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Abstract. We address the problem of policy evaluation in discounted, tabular Markov decision processes, and3
provide instance-dependent guarantees on the `∞-error under a generative model. We establish both4
asymptotic and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby5
providing an instance-dependent baseline by which to compare algorithms. Theory-inspired simu-6
lations show that the widely-used temporal difference (TD) algorithm is strictly suboptimal when7
evaluated in a non-asymptotic setting, even when combined with Polyak-Ruppert iterate averaging.8
We remedy this issue by introducing and analyzing variance-reduced forms of stochastic approxi-9
mation, showing that they achieve non-asymptotic, instance-dependent optimality up to logarithmic10
factors.11
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1. Introduction. Reinforcement learning (RL) refers to a class of methods for the optimal14

control of dynamical systems [7, 6, 46, 8] that has begun to make inroads in a wide range15

of applied problem domains. However, this empirical research has revealed the limitations of16

our theoretical understanding of this class of methods: more precisely, popular RL algorithms17

exhibit a variety of behavior across domains and problem instances, and existing theoretical18

bounds, which are generally based on worst-case assumptions, fail to capture this variety. An19

important theoretical goal is to develop instance-specific analyses that help to reveal what20

aspects of a given problem make it “easy” or “hard,” and allow distinctions to be drawn21

between ostensibly similar algorithms in terms of their performance profiles. The focus of22

this paper is on developing such a theoretical understanding for a class of popular stochastic23

approximation algorithms used for policy evaluation.24

RL methods are generally formulated in terms of a Markov decision process (MDP).25

An agent operates in an environment whose dynamics are described by an MDP but are26

unknown: at each step, it observes the current state of the environment, and takes an action27

that changes the state according to some stochastic transition function. The eventual goal of28

the agent is to learn a policy—a mapping from states to actions—that optimizes the reward29

accrued over time. In the typical setting, rewards are assumed to be additive over time, and30

are also discounted over time. Within this broad context, a key sub-problem is that of policy31

evaluation, where the goal is estimate the long-term expected reward of a fixed policy based32

on observed state-to-state transitions and one-step rewards. It is often preferable to have33

`∞-norm guarantees for such an estimate, since these are particularly compatible with policy34

iteration methods. In particular, policy iteration can be shown to converge at a geometric35

rate when combined with policy evaluation methods that are accurate in `∞-norm (see, e.g.,36
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2 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

the sources [1, 8]).37

In this paper, we study a class of stochastic approximation algorithms for this problem38

under a generative model for the underlying MDP, with a focus on developing instance-39

dependent bounds. Our results complement an earlier paper by a subset of the authors [38],40

which studied the least squares temporal difference (LSTD) method through such a lens.41

1.1. Related work. We begin with a broad overview of related work, categorizing that42

work as involving asymptotic analysis, non-asymptotic analysis, or instance-dependent analy-43

sis.44

Asymptotic theory. Markov reward processes have been the subject of considerable clas-45

sical study [22, 21]. In the context of reinforcement learning and stochastic control, the policy46

evaluation problem for such processes has been tackled by various approaches based on sto-47

chastic approximation. Here we focus on past work that studies the temporal difference (TD)48

update and its relatives; see the paper [16] for a comprehensive survey. The TD update was49

originally proposed by Sutton [45], and is typically used in conjunction with an appropriate50

parameterization of value functions. Classical results on the algorithm are typically asymp-51

totic, and include both convergence guarantees [24, 11, 12] and examples of divergence [5]; see52

the paper [48] for conditions that guarantee asymptotic convergence.53

It is worth noting that the TD algorithm is a form of linear stochastic approximation,54

and can be fruitfully combined with the iterate-averaging procedure put forth independently55

by Polyak [39] and Ruppert [42]. The subsequent work of Polyak and Juditsky [40] deserves56

special mention, since it shows that under fairly mild conditions, the TD algorithm converges57

when combined with Polyak-Ruppert iterate averaging. To be clear, in the specific context of58

the policy evaluation problem, the results in the Polyak-Juditsky paper [40] allow noise only59

in the observations of rewards (i.e., the transition function is assumed to be known). However,60

the underlying techniques can be extended to derive results in the setting in which we only61

observe samples of transitions; for instance, see the work of Tadic [47] for results of this type.62

Non-asymptotic theory. Recent years have witnessed significant interest in understanding63

TD-type algorithms from the non-asymptotic standpoint. Bhandari et al. [9] focus on proving64

`2-guarantees for the TD algorithm when combined with Polyak-Ruppert iterate averaging.65

They consider both the generative model as well as the Markovian noise model, and provide66

non-asymptotic guarantees on the expected error. Their results also extend to analyses of the67

popular TD(λ) variant of the algorithm, as well as to Q-learning in specific MDP instances.68

Also noteworthy is the analysis of Lakshminarayanan and Szepesvari [29], carried out in69

parallel with Bhandari et al. [9]; it provides similar guarantees on the TD(0) algorithm with70

constant stepsize and averaging. Note that both of these analyses focus on `2-guarantees71

