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Abstract. We address the problem of policy evaluation in discounted, tabular Markov decision processes, and
provide instance-dependent guarantees on the f-error under a generative model. We establish both
asymptotic and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby
providing an instance-dependent baseline by which to compare algorithms. Theory-inspired simu-
lations show that the widely-used temporal difference (TD) algorithm is strictly suboptimal when
evaluated in a non-asymptotic setting, even when combined with Polyak-Ruppert iterate averaging.
We remedy this issue by introducing and analyzing variance-reduced forms of stochastic approxi-
mation, showing that they achieve non-asymptotic, instance-dependent optimality up to logarithmic
factors.

Key words. Temporal difference learning, Polyak-Ruppert averaging, variance reduction.
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1. Introduction. Reinforcement learning (RL) refers to a class of methods for the optimal
control of dynamical systems [7, 6, 46, 8] that has begun to make inroads in a wide range
of applied problem domains. However, this empirical research has revealed the limitations of
our theoretical understanding of this class of methods: more precisely, popular RL algorithms
exhibit a variety of behavior across domains and problem instances, and existing theoretical
bounds, which are generally based on worst-case assumptions, fail to capture this variety. An
important theoretical goal is to develop instance-specific analyses that help to reveal what
aspects of a given problem make it “easy” or “hard,” and allow distinctions to be drawn
between ostensibly similar algorithms in terms of their performance profiles. The focus of
this paper is on developing such a theoretical understanding for a class of popular stochastic
approximation algorithms used for policy evaluation.

RL methods are generally formulated in terms of a Markov decision process (MDP).
An agent operates in an environment whose dynamics are described by an MDP but are
unknown: at each step, it observes the current state of the environment, and takes an action
that changes the state according to some stochastic transition function. The eventual goal of
the agent is to learn a policy—a mapping from states to actions—that optimizes the reward
accrued over time. In the typical setting, rewards are assumed to be additive over time, and
are also discounted over time. Within this broad context, a key sub-problem is that of policy
evaluation, where the goal is estimate the long-term expected reward of a fixed policy based
on observed state-to-state transitions and one-step rewards. It is often preferable to have
f~-norm guarantees for such an estimate, since these are particularly compatible with policy
iteration methods. In particular, policy iteration can be shown to converge at a geometric
rate when combined with policy evaluation methods that are accurate in /o.-norm (see, e.g.,
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2 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

the sources [1, 8]).

In this paper, we study a class of stochastic approximation algorithms for this problem
under a generative model for the underlying MDP, with a focus on developing instance-
dependent bounds. Our results complement an earlier paper by a subset of the authors [38],
which studied the least squares temporal difference (LSTD) method through such a lens.

1.1. Related work. We begin with a broad overview of related work, categorizing that
work as involving asymptotic analysis, non-asymptotic analysis, or instance-dependent analy-
sis.

Asymptotic theory. Markov reward processes have been the subject of considerable clas-
sical study [22, 21]. In the context of reinforcement learning and stochastic control, the policy
evaluation problem for such processes has been tackled by various approaches based on sto-
chastic approximation. Here we focus on past work that studies the temporal difference (TD)
update and its relatives; see the paper [16] for a comprehensive survey. The TD update was
originally proposed by Sutton [45], and is typically used in conjunction with an appropriate
parameterization of value functions. Classical results on the algorithm are typically asymp-
totic, and include both convergence guarantees [24, 11, 12] and examples of divergence [5]; see
the paper [48] for conditions that guarantee asymptotic convergence.

It is worth noting that the TD algorithm is a form of linear stochastic approximation,
and can be fruitfully combined with the iterate-averaging procedure put forth independently
by Polyak [39] and Ruppert [42]. The subsequent work of Polyak and Juditsky [40] deserves
special mention, since it shows that under fairly mild conditions, the TD algorithm converges
when combined with Polyak-Ruppert iterate averaging. To be clear, in the specific context of
the policy evaluation problem, the results in the Polyak-Juditsky paper [40] allow noise only
in the observations of rewards (i.e., the transition function is assumed to be known). However,
the underlying techniques can be extended to derive results in the setting in which we only
observe samples of transitions; for instance, see the work of Tadic [47] for results of this type.

Non-asymptotic theory. Recent years have witnessed significant interest in understanding
TD-type algorithms from the non-asymptotic standpoint. Bhandari et al. [9] focus on proving
fy-guarantees for the TD algorithm when combined with Polyak-Ruppert iterate averaging.
They consider both the generative model as well as the Markovian noise model, and provide
non-asymptotic guarantees on the expected error. Their results also extend to analyses of the
popular TD(\) variant of the algorithm, as well as to -learning in specific MDP instances.
Also noteworthy is the analysis of Lakshminarayanan and Szepesvari [29], carried out in
parallel with Bhandari et al. [9]; it provides similar guarantees on the TD(0) algorithm with
constant stepsize and averaging. Note that both of these analyses focus on /s-guarantees
(equipped with an associated inner product), and thus can directly leverage proof techniques
for stochastic optimization [4, 37].

Other related results' include those of Dalal et al. [15], Doan et al. [17], Korda and La [28],
and also more contemporary papers [55, 51]. The latter three of these papers introduce a
variance-reduced form of temporal difference learning, a variant of which we analyze in this

Tt should be noted that there were some errors in the results of Korda and La [28] that were pointed out
by both Lakshminarayanan and Szepesvari [29] and Xu et al. [55].
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paper.

Instance-dependent results. The focus on instance-dependent guarantees for TD algo-
rithms is recent, and results are available both in the fo-norm setting [9, 29, 15, 55] and the
lso-norm settings [38]. In general, however, the guarantees provided by work to date are
not sharp. For instance, the bounds in [15] scale exponentially in relevant parameters of the
problem, whereas the papers [9, 29, 55] do not capture the correct “variance” of the problem
instance at hand. A subset of the current authors [38] derived £, bounds on policy evaluation
for the plug-in estimator. These results were shown to be locally minimax optimal in certain
regions of the parameter space. There has also been some recent focus on obtaining instance-
dependent guarantees in online reinforcement learning settings [34]. This has resulted in more
practically useful algorithms that provide, for instance, horizon-independent regret bounds
for certain episodic MDPs [56, 25|, thereby improving upon worst-case bounds [3]. Recent
work has also established some instance-dependent bounds, albeit not sharp over the whole
parameter space, for the problem of state-action value function estimation in Markov decision
processes, for both ordinary @Q-learning [53] and a variance-reduced improvement [54].

1.2. Contributions. In this paper, we study stochastic approximation algorithms for eval-
uating the value function of a tabular Markov reward process in the discounted setting. Our
goal is to provide a sharp characterization of performance in the ¢..-norm, for procedures
that are given access to state transitions and reward samples under the generative model.
In practice, temporal difference learning is typically applied with an additional layer of (lin-
ear) function approximation. In the current paper, so as to bring the instance dependence
into sharp focus, we study the algorithms without this function approximation step. In this
context, we tell a story with three parts, as detailed below:

Local minimax lower bounds. Global minimax analysis provides bounds that hold uni-
formly over large classes of models. In this paper, we seek to gain a more refined understanding
of how the difficulty of policy evaluation varies as a function of the instance. In order to do so,
we undertake an analysis of the local minimax risk associated with a problem. We first prove
an asymptotic statement (Proposition 3.1) that characterizes the local minimax risk up to a
logarithmic factor; it reveals the relevance of two functionals of the instance that we define.
In proving this result, we make use of the classical asymptotic minimax theorem [23, 31, 32].
We then refine this analysis by deriving a non-asymptotic local minimax bound, as stated in
Theorem 3.2, which is derived using the non-asymptotic local minimax framework of Cai and
Low [14], an approach that builds upon the seminal concept of hardest local alternatives that
can be traced back to Stein [44].

Non-asymptotic suboptimality of iterate averaging. Our local minimax lower bounds
raise a natural question: Do standard procedures for policy evaluation achieve these instance-
specific bounds? In Section 3.2, we address this question for the TD(0) algorithm with iterate
averaging. Via a careful simulation study, we show that for many popular stepsize choices, the
algorithm fails to achieve the correct instance-dependent rate in the non-asymptotic setting,
even when the sample size is quite large. This is true for both the constant stepsize, as well
as polynomial stepsizes of various orders. Notably, the algorithm with polynomial stepsizes
of certain orders achieves the local risk in the asymptotic setting (see Proposition 3.1).

