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Abstract

Given a sufficiently large amount of labeled data, the non-convex low-rank matrix
recovery problem contains no spurious local minima, so a local optimization
algorithm is guaranteed to converge to a global minimum starting from any initial
guess. However, the actual amount of data needed by this theoretical guarantee is
very pessimistic, as it must prevent spurious local minima from existing anywhere,
including at adversarial locations. In contrast, prior work based on good initial
guesses have more realistic data requirements, because they allow spurious local
minima to exist outside of a neighborhood of the solution. In this paper, we quantify
the relationship between the quality of the initial guess and the corresponding
reduction in data requirements. Using the restricted isometry constant as a surrogate
for sample complexity, we compute a sharp “threshold” number of samples needed
to prevent each specific point on the optimization landscape from becoming a
spurious local minimum. Optimizing the threshold over regions of the landscape,
we see that for initial points around the ground truth, a linear improvement in the
quality of the initial guess amounts to a constant factor improvement in the sample
complexity.

1 Introduction

A perennial challenge in non-convex optimization is the possible existence of bad or spurious critical
points and local minima, which can cause a local optimization algorithm like gradient descent to slow
down or get stuck. Several recent lines of work showed that the effects of non-convexity can be tamed
through a large amount of diverse and high quality training data [17, 1, 9, 3, 18, 12]. Concretely,
these authors showed that, for classes of problems based on random sampling, spurious critical points
and local minima become progressively less likely to exist with the addition of each new sample.
After a sufficiently large number of samples, all spurious local minima are eliminated, so any local
optimization algorithm is guaranteed to converge to the globally optimal solution starting from an
arbitrary, possibly random initial guess.

This notion of a global guarantee—one that is valid starting from any initial point—is considerably
stronger than what is needed for empirical success to be observed [8]. For example, the existence of
a spurious local minimum may not pose an issue if gradient descent does not converge towards it.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
6.

06
91

5v
2 

 [c
s.L

G
]  

12
 N

ov
 2

02
0



However, a theoretical guarantee is no longer possible, as starting the algorithm from the spurious
local minimum would result in failure [22]. As a consequence, these global guarantees tend to
be pessimistic, because the number of samples must be sufficiently large to eliminate spurious
local minima everywhere, even at adversarial locations. By contrast, the weaker notion of a local
guarantee [11, 10, 15, 19, 5, 7, 20, 13]—one that is valid only for a specified set of initial points—is
naturally less conservative, as it allows spurious local minima to exist outside of the specified set.

In this paper, we provide a unifying view between the notions of the global and local guarantees
by quantifying the relationship between the sample complexity and the quality of the initial point.
We restrict our attention to the matrix sensing problem, which seeks to recover a rank-r positive
semidefinite matrixM∗ = ZZT ∈ Rn×n with Z ∈ Rn×r fromm sub-Gaussian linear measurements
of the form

b ≡ A(ZZT ) ≡ [〈A1,M
∗〉 · · · 〈Am,M∗〉]T (1)

by solving the following non-convex optimization problem:

min
X∈Rn×r

fA(X) ≡
∥∥A (XXT − ZZT

)∥∥2 =
m∑
i=1

(〈
Ai, XX

T
〉
− bi

)2
. (2)

We characterize a sharp “threshold” on the number of samples m needed to prevent each specific
point on the optimization landscape from becoming a spurious local minimum. While the threshold is
difficult to solve, we derive a lower-bound in closed-form based on spurious critical points, and show
that it constitutes a sharp lower-bound on the original threshold of interest. The lower-bound reveals
a simple geometric relationship: a point X is more likely to be a local minimum if the column spaces
of X and Z are close to orthogonal. Optimizing the closed-form lower-bound over regions of the
landscape, we show that for initial points close to the ground truth, a constant factor improvement of
the initial point amounts to a constant factor reduction in the number of samples needed to guarantee
recovery.

2 Related Work

Local Guarantees. The earliest work on exact guarantees for non-convex optimization focused
on generating a good initial guess within a local region of attraction. For instance, in [21, 24],
the authors showed that when A satisfies (δ, 6r)-RIP with a constant δ ≤ 1/10, and there exists
a initial point sufficiently close to the ground truth, then gradient descent starting from this initial
point has a linear convergence rate. The typical strategy to find such the initial point is spectral
initialization [11, 10, 21, 19, 5, 14, 6]: using the singular value decomposition on a surrogate matrix
to find low-rank factors that are close to the ground truth.

In this paper, we focus on the trade-off between the quality of an initial point and the number of
samples needed to prevent the existence of spurious local minima, while sidestepping the question of
how it is found. We note, however, that the number of samples needed to find an ε-good initial guess
(e.g. via spectral initialization) forms an interesting secondary trade-off. It remains a future work to
study the interactions between these two points.

Global Guarantees. Recent work focused on establishing a global guarantee that is independent of
the initial guess [17, 1, 9, 3, 18, 12]. For our purposes, Bhojanapalli et al. [2] showed that RIP with
δ2r < 1/5 eliminates all spurious local minima, while Zhang et al. [23] refined this to δ2r < 1/2
for the rank-1 case, and showed that this is both and necessary and sufficient. This paper is inspired
by proof techniques in the latter paper; an important contribution of our paper is generalizing their
rank-1 techniques to accommodate for matrices of arbitrary rank.