(equipped with an associated inner product), and thus can directly leverage proof techniques72

for stochastic optimization [4, 37].73

Other related results1 include those of Dalal et al. [15], Doan et al. [17], Korda and La [28],74

and also more contemporary papers [55, 51]. The latter three of these papers introduce a75

variance-reduced form of temporal difference learning, a variant of which we analyze in this76

1It should be noted that there were some errors in the results of Korda and La [28] that were pointed out
by both Lakshminarayanan and Szepesvari [29] and Xu et al. [55].
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paper.77

Instance-dependent results. The focus on instance-dependent guarantees for TD algo-78

rithms is recent, and results are available both in the `2-norm setting [9, 29, 15, 55] and the79

`∞-norm settings [38]. In general, however, the guarantees provided by work to date are80

not sharp. For instance, the bounds in [15] scale exponentially in relevant parameters of the81

problem, whereas the papers [9, 29, 55] do not capture the correct “variance” of the problem82

instance at hand. A subset of the current authors [38] derived `∞ bounds on policy evaluation83

for the plug-in estimator. These results were shown to be locally minimax optimal in certain84

regions of the parameter space. There has also been some recent focus on obtaining instance-85

dependent guarantees in online reinforcement learning settings [34]. This has resulted in more86

practically useful algorithms that provide, for instance, horizon-independent regret bounds87

for certain episodic MDPs [56, 25], thereby improving upon worst-case bounds [3]. Recent88

work has also established some instance-dependent bounds, albeit not sharp over the whole89

parameter space, for the problem of state-action value function estimation in Markov decision90

processes, for both ordinary Q-learning [53] and a variance-reduced improvement [54].91

1.2. Contributions. In this paper, we study stochastic approximation algorithms for eval-92

uating the value function of a tabular Markov reward process in the discounted setting. Our93

goal is to provide a sharp characterization of performance in the `∞-norm, for procedures94

that are given access to state transitions and reward samples under the generative model.95

In practice, temporal difference learning is typically applied with an additional layer of (lin-96

ear) function approximation. In the current paper, so as to bring the instance dependence97

into sharp focus, we study the algorithms without this function approximation step. In this98

context, we tell a story with three parts, as detailed below:99

Local minimax lower bounds. Global minimax analysis provides bounds that hold uni-100

formly over large classes of models. In this paper, we seek to gain a more refined understanding101

of how the difficulty of policy evaluation varies as a function of the instance. In order to do so,102

we undertake an analysis of the local minimax risk associated with a problem. We first prove103

an asymptotic statement (Proposition 3.1) that characterizes the local minimax risk up to a104

logarithmic factor; it reveals the relevance of two functionals of the instance that we define.105

In proving this result, we make use of the classical asymptotic minimax theorem [23, 31, 32].106

We then refine this analysis by deriving a non-asymptotic local minimax bound, as stated in107

Theorem 3.2, which is derived using the non-asymptotic local minimax framework of Cai and108

Low [14], an approach that builds upon the seminal concept of hardest local alternatives that109

can be traced back to Stein [44].110

Non-asymptotic suboptimality of iterate averaging. Our local minimax lower bounds111

raise a natural question: Do standard procedures for policy evaluation achieve these instance-112

specific bounds? In Section 3.2, we address this question for the TD(0) algorithm with iterate113

averaging. Via a careful simulation study, we show that for many popular stepsize choices, the114

algorithm fails to achieve the correct instance-dependent rate in the non-asymptotic setting,115

even when the sample size is quite large. This is true for both the constant stepsize, as well116

as polynomial stepsizes of various orders. Notably, the algorithm with polynomial stepsizes117

of certain orders achieves the local risk in the asymptotic setting (see Proposition 3.1).118
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Non-asymptotic optimality of variance reduction. In order to remedy this issue with119

iterate averaging, we propose and analyze a variant of TD learning with variance reduction,120

showing both through theoretical (see Theorem 2) and numerical results (see Figure 3) that121

this algorithm achieves the correct instance-dependent rate provided the sample size is larger122

than an explicit threshold. Thus, this algorithm is provably better than TD(0) with iterate123

averaging.124

1.3. Notation. For a positive integer n, let [n] := {1, 2, . . . , n}. For a finite set S, we use125

|S| to denote its cardinality. We use c, C, c1, c2, . . . to denote universal constants that may126

change from line to line. We let 1 denote the all-ones vector in R
D. Let ej denote the jth127

standard basis vector in R
D. We let v(i) denote the i-th order statistic of a vector v, i.e.,128

the i-th largest entry of v. For a pair of vectors (u, v) of compatible dimensions, we use the129

notation u � v to indicate that the difference vector v − u is entrywise non-negative. The130

relation u � v is defined analogously. We let |u| denote the entrywise absolute value of a131

vector u ∈ R
D; squares and square-roots of vectors are, analogously, taken entrywise. Note132

that for a positive scalar λ, the statements |u| � λ · 1 and ‖u‖∞ ≤ λ are equivalent. Finally,133

we let ‖M‖1,∞ denote the maximum `1-norm of the rows of a matrix M, and refer to it as134

the (1,∞)-operator norm of a matrix.135

2. Background and problem formulation. We begin by introducing the basic mathemat-136

ical formulation of Markov reward processes (MRPs) and generative observation models.137