This manuscript is for review purposes only.
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4 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

Non-asymptotic optimality of variance reduction. In order to remedy this issue with
iterate averaging, we propose and analyze a variant of TD learning with variance reduction,
showing both through theoretical (see Theorem 2) and numerical results (see Figure 3) that
this algorithm achieves the correct instance-dependent rate provided the sample size is larger
than an explicit threshold. Thus, this algorithm is provably better than TD(0) with iterate
averaging.

1.3. Notation. For a positive integer n, let [n] := {1,2,...,n}. For a finite set S, we use
|S| to denote its cardinality. We use ¢,C, ¢y, c2,... to denote universal constants that may
change from line to line. We let 1 denote the all-ones vector in RP. Let ej denote the jth
standard basis vector in RP. We let v(;) denote the i-th order statistic of a vector v, i.e.,
the i-th largest entry of v. For a pair of vectors (u,v) of compatible dimensions, we use the
notation v =< v to indicate that the difference vector v — u is entrywise non-negative. The
relation u > v is defined analogously. We let |u| denote the entrywise absolute value of a
vector u € RP; squares and square-roots of vectors are, analogously, taken entrywise. Note
that for a positive scalar A, the statements |u| < A+ 1 and ||uljcc < A are equivalent. Finally,
we let ||[M]|1,00 denote the maximum ¢;-norm of the rows of a matrix M, and refer to it as
the (1, 00)-operator norm of a matrix.

2. Background and problem formulation. We begin by introducing the basic mathemat-
ical formulation of Markov reward processes (MRPs) and generative observation models.

2.1. Markov reward processes and value functions. We study MRPs defined on a finite
set of D states, which we index by the set [D] = {1,2,..., D}. The state evolution over time is
determined by a set of transition functions, {P(-|i), i € [D]}. Note that each such transition
function can be naturally associated with a D-dimensional vector; denote the i-th such vector
as p;. We let P € [0,1]P*P denote a row-stochastic (Markov) transition matrix, where row
1 of this matrix contains the vector p;. Also associated with an MRP is a population reward
function, r : [D] — R, possessing the semantics that a transition from state i results in the
reward 7 (7). For convenience, we engage in a minor abuse of notation by letting r also denote
a vector of length D; here r; corresponds to the reward obtained at state .

We formulate the long-term value of a state in the MRP in terms of the infinite-horizon,
discounted reward. This value function (denoted here by the vector #* € RP) can be computed
as the unique solution of the Bellman fixed-point relation, 8* = r + vP8*.

2.2. Observation model. In the learning setting, the pair (P,r) is unknown, and we
accordingly assume access to a black box that generates samples from the transition and
reward functions. In this paper, we operate under a setting known as the synchronous® or
generative setting [27]; this setting is also often referred to as the “i.i.d. setting” in the policy
evaluation literature. For a given sample index, k € {1,2,..., N} and for each state j € [D],

we observe a random next state

(2.1a) Xy~ P(lj)  forje[D).

2With standard arguments, our results can be extended to the setting in which the noise is the problem
evolves according to a martingale.
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We collect these transitions in a matrix Zg, which by definition contains one 1 in each row:
the 1 in the j-th row corresponds to the index of state X}, ;. We also observe a random reward
vector Ry, € RP, where the rewards are generated independently across states with?

(2.1b) Ryj ~ N (rj, 7).

Given these samples, define the k-th (noisy) linear operator Tr. : RP = RP whose evalua-
tion at the point 6 is given by

(2.2) Te(0) = Ry +vZyb.

The construction of these operators is inspired by the fact that we are interested in computing
the fixed point of the population operator,

(2.3) T 0w r+~P0,

and a classical and natural way to do so is via a form of stochastic approximation known as
temporal difference learning, which we describe next.

2.3. Temporal difference learning and its variants. Classical temporal difference (TD)
learning algorithms are parametrized by a sequence of stepsizes, {ay}x>1, with o € (0,1].
Starting with an initial vector #; € RP, the TD updates take the form

(2.4) Ori1 = (1 — )0 + o Tr(6y) for k=1,2,....

In the sequel, we discuss three popular stepsize choices:

2.5a Constant stepsize: ap = a, where 0 < a < amax-
p
(2.5b) Polynomial stepsize: = for some w € (0,1).
1
2.5¢ Recentered-linear stepsize: ap = ————.
(2.5¢) P Ik

In addition to the TD sequence (2.4), it is also natural to perform Polyak-Ruppert aver-
aging, which produces a parallel sequence of averaged iterates

k
(2.6) 5;;%2@ fork=1,2,....
j=1

Such averaging schemes were introduced in the context of general stochastic approximation by
Polyak [40] and Ruppert [42]. A large body of theoretical literature demonstrates that such
an averaging scheme improves the rates of convergence of stochastic approximation when run
with overly “aggressive” stepsizes [4, 40, 42].

3All of our upper bounds extend with minor modifications to the sub-Gaussian reward setting.
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3. Main results. We turn to the statements of our main results and discussion of their
consequences. All of our statements involve certain measures of the local complexity of a
given problem, which we introduce first. We then turn to the statement of lower bounds on
the foo-norm error in policy evaluation. In Section 3.1, we prove two lower bounds. Our
first result, stated as Proposition 3.1, is asymptotic in nature (holding as the sample size
N — 400). Our second lower bound, stated as Theorem 3.2, provides a result that holds
for a range of finite sample sizes. Given these lower bounds, it is then natural to wonder
about known algorithms that achieve them. Concretely, does the TD(0) algorithm combined
with Polyak-Ruppert averaging achieve these instance-dependent bounds? In Section 3.2, we
undertake a careful empirical study of this question, and show that in the non-asymptotic
setting, this algorithm fails to match the instance-dependent bounds. This finding sets up
the analysis in Section 3.3, where we introduce a variance-reduced version of TD(0), and
prove that it does achieve the instance-dependent lower bounds from Theorem 3.2 up to a
logarithmic factor in dimension.

Local complexity measures. Recall the generative observation model described in Sec-
tion 2.2. For a transition matrix P, we write Z ~ P to mean a random matrix with {0,1}
entries, and a single one in each row (with the position of the one in row Z; determined by
sampling from the transition distribution specified by row P;). Also recall that the random
reward vector R € RP such that R, ~ N (rj,af). As we show shortly, the complexity of
estimating the value function 6* depends on the covariance matrix

(3.1a) S5 (P,r) = (I—~4P) tcov(R+~Z6*)(I—~P) .

The term cov(R + 7Z6*) = cov(Tx(6*)) denotes the variance of the empirical Bellman opera-
tor (2.2) applied to the true value function, and it captures the effect of noise. This error is
compounded by powers of the discounted transition matrix,* which captures how perturba-
tions propagate over time, and thus gives rise to the matrix (I —yP)~!. In Section 3.1, xive
argue that local complexity of estimating the value function 6* depends on || diag(Z* (P, 7))| %,
i.e. the maximal diagonal entry of the matrix 3*(P,r).

Since the transition and reward samples are assumed to be independent under the gen-
erative observation model 2.2, we can decompose the covariance matrix ¥*(P,r) into two

parts:
S5 (P,r) = (I—~4P) tcov(vZ0") (I —4P)" " + (I —~P) L cov(R)(I—~P) .

Throughout the paper, we use the shorthand notation

(3.1b) v(P,0%) : = || diag ((1 — 4P)! cov(vZ6*)(I — VP)_T) H

(3.1¢) p(P.7) : = | diag (1 - 7P) ! cov(R)(T— 7P) T )||%.

“Observe that we have the von Neumann expansion Pty (YP) = (I —+P)"".

This manuscript is for review purposes only.
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228 In terms of the above notation, we have the following convenient sandwich relation:
1 1
20 (31d) o (P8 4 p(P,r)} < [[ding(S* (P& < 2+ {v(P6°) + p(P, 1))

231 A portion of our results also involves the quantity

16]lspan
232 (3.1e b(f) 1= ——
233 (8.1¢) ©) 1—v"
234 where ||0||span = max 6; — min 6; is the span seminorm.
JjelD] JjelD]
235 3.1. Local minimax lower bound. Throughout this section, we use the letter P to denote

236 an individual problem instance, P = (P,r), and use #(P) := 0* = (I — yP)"!r to denote
237 the target of interest. The aim of this section is to establish instance-specific lower bounds
238 for estimating 6(P) under the observation model (2.1). In order to do so, we adopt a local
239 minimax approach.

