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SINGULARITY, MISSPECIFICATION, AND THE

CONVERGENCE RATE OF EM
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A line of recent work has analyzed the behavior of the Expectation-
Maximization (EM) algorithm in the well-specified setting, in which
the population likelihood is locally strongly concave around its maxi-
mizing argument. Examples include suitably separated Gaussian mix-
ture models and mixtures of linear regressions. We consider over-
specified settings in which the number of fitted components is larger
than the number of components in the true distribution. Such mis-
specified settings can lead to singularity in the Fisher information
matrix, and moreover, the maximum likelihood estimator based on

n i.i.d. samples in d dimensions can have a non-standard O((d/n)
1

4 )
rate of convergence. Focusing on the simple setting of two-component
mixtures fit to a d-dimensional Gaussian distribution, we study the
behavior of the EM algorithm both when the mixture weights are dif-
ferent (unbalanced case), and are equal (balanced case). Our analysis
reveals a sharp distinction between these two cases: in the former,
the EM algorithm converges geometrically to a point at Euclidean

distance of O((d/n)
1

2 ) from the true parameter, whereas in the latter
case, the convergence rate is exponentially slower, and the fixed point

has a much lower O((d/n)
1

4 ) accuracy. Analysis of this singular case
requires the introduction of some novel techniques: in particular, we
make use of a careful form of localization in the associated empirical
process, and develop a recursive argument to progressively sharpen
the statistical rate.

1. Introduction. The growth in the size and scope of modern data
sets has presented the field of statistics with a number of challenges, one of
them being how to deal with various forms of heterogeneity. Mixture models
provide a principled approach to modeling heterogeneous collections of data
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(that are usually assumed i.i.d.). In practice, it is frequently the case that the
number of mixture components in the fitted model does not match the num-
ber of mixture components in the data-generating mechanism. It is known
that such mismatch can lead to substantially slower convergence rates for
the maximum likelihood estimate (MLE) for the underlying parameters. In
contrast, relatively less attention has been paid to the computational impli-
cations of this mismatch. In particular, the algorithm of choice for fitting
finite mixture models is the Expectation-Maximization (EM) algorithm, a
general framework that encompasses various types of divide-and-conquer
computational strategies. The goal of this paper is to gain a fundamental
understanding of the behavior of EM when used to fit over-specified mixture
models.

Statistical issues with over-specification. While density estimation in fi-
nite mixture models is relatively well understood [12, 26], characterizing
the behavior of maximum likelhood for parameter estimation has remained
challenging. The main difficulty for analyzing the MLE in such settings
arises from label switching between the mixtures [23, 25], and lack of strong
concavity in the likelihood. Such issues do not interfere with density esti-
mation, since the standard divergence measures like the Kullback-Leibler
and Hellinger distances remain invariant under permutations of labels, and
strong concavity is not required. An important contribution to the under-
standing of parameter estimation in finite mixture models was made by
Chen [4]. He considered a class of over-specified finite mixture models; here
the term “over-specified” means that the model to be fit has more mixture
components than the distribution generating the data. In an interesting con-
trast to the usual n− 1

2 convergence rate for the MLE based on n samples,
Chen showed that for estimating scalar location parameters in a certain class
of over-specified finite mixture models, the corresponding rate slows down
to n− 1

4 . This theoretical result has practical significance, since methods that
over-specify the number of mixtures are often more feasible than methods
that first attempt to estimate the number of components, and then estimate
the parameters using the estimated number of components [24]. In subse-
quent work, Nguyen [21] and Heinrich et al. [14] have characterized the (min-
imax) convergence rates of parameter estimation rates for mixture models
in both exactly-fitted or over-specified settings in terms of the Wasserstein
distance.

Computational concerns with mixture models. While the papers discussed
above address the statistical behavior of a global maximum of the log-
likelihood, they do not consider the associated computational issues of ob-



SINGULAR MODELS AND SLOW CONVERGENCE OF EM 3

taining such a maximum. In general settings, non-convexity of the log-
likelihood makes it impossible to guarantee that the iterative algorithms
used in practice converge to the global optimum, or equivalently the MLE.
Perhaps the most widely used algorithm for computing the MLE is the
expectation-maximization (EM) algorithm [8]. Early work on the EM algo-
rithm [29] showed that its iterates converge asymptotically to a local max-
imum of the log-likelihood function for a broad class of incomplete data
models; this general class includes the fitting of mixture models as a spe-
cial case. The EM algorithm has also been studied in the specific setting
of Gaussian mixture models; here we find results both for the population
EM algorithm, which is the idealized version of EM based on an infinite
sample size, as well as the usual sample-based EM algorithm that is used
in practice. For Gaussian mixture models, the population EM algorithm is
known to exhibit various convergence rates, ranging from linear to super-
linear (quasi-Newton like) convergence if the overlap between the mixture
components tends to zero [20, 31]. It has also been noted in several pa-
pers [20, 22] that the convergence of EM can be prohibitively slow when the
mixtures are not well separated.

Prior work on EM. Balakrishnan et al. [1] laid out a general theoretical
framework for analysis of the EM algorithm, and in particular how to prove
non-asymptotic bounds on the Euclidean distance between sample-based
EM iterates and the true parameter. When applied to the special case of two-
component Gaussian location mixtures, assumed to be well-specified and
suitably separated, their theory guarantees that (1) population EM updates
enjoy a geometric rate of convergence to the true parameter when initialized
in a sufficiently small neighborhood around the truth, and (2) sample-based

EM updates converge to an estimate at Euclidean distance of order (d/n)
1

2 ,
based on n i.i.d. draws from a finite mixture model in R

d. Further work
in this vein has characterized the behavior of EM in a variety of settings
for two Gaussian mixtures, including convergence analysis with additional
sparsity constraints [13, 28, 33], global convergence of population EM [30],
guarantees of geometric convergence under less restrictive conditions on the
two mixture components [7, 16], analysis of EM with unknown mixture
weights, means and covariances for two mixtures [3], and the analysis of
EM to more than two Gaussian components [13, 32]. Other related work
has provided optimization-theoretic guarantees for EM by viewing it in a
generalized surrogate function framework [18], and analyzed the statistical
properties of confidence intervals based on an EM estimator [5].