2.1. Markov reward processes and value functions. We study MRPs defined on a finite138

set of D states, which we index by the set [D] ≡ {1, 2, . . . , D}. The state evolution over time is139

determined by a set of transition functions, {P (·|i), i ∈ [D]}. Note that each such transition140

function can be naturally associated with a D-dimensional vector; denote the i-th such vector141

as pi. We let P ∈ [0, 1]D×D denote a row-stochastic (Markov) transition matrix, where row142

i of this matrix contains the vector pi. Also associated with an MRP is a population reward143

function, r : [D] 7→ R, possessing the semantics that a transition from state i results in the144

reward r(i). For convenience, we engage in a minor abuse of notation by letting r also denote145

a vector of length D; here ri corresponds to the reward obtained at state i.146

We formulate the long-term value of a state in the MRP in terms of the infinite-horizon,147

discounted reward. This value function (denoted here by the vector θ∗ ∈ R
D) can be computed148

as the unique solution of the Bellman fixed-point relation, θ∗ = r + γPθ∗.149

2.2. Observation model. In the learning setting, the pair (P, r) is unknown, and we150

accordingly assume access to a black box that generates samples from the transition and151

reward functions. In this paper, we operate under a setting known as the synchronous2 or152

generative setting [27]; this setting is also often referred to as the “i.i.d. setting” in the policy153

evaluation literature. For a given sample index, k ∈ {1, 2, . . . , N} and for each state j ∈ [D],154

we observe a random next state155

Xk,j ∼ P (·|j) for j ∈ [D].(2.1a)156157

2With standard arguments, our results can be extended to the setting in which the noise is the problem
evolves according to a martingale.
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We collect these transitions in a matrix Zk, which by definition contains one 1 in each row:158

the 1 in the j-th row corresponds to the index of state Xk,j . We also observe a random reward159

vector Rk ∈ R
D, where the rewards are generated independently across states with3160

Rk,j ∼ N (rj , σ
2
r ).(2.1b)161162

Given these samples, define the k-th (noisy) linear operator T̂k : RD 7→ R
D whose evalua-163

tion at the point θ is given by164

T̂k(θ) = Rk + γZkθ.(2.2)165166

The construction of these operators is inspired by the fact that we are interested in computing167

the fixed point of the population operator,168

T : θ 7→ r + γPθ,(2.3)169170

and a classical and natural way to do so is via a form of stochastic approximation known as171

temporal difference learning, which we describe next.172

2.3. Temporal difference learning and its variants. Classical temporal difference (TD)173

learning algorithms are parametrized by a sequence of stepsizes, {αk}k≥1, with αk ∈ (0, 1].174

Starting with an initial vector θ1 ∈ R
D, the TD updates take the form175

θk+1 = (1− αk)θk + αkT̂k(θk) for k = 1, 2, . . ..(2.4)176177

In the sequel, we discuss three popular stepsize choices:178

Constant stepsize: αk = α, where 0 < α ≤ αmax.(2.5a)179

Polynomial stepsize: αk =
1

kω
for some ω ∈ (0, 1).(2.5b)180

Recentered-linear stepsize: αk =
1

1 + (1− γ)k
.(2.5c)181

182

In addition to the TD sequence (2.4), it is also natural to perform Polyak-Ruppert aver-183

aging, which produces a parallel sequence of averaged iterates184

θ̃k =
1

k

k∑

j=1

θj for k = 1, 2, . . ..(2.6)185

186

Such averaging schemes were introduced in the context of general stochastic approximation by187

Polyak [40] and Ruppert [42]. A large body of theoretical literature demonstrates that such188

an averaging scheme improves the rates of convergence of stochastic approximation when run189

with overly “aggressive” stepsizes [4, 40, 42].190

3All of our upper bounds extend with minor modifications to the sub-Gaussian reward setting.
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3. Main results. We turn to the statements of our main results and discussion of their191

consequences. All of our statements involve certain measures of the local complexity of a192

given problem, which we introduce first. We then turn to the statement of lower bounds on193

the `∞-norm error in policy evaluation. In Section 3.1, we prove two lower bounds. Our194

first result, stated as Proposition 3.1, is asymptotic in nature (holding as the sample size195