240 The remainder of this the section is organized as follows. In Section 3.1.1, we prove an
241 asymptotic local minimax lower bound, valid as the sample size N tends to infinity. It gives
242 an explicit Gaussian limit for the rescaled error that can be achieved by any procedure. The
243 asymptotic covariance in this limit law depends on the problem instance, and is very closely
244 related to the functional ¥*(P,r). Moreover, we show that this limit can be achieved—in the
245 asymptotic sense—by the TD algorithm combined with Polyak-Ruppert averaging. While this
246 provides a useful sanity check, in practice we implement estimators using a finite number of
247 samples N, so it is important to obtain non-asymptotic lower bounds for a full understanding.
248  With this motivation, Section 3.1.2 provides a new, non-asymptotic instance-specific lower
249 bound for the policy evaluation problem. We show that the functional 3*(P,r) also covers
250 the instance-specific complexity in the finite-sample setting. In proving this non-asymptotic

251 lower bound, we build upon techniques in the statistical literature based on constructing
252 hardest one-dimensional alternatives [44, 10, 18, 19, 13]. As we shall see in later sections,
253 while the TD algorithm with averaging is instance-specific optimal in the asymptotic setting,
254 it fails to achieve our non-asymptotic lower bound.

55 3.1.1. Asymptotic local minimax lower bound. Our first approach towards an instance-

56 specific lower bound is an asymptotic one, based on classical local asymptotic minimax
257 theory. For regular and parametric families, the Hijek—Le Cam local asymptotic minimax

58 theorem [23, 31, 32] shows that the Fisher information—an instance-specific functional—
259 characterizes a fundamental asymptotic limit. Our model class is both parametric and regular
260 (cf. equation (2.1)), and so this classical theory applies to yield an asymptotic local minimax
261 bound. Some additional work is needed to relate this statement to the more transparent
262 complexity measure X*(P,r) that we have defined.
263 In order to state our result, we require some additional notation. Fix an instance P = (P, r).Jj
264 For any € > 0, we define an e-neighborhood of problem instances by

%63 N(Pie) = {P' =@, 7'): |P=P| .+ ||r ||, < e}
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8 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

Adopting the /. -norm as the loss function, the local asymptotic minimazx risk is given by

32 M) = M) = Jim Jim inf  swp B [V |ox —09)| ]

Here the infimum is taken over all estimators §N that are measurable functions of N i.i.d.
observations drawn according to the observation model (2.1).

Our first main result characterizes the local asymptotic risk M (P) exactly, and shows
that it is attained by stochastic approximation with Polyak-Ruppert averaging. Recall the
Polyak-Ruppert (PR) sequence {6} }1>1 defined in equation (2.6), and let {6;’},>1 denote this
sequence when the underlying SA algorithm is the TD update with the polynomial stepsize
sequence (2.5b) with exponent w.

Proposition 3.1. Let Z € RP be a multivariate Gaussian with zero mean and covariance
matriz X*(P,r), then the local asymptotic minimax risk at problem instance P is given by

(3.3) Moo (P) = E[l| Z]|oc]-

Furthermore, for each problem instance P and scalar w € (1/2,1), this limit is achieved by
the TD algorithm with an w-polynomial stepsize and PR-averaging:

(3.3b) Jim VN -E [ ~ 0(P)lloc| = EllIZ]lc]:

With the convention that 6* = 6(P), a short calculation bounding the maximum absolute
value of sub-Gaussian random variables (see, e.g., Ex. 2.11 in Wainwright [52]) yields the
sandwich relation

1 1
| diag(Z" (P, 7))[l5% < E[[|Z]lc] < v/2log D - || diag(Z*(P, 7)) %,

so that Proposition 3.1 shows that, up to a logarithmic factor in dimension D, the local

1
asymptotic minimax risk is entirely characterized by the functional || diag(Z*(P, 7)) Z.

It should be noted that lower bounds similar to equation (3.3a) have been shown for specific
classes of stochastic approximation algorithms [49]. However, to the best of our knowledge, a
local minimax lower bound—one applying to any procedure that is a measurable function of
the observations—is not available in the existing literature.

Furthermore, equation (3.3b) shows that stochastic approximation with polynomial step-
sizes and averaging attains the exact local asymptotic risk. Our proof of this result essentially
mirrors that of Polyak and Juditsky [40], and amounts to verifying their assumptions under
the policy evaluation setting. Given this result, it is natural to ask if averaging is optimal also
in the non-asymptotic setting; answering this question is the focus of the next two sections of
the paper.

3.1.2. Non-asymptotic local minimax lower bound. Proposition 3.1 provides an instance-Jj
specific lower bound on #(P) that holds asymptotically. In order to obtain a non-asymptotic
guarantee, we borrow ideas from the non-asymptotic framework introduced by Cai and Low [13]f}
for nonparametric shape-constrained inference. Adapting their definition of local minimax risk

This manuscript is for review purposes only.
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to our problem setting, given the loss function L(6 — 6*) = ||§ — 6*||~, the (normalized) local
non-asymptotic minimax risk for 6(-) at instance P = (P,r) is given by

3.4 My (P) = supinf VN -Eo ||0n — 0(9)]|eo| -
(3.4) w(P) = supinf max o 10y — 6(Qll]

Here the infimum is taken over all estimators 67]\/ that are measurable functions of N i.i.d.
observations drawn according to the observation model (2.1), and the normalization by v/N is
for convenience. The definition (3.4) is motivated by the notion of the hardest one-dimensional
alternative [50, Ch. 25]. Indeed, given an instance P, the local non-asymptotic risk My (P)
first looks for the hardest alternative P’ against P (which should be local around P), then
measures the worst-case risk over P and its (local) hardest alternative P’. As explained
in detail in the paper [20], this instance-specific local minimax risk thus defined imposes a
fundamental limit on all learning procedures: any algorithm achieving better behavior than the
lower bound at one instance must have substantially worse behavior at some other instances.

With this definition in hand, we lower bound the local non-asymptotic minimax risk using

1
the complexity measure || diag(X*(P,r))||& defined in equation (3.1):
Theorem 3.2. There exists a universal constant ¢ > 0 such that for any instance P = (P, r) ]

the local non-asymptotic minimaz risk is lower bounded as

(3.5) My (P) > ¢ || diag(S* (P, 1)||2.

This bound is valid for all sample sizes N that satisfy

2 b2 o*
(3.6) NZNO::max{(ljfy)z,VQ(}i’e)*)}.

A few comments are in order. First, it is natural to wonder about the necessity of con-
dition (3.6) on the sample size N in our lower bound. Our past work provides upper bounds
on the /-error of the plug-in estimator [38], and these results also require a bound of this
type. In fact, when the rewards are observed with noise (i.e., for any o, > 0), the condition

N 2 ﬁ is natural, since it is necessary in order to obtain an estimate of the value function
with O(1) error. On the other hand, in the special case of deterministic rewards (o, = 0), it
is interesting to ask how the fundamental limits of the problem behave in the absence of this
condition (see Section 5 for further discussion of this point).

Second, note that Theorem 3.2 may be viewed as a strengthening of local minimax lower
bounds established in prior work by a subset of the current authors [38], which held over
sub-classes of MRPs satisfying certain conditions. Theorem 3.2, on the other hand, is a lower
bound that holds in the neighborhood of every instance. Having said that, the lower bounds
in the paper [38] are able to capture logarithmic factors in the dimension, but Theorem 3.2,
owing to the two-point nature of the construction, is not.

Finally, note that the non-asymptotic lower bound (3.5) is closely connected to the as-
ymptotic local minimax bound from Proposition 3.1. In particular, for any sample size N
satisfying the lower bound (3.6), our non-asymptotic lower bound (3.5) coincides with the
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345
346
347
348
349
350

351

[\]

W W W w W w
S Ot W

~

w

w
ot Ot v v Ot Ot Ot Ot
oo w

w

=)
Ne)

36(

361
362
363

10 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

asymptotic lower bound (3.3a) up to a constant factor. Thus, it cannot be substantially
sharpened. The finite-sample nature of the lower bound (3.5) is a powerful tool for assessing
optimality of procedures: it provides a performance benchmark that holds over a large range
of finite sample sizes N. Indeed, in the next section, we study the performance of the TD
learning algorithm with Polyak-Ruppert averaging. While this procedure achieves the local
minimax lower bound asymptotically, as guaranteed by equation (3.3b) in Proposition 3.1, it
falls short of doing so in natural finite-sample scenarios.