An assumption common to all of this previous work is that there is no
misspecification in the fitting of the Gaussian mixtures; in particular, it is
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assumed that the data is generated from a mixture model with the same
number of components as the fitted model. A portion of our recent work [9]
has shown that EM retains its fast convergence behavior—albeit to a biased
estimate—in under-specified settings where the number of components in the
fitted model are less than that in the true model. However, as noted above,
in practice, it is most common to use over-specified mixture models. For
these reasons, it is desirable to understand how the EM algorithm behaves
in the over-specified settings.

Our contributions. The goal of this paper is to shed some light on the
non-asymptotic performance of the EM algorithm for over-specified mix-
tures. We provide a comprehensive study of over-specified mixture models
when fit to a particularly simple (non-mixture) data-generating mechanism;
a multivariate normal distribution N (0, σ2Id) in d dimensions with known
scale parameter σ > 0. This setting, despite its simplicity, suffices to reveal
some rather interesting properties of EM in the over-specified context. In
particular, we obtain the following results.

• Two-mixture unbalanced fit: For our first model class, we study a
mixture of two location-Gaussian distributions with unknown location,
known variance and known unequal weights for the two components.
For this case, we establish that the population EM updates converge at
a geometric rate to the true parameter; as an immediate consequence,
the sample-based EM algorithm converges in O (log(n/d)) steps to a

ball of radius (d/n)
1

2 . The fast convergence rate of EM under the unbal-
anced setting provides an antidote to the pessimistic belief that statis-
tical estimators generically exhibit slow convergence for over-specified
mixtures.

• Two-mixture balanced fit: In the balanced version of the problem
in which the mixture weights are equal to 1

2 for both components, we
find that the EM algorithm behaves very differently. Beginning with
the population version of the EM algorithm, we show that it converges
to the true parameter from an arbitrary initialization. However, the
rate of convergence varies as a function of the distance of the cur-
rent iterate from the true parameter value, becoming exponentially
slower as the iterates approach the true parameter. This behavior is
in sharp contrast to well-specified settings [1, 7, 32], where the pop-
ulation updates converge at a geometric rate. We also show that our
rates for population EM are tight. By combining the slow convergence
of population EM with a novel localization argument, one involving the
empirical process restricted to an annulus, we show that the sample-
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based EM iterates converge to a ball of radius (d/n)
1

4 around the

true parameter after O((n/d)
1

2 ) steps. The n− 1

4 component of the Eu-
clidean error matches known guarantees for the global maximum of the
MLE [4]. The localization argument in our analysis is of independent
interest, because such techniques are not required in analyzing the
EM algorithm in well-specified settings when the population updates
are globally contractive. We note that ball-based localization meth-
ods are known to be essential in deriving sharp statistical rates for
M-estimators (e.g., [2, 17, 26]); to the best of our knowledge, the use
of an annulus-based localization argument in analyzing an algorithm
is novel.

Moreover, we show via extensive numerical experiments that the fast con-
vergence of EM for the unbalanced fit is a special case; and that the slow
behavior of EM proven for the balanced fit (in particular the rate of or-

der n− 1

4 ) arises in several general (including more than two components)
over-specified Gaussian mixtures with known variance, known or unknown
weights, and unknown location parameters.

Organization. The remainder of the paper is organized as follows. In Sec-
tion 2 we provide illustrative simulations of EM in different settings in or-
der to motivate the settings analyzed later in the paper. We then provide a
thorough analysis of the convergence rates of EM when over-fitting Gaussian
data with two components in Section 3 and the key ideas of the novel proof
techniques in Section 4. We provide a thorough discussion of our results in
Section 5, exploring their general applicability, and presenting further sim-
ulations that substantiate the value of our theoretical framework. Detailed
proofs of our results and discussion of certain additional technical aspects
of our results are provided in the supplementary material [10].

Notation. For any two sequences an and bn, the notation an - bn or an =
O (bn) means that an ≤ Cbn for some universal constant C. Similarly, the
notation an � bn or an = Θ(bn) denotes that both the conditions, an - bn
and bn - an, hold. Throughout this paper, π denotes a variable and π
denotes the mathematical constant “pi”.

Experimental settings. We summarize a few common aspects of the numer-
ical experiments presented in the paper. Population-level computations were
done using numerical integration on a sufficiently fine grid. With finite sam-
ples, the stopping criteria for the convergence of EM were: (1) the change in
the iterates was small enough, or (2) the number of iterations was too large
(greater than 100, 000). Experiments were averaged over several repetitions
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(ranging from 25 to 400). In majority of the runs, for each case, criteria (1)
led to convergence. In our plots for sample EM, we report m̂e + 2ŝe on the
y-axis, where m̂e, ŝe respectively denote the mean and standard deviation
across the experiments for the metric under consideration, e.g., the param-
eter estimation error. Furthermore, whenever a slope is provided, it is the
slope for the least-squares fit on the log-log scale for the quantity on y-
axis when fitted with the quantity reported on the x-axis. For instance, in
Figure 1(b), we plot |θ̂n − θ∗| on the y-axis value versus the sample size n
on the x-axis, averaged over 400 experiments, accounting for the deviation
across these experiments. Furthermore, the green dotted line with legend
π = 0.3 and the corresponding slope −0.48 denote the least-squares fit and
the respective slope for log |θ̂n − θ∗| (green solid dots) with log n for the
experiments corresponding to the setting π = 0.3.

2. Motivating simulations and problem set-up. In this section, we
explore a wide range of behavior demonstrated by EM for certain settings of
over-specified location Gaussian mixtures. We begin with several simulations
that illustrate fast and slow convergence of EM for various settings, and serve
as a motivation for the theoretical results derived later in the paper. We
provide basic background on EM in Section 2.3, and describe the problems
to be tackled.