N → +∞). Our second lower bound, stated as Theorem 3.2, provides a result that holds196

for a range of finite sample sizes. Given these lower bounds, it is then natural to wonder197

about known algorithms that achieve them. Concretely, does the TD(0) algorithm combined198

with Polyak-Ruppert averaging achieve these instance-dependent bounds? In Section 3.2, we199

undertake a careful empirical study of this question, and show that in the non-asymptotic200

setting, this algorithm fails to match the instance-dependent bounds. This finding sets up201

the analysis in Section 3.3, where we introduce a variance-reduced version of TD(0), and202

prove that it does achieve the instance-dependent lower bounds from Theorem 3.2 up to a203

logarithmic factor in dimension.204

Local complexity measures. Recall the generative observation model described in Sec-205

tion 2.2. For a transition matrix P, we write Z ∼ P to mean a random matrix with {0, 1}206

entries, and a single one in each row (with the position of the one in row Zj determined by207

sampling from the transition distribution specified by row Pj). Also recall that the random208

reward vector R ∈ R
D such that Rk ∼ N (rj , σ

2
r ). As we show shortly, the complexity of209

estimating the value function θ∗ depends on the covariance matrix210

Σ∗(P, r) = (I− γP)−1 cov(R+ γZθ∗)(I− γP)−>.(3.1a)211212

The term cov(R+ γZθ∗) = cov(T̂k(θ∗)) denotes the variance of the empirical Bellman opera-213

tor (2.2) applied to the true value function, and it captures the effect of noise. This error is214

compounded by powers of the discounted transition matrix,4 which captures how perturba-215

tions propagate over time, and thus gives rise to the matrix (I − γP)−1. In Section 3.1, we216

argue that local complexity of estimating the value function θ∗ depends on ‖ diag(Σ∗(P, r))‖
1
2∞,217

i.e. the maximal diagonal entry of the matrix Σ∗(P, r).218

Since the transition and reward samples are assumed to be independent under the gen-219

erative observation model 2.2, we can decompose the covariance matrix Σ∗(P, r) into two220

parts:221

Σ∗(P, r) = (I− γP)−1 cov(γZθ∗)(I− γP)−> + (I− γP)−1 cov(R)(I− γP)−>.222223

Throughout the paper, we use the shorthand notation224

ν(P, θ∗) : = ‖ diag
(
(I− γP)−1 cov(γZθ∗)(I− γP)−>

)
‖

1
2∞(3.1b)225

ρ(P, r) : = ‖ diag
(
(I− γP)−1 cov(R)(I− γP)−>

)
‖

1
2∞.(3.1c)226

227

4Observe that we have the von Neumann expansion
∑∞

j=0(γP)j = (I− γP)−1.
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In terms of the above notation, we have the following convenient sandwich relation:228

1

2
· {ν(P, θ∗) + ρ(P, r)} ≤ ‖ diag(Σ∗(P, r))‖

1
2∞ ≤ 2 · {ν(P, θ∗) + ρ(P, r)} .(3.1d)229

230

A portion of our results also involves the quantity231

b(θ) : =
‖θ‖span
1− γ

,(3.1e)232
233

where ‖θ‖span = max
j∈[D]

θj − min
j∈[D]

θj is the span seminorm.234

3.1. Local minimax lower bound. Throughout this section, we use the letter P to denote235

an individual problem instance, P = (P, r), and use θ(P) := θ∗ = (I − γP)−1r to denote236

the target of interest. The aim of this section is to establish instance-specific lower bounds237

for estimating θ(P) under the observation model (2.1). In order to do so, we adopt a local238

minimax approach.239

The remainder of this the section is organized as follows. In Section 3.1.1, we prove an240

asymptotic local minimax lower bound, valid as the sample size N tends to infinity. It gives241

an explicit Gaussian limit for the rescaled error that can be achieved by any procedure. The242

asymptotic covariance in this limit law depends on the problem instance, and is very closely243

related to the functional Σ∗(P, r). Moreover, we show that this limit can be achieved—in the244

asymptotic sense—by the TD algorithm combined with Polyak-Ruppert averaging. While this245

provides a useful sanity check, in practice we implement estimators using a finite number of246

samples N , so it is important to obtain non-asymptotic lower bounds for a full understanding.247

With this motivation, Section 3.1.2 provides a new, non-asymptotic instance-specific lower248

bound for the policy evaluation problem. We show that the functional Σ∗(P, r) also covers249

the instance-specific complexity in the finite-sample setting. In proving this non-asymptotic250

lower bound, we build upon techniques in the statistical literature based on constructing251

hardest one-dimensional alternatives [44, 10, 18, 19, 13]. As we shall see in later sections,252

while the TD algorithm with averaging is instance-specific optimal in the asymptotic setting,253

it fails to achieve our non-asymptotic lower bound.254

3.1.1. Asymptotic local minimax lower bound. Our first approach towards an instance-255

specific lower bound is an asymptotic one, based on classical local asymptotic minimax256

theory. For regular and parametric families, the Hájek–Le Cam local asymptotic minimax257

theorem [23, 31, 32] shows that the Fisher information—an instance-specific functional—258

characterizes a fundamental asymptotic limit. Our model class is both parametric and regular259

(cf. equation (2.1)), and so this classical theory applies to yield an asymptotic local minimax260

bound. Some additional work is needed to relate this statement to the more transparent261

complexity measure Σ∗(P, r) that we have defined.262

In order to state our result, we require some additional notation. Fix an instance P = (P, r).263