3.2. Suboptimality of averaging. Polyak and Juditsky [40] provide a general set of con-
ditions under which a given stochastic-approximation (SA) algorithm, when combined with
Polyak-Ruppert averaging, is guaranteed to have asymptotically optimal behavior. For the
current problem, the bound (3.3b) in Proposition 3.1, which is proved using the Polyak-
Juditsky framework, shows that SA with polynomial stepsizes and averaging have this favor-
able asymptotic property.

However, asymptotic theory of this type gives no guarantees in the finite-sample setting.
In particular, suppose that we are given a sample size N that scales as (1—+)~2, as specified in
our lower bounds. Does the averaged TD(0) algorithm exhibit optimal behavior in this non-
asymptotic setting? In this section, we answer this question in the negative. More precisely, we
describe a parameterized family of Markov reward processes, and provide careful simulations
that reveal the suboptimality of TD without averaging.

I—p

N
p () (=1

r=v r=v-T

Figure 1. Tllustration of the 2-state MRP used in the simulation. The triple of scalars (p, v, T),
along with the discount factor v, are parameters of the construction. The chain remains in state
1 with with probability p and transitions to state 2 with probability 1 — p; on the other hand,
state 2 is absorbing. The rewards in states 1 and 2 are deterministic, specified by v and vr,
respectively.

3.2.1. A simple construction. The lower bound in Theorem 3.2 predicts a range of be-

1
haviors depending on the quantity || diag(X*(P,7))||%, and equivalently on the pair v(P, §*)
and p(P,r) (Cf. equation (3.1d)). In order to observe a large subset of these behaviors, it suf-
fices to consider a very simple MRP, P = (P, r) with D = 2 states, as illustrated in Figure 1.
In this MRP, the transition matrix P € R?*? and reward vector r € R? take the form

_|p 1-p |V
P—[O 1 ], and r_[’”}

Here the triple (p,v,7), along with the discount factor v € [0,1), are parameters of the
construction.

This manuscript is for review purposes only.
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373 In order to parameterize this MRP in a scalarized manner, we vary the triple (p,v,7) in
374 the following way. First, we fix a scalar A > 0, and then we set

478 p="%1  v=1 and r=1-(1-9)

377 Note that this sub-family of MRPs is fully parametrized by the pair (v, A). Let us clarify why
378 this particular scalarization is interesting. It can be shown via simple calculations that the
379 underlying MRP satisfies

1 15—\ 1 2-A
380 v(P,0%) ~ <> , p(P,r)=0 and b(0") ~ <> ,

381 -y 11—~

382  where ~ denotes equality that holds up to a constant pre-factor. Consequently, by Theorem 3.2
383 the minimax risk, measured in terms of the {,-norm, satisfies

1 1.5-X

384 (3.7) My (P) >c- () :

I—n
386 Thus, it is natural to study whether the TD(0) algorithm with PR averaging achieves this
387 error.
388 We note in passing that conceptually similar (special cases of such) instances with two-
389 state Markov chains have been used to obtain other worst-case lower bounds in reinforcement
390 learning [2, 30]. A previous paper by a subset of the authors [38] introduced the current family
391 of instances to interpolate smoothly between the most trivial and most difficult problems as
392 the discount factor is varied, but the motivation there was still to provide worst-case lower
393  bounds holding over a sub-class of problems. The current paper takes this a step further, and
394 uses this family to evaluate local notions of optimality.

395 3.2.2. A simulation study. In order to compare the behavior of averaged TD with the
396 lower bound (3.7), we performed a series of experiments of the following type. For a fixed
397 parameter A in the range [0,1.5], we generated a range of MRPs with different values of
398 the discount factor 7. For each value of the discount parameter =y, we consider the prob-
399 lem of estimating 0* using a sample size N set to be one of two possible values: namely,

400 N € {[ﬁ], [ﬁ}}.

101 In Figure 2, we plot the {-error of the averaged SA, for constant stepsize (2.5a), polynomial-Jj
102 decay stepsize (2.5b) and recentered linear stepsize (2.5¢), as a function of . The plots show
103 the behavior for A\ € {0.5,1.5}. Each point on each curve is obtained by averaging 1000 Monte
404 Carlo trials of the experiment. Note that from our lower bound calculations above (3.7), the
105 log fo-error is related to the complexity log (ﬁ) in a linear fashion; we use 8* to denote the
406 slope of this idealized line. Simple algebra yields

1 1
= and B*=-\ for N=— .
(1—7)? (1—7)?

109 In other words, for an algorithm which achieves the lower bound predicted by our theory, we
410 expect a linear relationship between the log £..-error and log discount complexity log (1i7)’
111 with the slope 8*.

1
107 (3.8) B = 5 A for N =
"
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Log error versus log(1/(1 —y))

Log error versus log(1/(1 —y))
301 ——. Lower bound, B*=0.00
o &=k =101 5
25 * a=k0 f=145
ol ¥ @=0+@-yk7, =033
5 S
o 2 -4
£ 15 @
(V]
E 1o 5
g - <5
T 5
=~ 05 >
2 8
0.0 -6
——- Lower bound, B* = -1.50 <
-0.5 e a=a, f=-095 \\
* a=k02 f=—-067 “tee
-10 T v a=a+1-pR, B=-069 S
200 225 250 2.75 3.00 3.25 350 3.75 4.00 200 225 250 275 3.00 325 350 3.75 4.00
Complexity log(1/(1 - y)) Complexity log(1/(1 —y))
8 8
a) A=05 N=|—5]|. b) A=15 N=[—3]|.
( ) ’ ’—(1_7)2—‘ ( ) ’ ((1_7)3~‘

Figure 2. Log-log plots of the {-error versus the discount complexity parameter 1/(1 — 7)
for various algorithms. Fach point represents an average over 1000 trials, with each trial
simulations are for the 2-state MRP depicted in Figure 1 with the parameter choices p = 4?5—;1,
v=1and 7 =1- (1 —+)* We have also plotted the least-squares fits through these points,
and the slopes of these lines are provided in the legend. In particular, the legend contains the
stepsize choice for averaged SA (denoted as ay), the slope B of the least-squares line, and the
ideal value 8* of the slope computed in equation 3.8. We also include the lower bound predicted
by Theorem 3.2 for these examples as a dotted line for comparison purposes. Logarithms are
to the natural base.

Accordingly, for the averaged SA estimators with the stepsize choices in (2.5a)-(2.5¢), we
performed a linear regression to estimate the slopes between the log /. .-error and the log
discount-complexity log (ﬁ) The plot legend reports the stepsize choices aj, and the slope

B of the fitted regression line. We also include the lower bound in the plots, as a dotted
line along with its slope, for a visual comparison. We see that the slopes corresponding
to the averaged SA algorithm are higher compared to the ideal slopes of the dotted lines.
Stated differently, this means that the averaged SA algorithm does not achieve the lower
bound with either the constant step or the polynomial-decay step. Overall, the simulations
provided in this section demonstrate that the averaged SA algorithm, although guaranteed
to be asymptotically optimal by equation (3.3b) in Proposition 3.1, does not yield the ideal
non-asymptotic behavior.

3.3. Variance-reduced policy evaluation. In this section, we propose and analyze a
variance-reduced version of the TD learning algorithm. As in standard variance-reduction
schemes, such as SVRG [26], our algorithm proceeds in epochs. In each epoch, we run a
standard stochastic approximation scheme, but we recenter our updates in order to reduce
their variance. The recentering uses an empirical approximation to the population Bellman
operator T .

We describe the behavior of the algorithm over epochs by a sequence of operators, {Vm}mZ 1 ,I
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which we define as follows. At epoch m, the method uses a vector @, in order to recenter the
update, where the vector 6, should be understood as the best current approximation to the
unknown vector #*. In the ideal scenario, such a recentering would involve the quantity 7 (6,,),
where T denotes the population operator previously defined in equation (2.3). Since we lack
direct access to the population operator T, however, we use the Monte Carlo approximation

(3.9) T B) 1= 5 > TilOn)

1€Dm

where the empirical operator ’73 is defined in equation (2.2). Here the set ®,, is a collection
of Ny, i.i.d. samples, independent of all other randomness.

Given the pair (6, Tn,, (0m)) and a stepsize a € (0,1), we define the operator Vj, on RP
as follows:

(3.10) 0V (9; @, O, %Nm) —(1-a)f+a {ﬁ(e) — T + T, (ém)} .