2.1. Problem set-up. Let φ(· ;µ,Σ) denote the density of a Gaussian ran-
dom vector with mean µ and covariance Σ. Consider the two component
Gaussian mixture model with density

f(x; θ∗, σ,π) := πφ(x; θ∗, σ2Id) + (1− π)φ(x;−θ∗, σ2Id).(1)

Given n samples from the distribution (1), suppose that we use the EM algo-
rithm to fit a two-component location Gaussian mixture with fixed weights
and variance1 and special structure on the location parameters—more pre-
cisely, we fit the model with density

f(x; θ, σ,π) := πφ(x; θ, σ2Id) + (1− π)φ(x;−θ, σ2Id)(2)

using the EM algorithm, and take the solution2 as an estimate of θ∗. An
important aspect of the problem at hand is the signal strength, which is

1Refer to Section 5 for a discussion for the case of unknown weights and variances.
2Strictly speaking, different initialization of EM may converge to different estimates.

For the settings analyzed theoretically in this work, the EM always converges towards the
same estimate in the limit of infinite steps, and we use a stopping criterion to determine
the final estimate. See the discussion on experimental settings in Section 1 for more details.
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measured as the separation between the means of mixture components rela-
tive to the spread in the components. For the model (1), the signal strength
is given by the ratio ‖θ∗‖2 /σ. When this ratio is large, we refer to it as
the strong signal case; otherwise, it corresponds to the weak signal case. Of
particular interest to us is the behavior of EM in the limit of weak signal
when there is no separation; i.e., ‖θ∗‖2 = 0. For such cases, we call the fit (2)
an unbalanced fit when π 6= 1

2 and a balanced fit when π = 1
2 . Note that

the setting of θ∗ = 0 corresponds to the simplest case of over-specified fit,
since the true model has just one component (standard normal distribution
irrespective of the parameter π) but the fitted model has two (one extra)
component (unless the EM estimate is also 0). We now present the empirical
behavior of EM for these models and defer the derivation of EM updates to
Section 2.3.

2.2. Numerical Experiments: Fast to slow convergence of EM. We begin
with a numerical study of the effect of separation among the mixtures on the
statistical behavior of the estimates returned by EM. Our main observation
is that weak or no separation leads to relatively low accuracy estimates.
Additional simulations for more general mixtures, including more than two
components, are provided in Section 5.3. Next, via numerical integration on
a grid with sufficiently small discretization width, we simulate the behavior
of the population EM algorithm width—an idealized version of EM in the
limit of infinite samples—in order to understand the effect of signal strength
on EM’s algorithmic rate of convergence, i.e., the number of steps needed for
population EM to converge to a desired accuracy. We observe a slow down
of EM on the algorithmic front when the signal strength approaches zero.

2.2.1. Effect of signal strength on sample EM. In Figure 1, we show
simulation results for data generated from the model (1) in dimension d = 1
and noise variance σ2 = 1, and for three different values of the weight
π ∈ {0.1, 0.3, 0.5}. In all cases, we fit a two-location Gaussian mixture with
fixed weights and variance as specified by equation (2). The two panels show
the estimation error of the EM solution as a function of n for two distinct
cases of the data-generating mechanism: (a) in the strong signal case, we set
θ∗ = 5 so that the data has two well-separated mixture components, and
(b) to obtain the limiting case of no signal, we set θ∗ = 0, so that the two
mixture components in the data-generating distribution collapse to one, and
we are simply fitting the data from a standard normal distribution.

In the strong signal case, it is well known [1, 7] that EM solutions have
an estimation error (measured by the Euclidean distance between the EM
estimate and the true parameter θ∗) that achieves the classical (parametric)
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skip directly to the main results in Section 3. Recall that the two-component
model fit is based on the density

πφ(x; θ, σ2Id) + (1− π)φ(x;−θ, σ2Id).(3)

From now on we assume that the data is drawn from the zero-mean Gaussian
distributionN (0, σ2Id). Note that the model fit described above contains the
true model with θ∗ = 0 and it is referred to as an over-specified fit since for
any non-zero θ, the fitted model has two components.

The maximum likelihood estimate is obtained by solving the following
optimization problem

θ̂MLE
n ∈ argmax

θ∈Θ

1

n

n∑

i=1

{
log(πφ(xi; θ, σ

2Id) + (1− π)φ(xi;−θ, σ2Id))
}
.(4)

In general, there is no closed-form expression for θ̂MLE
n . The EM algorithm

circumvents this problem via a minorization-maximization scheme. Indeed,
population EM is a surrogate method to compute the maximizer of the
population log-likelihood

L(θ) := EX

[
log(πφ(X; θ, σ2Id) + (1− π)φ(X;−θ, σ2Id)

]
,(5)

where the expectation is taken over the true distribution. On the other hand,
sample EM attempts to estimate θ̂MLE

n . We now describe the expressions for
both the sample and population EM updates for the model-fit (3).

Given any point θ, the EM algorithm proceeds in two steps: (1) compute
a surrogate function Q(·; θ) such that Q(θ′; θ) ≤ L(θ′) and Q(θ; θ) = L(θ);
and (2) compute the maximizer of Q(θ′; θ) with respect to θ′. These steps
are referred to as the E-step and the M-step, respectively. In the case of
two-component location Gaussian mixtures, it is useful to describe a hid-
den variable representation of the mixture model. Consider a binary indi-
cator variable Z ∈ {0, 1} with the marginal distribution P(Z = 1) = π and
P(Z = 0) = 1− π, and define the conditional distributions

(X | Z = 0) ∼ N (−θ, σ2Id), and (X | Z = 1) ∼ N (θ, σ2Id).