For any ε > 0, we define an ε-neighborhood of problem instances by264

N(P; ε) =
{
P ′ = (P′, r′) :

∥∥P−P′∥∥
F
+
∥∥r − r′

∥∥
2
≤ ε
}
.265266
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Adopting the `∞-norm as the loss function, the local asymptotic minimax risk is given by267

M∞(P) ≡ M∞(P; ‖·‖∞) = lim
c→∞

lim
N→∞

inf
θ̂N

sup
Q∈N(P;c/

√
N)

EQ
[√

N
∥∥∥θ̂N − θ(Q)

∥∥∥
∞

]
.(3.2)268

269

Here the infimum is taken over all estimators θ̂N that are measurable functions of N i.i.d.270

observations drawn according to the observation model (2.1).271

Our first main result characterizes the local asymptotic risk M∞(P) exactly, and shows272

that it is attained by stochastic approximation with Polyak-Ruppert averaging. Recall the273

Polyak-Ruppert (PR) sequence {θ̃k}k≥1 defined in equation (2.6), and let {θ̃ ω
k }k≥1 denote this274

sequence when the underlying SA algorithm is the TD update with the polynomial stepsize275

sequence (2.5b) with exponent ω.276

Proposition 3.1. Let Z ∈ R
D be a multivariate Gaussian with zero mean and covariance277

matrix Σ∗(P, r), then the local asymptotic minimax risk at problem instance P is given by278

M∞(P) = E[‖Z‖∞].(3.3a)279280

Furthermore, for each problem instance P and scalar ω ∈ (1/2, 1), this limit is achieved by281

the TD algorithm with an ω-polynomial stepsize and PR-averaging:282

lim
N→∞

√
N · E

[
‖θ̃ ω

N − θ(P)‖∞
]
= E[‖Z‖∞].(3.3b)283

284

With the convention that θ∗ ≡ θ(P), a short calculation bounding the maximum absolute285

value of sub-Gaussian random variables (see, e.g., Ex. 2.11 in Wainwright [52]) yields the286

sandwich relation287

‖ diag(Σ∗(P, r))‖
1
2∞ ≤ E[‖Z‖∞] ≤

√
2 logD · ‖ diag(Σ∗(P, r))‖

1
2∞,288289

so that Proposition 3.1 shows that, up to a logarithmic factor in dimension D, the local290

asymptotic minimax risk is entirely characterized by the functional ‖ diag(Σ∗(P, r))‖
1
2∞.291

It should be noted that lower bounds similar to equation (3.3a) have been shown for specific292

classes of stochastic approximation algorithms [49]. However, to the best of our knowledge, a293

local minimax lower bound—one applying to any procedure that is a measurable function of294

the observations—is not available in the existing literature.295

Furthermore, equation (3.3b) shows that stochastic approximation with polynomial step-296

sizes and averaging attains the exact local asymptotic risk. Our proof of this result essentially297

mirrors that of Polyak and Juditsky [40], and amounts to verifying their assumptions under298

the policy evaluation setting. Given this result, it is natural to ask if averaging is optimal also299

in the non-asymptotic setting; answering this question is the focus of the next two sections of300

the paper.301

3.1.2. Non-asymptotic local minimax lower bound. Proposition 3.1 provides an instance-302

specific lower bound on θ(P) that holds asymptotically. In order to obtain a non-asymptotic303

guarantee, we borrow ideas from the non-asymptotic framework introduced by Cai and Low [13]304

for nonparametric shape-constrained inference. Adapting their definition of local minimax risk305
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to our problem setting, given the loss function L(θ − θ∗) = ‖θ − θ∗‖∞, the (normalized) local306

non-asymptotic minimax risk for θ(·) at instance P = (P, r) is given by307

MN (P) = sup
P ′

inf
θ̂N

max
Q∈{P,P ′}

√
N · EQ

[
‖θ̂N − θ(Q)‖∞

]
.(3.4)308

309

Here the infimum is taken over all estimators θ̂N that are measurable functions of N i.i.d.310

observations drawn according to the observation model (2.1), and the normalization by
√
N is311

for convenience. The definition (3.4) is motivated by the notion of the hardest one-dimensional312

alternative [50, Ch. 25]. Indeed, given an instance P, the local non-asymptotic risk MN (P)313

first looks for the hardest alternative P ′ against P (which should be local around P), then314

measures the worst-case risk over P and its (local) hardest alternative P ′. As explained315

in detail in the paper [20], this instance-specific local minimax risk thus defined imposes a316

fundamental limit on all learning procedures: any algorithm achieving better behavior than the317

lower bound at one instance must have substantially worse behavior at some other instances.318