As defined in equation (2.2), the quantity ’7A7C is a stochastic operator, where the randomness
is independent of the set of samples ®,, used to define 7-Nm- Consequently, the stochastic
operator 7\; is independent of the recentering vector 7-Nm (H_m). Moreover, by construction, for
each 6 € RP, we have

E |75(0) = Ta(0m) + T ()| = T10).

Thus, we see that Vi can be seen as an unbiased stochastic approximation of the population-
level Bellman operator. As will be clarified in the analysis, the key effect of the recentering
steps is to reduce its associated variance.

3.3.1. A single epoch. Based on the variance-reduced policy evaluation update defined
in equation (3.10), we are now ready to define a single epoch of the overall algorithm. We
index epochs using the integers m = 1,2,..., M, where M corresponds to the total number
of epochs to be run. Epoch m requires as inputs the following quantities:

e a vector #, which is chosen to be the output of the previous epoch,

e a positive integer K denoting the number of steps within the given epoch,

e a positive integer IV, denoting the number of samples used to calculate the Monte
Carlo update (3.9),

e a sequence of stepsizes {ak}kK>1 with a; € (0,1), and

e a set of fresh samples {’ﬁ}ie@m, with |&,,| = Nj, + K. The first N,,, samples are used
to define the dataset ®,, that underlies the Monte Carlo update (3.9), whereas the
remaining K samples are used in the K steps within each epoch.

We summarize the operations within a single epoch in Algorithm 1.

The choice of the stepsize sequence {ag}r>1 is crucial, and it also determines the epoch
length K. Roughly speaking, it is sufficient to choose a large enough epoch length to ensure
that the error is reduced by a constant factor in each epoch. In Section 3.3.3 to follow, we study
three popular stepsize choices—the constant stepsize (2.5a), the polynomial stepsize (2.5b)
and the recentered linear stepsize (2.5¢)—and provide lower bounds on the requisite epoch
length in each case.
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14 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

Algorithm 1 RunEpoch (6; K, Ny, {o }1, {Ti}ice,.)
1: Given (a) Epoch length K, (b) Recentering vector 6 , (c) Recentering sample size N,,,
(d) Stepsize sequence {ak},él, (e) Samples {7;}ice,,

2: Compute the recentering quantity %Nm(é) = 3 73(9)
3: Initialize 6; = 6

4: for k=1,2,...,K do
5. Compute the variance-reduced update:

Op+1 = Vi (Ok;ak,é, %Nm>

6: end for

3.3.2. Overall algorithm. We are now ready to specify our variance-reduced policy-
evaluation (VRPE) algorithm. The overall algorithm has five inputs: (a) an integer M,
denoting the number of epochs to be run, (b) an integer K, denoting the length of each
epoch, (c) a sequence of sample sizes {N,,}M_; denoting the number of samples used for
recentering, (d) Sample batches {{ﬁ}ieem}%zl to be used in m epochs, and (e) a sequence of
stepsize {oy }r>1 to be used in each epoch. Given these five inputs, we summarize the overall
procedure in Algorithm 2:

Algorithm 2 Variance-reduced policy evaluation (VRPE)

1: Given (a) Number of epochs M, (b) Epoch length K, (c) Recentering sample sizes
{Nm}%zl, (d) Sample batches {7;}ice,,, for m =1,..., M, (e) Stepsize {ay}2_,

Initialize at 6

for m=1,2,...,M do

i1 = RunEpoch (s K, Now, {aHC, {Tikice, )
end for_

Return 03741 as the final estimate

In the next section, we provide a detailed description on how to choose these input pa-
rameters for three popular stepsize choices (2.5a)—(2.5¢). Finally, we reiterate that at epoch
m, the algorithm uses V,, + K new samples, and the samples used in the epochs are indepen-
dent of each other. Accordingly, the total number of samples used in M epochs is given by
KM+ M N,

3.3.3. Instance-dependent guarantees. Given a desired failure probability, § € (0, 1),
and a total sample size N, we specify the following choices of parameters in Algorithm 2:

N1 —~)° >
8log((8D/d) - log N)

(3.11a) Number of epochs M :=log, (
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(3.11b)
m4? 9% - log(8MD/$)

Recentering sample sizes : N :=2 3
(1=7)

form=1,...,.M

(3.11c) Sample batches: Partition the N samples to obtain {7;}ice,, form=1,... M

N
3.11d E h1l th: K =—
( ) poch leng i

In the following theorem statement, we use (¢, ¢, 3, ¢4) to denote universal constants.

Theorem 3.3. (a) Suppose that the input parameters of Algorithm 2 are chosen according
to equation (3.11). Furthermore, suppose that the sample size N satisfies one of the following
three stepsize-dependent lower bounds:

(a) 2% > 61% for recentered linear stepsize oy = ﬁ,
Vs
(b) % > colog(8ND/§) - (117)(1 ) for polynomial stepsize oy, = k% with 0 <w < 1,
. 1—~)2
(c) % > ——S_— for constant stepsize ay, = a < 52}322 . log((sj\;%/é)'

a 10g<1*a(11*'v)> _ _
Then for any initilization 61, the output Opr11 satisfies

log?((8D/6) - log N)
N1t

(3.12) fer- { W08@BDM/0) |y ag(s3+(P, 1)) |4, + 0EBLM/O) b(@*)} ,

10041 — 0 |loo < 4 Hé1 — 9*HOO

N N

with probability exceeding 1 — 6.
See Section 4.3 for the proof of this theorem.

A few comments on the upper bound provided in Theorem 3.3 are in order. In order to
facilitate a transparent discussion in this section, we use the notation 2 in order to denote a
relation that holds up to logarithmic factors in the tuple (N ,D,(1— ’y)*l).

Initialization dependence. The first term on the right-hand side of the upper bound (3.12)
depends on the initialization 6;. It should be noted that when viewed as a function of the
sample size IN, this initialization-dependent term decays at a faster rate compared to the
other two terms. This indicates that the performance of Algorithm 2 does not depend on
the initialization ; in a significant way. A careful look at the proof (cf. Section 4.3) reveals
that the coefficient of ||#; — 0*||s in the bound (3.12) can be made significantly smaller. In
particular, for any p > 1 the first term in the right-hand side of bound (3.12) can be replaced
by

161 — 0|l logP((8D/) -log N)
NP (L =) ’
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Log error versus log(1/(1 —y)) Log error versus log(1/(1 — y))
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-7 - _8
e A=05 (B,8")=—0.45,-0.50 e A=05 (f.B")=—0.39, —0.50
81 % A=10 (.B")=-1.10, —1.00 % A=10 (B.B")= -1.00, —1.00
v A=20 (8,B")=-2.38 —2.00 _10] ¥ A=20 (B*)=-228 -2.00
1.0 15 2.0 25 3.0 3.5 1.0 1.5 2.0 25 3.0 35 4.0
Complexity log(1/(1 —y)) Complexity log(1/(1 —y))
(a) Recentered-linear stepsize (b) Polynomial stepsize

Figure 3. Log-log plots of the ¢ -error versus the discount complexity parameter 1/(1 — ~y)
for the VRPE algorithm. Each point is computed from an average over 1000 trials. Each trial

entails drawing N = [ﬁ] samples from the 2-state MRP in Figure 1 with the parameter
choices p = 4?,)—;1, v=1and 7 = 1— (1 — ) Each line on each plot represents a different

value of A, as labeled in the legend. We have also plotted the least-squares fits through these
points, and the slopes of these lines are also provided in the legend. We also report the pair
(B , %), where the coefficient B denotes the slope of the least-squares fit and 5* denotes the slope
predicted from the lower bound calculation (3.8). (a) Performance of VRPE for the recentered
linear stepsize (2.5¢). (b) Performance of VRPRE with polynomially decaying stepsizes (2.5b)
with w = 2/3.

by increasing the recentering sample size (3.11b) by a constant factor and changing the values
of the absolute constants (c1,ca,c3,cq), with these values depending only on the value of p.
We have stated and proved a version for p = 2. Assuming the number of samples N satisfies
N > (1 —~)~3+2) for some A > 0, the first term on the right-hand side of bound (3.12) can
always be made smaller than the other two terms. In the sequel we show that each of the
lower bound conditions (a)-(c) in the statement of Theorem 3.3 requires a lower bound of the
form N > (1 —~)73.