These marginal and conditional distributions define a joint distribution over
the pair (X,Z), and by construction, the induced marginal distribution over
X is a Gaussian mixture of the form (3). For EM, we first compute the
conditional probability of Z = 1 given X = x:

wθ(x) = wπ

θ (x) :=
π exp

(
−‖θ−x‖2

2

2σ2

)

π exp
(
−‖θ−x‖2

2

2σ2

)
+ (1− π) exp

(
−‖θ+x‖2

2

2σ2

) .(6)
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Then, given a vector θ, the E-step in the population EM algorithm involves
computing the minorization function θ′ 7→ Q(θ′, θ). Doing so is equivalent
to computing the expectation

Q(θ′; θ) = −1

2
E

[
wθ(X)

∥∥X − θ′
∥∥2
2
+ (1− wθ(X))

∥∥X + θ′
∥∥2
2

]
,(7)

where the expectation is taken over the true distribution (here N (0, σ2Id).
In the M-step, we maximize the function θ′ 7→ Q(θ′; θ). Doing so defines a
mapping M : Rd → R

d, known as the population EM operator, given by

M(θ) = arg max
θ′∈Rd

Q(θ′, θ) = E

[
(2wθ(X)− 1)X

]
.(8)

In this definition, the second equality follows by computing the gradient
∇θ′Q, and setting it to zero. In summary, for the two-component location
mixtures considered in this paper, the population EM algorithm is defined by
the sequence θt+1 = M(θt), where the operator M is defined in equation (8).

We obtain the sample EM update by simply replacing the expectation E

in equations (7) and (8) by the empirical average based on an observed set
of samples. In particular, given a set of i.i.d. samples {Xi}ni=1, the sample
EM operator Mn : Rd 7→ R

d takes the form

Mn(θ) :=
1

n

n∑

i=1

(2wθ(Xi)− 1)Xi.(9)

Overall, the sample EM algorithm generates the sequence of iterates given
by θt+1 = Mn(θ

t).
In the sequel, we study the convergence of EM both for the population

EM algorithm in which the updates are given by θt+1 = M(θt), and the
sample-based EM sequence given by θt+1 = Mn(θ

t). With this notation in
place, we now turn to the main results of this paper.

3. Main results. In this section, we state our main results for the
convergence rates of the EM updates under the unbalanced and balanced
mixture fit. We start with the easier case of unbalanced mixture fit in Sec-
tion 3.1 followed by the more delicate (and interesting) case of the balanced
fit in Section 3.2.

3.1. Behavior of EM for unbalanced mixtures. We begin with a char-
acterization of both the population and sample-based EM updates in the
setting of unbalanced mixtures. In particular, we assume that the fitted
two-components mixture model (3) has known weights π and 1 − π, where
π ∈ (0, 1/2). The following result characterizes the behavior of the EM up-
dates for this set-up.
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Theorem 1. Suppose that we fit an unbalanced instance (i.e., π 6= 1
2)

of the mixture model (3) to N (0, σ2Id) data. Then:

(a) The population EM operator (8) is globally strictly contractive, mean-
ing that

‖M(θ)‖2 ≤
(
1− ρ2/2

)
‖θ‖2 for all θ ∈ R

d,(10a)

where ρ := |1− 2π| ∈ (0, 1).
(b) There are universal constants c, c′ such that given any δ ∈ (0, 1)

and a sample size n ≥ cσ
2

ρ4
(d + log(1/δ)), the sample EM sequence

θt+1 = Mn(θ
t) generated by the update (9) satisfies the upper bound

∥∥θt
∥∥
2
≤
∥∥θ0
∥∥
2

(
1− ρ2

2

)t

+
c′(
∥∥θ0
∥∥
2
σ2 + ρσ)

ρ2

√
d+ log(1/δ)

n
,(10b)

with probability at least 1− δ.

See Appendix A.1 in the supplement [10] for the proof of this theorem.

Fast convergence of population EM. The bulk of the effort in proving Theo-
rem 1 lies in establishing the guarantee (10a) for the population EM iterates.
Such a contraction bound immediately yields the exponential fast conver-
gence of the population EM updates θt+1 = M(θt) to θ∗ = 0:

∥∥θT
∥∥
2
≤ ε for T ≥ 1

log 1
(1−ρ2/2)

· log
(∥∥θ0

∥∥
2

ε

)
.(11)

Since the mixture weights (π, 1 − π) are bounded away from 1/2, we have
that ρ = |1 − 2π| is bounded away from zero, and thus population EM
iterates converge in O (log(1/ε)) steps to an ε-ball around θ∗ = 0. This
result is equivalent to showing that in the unbalanced instance (π 6= 1/2),
the log-likelihood is strongly concave around the true parameter.

Statistical rate of sample EM. Once the bounds (10a) and (11)) have been
established, the proof of the statistical rate (10b) for sample EM utilizes
the scheme laid out by Balakrishnan et al. [1]. In particular, we prove a
non-asymptotic uniform law of large numbers (Lemma 1 stated in Sec-
tion 4.1) that allows for the translation from population to sample EM
iterates. Roughly speaking, Lemma 1 guarantees that for any radius r > 0,
tolerance δ ∈ (0, 1), and sufficiently large n, we have

P

[
sup

‖θ‖2≤r
‖Mn(θ)−M(θ)‖2 ≤ c2σ(σr + ρ)

√
d+ log(1/δ)

n

]
≥ 1− δ.(12)
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in Appendix C.1). Second, when the weight parameter π is assumed to be
unknown in the model fit (3), the EM algorithm exhibits fast convergence
when π is initialized sufficiently away from 1

2 ; see Section 5.1 for more details.