3 Our Approach: Threshold RIP Constant

Previous work that studied the global optimization landscape of problem (2) typically relied on the
restricted isometry property (RIP) of A. It is now well-known that if the measurement operator A
satisfies the restricted isometry property with a sufficiently small constant δ < 1/5 then problem (2)
contains no spurious local minima; see Bhojanapalli et al. [2].
Definition 1 (δ-RIP). Let A : Rn×n → Rm be a linear measurement operator. We say that A
satisfies the δ-restricted isometry property (or simply δ-RIP) if satisfies the following inequality

(1− δ)‖M‖2F ≤ ‖A(M)‖2 ≤ (1 + δ)‖M‖2F ∀M ∈M2r
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whereM2r = {X ∈ Rn×n : rank(X) ≤ 2r} denotes the set of rank-2r matrices. The RIP constant
of A is the smallest value of δ such that the inequality above holds.

Let δ ∈ [0, 1) denote the RIP constant of A. It is helpful to view δ as a surrogate for the number of
measurements m ≥ 0, with a large value of δ corresponding a smaller value of m and vice versa. For
a wide range of sub-Gaussian measurement ensembles, if m ≥ C0nr/δ

2 where C0 is an absolute
constant, then A satisfies δ-RIP with high probability [4, 16].

Take X ∈ Rn×r to be a spurious point such that XXT 6= ZZT . Our approach in this paper is to
define a threshold number of measurements that would be needed to preventX from becoming a local
minimum for problem (1). Viewing the RIP constant δ as a surrogate for the number of measurements
m, we follow a construction of Zhang et al. [23], and instead define a threshold δsoc(X) on the
RIP constant δ that would prevent X from becoming a local minimum for problem (1). Such a
construction must necessarily take into account all choices of A satisfying δ-RIP, including those
that adversarially target X , bending the optimization landscape into forming a region of convergence
around the point. On the other hand, such adversarial choices of A must necessarily be defeated for
a sufficiently small threshold on δ, as we already know that spurious local minima cannot exist for
δ < 1/5. The statement below makes this idea precise, and also extends it to a set of spurious points.

Definition 2 (Threshold for second-order condition). Fix Z ∈ Rn×r. For X ∈ Rn×r, if XXT =
ZZT , then define δsoc(X) = 1. Otherwise, if XXT 6= ZZT , then define

δsoc(X) ≡min
A
{δ : ∇fA(X) = 0, ∇2fA(X) � 0, A satisfies δ-RIP} (3)

where the minimum is taken over all linear measurements A : Rn×n → Rm. ForW ⊆ Rn×r, define
δsoc(W) = infX∈W δsoc(X).

If δ < δsoc(X), then X cannot be a spurious local minimum by construction, or it would contradict
the definition of δsoc(X) as the minimum value. By the same logic, if δ < δsoc(W), then no choice
of X ∈ W can be a spurious local minimum. In particular, it follows that δsoc(Rn×r) is the usual
global RIP threshold: if A satisfies δ-RIP with δ < δsoc(Rn×r), then fA(X) is guaranteed to admit
no spurious local minima. Starting a local optimization algorithm from any initial point guarantees
exact recovery of an X satisfying XXT = ZZT .

Now, suppose we are given an initial point X0. It is natural to measure the quality of X0 by its
relative error, as in ε = ‖XXT − ZZT ‖F /‖ZZT ‖F . If we define an ε-neighborhood of all points
with the same relative error

Bε = {X ∈ Rn×r, ‖XXT − ZZT ‖F ≤ ε‖ZZT ‖F } (4)

then it follows that δsoc(Bε) is an analogous local RIP threshold: if A satisfies δ-RIP with δ <
δsoc(Bε), then fA(X) is guaranteed to admit no spurious local minima over all X ∈ Bε. Starting
a local optimization algorithm from the initial point X0 guarantees either exact recovery of an X
satisfying XXT = ZZT , or termination at a strictly worse point X with ‖XXT − ZZT ‖F >
‖X0X

T
0 − ZZT ‖F . Imposing further restrictions on the algorithm prevents the latter scenario from

occurring (local strong convexity with gradient descent [19], strict decrements in the levels set
[10, 23, 8]), and so exact recovery is guaranteed.

The numerical difference between the global threshold δsoc(Rn×r) and the local threshold δsoc(Bε)
is precisely the number of samples that an ε-quality initial point X0 is worth, up to some conver-
sion factor. But two major difficulties remain in this line of reasoning. First, evaluating δsoc(X)
for some X ∈ Rn×r requires solving a minimization problem over the set of δ-RIP operators.
Second, evaluating δsoc(Bε) in turn requires minimizing δsoc(X) over all choices of X within an
ε-neighborhood. Regarding the first point, Zhang et al. [23] showed that δsoc(X) is the optimal
value to a convex optimization problem, and can therefore be evaluated to arbitrary precising using a
numerical algorithm. In the rank-1 case, they solved this convex optimization in closed-form, and use
it to optimize over all X ∈ Bε. Their closed-form solution spanned 9 journal pages, and evoked a
number of properties specific to the rank-1 case (for example, xyT + yxT = 0 implies x = 0 and
y = 0, but XY T + Y XT = 0 may hold for X 6= 0 and Y 6= 0). The authors noted that a similar
closed-form solution for the general rank-r case appeared exceedingly difficult. While overall proof
technique is sharp and descriptive, its applicability appears to be entirely limited to the rank-1 case.

3



Figure 1: This paper is motivated by two key insights. First, it is relatively straightforward
to solve δfoc(X) in closed-form (Theorem 8). Second, the resulting lower-bound δsoc(X) ≥
max{δfoc(X), δ∗} (δ∗ = 1/2 for rank 1 and δ∗ = 1/5 for rank > 1) is remarkably tight. This
means that max{δfoc(Bε), δ∗} is a tight lower bound for δfoc(Bε).