Comparing the upper and lower bounds. The second and the third terms in (3.12)
show the instance-dependent nature of the upper bound, and they are the dominating terms.
Furthermore, assuming that the minimum sample size requirements from Theorems 3.2 and 3.3
are met, we find that the upper bound (3.12) matches the lower bound (3.5) up to logarithmic
terms.

It is worthwhile to explicitly compute the minimum sample size requirements in The-
orems 3.2 and 3.3. Ignoring the logarithmic terms and constant factors for the moment,
unwrapping the lower bound conditions (a)-(c) in Theorem 3.3, we see that for both the con-

stant stepsize and the recentered linear stepsize the sample size needs to satisfy N > (1—~)73.

1 2
For the polynomial stepsize A\ = k%, the sample size has to be at least (1 —fy)_(EVZ). Min-

imizing the last bound for different values of w € (0,1), we see that the minimum value is
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attained at w = 2/3, and in that case the bound (3.12) is valid when N > (1 —~)~3. Overall,
for all the three stepsize choices discussed in Theorem 3.3 we require N > (1 —~)~3 in order
to certify the upper bound. Returning to Theorem 3.2, from assumption (3.6) we see that in
the best case scenario, Theorem 3.2 is valid as soon as N > (1 — v)~2. Putting together the
pieces we find that the sample size requirement for Theorem 3.3 is more stringent than that
of Theorem 3.2. Currently, we do not know whether the minimum sample size requirements
in Theorems 3.2 and 3.3 are necessary; answering this question is an interesting direction for
future research.

Simulation study. It is interesting to demonstrate the sharpness of our bounds via a
simulation study, using the same scheme as our previous study of TD(0) with averaging. In
Figure 3, we report the results of this study; see the figure caption for further details. At a high
level, we see that the VRPE algorithm, with either the recentered linear stepsize (panel (a))
or the polynomial stepsize t~2/3, produces errors that decay with the exponents predicted by
our instance-dependent theory for A € {0.5,1.0,2.0}. See the figure caption for further details.

4. Proofs. We now turn to the proofs of our main results. Throughout, we use the
shorthand

(4.1) Yp(0) = covzp((Z — P)0).
We also make frequent use of the sandwich relation (3.1d), restated below for convenience:

(4.2) [(P,6%) + p(P.r)} < [ diag(S*(P,) & < 2- {(P,6%) + p(P,r)}

N |

4.1. Proof of Proposition 3.1. Recall the definition of the matrix Xp(6) from equa-
tion (4.1), and define the covariance matrix

(4.3) (P, 1) = (1—AP) " (125p(65) + 021)(1 — 4P) .

Recall that we use Z to denote a multivariate Gaussian random vector Z ~ N (0, X*(P, 7)),
and that the sequence {6;"};>1 is generated by averaging the iterates of stochastic approxi-
mation with polynomial stepsizes (2.5b) with exponent w. With this notation, the two claims
of the theorem are:

(4.4a) Moo (P)
(4.4Db) Jim B [\/N |l6% - 9*||oo]

E[lZ]l), and
E[l[ 2] oo ]-

We now prove each of these claims separately.

4.1.1. Proof of equation (4.4a). For the reader’s convenience, let us state a version of
the H4jek—Le Cam local asymptotic minimax theorem [50, Ch.8, Ch.25]:

Theorem 4.1. Let { Py }gco be a family of parametric models, quadratically mean differen-
tiable with Fisher information matrices Jg. Fiz some parameter 9 € int(O©), and consider a
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18 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

function ¢ : ©@ — RP that is differentiable at 9. Then for any quasi-convex loss L : RP — R,
we have:

(4.5) lim Jim inf  sup By [L(VN - (On = 6(9)] =EL(Z)],

c—00 N—o00 N 9!
[/ =9|,<c/VN

where the infimum is taken over all estimators N that are measurable functions of N 1.1.d.
data points drawn from Py, and the expectation is taken over a multivariate Gaussian Z ~
N (0, V(9)T TyV(9))-

Returning to the problem at hand, let ¥ = (P,r) denote the unknown parameters of the
model and let ¥(9) = 6(P) = (I — vP)~1r denote the target vector.

In the first case where ¥ = (P,r) lies in the interior of the parameter space’, a direct
application of Theorem 4.1 shows that

(4.6) Moo (P) = E[|| Z| ] where Z = N(0, Vo (9)TT5Vo(9)),

where Jy is the Fisher information at ¥. The following result provides a more explicit form
of the covariance of Z:

Lemma 4.2. We have the identity
@7 V@) T IVY) = S (P,r) i = (I—7P) " (12 Sp(07) + oD (I — 4P) .

Although the proof of this claim is relatively straightforward, it involves some lengthy and
somewhat tedious calculations; we refer the reader to Appendix SM1.1 for the proof.

Given the result from Lemma 4.2, the claim (4.4a) follows by substituting the relation (4.7)
into (4.6). This proves the case when 9 is in the interior of the parameter space.

In the second case where ¥ lies on the boundary of the parameter space, with some diligent
work, one can use the same arguments to prove the claim (4.4a). In fact, we need to show
additionally that Theorem 4.1 also holds when  lies on the boundary. The classical delta-
method allows us to reduce the problem to showing that the local asymptotic minimax result
holds for estimating P when P lies on the boundary, i.e., P;; € {0,1} for some {7,j}. This
requires a direct and tedious verification, which we leave the details to the reader. Here we
provide only the basic intuition. The key observation is (i) P;; is the mean of a Bernoulli
random variable, and (ii) one can verify easily the local asymptotic minimax lower and upper
bound for estimating P; ; are precisely equal to each other, and in fact, both are equal to zero
when P; ; € {0, 1}, since the Bernoulli variable becomes deterministic when P; ; € {0, 1}.

4.1.2. Proof of equation (4.4b). The proof of this claim follows from the results of Polyak
and Juditsky [40, Theorem 1], once their assumptions are verified for TD(0) with polynomial
stepsizes. Recall that the TD iterates in equation (2.4) are given by the sequence {0y }i>1,
and that 5,? denotes the k-th iterate generated by averaging.

5More precisely, this means that P lies in the relative interior of the convex set {P:P1=1,P > 0}.
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For each k£ > 1, note the following equivalence between the notation of our paper and that
of Polyak and Juditsky [40], or PJ for short:

x) = Oy, T = o, A=1-vP, and & = (Rp—7)+ (Zr—P)oy.

Let us now verify the various assumptions in the PJ paper. Assumption 2.1 in the PJ paper
holds by definition, since the matrix I — +P is Hurwitz. Assumption 2.2 in the PJ paper is
also satisfied by the polynomial stepsize sequence for any exponent w € (0,1).

It remains to verify the assumptions that must be satisfied by the noise sequence {&}>1.
In order to do so, write the k-th such iterate as

& = (Rk — T‘) + (Zk — P)G* + (Zk — P)(Qk — 9*).
Since Zy, is independent of the sequence {91-}?:1, it follows that the condition
: * 12
(4.8) Jim E [0y~ 0°[3] = 0

suffices to guarantee that Assumptions 2.3-2.5 in the PJ paper are satisfied. We now claim
that for each w € (1/2, 1], condition (4.8) is satisfied by the TD iterates. Taking this claim as
given for the moment, note that applying Theorem 1 of Polyak and Juditsky [40] establishes
claim (4.4b), for any exponent w € (1/2,1).

It remains to establish condition (4.8). For any w € (1/2,1], the sequence of stepsizes
{a }k>1 satisfies the conditions

o0 [e.9]
E op =00 and Z i < oo.
k=1 k=1

Consequently, classical results due to Robbins and Monro [41, Theorem 2] guarantee £2-
convergence of Oy to 6.

4.2. Proof of Theorem 3.2. Throughout the proof, we use the notation P = (P,r)
and P’ = (P’,r’) to denote, respectively, the problem instance at hand and its alternative.
Moreover, we use 8* = 6(P) and 6(P’) to denote the associated target parameters for each of
the two problems P and P’. We use Ap = P — P’ and A, = r — 7’ to denote the differences
of the parameters. For probability distributions, we use P and P’ to denote the marginal
distribution of a single observation under P and P’, and use PV and (P')" to denote the
distribution of N i.i.d observations drawn from P or P’, respectively.

4.2.1. Proof structure. We introduce two special classes of alternatives of interest, de-
noted as &1 and Ss respectively:

Si={P'= @) | =r}, and S ={P'=(P.)|P'=P}.