From unbalanced to balanced fit. The bound (11) shows that the extent
of unbalancedness in the mixture weights plays a crucial role in the ge-
ometric rate of convergence for the population EM. When the mixtures
become more balanced, that is, weight π approaches 1/2 or equivalently ρ
approaches zero, the number of steps T required to achieve ε-accuracy scales
as O

(
log(

∥∥θ0
∥∥
2
/ε)/ρ2

)
and in the limit ρ → 0, this bound degenerates to ∞

for any finite ε. Indeed, the bound (10a) from Theorem 1 simply states that
the population EM operator is non-expansive for balanced mixtures (ρ = 0),
and does not provide any particular rate of convergence for this case. It turns
out that the EM algorithm is worse in the balanced case, both in terms of
the optimization speed and in terms of the statistical rate. This slower sta-
tistical rate is in accord with existing results for the MLE in over-specified
mixture models [4]; the novel contribution here is the rigorous analysis of
the analogous behavior for the EM algorithm.

3.2. Behavior of EM for balanced mixtures. In this section, we first pro-
vide a sharp characterization of the algorithmic rate of convergence of the
population EM update for the balanced fit (see Section 3.2.1). We then pro-
vide sharp bound for the statistical rate for the sample EM updates (cf.
Section 3.2.2).

3.2.1. Slow convergence of population EM. We now analyze the behavior
of the population EM operator for the balanced fit. We show that it is
globally convergent, albeit with a contraction parameter that depends on θ,
and degrades towards 1 as ‖θ‖2 → 0. Our statement involves the constant
p := P(|X| ≤ 1) + 1

2P(|X| > 1), where X ∼ N (0, 1) denotes a standard
normal variate. (Note that p < 1.)

Theorem 2. Suppose that we fit a balanced instance (π = 1
2) of the

mixture model (3) to N (0, σ2Id) data. Then the population EM operator (8)
θ 7→ M(θ) has the following properties:

(a) For all non-zero θ, we have

‖M(θ)‖2
‖θ‖2

≤ γup(θ) := 1− p+
p

1 +
‖θ‖2

2

2σ2

< 1.(13a)
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(b) For all non-zero θ such that ‖θ‖22 ≤ 5σ2

8 , we have

‖M(θ)‖2
‖θ‖2

≥ γlow(θ) :=
1

1 +
2‖θ‖2

2

σ2

.(13b)

See Appendix A.2 in the supplement [10] for the proof of Theorem 2.

The salient feature of Theorem 2 is that the contraction coefficient γup(θ)
is not globally bounded away from 1 and in fact satisfies limθ→0 γup(θ) = 1.
In conjunction with the lower bound (13b), we see that

‖M(θ)‖2
‖θ‖2

�
(
1− ‖θ‖22

σ2

)
for small ‖θ‖2.(14)

This precise contraction behavior of the population EM operator is in accord
with that of the simulation study in Figure 2(b).

The preceding results show that the population EM updates should ex-
hibit two phases of behavior. In the first phase, up to a relatively coarse ac-
curacy of the order σ, the iterates exhibit geometric convergence. Concretely,
we are guaranteed to have

∥∥θT0

∥∥
2
≤

√
2σ after running the algorithm for

T0 :=
log(‖θ0‖2

2
/(2σ2))

log(2/(2−p)) steps. In the second phase, as the error decreases from√
2σ to a given ε ∈

(
0,
√
2σ
)
, the convergence rate becomes sub-geometric;

concretely, we have

∥∥θT0+t
∥∥
2
≤ ε for t ≥ cσ2

ε2
log(σ/ε).(15)

Note that the conclusion (15) shows that for small enough ε, the population
EM takes Θ(log(1/ε)/ε2) steps to find ε-accurate estimate of θ∗ = 0. This
rate is extremely slow compared to the geometric rate O(log(1/ε)) derived
for the unbalanced mixtures in Theorem 1. Hence, the slow rate establishes
a qualitative difference in the behavior of the EM algorithm between the
balanced and unbalanced setting.

Moreover, the sub-geometric rate of EM in the balanced case is also in
stark contrast with the favorable behavior of EM for the exact-fitted set-
tings analyzed in past work. Balakrishnan et al. [1] showed that when the
EM algorithm is used to fit a two-component Gaussian mixture with suffi-

ciently large value of
‖θ?‖

2

σ (known as the high signal-to-noise ratio, or high
SNR for short), the population EM operator is contractive, and hence geo-
metrically convergent, within a neighborhood of the true parameter θ∗. In a
later work on the two-component balanced mixture fit model, Daskalakis et
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al. [7] showed that the convergence is in fact geometric for any non-zero
value of the SNR. The model considered in Theorem 2 can be seen as the
limiting case of weak signal for a two mixture model—which degenerates to
the Gaussian distribution when the SNR becomes exactly zero. For such a
limit, we observe that the fast convergence of population EM sequence no
longer holds.

3.2.2. Upper and lower bounds on sample EM. We now turn to the state-
ments of upper and lower bounds on the rate of the sample EM iterates for
the balanced fit on Gaussian data. We begin with an upper bound, which

involves the previously defined function γup(θ) := 1− p+ p/
(
1 +

‖θ‖2
2

2σ2

)
.

Theorem 3. Consider the sample EM updates θt = Mn(θ
t−1) for the

balanced instance (π = 1
2) of the mixture model (3) based on n i.i.d. N (0, σ2Id)

samples. Then, there exist universal constants {c′k}
4
k=1 such that for any

scalars α ∈ (0, 14) and δ ∈ (0, 1), any sample size n ≥ c′1(d+ log(log(1/α)/δ))

and any iterate number t ≥ c′2 log
‖θ0‖2n
σ2d

+ c′3
(
n
d

) 1

2
−2α

log(nd ) log(
1
α), we have

‖θt‖2 ≤


∥∥θ0

∥∥
2
·
t−1∏

j=0

γup(θ
j)


+ c′4σ

(
σ2(d+ log log(4/ε)

δ )

n

) 1

4
−α

,(16)

with probability at least 1− δ.

See Section 4 for a discussion of the techniques employed to prove this the-
orem. The detailed proof is provided in Appendix A.3 in the supplementary
material [10], where we also provide some more details on the definitions of
these constants.