4 Main results

In this paper, we bypass the difficulty of deriving a closed-form solution for δsoc(X) altogether by
adopting a sharp lower-bound. This is based on two key insights. First, a spurious local minimum
must also be a spurious critical point, so the analogous threshold over critical points would give an
obvious lower-bound δfoc(X) ≤ δsoc(X).
Definition 3 (Threshold for first-order condition). Fix Z ∈ Rn×r. For X ∈ Rn×r, if XXT = ZZT ,
then define δfoc(X) = 1. Otherwise, if XXT 6= ZZT , then define

δfoc(X) ≡min
A
{δ : ∇fA(X) = 0, A satisfies δ-RIP}, (5)

where the minimum is taken over all linear measurements A : Rn×n → Rm. ForW ⊆ Rn×r, define
δfoc(W) = infX∈W δfoc(X).

Whereas the main obstacle in Zhang et al. [23] is the considerable difficulty in deriving a closed-form
solution for δsoc(X), we show in this paper that it is relatively straightforward to solve δfoc(X) in
closed-form, to result in a simple, geometric solution.
Theorem 4. Fix Z ∈ Rn×r. Given A satisfying δ-RIP and X ∈ Rn×r such that XXT 6= ZZT , we
have δfoc(X) = cos θ, where

sin θ = ‖ZT (I −XX†)Z‖F
/
‖XXT − ZZT ‖F . (6)

and X† denotes the pseudo-inverse of X . It follows that if δ < cos θ, then X is not a spurious critical
point of fA(X). If δ ≥ cos θ, then there exists some A? satisfying cos θ-RIP such that ∇fA(X) = 0.

The complete proof of Theorem 8 is given in Appendix A and a sketch is given in section 5. There is
a nice geometric interpretation: the exact value of δfoc(X) depends largely on the incidence angle
between the column space of X and the column space of Z. When the angle between XXT and
ZZT becomes small, the projection of XXT onto ZZT becomes large. As a result, sin θ becomes
small and cos θ becomes large. Therefore, Theorem 8 says that in regions where XXT and ZZT are
more aligned, fewer samples are required to prevent X from becoming a spurious critical point. In
regions where XXT and ZZT are more orthogonal, a larger sample complexity is needed. Indeed,
these are precisely the adversarial locations for which a large number of samples are required to
prevent spurious local minima from appearing.

The lower-bound δfoc(X) ≤ δsoc(X) appears conservative, because critical points should be much
more ubiquitous than local minima over a non-convex landscape. In particular, observe that δfoc(X) =
cos θ → 0 as X → 0, which makes sense because X = 0 is a saddle point for all choices of A. In
other words, for any regionW that contains 0, the lower-bound becomes trivial, as in δfoc(W) =
0 < δsoc(W). Our second insight here is that we must simultaneously have δsoc(X) ≥ 1/5 due to
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the global threshold of Bhojanapalli et al. [2] (or δsoc(x) ≥ 1/2 in the rank-1 case due to Zhang et
al. [23]). Extending this idea over sets yields the following lower-bound

δsoc(W) ≥ max{δfoc(W), δ∗} for allW ⊆ Rn×r, (7)

where δ∗ = 1/2 for r = 1 and δ∗ = 1/5 > 1. This bound is remarkably tight, as shown in Figure 1
for W = Bε over a range of ε. Explicitly solving the optimization δfoc(Bε) = infX∈Bε δfoc(X)
using Theorem 8 and substituting into (7) yields the following.1

Theorem 5. Let A satisfy δ-RIP. Then we have δfoc(Bε) >
√
1− Cε for all ε ≤ 1/C, where

C = ‖ZZT ‖F /σ2
min(Z). Hence, if

δ < max
{√

[1− Cε]+, δ∗
}

(8)

where δ∗ = 1/2 if r = 1 and δ∗ = 1/5 if r > 1, then fA(X) has no spurious critical point within an
ε-neighborhood of the solution:

∇fA(X) = 0, ‖XXT − ZZT ‖F ≤ ε‖ZZT ‖F ⇐⇒ XXT = ZZT . (9)

The complete proof of this theorem is in Appendix B. Theorem 5 says that the number of samples
needed to eliminate spurious critical points within an ε-neighborhood of the solution decreases
dramatically as ε becomes small. Given that m ≥ C0nr/δ

2 sub-Gaussian measurements are needed
to satisfy δ-RIP, we can translate Theorem 5 into the following sample complexity bound.
Corollary 6. Let A : Rn×n → Rm be a sub-Gaussian measurement ensemble. If

m ≥ min

{
1

[1− Cε]+
, 25

}
C0nr

then with high probability there are no spurious local minima within Bε.

The proof of Corollary 6 follows immediately from Theorem 5 combined with the direct relationship
between the RIP-property and the sample complexity for sub-Gaussian measurement ensembles. We
see that the relationship between the quality of the initial point and the number of samples saved
is essentially linear. Improving the quality of the initial point by a linear factor corresponds to a
linear decrease in sample complexity. Moreover, the rate of improvement depends on the constant C.
This shows that in the non-convex setup of matrix sensing, there is a significant difference between a
good initial point and a mediocre initial point. In the case that C = ‖ZZT ‖F /σ2

min(Z) is large, this
difference is even more pronounced.

