over Sliding Window.

In DEXA, 2017.

[36] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by

Social Sensors. InWWW, 2010.

[37] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman, and Jon Sperling. TwitterStand:

News in Tweets. In SIGSPATIAL, 2009.

[38] Ammar Sohail, Muhammad Aamir Cheema, and David Taniar. Social-Aware Spatial Top-k and Skyline Queries. The

Computer Journal, 2018.

[39] Ammar Sohail, GhulamMurtaza, and David Taniar. Retrieving Top-k Famous Places in Location-based Social Networks.

In Australasian Database Conference, 2016.

[40] Panagiotis Symeonidis, Alexis Papadimitriou, Yannis Manolopoulos, Pinar Senkul, and Ismail Toroslu. Geo-social

Recommendations Based on Incremental Tensor Reduction and Local Path Traversal. In SIGSPATIAL International

Workshop on Location-Based Social Networks, 2011.

[41] Twitter by the Numbers: Stats, Demographics & Fun Facts. https://www.omnicoreagency.com/twitter-statistics/, 2019.

[42] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. Ap-tree: Efficiently Support Continuous

Spatial-keyword Queries over Stream. In ICDE, 2015.

[43] Hong Wei, Jagan Sankaranarayanan, and Hanan Samet. Enhancing Local Live Tweet Stream to Detect News. In

SIGSPATIAL LENS Workshop, 2018.

[44] Dingming Wu, Yafei Li, Byron Choi, and Jianliang Xu. Social-aware Top-k Spatial Keyword Search. In MDM, 2014.

[45] De-Nian Yang, Chih-Ya Shen, Wang-Chien Lee, and Ming-Syan Chen. On Socio-spatial Group Query for Location-based

Social Networks. In SIGKDD, 2012.

[46] Hongzhi Yin, ZhitingHu, Xiaofang Zhou, HaoWang, Kai Zheng, Quoc Viet HungNguyen, and Shazia Sadiq. Discovering

Interpretable Geo-social Communities for User Behavior Prediction. In ICDE, 2016.

[47] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann. Time-aware Point-of-Interest

recommendation. In SIGIR, 2013.

[48] Jia-Dong Zhang and Chi-Yin Chow. iGSLR: Personalized Geo-social Location Recommendation: a Kernel Density

Estimation Approach. In SIGSPATIAL, 2013.

[49] Jia-Dong Zhang and Chi-Yin Chow. GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for

Point-of-Interest Recommendations. In SIGIR, 2015.

[50] Jingwen Zhao, Yunjun Gao, Gang Chen, Christian S Jensen, Rui Chen, and Deng Cai. Reverse Top-k Geo-social

Keyword Queries in Road Networks. In ICDE, 2017.

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Geo-Social Real-time Indexing
	4.1 Indexing Framework
	4.2 SSQ Index
	4.3 Baseline Indexes
	4.4 Keyword Indexing

	5 Query Processing
	5.1 Query Processing Framework
	5.2 SSTRQ Query Processing
	5.3 SSTkQ Query Processing
	5.4 SSTRQKW Query Processing
	5.5 SSTkQKW Query Processing

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Indexing Scalability
	6.3 Memory Consumption
	6.4 Query Evaluation
	6.5 Keyword Search Evaluation

	7 Conclusion
	References