As we show in our proofs, once the iteration number t satisfies the lower
bound stated in the theorem, the second term on the right-hand side of the
bound (16) dominates the first term; therefore, from this point onwards, the

the sample EM iterates have Euclidean norm of the order (d/n)
1

4
−α. Note

that α ∈ (0, 14) can be chosen arbitrarily close to zero, so at the expense of
increasing the lower bound on the number of iterations t by a logarithmic
factor log(1/α), we can obtain rates arbitrarily close to (d/n)

1

4 .
We note that earlier studies of parameter estimation for over-specified

mixtures, in both the frequentist [4] and Bayesian settings [15, 21], have

derived a rate of n− 1

4 for the global maximum of the log likelihood. To the
best of our knowledge, Theorem 3 is the first non-asymptotic algorithmic
result that shows that such rates apply to the fixed points and dynamics of
the EM algorithm, which need not converge to the global optima.
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The preceding discussion was devoted to an upper bound on sample EM
for the balanced fit. Let us now match this upper bound, at least in the
univariate case d = 1, by showing that any non-zero fixed point of the
sample EM updates has Euclidean norm of the order n− 1

4 . In particular, we
prove the following lower bound.

Theorem 4. There are universal positive constants c, c′ such that for
any non-zero solution θ̂n to the sample EM fixed-point equation θ = Mn(θ)
for the balanced mixture fit, we have

P

[
|θ̂n| ≥ c n− 1

4

]
≥ c′.(17)

See Appendix A.4 in the supplement [10] for the proof of this theorem.
Since the iterative EM scheme converges only to one of its fixed points,

the theorem shows that one cannot obtain a high-probability bound for any
radius smaller than n− 1

4 . As a consequence, with constant probability, the
radius of convergence n− 1

4 for sample EM convergence in Theorem 3 for the
univariate setting is tight.

4. New techniques for sharp analysis of sample EM. In this sec-
tion, we highlight the new proof techniques introduced in this work that
are required to obtain the sharp characterization of the sample EM updates
in the balanced case (Theorem 3). We begin in Section 4.1 by elaborating
that a direct application of the previous frameworks leads to sub-optimal
statistical rates for sample EM in the balanced fit. This sub-optimality mo-
tivates the development of new methods for analyzing the behavior of the
sample EM iterates, based on an annulus-based localization argument over
a sequence of epochs, which we sketch out in Sections 4.2 and 4.3. We re-
mark that our novel techniques, introduced here for analyzing EM with the
balanced fit, are likely to be of independent interest. We believe that they
can potentially be extended to derive sharp statistical rates in other settings
when the algorithm under consideration does not exhibit an geometrically
fast convergence.

4.1. A sub-optimal guarantee. Let us recall the set-up for the procedure
suggested by Balakrishnan et al. [1], specializing to the case where the true
parameter θ∗ = 0, as in our specific set-up. Using the triangle inequality,
the norm of the sample EM iterates θt+1 = Mn(θ

t) can be upper bounded
by a sum of two terms as follows:

∥∥θt+1
∥∥
2
=
∥∥Mn(θ

t)
∥∥
2
≤
∥∥Mn(θ

t)−M(θt)
∥∥
2
+
∥∥M(θt)

∥∥
2

(18)
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for all t ≥ 0. The first term on the right-hand side corresponds to the
deviations between the sample and population EM operators, and can be
controlled via empirical process theory. The second term corresponds to the
behavior of the (deterministic) population EM operator, as applied to the
sample EM iterate θt, and needs to be controlled via a result on population
EM.

Theorem 2 from Balakrishnan et al. [1] is based on imposing generic con-
ditions on each of these two terms, and then using them to derive a generic
bound on the sample EM iterates. In the current context, their theorem can
be summarized as follows. For given tolerances δ ∈ (0, 1), ε > 0 and starting
radius r > 0, suppose that there exists a function ε(n, δ) > 0, decreasing in
terms of the sample size n, and a contraction coefficient κ ∈ (0, 1) such that

sup
‖θ‖

2
≥ε

‖M(θ)‖2
‖θ‖2

≤κ and P

[
sup

‖θ‖
2
≤r

‖Mn(θ)−M(θ)‖2≤ε(n, δ)

]
≥1−δ.(19a)

Then for a sample size n sufficiently large and ε sufficiently small to ensure
that

ε
(i)

≤ ε(n, δ)

1− κ

(ii)

≤ r,(19b)

the sample EM iterates are guaranteed to converge to a ball of radius
ε(n, δ)/(1− κ) around the true parameter θ∗ = 0.

In order to apply this theorem to the current setting, we need to specify
a choice of ε(n, δ) for which the bound on the empirical process holds. The
following auxiliary result provides such control for us:

Lemma 1. There exists universal positive constants c1 and c2 such that
for any positive radius r, any threshold δ ∈ (0, 1), and any sample size
n ≥ c2d log(1/δ), we have

P

[
sup

‖θ‖2≤r
‖Mn(θ)−M(θ)‖2 ≤ c1σ(σr + ρ)

√
d+ log(1/δ)

n

]
≥ 1− δ,(20)

where ρ = |1− 2π| denotes the imbalance in the mixture fit (3).

The proof of this lemma is based on Rademacher complexity arguments; see
Appendix B.1 in the supplement [10] for the details.

With the choice r =
∥∥θ0
∥∥
2
, Lemma 1 guarantees that the second inequal-

ity in line (19a) holds with ε(n, δ) . σ2
∥∥θ0
∥∥
2

√
d/n. On the other hand,
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Theorem 2 implies that for any θ such that ‖θ‖2 ≥ ε, we have that popu-
lation EM is contractive with parameter bounded above by κ(ε) � 1 − ε2.
In order to satisfy inequality (i) in equation (19b), we solve the equation
ε(n, δ)/(1− κ(ε)) = ε. Tracking only the dependency on d and n, we ob-
tain4

√
d/n

ε2
= ε =⇒ ε = O

(
(d/n)

1

6

)
,(21)

which shows that the Euclidean norm of the sample EM iterate is bounded
by a term of order (d/n)

1

6 .