5 Proof of Main Results

5.1 Notation and Definitions

We use ‖ · ‖ for the vector 2-norm and use ‖ · ‖F to denote the Frobenius norm of a matrix. For two
square matrices A and B, A � B means B −A is positive semidefinite. The trace of a square matrix
A is denoted by tr(A). The vectorization vec (A) is the length-mn vector obtained by stacking the
columns of A. Let A : Rn×n → Rm be a linear measurement operator, and let Z ∈ Rn×r be a fixed
ground truth matrix. We define A = [vec (A1), . . . , vec (Am)] as the matrix representation ofA, and
note that vec [A(X)] = A vec (X). We define the error vector e and its Jacobian X to satisfy

e = vec (XXT − ZZT ) (10a)

X vec (Y ) = vec (XY T + Y XT ) for all Y ∈ Rn×r. (10b)

5.2 Proof Sketch of Theorem 4

A complete proof of Theorem 4 relies on a few technical lemmas, so we defer the complete proof to
Appendix A. The key insight is that δfoc(X) is the solution to a convex optimization problem, which
we can solve in closed-form. At first sight, evaluating δfoc(X) seems very difficult as it involves
solving an optimization problem over the set of δ-RIP operators, as defined in equation 5 . However,

1We denote [x]+ = max{0, x}.
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a minor modification of Theorem 8 in Zhang et al. [23] shows that δfoc(X) can be reformulated as a
convex optimization problem of the form

η(X) ≡ max
η,H

{
η : XTHe = 0, ηI � H � I

}
. (11)

where η(X) is related to δfoc(X) by

δfoc(X) =
1− η(X)

1 + η(X)
. (12)

We will show that problem (17) actually has a simple closed-form solution. First, we write its
Lagrangian dual as

minimize
y,U1,U2

tr(U2) (13)

subject to (Xy)eT + e(Xy)T = U1 − U2

tr(U1) = 1, U1, U2 � 0.

Notice that strong duality holds because Slater’s condition is trivially satisfied by the dual: y = 0
and U1 = U2 = 2I/n(n + 1) is a strictly feasible point. It turns out that the dual problem can be
rewritten as an optimization problem over the eigenvalues of the matrix (Xy)eT + e(Xy)T . The
proof of this in in Appendix A.

For any α ∈ R we denote [α]+ = max{0,+α} and [α]− = max{0,−α}. The dual problem can be
written as

min
y

tr[M(y)]−
tr[M(y)]+

= min
y

∑
i λi[M(y)]−∑
i λi[M(y)]+

, where M(y) = (Xy)eT + e(Xy)T ,

and λi[M(y)] denotes the eigenvalues of the rank-2 matrix M(y). It is easy to verify that the only
two non-zero eigenvalues of (Xy)eT + e(Xy)T are

‖Xy‖‖e‖ (cos θy ± 1) , where cos θy =
eTXy

‖e‖‖Xy‖
.

It follows that

η(X) = min
y

1− cos θy
1 + cos θy

and therefore

δfoc(X) = max
y

cos θy = max
y

eTXy

‖e‖‖Xy‖
.

Let y∗ be the optimizer of the optimization problem above, then θy∗ is simply the incidence angle
between the column space of X and the error vector e. Thus we have y? = argminy ‖e −Xy‖.
Using Lemma 12 in Appendix A, we show that solving for y∗ yields a closed-form expression for
θy∗ in the form

sin θy∗ =
‖ZT (I −XX†)Z‖F
‖XXT − ZZT ‖F

.

Hence we have δfoc(X) = cos θ, with θ = θy∗ given by the equation above.

5.3 Proof of Theorem 5

The proof of Theorem 5 is based on the following lemma. Its proof is very technical and can be can
be found in Appendix B.

Lemma 7. Let Z 6= 0 and suppose that ‖XXT − ZZT ‖F ≤ ε‖ZZ‖2F . Then

sin2 θ =
‖ZT (I −XX†)Z‖2F
‖XXT − ZZT ‖2F

≤ ε

2σ2
min(Z)/‖ZZT ‖F − ε

.
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To prove Theorem 5, we simply set C1 = σ2
min(Z)/‖ZZT ‖F and write

cos θ =
√

1− sin2 θ ≥
√
1− ε

2C1 − ε
.

It is easy to see that ε
2C1−ε is dominated by the linear function ε/C1 so long as ε ≤ C1. This follows

directly from the fact that ε
2C1−ε is convex between 0 and C1. Thus we have

cos θ ≥
√

1− ε

C1

Since this lower bound holds for all X in Bε, it follows that δfoc(Bε) ≥
√

1− ε/C1.

6 Numerical Results

In this section we give a geometric interpretation for Theorem 8, which we already alluded to in
section 4: the sample complexity to eliminate spurious critical points is small in regions where the
column spaces of X and Z are more aligned and large in regions where they are orthogonal. We also
numerically verify that δfoc(X) is a tight lower bound for δsoc(X) for a wide range of ε, providing
numerical evidence that the bound in Theorem 5 is tight.

Our main results and geometric insights hold for any rank, but for ease of visualization we focus on
the rank-1 case where x and z are now just vectors. To measure the alignment between the column
space of x and that of z in the rank-1 case , we define the length ratio and the incidence angle as

ρ =
‖x‖
‖z‖

, cosφ =
xT z

‖x‖‖z‖
.

Our goal is to plot how sample complexity depends on this alignment. Visualizing the dependence
of sample complexity on ρ and cosφ is particularly easy in rank-1 because these two parameters
completely determine the values of both δfoc(x) and δsoc(x). See [23] section 8.1 for a proof of this
fact. This allows us to plot the level curves of δfoc(x) and δsoc(x) over the parameter space ρ and φ in
Figure 2. This is shown by the blue curves. Since we are particularly interested in sample complexity
near the ground truth, we also plot the level sets of the function ‖xxT − zzT ‖F /‖zzT ‖F using red
curves. The horizontal axis is the value of ρ cosφ and the vertical axis is the value of ρ sinφ.