In words, the class S; consists of alternatives P’ that have the same reward vector r as P,
but a different transition matrix P’. Similarly, the class Sy consists of alternatives P’ with
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the same transition matrix P, but a different reward vector. By restricting the alternative P’
within class &1 and Ss, we can define restricted versions of the local minimax risk, namely

(4.9a) My (P;S1) = Psllégl iérjlvfper?g,}’;?'}EP [\/]V ||9N - Q(P)HOO] , and
(4.9b) My (P;S2) = PS'Iégg iérjl\,fper?g,);”} Ep [\/ﬁ |0 — Q(P)HOO} )

The main part of the proof involves showing that there is a universal constant ¢ > 0 such that
the lower bounds

(4.10a) My (P;S1)
(4.10b) My (P; S2)

c-y(P,0"), and

both hold (assuming that the sample size N is sufficiently large to satisfy the condition (3.6)).
Since we have My (P) > max {My(P;S1), Mn(P;S2)}, these lower bounds in conjunction
with the sandwich relation (4.2) imply the claim Theorem 3.2. The next section shows how
to prove these two bounds.

4.2.2. Proof of the lower bounds (4.10a) and (4.10b):. Our first step is to lower bound
the local minimax risk for each problem class in terms of a modulus of continuity between the
Hellinger distance and the £,,-norm.

Lemma 4.3. For each S € {S1,82}, we have the lower bound My (P;S) > § - My (P;S),

where we define

(1) My(P:S) = sup {\/N-He(?)—e(??’)l(ooIdhel<P,P’>SN1N}’

where dye (P, P’) denotes the Hellinger distance between the two distributions P and P’. The
proof of Lemma 4.3 follows a relatively standard argument, one which reduces estimation to
testing; see Appendix SM2.1 for details.

This lemma allows us to focus our remaining attention on lower bounding the quantity
My (P;S). In order to do so, we need both a lower bound on the fo-norm [|6(P) — 6(P")||
and an upper bound on the Hellinger distance dye(P, P'). These two types of bounds are
provided in the following two lemmas. We begin with lower bounds on the {,,-norm:

Lemma 4.4. (a) For any P and for all P' € Sy, we have
Y - *
(412a)  [o(P)— 6P| > (1 T ||Apy|oo)+ @ —P) A .

(b) For any P and for all P' € Sz, we have
(4.12b) |6(P) —6(P")|| . > ||X—~P)~"A |, -

See Appendix SM2.2 for the proof of this claim.

Next, we require upper bounds on the Hellinger distance:
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See

Lemma 4.5. (a) For each P and for all P' € 81, we have

(4.13a) dhet (P, P')? < EZ 7((“’)"}3' )2.

(b) For each P and for all P' € Sz, we have

(4.13b) dyel(P, P')* < == |re — rall3 -

20 2
Appendix SM2.3 for the proof of this upper bound.

Using Lemmas 4.4 and 4.5, we can derive two different lower bounds. First, we have the

lower bound My (P;S1) > My (P; S1), where

(4.14a)

WMy (P;S1) = sup \/JV<1—WHAPf|y|OO> (@ AP) T ApE7| |Z 5 <L
+

PeSt 1-

Second, we have the lower bound Dy (P; Sy) > DMy (P; S2), where

1
(4.14b) My (P;S2) = sup {VN' IT=7P) " Arloe | — H?“l =72l < }
P eSs 2N
In order to complete the proofs of the two lower bounds (4.10a) and (4.10b), it suffices to

show that

1
4.15a DMy (P; S — and
(4.152) N(P; S2) = 7 -p(P,r), an

1
(4.15D) N (P;S1) > —— (P, 0.

5

Proof of the bound (4.15a). This lower bound is easy to show—it follows from the

definition:

\[ H I-~P o= \}Qp(P,'r).

Proof of the bound (4.15b). The proof of this claim is much more delicate. Our strategy

My (P;Sz) = )AL

is to construct a special “hard” alternative, P € Si, that leads to a good lower bound on

My (P;S1). Lemma 4.6 below is the main technical result that we require:

Lemma 4.6. There exists some probability transition matriz P with the following proper-

ties:

(P-P), ;)
(#or)

(a) It satisfies the constraint Zij LN
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719 (b) It satisfies the inequalities

_ 1 1,5 Y
720 P-P|| <—, and I-vP) }(P-P)*||_ > -v(P,6%).
[P-Plos o wnd ha-P) @R > L v
722 See Appendix SM2.4 for the proof of this claim.
723
724 Given the matrix P guaranteed by this lemma, we consider the “hard” problem P : = (P,r) € S; |
725 From the definition of M’y (P;S1) in equation (4.14a), we have that
20 My (Ps51) = VN - (1 - e quQ) I S STE . SV

+

, Y 1 Y 1
727 >VN-(1- . . v(P,0%) > — -y (P, 0%),
72;% B < 1—~ \/2N>+ V2N ( )—2ﬂ i )

729  where the last inequality follows by the assumed lower bound N > %. This completes the

730 proof of the lower bound (4.15b).

731 4.3. Proof of Theorem 3.3. This section is devoted to the proof of Theorem 3.3, which
732 provides the achievability results for variance-reduced policy evaluation.
733 4.3.1. Proof of part (a). We begin with a lemma that characterizes the progress of
734 Algorithm 2 over epochs:
735 Lemma 4.7. Under the assumptions of Theorem 3.3 (a), there is an absolute constant c
736 such that for each epoch m =1,..., M, we have:
i ) Gy, — 0
e - 07, < 1=l
log(8DM /o log(8DM /o
738 (4.16) log(8D1M/9) (’y (P, 0%) + p(P,T)) 4 108(BDM/0) gy |
N N,
739
740 with probability exceeding 1 — %.
741 Taking this lemma as given for the moment, let us complete the proof. We use the

742 shorthand

743 (4.17) T = M(fy v(P,60%) + p(P,r)) and 7y, = log(8DM/0) b(6")
A4 \ Np Np

15

1

to ease notation, and note that 2 < 7,41 and 777’" < Mm+1, for each m > 1. Using this

V2
16 notation and unwrapping the recursion relation from Lemma 4.7, we have
_ Opr — 0
747 |0nr41 — H*HOO < 7H 1 HOO +c(Tar + Mur)

O [y =0l e

748 v + 5 (Tar ) + e(mar + nar)
4 @ -l

749 = Ml .

T8 < i + 2¢(Tar + 1)
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751 Here, step (i) follows by applying the one-step application of the recursion (4.16), and by
752 using the upper bounds T—\;% < Tmy1 and 22 < np 1. Step (ii) follows by repeated application
753 of the recursion (4.16). The last inequality holds with probability at least 1 — ¢ by a union
754 bound over the M epochs.

755 It remains to express the quantities 4", 7y and ny;—all of which are controlled by the
756 recentering sample size Np;—in terms of the total number of available samples N. Towards
757 this end, observe that the total number of samples used for recentering at M epochs is given
758 by

. i”: N g 0g(8MD/5)

H m = .

760 m=1 (1=

761 Substituting the value of M = log, (8log(](\g%7g))~120g N)) we have

M
762 1N < Ny = Zng

763 m=1

N
2 )

764 where ¢; is a universal constant. Consequently, the total number of samples used by Algo-
765 rithm 2 is given by

M
766 MK + Z Ny, <

767 m=1

N

N
=N
2+2 ’

768  where in the last equation we have used the fact that M K = % Finally, using M = log, <8 log(](\g%;g)).lzog N >I

769 we have the following relation for some universal constant c:

201 N4
770 4M = ¢ V(1 =)

- log?((8D/) - log N)

772 Putting together the pieces and using the sandwich relation (4.2), we conclude that

log?((8D/6) - log N)
N (1—y)!

! +o { PO ) ding (s (B, ) + BRI b<a*>} ,

773 ”e_MJrI_H*HOO SCQHél —Q*HOO

776 for a suitable universal constant cs. The last bound is valid with probability exceeding 1 — §
via the union bound. In order to complete the proof, it remains to prove Lemma 4.7, which
778 we do in the following subsection.