While this rate is much slower than the classical (d/n)
1

2 rate that we

established in the unbalanced case, it does not coincide with the n− 1

4 rate
that we obtained in Figure 1(b) for balanced setting with d = 1. Thus, the
proof technique based on the framework of Balakrishnan et al. [1] appears
to be non-optimal. The sub-optimality of this approach necessitates the
development of a more refined technique. Before sketching this technique,
we now quantify empirically the convergence rate of sample EM in terms of
both dimension d and sample size n for the balanced mixture fit. In Figure 4,
we summarize the results of these experiments. The two panels in the figure
exhibit that the error in the sample EM estimate scales as (d/n)

1

4 , thereby
providing further numerical evidence that the preceding approach indeed
led to a sub-optimal result.

4.2. Annulus-based localization over epochs. Let us try to understand
why the preceding argument led to a sub-optimal bound. In brief, its “one-
shot” nature contains two major deficiencies. First, the tolerance parameter
ε is used both (a) for measuring the contractivity of the updates, as in the
first inequality in equation (19a), and (b) for determining the final accuracy
that we achieve. At earlier phases of the iteration, the algorithm will converge
more quickly than suggested by the worst-case analysis based on the final
accuracy. A second deficiency is that the argument uses the radius r only
once, setting it to a constant to reflect the initialization θ0 at the start
of the algorithm. This means that we failed to “localize” our bound on the
empirical process in Lemma 1. At later iterations of the algorithm, the norm∥∥θt
∥∥
2
will be smaller, meaning that the empirical process can be more tightly

controlled. We note that ideas of localizing the radius r for an empirical
process plays a crucial role in obtaining sharp bounds on the error of M -
estimation procedures [2, 17, 26, 27].

4Moreover, with this choice of ε, inequality (ii) in equation (19b) is satisfied with a
constant r, as long as n is sufficiently large relative to d.
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where γ̃ := e−(d/n)2α`+1
. On the other hand, using the outer radii of the

annulus and applying Lemma 1 for this epoch, we obtain that

∥∥Mn(θ
t)−M(θt)

∥∥
2
-

(
d

n

)α`
√

d

n
=

(
d

n

)α`+1/2

,(24b)

for all t in the epoch. Unfolding the basic triangle inequality (18) for T steps,
we find that

∥∥θt+T
∥∥
2
≤
∥∥Mn(θ

t)−M(θt)
∥∥
2
(1 + γ̃ + . . .+ γ̃T−1) + γ̃T ‖θt‖2

≤ 1

1− γ̃

∥∥Mn(θ
t)−M(θt)

∥∥
2
+ e−T (d/n)2α`+1

(d/n)α` .

The second term decays exponentially in T , and our analysis shows that it
is dominated by the first term in the relevant regime of analysis. Examining
the first term, we find that θt+T has Euclidean norm of the order

∥∥θt+T
∥∥
2
-

1

1− γ̃

∥∥Mn(θ
t)−M(θt)

∥∥
2
≈
(
d

n

)−2α`+1
(
d

n

)α`+1/2

︸ ︷︷ ︸
= : r

.(25)

The epoch is said to be complete once
∥∥θt+T

∥∥
2
-
(
d
n

)α`+1 . Disregarding

constants, this condition is satisfied when r =
(
d
n

)α`+1 , or equivalently when

(
d

n

)−2α`+1
(
d

n

)α`+1/2

=

(
d

n

)α`+1

.

Viewing this equation as a function of the pair (α`+1, α`) and solving for
α`+1 in terms of α` yields the recursion (23). Refer to Figure 6 for a visual
illustration of the localization argument summarized above for a given epoch.

Of course, the preceding discussion is informal, and there remain many
details to be addressed in order to obtain a formal proof. We refer the reader
to Appendix A.3 for the complete argument.

5. Generality of results and future work. Thus far, we have char-
acterized the behavior of the EM algorithm for different settings of over-
specified location Gaussian mixtures. We established rigorous statistical
guarantees of EM under two particular but representative settings of over-
specified location Gaussian mixtures: the balanced and unbalanced mixture-
fit. The log-likelihood for the unbalanced fit remains strongly log-concave5

5Moreover, in Appendix D we differentiate the unbalanced and balanced fit based on the
log-likelihood and the Fisher matrix and provide a heuristic justification for the different
rates between the two cases.
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(due to the fixed weights and location parameters being sign flips) and
hence the Euclidean error of the final iterate of EM decays at the usual
rate (d/n)

1

2 with n samples in d dimensions. However, in the balanced case,
the log-likelihood is no longer strongly log-concave and the error decays at
the slower rate (d/n)

1

4 . We view our results as the first step in understand-
ing and possibly improving the EM algorithm in non-regular settings. We
now provide a detailed discussion that sheds light on the general applica-
bility of our results. In particular, we discuss the behavior of EM under the
following settings: (i) over-specified mixture models with unknown weight
parameters (Section 5.1), (ii) over-specified mixture of linear regression (Sec-
tion 5.2), and (iii) more general settings with over-specified mixture models
(Section 5.3). We conclude the paper with a discussion of several future
directions that arise from the previous settings in Section 5.4.

5.1. When the weights are unknown. Our theoretical analysis so far as-
sumed that the weights were fixed, an assumption common to a number of
previous papers in the area [1, 7, 18]. In Appendix C.2, we consider the case
of unknown weights for the model fit (3). In this context, our main contribu-
tion is to show that if the weights are initialized far away from 1

2—meaning
that the initial mixture is highly unbalanced—then the EM algorithm con-
verges quickly, and the results from Theorem 1 are valid. (See Lemma 6 in
Appendix C.2 for the details.) On the other hand, if the initial mixture is
not heavily imbalanced, we observe the slow convergence of EM consistent
with Theorems 2 and 3.