We can immediately see that in regions in the optimization landscape where x is more aligned with z,
i.e., when sinφ is small, the values of both threshold functions tend to be high and a relatively small
number of samples suffices to prevent x from becoming a spurious critical point. However, when
x and z becomes closer to being orthogonal, i.e., when cosφ is close to 0, then δfoc(x) becomes
arbitrarily small, and δsoc(x) also becomes smaller, albeit to a lesser extent. As a result, preventing x
from becoming a spurious critical point (or spurious local minima) in these regions require many
more samples. This intuition also permeates to the high-rank case, even though visualization becomes
difficult, and a slightly more general definition of length ratio and alignment is required. Similar to
the rank-1 case, in regions where XXT and ZZT are more aligned, the sample complexity required
to eliminate spurious critical points is small and in regions where XXT and ZZT are close to
orthogonal, a small sample complexity is required.

Regarding the tightness of using δfoc(X) as a lower bound for δsoc(X), note that if we look at the
level sets of ‖xxT − zzT ‖F /‖zzT ‖F , we see that in regions close to the ground truth, both δsoc(x)
and δfoc(x) are very close to 1. This is in perfect agreement with our results in Theorem 5, where
we showed that a small ε results in a large δfoc(Bε). Moreover, the shapes of the level curves of δsoc
and δfoc that flow through the regions near the ground truth are almost identical. This indicates that
for a large region near the ground truth, the second-order condition, i.e., the hessian being positive
semidefinite, is inactive. This is the underlying mechanism that causes δfoc to be a tight lower bound
for δfoc.

7 Conclusions

Recent work by Bhojanapalli et al. [2] has shown that the non-convex optimization landscape of
matrix sensing contains no spurious local minima when there are sufficiently large amount of samples.
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(a) (b)

Figure 2: (a) the level sets of δfoc and ‖xxT − zzT ‖F /‖zzT ‖F (b) the level sets of δsoc and
‖xxT − zzT ‖F /‖zzT ‖F

However, these theoretical bounds on the sample complexity are very conservative compared to the
number of samples needed in real applications like power state estimation. In our paper, we provide
one explanation for this phenomenon: in real life, we often have access to good initial points, which
can reduce the number of samples we need. The main results of our paper give a mathematical
characterization of this phenomenon. We define a function δsoc(X) that gives a precise threshold on
the number of samples needed to prevent X from becoming a spurious local minima. Although δsoc
is difficult to compute exactly, we obtain a closed-form, sharp lower bound using convex optimization.
As a result, we are able to characterize the tradeoff between the quality of the initial point and the
sample complexity. In particular, we show that a linear improvement in the quality of the initial point
corresponds to a linear decrease in sample complexity.

On a more general level, our work uses new techniques to paint a full picture for the non-convex
landscape of matrix sensing: the problem becomes more “non-convex” (requiring more samples to
eliminate spurious local minima) as we get further and further away from the global min. Once we are
sufficiently far away, it becomes necessary to rely on global guarantees instead. Thus, our work brings
new insight into how a non-convex problem can gradually become more tractable either through more
samples or a better initial point and provides a tradeoff between these two mechanisms. For future
work, it would be interesting to see if similar techniques can be extended to other non-convex models
such as neural networks.
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Many modern applications in engineering and computer science, and in machine learning in particular
often have to deal with non-convex optimization. However, many aspects of non-convex optimization
are still not well understood. Our paper provides more insight into the optimization landscape of a
particular problem: low-rank matrix factorization. In addition, the methods we develop can potentially
be used to understand many other non-convex problems. This is a step towards a more thorough
analysis of current algorithms for non-convex optimization and also a step towards developing better
and more efficient algorithms with theoretical guarantees.
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Appendix A.1

In Appendix A we fill out the missing details in the proof sketch of Section 5.2 and provide a complete
proof of Theorem 4, which we restate below.
Theorem 8. (Same as theorem 4). Fix Z ∈ Rn×r. Given A satisfying δ-RIP and X ∈ Rn×r such
that XXT 6= ZZT , we have δfoc(X) = cos θ, where

sin θ = ‖ZT (I −XX†)Z‖F
/
‖XXT − ZZT ‖F . (14)

and X† denotes the pseudo-inverse of X . It follows that if δ < cos θ, then X is not a spurious critical
point of fA(X). If δ ≥ cos θ, then there exists some A? satisfying cos θ-RIP such that ∇fA(X) = 0.

Before we prove the theorem above, we first prove two technical lemmas. The first lemma gives
an explicit solution to the eigenvalues of a rank-2 matrix and the second lemma characterizes the
solution to an SDP that will be a part of the proof of theorem 4.
Lemma 9. Given a, b ∈ Rn, the matrix M = abT + baT has eigenvalues λ1 ≥ · · · ≥ λn where:

λi =


+‖a‖‖b‖(1 + cos θ) i = 1

−‖a‖‖b‖(1− cos θ) i = n

0 otherwise

and θ ≡ arccos
(

aT b
‖a‖‖b‖

)
is the angle between a and b.

Lemma 10. Given a matrix M 6= 0 we can split the matrix M into a positive and negative part
satisfying

M =M+ −M− where M+,M− � 0, M+M− = 0.

Then the following problem has solution

min
α∈R
U,V�0

{tr(V ) : tr(U) = 1, αM = U − V } = min

{
tr (M−)

tr (M+)
,
tr (M+)

tr (M−)

}
.