779 4.3.2. Proof of Lemma 4.7. We now turn to the proof of the key lemma within the
780 argument. We begin with a high-level overview in order to provide intuition. In the m-th
781 epoch that updates the estimate from 6, to ,,,1, the vector § = 6,, is used to recenter
782 the updates. Our analysis of the m-th epoch is based on a sequence of recentered operators
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783 {J" }k>1 and their population analogs J™(6), analyzed conditionally on 7~'N(9_m). The action
784 of these operators on a point 6 is given by the relations

my (418a)  J0) = Te(0) = TalOm) + Tw(Om), and  T™(0) :=T(0) = T (Om) + Tov (Om)-
787 By definition, the updates within epoch m can be written as
735 (4.18Db) Ort1 = (1 — ag) O + arTi" (Ok) -

790 Note that the operator J™ is v-contractive in || - [[x-norm, and as a result it has a unique
791 fixed point, which we denote by 6,,. Since J "(0) = E[J"(8)] by construction, when studying
792 epoch m, it is natural to analyze the convergence of the sequence {0y }x>1 to §m

793 Suppose that we have taken K steps within epoch m. Applying the triangle inequality
794 yields the bound

795 (4.18¢) 101 — 0%loo = 10541 — 07 < H9K+1 - @nHOO + Hém s

796

o0

797  With this decomposition, our proof of Lemma 4.7 is based on two auxiliary lemmas that
798 provide high-probability upper bounds on the two terms on the right-hand side of inequal-
799 ity (4.18c).

800 Lemma 4.8. Let (c1,c2,c3) be positive numerical constants, and suppose that the epoch
801 length K satisfies one the following three stepsize-dependent lower bounds:
802 (a) K > ¢ log(8KMD/3) for recentered linear stepsize ap =
o =T P B TR
1 y2
803 (b) K > co log(SKMD/d)-(llv)(l_w 2 for polynomial stepsize cay, = 15 with 0 < w < 1,I
: _ (1—)? 1
804 (c) K> m for constant stepsize aj, = a < og(SKMDJ3) * 52397

805 Then after K update steps with epoch m, the iterate O 1 satisfies the bound

—~ 1. - 1 .~
500 (4.19)  [10x+1 = Omlloo < §H9m — 0|0 + gﬂﬁm —0*||lso  with probability at least 1 — 55-.
SuU(

808 See Appendix SM3.1 for the proof of this claim.

809

810 Our next auxiliary result provides a high-probability bound on the difference ||6,, — 6*||co-

811 Lemma 4.9. There is an absolute constant cy4 such that for any recentering sample size
812 satisfying Ny, > 42 - 92 . bg((lj\_/livl;/é), we have

log(8DM/5)

log(8DM/5) .
N, ————b(0") ¢,

813 |0 — 0 loo < 5110m — [0 + 4 N i
m

s (V (P, 07) + p(P,r)) +

815 with probability exceeding 1 — ﬁ.

816 See Appendix SM3.2 for the proof of this claim.
817
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With Lemmas 4.8 and 4.9 in hand, the remainder of the proof is straightforward. Recall from
equation (4.17) the shorthand notation 7,, and 7,,. Using our earlier bound (4.18c), we have
that at the end of epoch m (which is also the starting point of epoch m + 1),

Hém-i-l - G*HOO < 041 — amHoo + ”5771 = 0%l

@ (N0 — 0o 1|2 0

2 (Voo g, o) ) o

—{ 8 +8H 00}+ o
6 —0*lc 9 HA

s % S

(i) ém—e* o0 1 n *

g ||8||+8{H9m_9 oo + ca(Tin + 1m) }
Om — 0% 0o

< ”4” + ca(Tm =+ Mm),

where inequality (i) follows from Lemma 4.8(a), and inequality (ii) from Lemma 4.9. Finally,
the sequence of inequalities above holds with probability at least 1 — % via a union bound.

This completes the proof of Lemma 4.7.

4.3.3. Proof of Theorem 3.3, parts (b) and (c). The proofs of Theorem 3.3 parts (b)
and (c) require versions of Lemma 4.7 for the polynomial stepsize (2.5b) and constant step-
size (2.5a), respectively. These two versions of Lemma 4.7 can be obtained by simply replacing
Lemma 4.8, part (a), by Lemma 4.8, parts (b) and (c), respectively, in the proof of Lemma 4.7.

5. Discussion. In this paper, we have undertaken an instance-specific analysis of the
problem of policy evaluation in discounted Markov decision processes. Our contribution is
three-fold. First, we provided a non-asymptotic instance-dependent local-minimax bound on
the f-error for the policy evaluation problem under the generative model. Next, via care-
ful simulations, we showed that the standard TD-learning algorithm—even when combined
with Polyak-Ruppert iterate averaging—does not yield ideal non-asymptotic behavior as cap-
tured by our lower bound. In order to remedy this difficulty, we introduced and analyzed
a variance-reduced (VR) version of the standard TD-learning algorithm which achieves our
non-asymptotic instance-dependent lower bound up to logarithmic factors. We close with
some discussions of interesting open directions.

Exploring the connection between variance and higher-order terms. Underlying our results
is an exploration of the variance of various algorithms together with their higher-order error
terms. Note that both Polyak—Ruppert averaging and the variance reduction (VR) device are
methods by which the natural stochastic approximation iterates are stabilized; in that sense,
the abstract phenomenon of “variance reduction” is common to both algorithms. On the other
hand, the higher-order terms in the error of the averaging estimator (which vanish as N — o0)
end up dominating the risk for small sample sizes, but the VR update is more effective at
controlling these higher-order error terms. Another typical method that achieves variance
reduction is adding minibatching to stochastic approximation. Now one would still expect
that if minibatching were employed in conjunction with averaging, the issue above of large
higher-order terms would persist unless the batch size was chosen to grow with the effective
horizon 1/(1—+); indeed, in our VR update, we use a large sample size (of the order (1—+)~3)
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to recenter our updates in each epoch. A deeper exploration of the interaction between the
variance of an algorithm with its higher-order terms is an interesting open direction in related
problems.

Sharp characterization of sample size threshold. Both the upper and lower bounds discussed
in this paper hold when the sample size is bigger than an explicit threshold; relaxing this
minimum sample size requirement is an interesting future research direction. We note that
this question is quite a delicate one; indeed, deriving sharp thresholds on such a worst-case
sample size “barrier” in tabular reinforcement learning has been a topic of recent focus (see,
e.g. the very recent paper [33]).

Accommodating Markov noise and function approximation. In this paper, our study of of
policy evaluation was restricted to the tabular case, and focused on providing ¢,.-bounds under
the generative model. Arguably, the more relevant setting in practice is where we do not have
access to a simulator and instead observe a trajectory of observations from the Markov chain.
In this setting, the most natural guarantees are usually obtained in a weighted fo-norm (see,
e.g., Tsitsiklis and Van Roy [48]). It is an interesting open question as to whether variance-
reduced policy evaluation still has good performance in this setting. Our current analysis—
much of our which relies on specific contraction properties that hold for the empirical Bellman
update—does not immediately apply. Understanding the instance-specific (sub-)optimality of
Polyak—Ruppert averaging in the Markov setting is also an interesting problem in its own
right. We note that preliminary progress in this direction has been made by a subset of the
current authors in papers written shortly after ours [35, 36]; they provided upper bounds on
averaged stochastic approximation with control on higher-order terms. However, this analysis
does not offer any guidance about the optimality of these terms.

Extensions to the Hurwitz case and other error metrics. Finally, let us briefly comment on
the case of solving the linear system A#* = b from noisy observations of the pair (A,b). This
problem has received significant attention in the case when the matrix —A is Hurwitz® [40,
4, 29, 35], and the policy evaluation setting considered in this paper is a special case. Indeed,
Proposition 3.1 has a direct analog in the more general Hurwitz setting. On the other hand,
while our non-asymptotic lower bound in Theorem 3.2 uses some properties that are specific
to the MRP setting, we expect that a similar lower bound ought to apply to a large subclass
of Hurwitz matrices. Our simulations in Section 3.2 were shown for a particular family of
Hurwitz matrices, corresponding to a collection of MRPs with varying discount factor, but we
expect that a similar phenomenon ought to hold for other carefully constructed families. Note
that while the simulations in Section 3.2 were illustrated for the f,.-norm, Polyak—Ruppert
averaging is also clearly suboptimal for this family in other norms (e.g. the ¢3 norm) since
our instance made use of a two-dimensional example and the error would behave equivalently
in all £, norms. Finally, as alluded to above, our proof of Theorem 3.3 leverages the MRP
setting and contractivity properties with respect to the £, norm, and it is an interesting open
question whether a similar result can be proved in the general Hurwitz case for arbitrary
norms.

REFERENCES

5 A Hurwitz matrix is one whose eigenvalues all have real part strictly negative.
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