5.2. Slow rates for mixture of regressions. Thus far, we have considered
the behavior of the EM algorithm in application to parameter estimation
in mixture models. Our findings turn out to hold somewhat more generally,
with Theorems 2 and 3 having analogues when the EM algorithm is used
to fit a mixture of linear regressions in over-specified settings. Concretely,
suppose that (Y1, X1), . . . , (Yn, Xn) ∈ R × R

d are i.i.d. samples generated
from the model

Yi = X>
i θ∗ + σξi, for i = 1, . . . , n,(26)

where {ξi}ni=1 are i.i.d. standard Gaussian variates, and the covariate vec-
tors Xi ∈ R

d are also i.i.d. samples from the standard multivariate Gaussian
N (0, Id). Of interest is to estimate the parameter θ∗ using these samples and
EM is a popular method for doing so. When θ∗ has sufficiently large Eu-
clidean norm, a setting referred to as the strong signal case, Balakrishnan et
al. [1] showed that the estimate returned by EM is at a distance (d/n)

1

2 from
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the true parameter θ∗ with high probability. On the other hand, our analysis
shows that when ‖θ∗‖2 decays to zero—leading to an over-specified setting—
the convergence of EM becomes slow. In particular, the EM algorithm takes
significantly more steps and returns an estimate that is statistically worse,
lying at Euclidean distance of the order (d/n)

1

4 from the true parameter.
While the EM operators in this case are slightly different when compared to
the over-specified Gaussian mixture analyzed before, the proof techniques
remain similar. More concretely, we first show that the convergence of pop-
ulation EM is slow (similar to Theorem 2) and then use the annulus-based
localization argument (similar to the proof of Theorem 3 from Section 4) to
derive a sharp rate. For completeness, we present these results formally in
Lemma 7 and Corollary 2 in Appendix E.

5.3. Slow rates for general mixtures. We now present several experi-
ments that provide numerical backing to the claim that the slow rate of
order n− 1

4 is not merely an artifact of the special balanced fit ((3) with
π = 1

2). We demonstrate that the slow convergence of EM is very likely
to arise while fitting general over-specified location Gaussian mixtures with
unknown weights (and known covariance). We consider three settings: (A)
fitting several general over-specified location Gaussian mixture fits to Gaus-
sian data (Figure 7), (B) fitting a special three-component mixture fit to
a two mixture of Gaussians (Figure 8), and (C) fitting mixtures with un-
known weights and location parameters when the number of components in
the fitted model is over-specified by two (Figure 9). We now turn to the
details of these settings.

General over-specified mixture fits on Gaussian data. First, we remark that
the fast convergence in the unbalanced fit (Theorem 1) was a joint result of
the facts that (a) the weights were fixed and unequal, and (b) the parameters
were constrained to be a sign flip. If either of these conditions is violated, the
EM algorithm exhibits slow convergence on both algorithmic and statistical
fronts. Theorems 2, 3 and 4 provide rigorous details for the case of equal
and fixed weights (balanced fit). When the weights are unknown, EM can
exhibit slow rate (see Section 5.1 and Appendix C.2 for further details).
When the weights are fixed and unequal, but the location parameters are
estimated freely—that is, with the model πφ(x; θ1, 1)+ (1−π)φ(x; θ2, 1), as

illustrated in Figure 7(a)—then the EM estimates have error6 of order n− 1

4 .

6For more general cases, we measure the error of parameter estimation using the
Wasserstein metric of second order Ŵ2,n to account for label-switching between the com-
ponents. When the true model is standard Gaussian this metric is simply the weighted

Euclidean error: (
∑

πkθ̂
2
k,n)

1

2 , where πk and θ̂k,n, respectively, denote the mixture weight





SINGULAR MODELS AND SLOW CONVERGENCE OF EM 27

concretely, suppose that we are given data generated from a k-component
mixture, and we use the EM algorithm to fit the location parameters of a
mixture model with k+1 components. Loosely speaking, the EM estimates
corresponding to a set of k − 1 components are likely to converge quickly,
leaving the two remaining components to fit a single component in the true
model. If the other components are far away, the EM updates for the param-
eters of these two components are unaffected by them and start to behave
like the balanced case. See Figure 8 for a numerical illustration of this in-
tuition in an idealized setting where we use k + 1 = 3 components to fit
data generated from a k = 2 component model. In this idealized setting,
the error for one of the parameter scales at the fast rate of order n− 1

2 , and
that of the parameter that is locally over-fitted exhibits a slow rate of order
n− 1

4 . Finally, we see that the statistical error of order n− 1

4 also arises when
we over-specify the number of components by more than one. In particular,
we observe in Figure 7(b) (green dashed dotted line with solid circles) and

Figure 9 (both curves) that a similar scaling of order n− 1

4 arises when we
over-specify the number of components by 2 and estimate the weight and
location parameters.

Besides formally analyzing EM in these general cases, several other future
directions arise from our work which we now discuss.

5.4. Future directions. In our current work, we assumed that only the
location parameters were unknown and that the scale parameters of the
underlying model are known. Nevertheless in practice, this assumption is
rather restrictive and it is natural to ask what happens if the scale param-
eters were also unknown. We note that the MLE is known to have even
slower statistical rates for the estimation error with such higher-order mix-
tures; therefore, it would be interesting to determine if the EM algorithm
also suffers from a similar slow down when the scale parameters are un-
known. We refer the readers to a recent preprint [11], where we establish
that the EM algorithm can suffer from a further slow-down on the statisti-
cal and computational ends when over-specified mixtures are fitted with an
unknown scale parameter.

Another important direction is to analyze the behavior of EM under differ-
ent models for generating the data. While our analysis is focused on Gaussian
mixtures, the non-standard statistical rate n− 1

4 also arises in other types of
over-specified mixture models, such as those involving mixtures with other
exponential family members, or Student-t distributions, suitable for heavy-
tailed data. We believe that the analysis of our paper can be generalized to
a broader class of finite mixture models that includes the aforementioned
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