Proof. (Lemma 9). Without loss of generality, assume that ‖a‖ = ‖b‖ = 1. (Otherwise, we can
rescale â = a/‖a‖, b̂ = b/‖b‖ and write M = ‖a‖‖b‖(âb̂T + b̂âT ). Now decompose b into a tangent
and normal component with respect to a, as in

b = a aT b︸︷︷︸
cos θ

+
(
I − aaT

)
b︸ ︷︷ ︸

c sin θ

= a cos θ + c sin θ

where c is a unit normal vector with ‖c‖ = 1 and aT c = 0. Thus abT + baT can be written as

abT + baT = [ a c ]

[
2 cos θ sin θ
sin θ 0

]
[ a c ]

T
.

This shows that M is spectrally similar to a 2× 2 matrix with eigenvalues cos θ ± 1.

Proof. (Lemma 10). In this proof we will consider two cases: tr(M−) ≤ tr(M+) and tr(M−) ≥
tr(M+). We’ll see that in the first case, the optimal value is tr(M−)/tr(M+) and in the second case,
the optimal value is tr(M+)/tr(M1).

First, assume that tr(M−) ≤ tr(M+). Let p∗ be the optimal value. Then we have
p? = max

β
min
α∈R
U,V�0

{tr(V ) + β · [1− tr(U)] : αM = U − V } (15)

= max
β

min
α∈R

{
β + min

U,V�0
{tr(V )− β · tr(U) : αM = U − V }

}
= max

β
min
α∈R

{
β +min

U
[tr (U − αM)− β · tr (U)] : U − αM � 0, U � 0

}
= max

β
min
α∈R

{
β +min

U
[−αtr(M) + (1− β)tr(U)] : U − αM � 0, U � 0

}
= max

β≤1
min
α∈R

{
β +min

U
[−αtr(M) + (1− β)tr(U)] : U − αM � 0, U � 0

}
. (16)
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Note that the first line converts the equality constraint into a Lagrangian. The second line simply
rearranges the terms. The third line plugs in V = U − αM . The fourth line again rearranges the
terms. The last line follows from the observation that if β > 1, then the inner minimization over U
will go to negative infinity since the trace of U can be arbitrarily large.

First, consider the case α ≥ 0. Then we have αM = αM+ − αM−. Since 1 − β ≥ 0, the
minimization over U is achieved at U = αM+. Plugging this value into the optimization problem,
then (19) becomes

max
β≤1

min
α≥0
{β + α[tr(M−)− βtr(M+)]}

If tr(M−) − βtr(M+) < 0, then the optimal value of the inner minimization will go to negative
infinity. On the other hand, if tr(M−)−βtr(M+) ≥ 0 then the minimum inside is achieved at α = 0.
Thus the problem above is equivalent to

max
β≤1
{β : tr(M−)− βtr(M+) ≥ 0}.

Since tr(M−) ≤ tr(M+), the optimal value of the problem above is achieved at tr(M−)/tr(M+) ≤
1. Now suppose that α ≤ 0. Then the optimal value for U is achieved at U = −αM−. Plugging this
value in and (19) becomes

max
β≤1

min
α≤0
{β + α[βtr(M−)− tr(M+)]}.

Similar to before, we must have βtr(M−)−tr(M+) ≤ 0, so β ≤ tr(M+)/tr(M−). Since tr(M−) ≤
tr(M+), the optimal value in this case is just β = 1. Combining the results for α ≥ 0 and α ≤ 0, we
find that when tr(M−) ≤ tr(M+), the optimal value is

p∗ = min

{
1,

tr(M−)

tr(M+)

}
=

tr(M−)

tr(M+)
.

Repeating the same arguments for when tr(M−) ≥ tr(M+), we see that in this case the optimal
value becomes

p∗ = min

{
tr(M+)

tr(M−)
, 1

}
=

tr(M+)

tr(M−)
.

Finally, combining these two cases, i.e., tr(M−) ≥ tr(M+) and tr(M−) ≤ tr(M+), we obtain

p∗ = min

{
tr (M−)

tr (M+)
,
tr (M+)

tr (M−)

}
,

which completes the proof.

Appendix A.2

Now we are ready to prove Theorem 4. Recall that the first order threshold function is defined as the
solution to the following optimization problem:

δfoc(X) ≡ min
A
{δ : ∇fA(X) = 0, A satisfies δ-RIP}

Using Theorem 8 from [23], the optimization problem above can be formulated as

η(X) ≡ max
η,H

{
η : XTHe = 0, ηI � H � I

}
. (17)

where η = (1− δfoc)/(1 + δfoc). Our goal is to solve this optimization problem in closed form. In
Section 5.2, we wrote the dual of problem (17) as

min
y,U1,U2

tr(U2) (18)

subject to (Xy)eT + e(Xy)T = U1 − U2

tr(U1) = 1, U1, U2 � 0.

and stated that this dual problem can be rewritten as an optimization problem over the eigenvalues
of a rank-2 matrix. This is given in the lemma below. To simplify notation, here we define a posi-
tive/negative splitting: for any α ∈ R+ we denote [α]+ = max{0,+α} and [α]− = max{0,−α}.
This idea can be extended to matrices by applying splitting to the eigenvalues.
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Lemma 11. Given data e and X 6= 0, define

η = min
y,U1,U2

tr(U2) (19)

subject to (Xy)eT + e(Xy)T = U1 − U2

tr(U1) = 1, U1, U2 � 0.

Define M(y) to be the rank-2 matrix (Xy)eT + e(Xy)T and let λi[M(y)] denote its eigenvalues.
Then η can be evaluated as

η = min
y 6=0

tr[M(y)]−
tr[M(y)]+

= min
y 6=0

∑
i λi[M(y)]−∑
i λi[M(y)]+

= min
y 6=0

1− cos θy
1 + cos θy

,

where cos θy = eTXy/‖e‖‖Xy‖.