With this definition in hand, we lower bound the local non-asymptotic minimax risk using319

the complexity measure ‖ diag(Σ∗(P, r))‖
1
2∞ defined in equation (3.1):320

Theorem 3.2. There exists a universal constant c > 0 such that for any instance P = (P, r),321

the local non-asymptotic minimax risk is lower bounded as322

MN (P) ≥ c · ‖ diag(Σ∗(P, r))‖
1
2∞.(3.5)323324

This bound is valid for all sample sizes N that satisfy325

N ≥ N0 : = max

{
γ2

(1− γ)2
,
b2(θ∗)

ν2(P, θ∗)

}
.(3.6)326

327

A few comments are in order. First, it is natural to wonder about the necessity of con-328

dition (3.6) on the sample size N in our lower bound. Our past work provides upper bounds329

on the `∞-error of the plug-in estimator [38], and these results also require a bound of this330

type. In fact, when the rewards are observed with noise (i.e., for any σr > 0), the condition331

N & γ2

(1−γ)2
is natural, since it is necessary in order to obtain an estimate of the value function332

with O(1) error. On the other hand, in the special case of deterministic rewards (σr = 0), it333

is interesting to ask how the fundamental limits of the problem behave in the absence of this334

condition (see Section 5 for further discussion of this point).335

Second, note that Theorem 3.2 may be viewed as a strengthening of local minimax lower336

bounds established in prior work by a subset of the current authors [38], which held over337

sub-classes of MRPs satisfying certain conditions. Theorem 3.2, on the other hand, is a lower338

bound that holds in the neighborhood of every instance. Having said that, the lower bounds339

in the paper [38] are able to capture logarithmic factors in the dimension, but Theorem 3.2,340

owing to the two-point nature of the construction, is not.341

Finally, note that the non-asymptotic lower bound (3.5) is closely connected to the as-342

ymptotic local minimax bound from Proposition 3.1. In particular, for any sample size N343

satisfying the lower bound (3.6), our non-asymptotic lower bound (3.5) coincides with the344
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10 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

asymptotic lower bound (3.3a) up to a constant factor. Thus, it cannot be substantially345

sharpened. The finite-sample nature of the lower bound (3.5) is a powerful tool for assessing346

optimality of procedures: it provides a performance benchmark that holds over a large range347

of finite sample sizes N . Indeed, in the next section, we study the performance of the TD348

learning algorithm with Polyak-Ruppert averaging. While this procedure achieves the local349

minimax lower bound asymptotically, as guaranteed by equation (3.3b) in Proposition 3.1, it350

falls short of doing so in natural finite-sample scenarios.351

3.2. Suboptimality of averaging. Polyak and Juditsky [40] provide a general set of con-352

ditions under which a given stochastic-approximation (SA) algorithm, when combined with353

Polyak-Ruppert averaging, is guaranteed to have asymptotically optimal behavior. For the354

current problem, the bound (3.3b) in Proposition 3.1, which is proved using the Polyak-355

Juditsky framework, shows that SA with polynomial stepsizes and averaging have this favor-356

able asymptotic property.357

However, asymptotic theory of this type gives no guarantees in the finite-sample setting.358

In particular, suppose that we are given a sample size N that scales as (1−γ)−2, as specified in359

our lower bounds. Does the averaged TD(0) algorithm exhibit optimal behavior in this non-360

asymptotic setting? In this section, we answer this question in the negative. More precisely, we361

describe a parameterized family of Markov reward processes, and provide careful simulations362

that reveal the suboptimality of TD without averaging.363

p

1− p

1

r = ν r = ν · τ

Figure 1. Illustration of the 2-state MRP used in the simulation. The triple of scalars (p, ν, τ),
along with the discount factor γ, are parameters of the construction. The chain remains in state
1 with with probability p and transitions to state 2 with probability 1− p; on the other hand,
state 2 is absorbing. The rewards in states 1 and 2 are deterministic, specified by ν and ντ ,
respectively.

3.2.1. A simple construction. The lower bound in Theorem 3.2 predicts a range of be-364

haviors depending on the quantity ‖ diag(Σ∗(P, r))‖
1
2∞, and equivalently on the pair ν(P, θ∗)365

and ρ(P, r) (Cf. equation (3.1d)). In order to observe a large subset of these behaviors, it suf-366

fices to consider a very simple MRP, P = (P, r) with D = 2 states, as illustrated in Figure 1.367

In this MRP, the transition matrix P ∈ R
2×2 and reward vector r ∈ R

2 take the form368

P =

[
p 1− p
0 1

]
, and r =

[
ν
ντ

]
.369

370

Here the triple (p, ν, τ), along with the discount factor γ ∈ [0, 1), are parameters of the371

construction.372
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In order to parameterize this MRP in a scalarized manner, we vary the triple (p, ν, τ) in373

the following way. First, we fix a scalar λ ≥ 0, and then we set374

p = 4γ−1
3γ , ν = 1 and τ = 1− (1− γ)λ.375

376

Note that this sub-family of MRPs is fully parametrized by the pair (γ, λ). Let us clarify why377

this particular scalarization is interesting. It can be shown via simple calculations that the378

underlying MRP satisfies379

ν(P, θ∗) ∼
(

1

1− γ

)1.5−λ

, ρ(P, r) = 0 and b(θ∗) ∼
(

1

1− γ

)2−λ

,380
381

where∼ denotes equality that holds up to a constant pre-factor. Consequently, by Theorem 3.2382

the minimax risk, measured in terms of the `∞-norm, satisfies383

MN (P) ≥ c ·
(

1

1− γ

)1.5−λ

.(3.7)384
385

Thus, it is natural to study whether the TD(0) algorithm with PR averaging achieves this386

error.387

We note in passing that conceptually similar (special cases of such) instances with two-388

state Markov chains have been used to obtain other worst-case lower bounds in reinforcement389

learning [2, 30]. A previous paper by a subset of the authors [38] introduced the current family390

of instances to interpolate smoothly between the most trivial and most difficult problems as391

the discount factor is varied, but the motivation there was still to provide worst-case lower392

bounds holding over a sub-class of problems. The current paper takes this a step further, and393

uses this family to evaluate local notions of optimality.394

3.2.2. A simulation study. In order to compare the behavior of averaged TD with the395

lower bound (3.7), we performed a series of experiments of the following type. For a fixed396

parameter λ in the range [0, 1.5], we generated a range of MRPs with different values of397

the discount factor γ. For each value of the discount parameter γ, we consider the prob-398

lem of estimating θ∗ using a sample size N set to be one of two possible values: namely,399

N ∈
{
d 8
(1−γ)2

e, d 8
(1−γ)3

e
}
.400

In Figure 2, we plot the `∞-error of the averaged SA, for constant stepsize (2.5a), polynomial-401

decay stepsize (2.5b) and recentered linear stepsize (2.5c), as a function of γ. The plots show402

the behavior for λ ∈ {0.5, 1.5}. Each point on each curve is obtained by averaging 1000 Monte403

Carlo trials of the experiment. Note that from our lower bound calculations above (3.7), the404

log `∞-error is related to the complexity log
(

1
1−γ

)
in a linear fashion; we use β∗ to denote the405

slope of this idealized line. Simple algebra yields406

β∗ =
1

2
− λ for N =

1

(1− γ)2
, and β∗ = −λ for N =

1

(1− γ)3
.(3.8)407

408

In other words, for an algorithm which achieves the lower bound predicted by our theory, we409

expect a linear relationship between the log `∞-error and log discount complexity log
(

1
1−γ

)
,410

with the slope β∗.411
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which we define as follows. At epoch m, the method uses a vector θm in order to recenter the430

update, where the vector θm should be understood as the best current approximation to the431

unknown vector θ∗. In the ideal scenario, such a recentering would involve the quantity T (θm),432

where T denotes the population operator previously defined in equation (2.3). Since we lack433

direct access to the population operator T , however, we use the Monte Carlo approximation434

T̃Nm
(θm) : =

1

Nm

∑

i∈Dm

T̂i(θm),(3.9)435

436

where the empirical operator T̂i is defined in equation (2.2). Here the set Dm is a collection437

of Nm i.i.d. samples, independent of all other randomness.438

Given the pair (θm, T̃Nm
(θm)) and a stepsize α ∈ (0, 1), we define the operator Vk on R

D439

as follows:440

θ 7→ Vk

(
θ;α, θm, T̃Nm

)
:= (1− α)θ + α

{
T̂k(θ)− T̂k(θm) + T̃Nm

(θm)
}
.(3.10)441

442

As defined in equation (2.2), the quantity T̂k is a stochastic operator, where the randomness443

is independent of the set of samples Dm used to define T̃Nm
. Consequently, the stochastic444

operator T̂k is independent of the recentering vector T̃Nm
(θm). Moreover, by construction, for445

each θ ∈ R
D, we have446

E

[
T̂k(θ)− T̂k(θm) + T̃Nm

(θm)
]
= T (θ).447

448

Thus, we see that Vk can be seen as an unbiased stochastic approximation of the population-449

level Bellman operator. As will be clarified in the analysis, the key effect of the recentering450

steps is to reduce its associated variance.451

3.3.1. A single epoch. Based on the variance-reduced policy evaluation update defined452

in equation (3.10), we are now ready to define a single epoch of the overall algorithm. We453

index epochs using the integers m = 1, 2, . . . ,M , where M corresponds to the total number454

of epochs to be run. Epoch m requires as inputs the following quantities:455

• a vector θ, which is chosen to be the output of the previous epoch,456

• a positive integer K denoting the number of steps within the given epoch,457

• a positive integer Nm denoting the number of samples used to calculate the Monte458