The proof of Lemma 11 relies mainly on the two lemmas we proved in the preceding section.

Proof. (Lemma 11). Let y = αŷ, where ‖ŷ‖ = 1 and α ∈ Rn. Thus the optimization problem (19)
becomes

η = min
α,ŷ,U1,U2

tr(U2)

subject to α · [(Xŷ)eT + e(Xŷ)T ] = U1 − U2

tr(U1) = 1, ‖ŷ‖ = 1, U1, U2 � 0.

To solve this problem, first we keep ŷ fixed, and optimize over α,U1, U2. This gives us the problem

min
α,U1,U2

tr(U2)

subject to α · [(Xŷ)eT + e(Xŷ)T ] = U1 − U2

tr(U1) = 1, U1, U2 � 0.

Notice that if we set M(ŷ) = (Xŷ)eT + e(Xŷ)T , then the problem above is in exactly the same
form as the one in lemma 10. Therefore, its optimal value is

min

{
tr (M(ŷ)−)

tr (M(ŷ)+)
,
tr (M(ŷ)+)

tr (M(ŷ)−)

}
.

Finally, to obtain η, we still need to optimize over ŷ, i.e.,

η = min
‖ŷ‖=1

min

{
tr (M(ŷ)−)

tr (M(ŷ)+)
,
tr (M(ŷ)+)

tr (M(ŷ)−)

}
.

Since both the numerator and the denominator are linear in y, we can ignore the constraint ‖ŷ‖ = 1
and simply optimize over y, which gives us

η = min
y 6=0

min

{
tr (M(y)−)

tr (M(y)+)
,
tr (M(y)+)

tr (M(y)−)

}
.

With lemma 9, we see that the only two eigenvalues of M(y) are

‖Xy‖‖y‖(cos θy + 1), ‖Xy‖‖y‖(cos θy − 1),

where cos θy = eTXy/‖e‖‖Xy‖. It follows that tr(M−) = ‖Xy‖‖y‖(1− cos θy) and tr(M+) =
‖Xy‖‖y‖(cos θy + 1). Thus

η = min
y 6=0

min

{
1− cos θy
1 + cos θy

,
1 + cos θy
1− cos θy

}
.

Notice that in the optimization problem above, if the minimum is achieved at some y∗, it must also be
achieved at −y∗, due to symmetry. Therefore, it suffices to optimize over only the first term 1−cos θy

1+cos θy
,

so we get

η = min
y 6=0

1− cos θy
1 + cos θy

.

This completes the proof.
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Notice that Lemma 11 reduces problem 17 to only depend on the values of cos θy . Now, to complete
the proof of Theorem 4, we just need one additional lemma that gives a closed form solution for
cos θy , which we state below.

Lemma 12. Let X,Z be n× r matrices of any rank, and define e and X 6= 0 as in equations 10(a)
and 10(b). Then, the incidence angle θ between e and range(X), defined as in

cos θ = max
y 6=0

{
eTXy

‖e‖‖Xy‖

}
=
‖XX†e‖
‖e‖

,

has closed-form expression

sin θ =
‖ZT (I −XX†)Z‖F
‖XXT − ZZT ‖F

where X† denotes the Moore–Penrose pseudoinverse of X .

Proof. (Lemma 12). Define y? = argminy ‖e−Xy‖ and decompose e = Xy?+w. The optimality
condition for y? reads XT (e−Xy?) = XTw = 0, so we substitute eTX = (y∗)TXTX to yield

‖e‖ cos θ = ‖e‖max
y 6=0

{
eTXy

‖e‖‖Xy‖

}
= max

y 6=0

{
(y?)TXTXy

‖Xy‖

}
= ‖Xy?‖,

and therefore ‖e‖ sin θ = ‖w‖ = miny ‖e−Xy‖, because we have e = Xy∗+w with wTXy∗ = 0.
Now, define Q = orth(X) ∈ Rn×q where q = rank(X) ≤ r, and define P ∈ Rn×(n−q) as the
orthogonal complement of Q. Decompose X = QX̂ , and Z = QẐ1 + PẐ2, and note that

‖w‖ = min
y
‖e−Xy‖

= min
Y
‖(XXT − ZZT )− (XY T + Y XT )‖F

= min
[Ŷ1;Ŷ2]∈Rn×r

∥∥∥∥[X̂X̂T − Ẑ1Ẑ
T
1 −Ẑ1Ẑ

T
2

−Ẑ2Ẑ
T
1 −Ẑ2Ẑ

T
2

]
−
[
X̂Ŷ T1 + Ŷ1X̂

T X̂Ŷ T2
Ŷ2X̂

T 0

]∥∥∥∥
F

= ‖Ẑ2Ẑ
T
2 ‖F

From the second line to the third, we apply a change of basis onto [Q P ], which preserves the
Frobenius norm. To derive the last line, notice that the q × r matrix X̂ has full row rank, so that
X̂X̂T � 0 and X̂X̂† = Iq . We want to show that there exists Ŷ1 such that

X̂Ŷ T1 + Ŷ1X̂
T = X̂X̂T − Ẑ1Ẑ

T
1 .

Since the right hand side is symmetric, we can write it as L+ LT , where L is some lower-triangular
matrix. Thus it suffices to show that there exists Ŷ1 such that X̂Ŷ T1 = L, which follows from that
fact that X̂ has full row-rank. Similarly, there exists some Ŷ2 such that X̂Ŷ2 = −Ẑ2Ẑ

T
1 . Thus, all

terms except the last one cancels out and we are left with miny ‖e−Xy‖ = ‖Ẑ2Ẑ
T
2 ‖F .

Finally, note that QẐ1 = XX†Z and PẐ2 = (I −XX†)Z and that

‖Ẑ2Ẑ
T
2 ‖2F = ‖PẐ2Ẑ

T
2 P

T ‖2F
= ‖(I −XX†)ZZT (I −XX†)‖2F
= tr[(I −XX†)ZZT (I −XX†)ZZT (I −XX†)]
= tr[ZT (I −XX†)ZZT (I −XX†)Z]
= ‖ZT (I −XX†)Z‖2F .

Substituting the definition of e completes the proof.

Now theorem 4 will be a direct consequence of lemma 11 and lemma 12. We give a proof below.
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Proof. (Theorem 4). Note that δfoc is related to η by the equation

η =
1− δfoc
1 + δfoc

.

Applying lemma 11, we immediately get

δfoc(X) = max
y 6=0

cos θy = max
y 6=0

eTXy

‖e‖‖Xy‖
.

From lemma 12, we see that this optimization problem over y has a simple closed form solution of
the form

δfoc(X) = cos θ, where sin θ =
‖ZT (I −XX†)Z‖F
‖XXT − ZZT ‖F

.

This completes the proof.

Appendix B

In this section we provide a complete proof of Theorem 5, which includes all the intermediate
calculations that was skipped in Section 5.3. We begin by proving a bound on sin θ.

Lemma 13 (Same as Lemma 7). Let Z 6= 0 and suppose that ‖XXT − ZZT ‖F ≤ ε‖ZZ‖2F . Then

sin2 θ =
‖ZT (I −XX†)Z‖2F
‖XXT − ZZT ‖2F

≤ ε

2(σ2
min(Z)/‖ZZT ‖F )− ε

.

Proof. The problem is homogeneous to scaling X ← αX and Z ← αZ for the same α; Since
Z 6= 0, we may rescale X and Z until ‖ZZ‖2F = 1. Additionally, we can assume that

X =

[
X1

0

]
Z =

[
Z1

Z2

]
where X1, Z1 ∈ Rr×r, Z2 ∈ R(n−r)×r

due to the rotational invariance of the problem. (Concretely, we compute the QR decomposition
QR = [X,Z] with Q ∈ Rn×2r noting that X = QQTX and Z = QQTZ. We then make a change
of basis X ← QTX and Z ← QTZ). Then, observe that

‖ZT (I −XX†)Z‖F =

∥∥∥∥∥
[
Z1

Z2

]T (
I −

[
I 0
0 0

])[
Z1

Z2

]∥∥∥∥∥
F

= ‖ZT2 Z2‖F = ‖Z2Z
T
2 ‖F (20)

and that ‖Z2Z
T
2 ‖2F ≤ ε2 because

‖XXT − ZZT ‖2F =

∥∥∥∥[Z1Z
T
1 −X1X

T
1 Z1Z

T
2

Z2Z
T
1in Z2Z

T
2

]∥∥∥∥2
F

= ‖Z1Z
T
1 −X1X

T
1 ‖2F + 2‖Z1Z

T
2 ‖2F + ‖Z2Z

T
2 ‖2F ≤ ε2. (21)

In order to derive a non-vacuous bound, we will need to lower-bound the term ‖Z1Z
T
2 ‖2F as follows

‖Z1Z
T
2 ‖2F = tr(ZT1 Z1Z

T
2 Z2) ≥ λmin(Z

T
1 Z1)tr(Z

T
2 Z2) = σ2

min(Z1)‖Z2‖2F . (22)

To lower-bound σ2
min(Z1), observe that

A+B � µI ⇐⇒ A � µI −B � (µ− ‖B‖2)I,

and therefore

σ2
min(Z1) = λmin(Z

T
1 Z1) ≥ λmin(Z

T
1 Z1 + ZT2 Z2)− λmax(Z

T
2 Z2)

= σ2
min(Z)− ‖Z2Z

T
2 ‖2 ≥ σ2

min(Z)− ‖Z2Z
T
2 ‖F

≥ σ2
min(Z)− ε. (23)
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Finally, we substitute (20) and (21) and perform a sequence of reductions:

‖ZT (I −XX†)Z‖2F
‖XXT − ZZT ‖2F

=
‖Z2Z

T
2 ‖2F

‖Z1ZT1 −X1XT
1 ‖2F + 2‖Z1ZT2 ‖2F + ‖Z2ZT2 ‖2F

(a)
≤ ‖Z2Z

T
2 ‖2F

2‖Z1ZT2 ‖2F + ‖Z2ZT2 ‖2F

(b)
≤ ‖Z2Z

T
2 ‖2F

2σ2
min(Z1)‖Z2‖2F + ‖Z2ZT2 ‖2F

(c)
≤ ‖Z2Z

T
2 ‖F ‖Z2‖2F

2σ2
min(Z1)‖Z2‖2F + ‖Z2ZT2 ‖F ‖Z2‖2F

=
‖Z2Z

T
2 ‖F

2σ2
min(Z1) + ‖Z2ZT2 ‖F

(d)
≤ ε

2(σ2
min(Z)− ε) + ε

≤ ε

2σ2
min(Z)− ε

.

Step (a) sets X1 = Z1 to minimize the denominator; step (b) bounds ‖Z1Z
T
2 ‖2F using (22); step

(c) bounds ‖Z2Z
T
2 ‖F ≤ ‖Z2‖2F noting that a function like x/(1 + x) is increasing with x; step (d)

substitutes ‖Z2Z2‖F ≤ ε and σ2
min(Z1) ≥ σ2

min(Z)− ε.

16