Carlo update (3.9),459

• a sequence of stepsizes {αk}Kk≥1 with αk ∈ (0, 1), and460

• a set of fresh samples {T̂i}i∈Em
, with |Em| = Nm +K. The first Nm samples are used461

to define the dataset Dm that underlies the Monte Carlo update (3.9), whereas the462

remaining K samples are used in the K steps within each epoch.463

We summarize the operations within a single epoch in Algorithm 1.464

The choice of the stepsize sequence {αk}k≥1 is crucial, and it also determines the epoch465

length K. Roughly speaking, it is sufficient to choose a large enough epoch length to ensure466

that the error is reduced by a constant factor in each epoch. In Section 3.3.3 to follow, we study467

three popular stepsize choices—the constant stepsize (2.5a), the polynomial stepsize (2.5b)468

and the recentered linear stepsize (2.5c)—and provide lower bounds on the requisite epoch469

length in each case.470
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14 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

Algorithm 1 RunEpoch (θ;K,Nm, {αk}Kk=1 , {T̂i}i∈Em
)

1: Given (a) Epoch length K , (b) Recentering vector θ , (c) Recentering sample size Nm,
(d) Stepsize sequence {αk}Kk≥1, (e) Samples {T̂i}i∈Em

2: Compute the recentering quantity T̃Nm
(θ) : = 1

Nm

∑
i∈Dm

T̂i(θ)

3: Initialize θ1 = θ
4: for k = 1, 2, . . . ,K do

5: Compute the variance-reduced update:

θk+1 = Vk

(
θk;αk, θ, T̃Nm

)

6: end for

3.3.2. Overall algorithm. We are now ready to specify our variance-reduced policy-471

evaluation (VRPE) algorithm. The overall algorithm has five inputs: (a) an integer M ,472

denoting the number of epochs to be run, (b) an integer K, denoting the length of each473

epoch, (c) a sequence of sample sizes {Nm}Mm=1 denoting the number of samples used for474

recentering, (d) Sample batches {{T̂i}i∈Em
}Mm=1 to be used in m epochs, and (e) a sequence of475

stepsize {αk}k≥1 to be used in each epoch. Given these five inputs, we summarize the overall476

procedure in Algorithm 2:477

Algorithm 2 Variance-reduced policy evaluation (VRPE)

1: Given (a) Number of epochs M , (b) Epoch length K , (c) Recentering sample sizes
{Nm}Mm=1, (d) Sample batches {T̂i}i∈Em

, for m = 1, . . . ,M , (e) Stepsize {αk}Kk=1

2: Initialize at θ1
3: for m = 1, 2, . . . ,M do

4: θm+1 = RunEpoch
(
θm;K,Nm, {α}Kk=1, {T̂i}i∈Em

)

5: end for

6: Return θM+1 as the final estimate

In the next section, we provide a detailed description on how to choose these input pa-478

rameters for three popular stepsize choices (2.5a)–(2.5c). Finally, we reiterate that at epoch479

m, the algorithm uses Nm+K new samples, and the samples used in the epochs are indepen-480

dent of each other. Accordingly, the total number of samples used in M epochs is given by481

KM +
∑M

m=1Nm.482

3.3.3. Instance-dependent guarantees. Given a desired failure probability, δ ∈ (0, 1),483

and a total sample size N , we specify the following choices of parameters in Algorithm 2:484

Number of epochs M : = log2

(
N(1− γ)2

8 log((8D/δ) · logN)

)
(3.11a)485

486
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487

Recentering sample sizes : Nm : = 2m
42 · 92 · log(8MD/δ)

(1− γ)2
for m = 1, . . . ,M

(3.11b)

488
489
490

Sample batches: Partition the N samples to obtain {T̂i}i∈Em
for m = 1, . . .M(3.11c)491492

493

Epoch length: K =
N

2M
(3.11d)494

495

In the following theorem statement, we use (c1, c2, c3, c4) to denote universal constants.496

Theorem 3.3. (a) Suppose that the input parameters of Algorithm 2 are chosen according497

to equation (3.11). Furthermore, suppose that the sample size N satisfies one of the following498

three stepsize-dependent lower bounds:499

(a) N
M ≥ c1

log(8ND/δ)
(1−γ)3

for recentered linear stepsize αk = 1
1+(1−γ)k ,500

(b) N
M ≥ c2 log(8ND/δ) ·

(
1

1−γ

)( 1
1−ω

∨ 2
ω )

for polynomial stepsize αk = 1
kω with 0 < ω < 1,501

(c) N
M ≥ c3

log
(

1
1−α(1−γ)

) for constant stepsize αk = α ≤ 1
52·322 · (1−γ)2

log(8ND/δ) .502

Then for any initilization θ1, the output θM+1 satisfies503

‖θM+1 − θ∗‖∞ ≤ c4 ·
∥∥θ1 − θ∗

∥∥
∞ · log

2((8D/δ) · logN)

N2(1− γ)4
504

+ c4 ·
{√

log(8DM/δ)

N
· ‖ diag(Σ∗(P, r))‖

1
2∞ +

log(8DM/δ)

N
· b(θ∗)

}
,(3.12)505

506

with probability exceeding 1− δ.507

See Section 4.3 for the proof of this theorem.508

A few comments on the upper bound provided in Theorem 3.3 are in order. In order to509

facilitate a transparent discussion in this section, we use the notation & in order to denote a510

relation that holds up to logarithmic factors in the tuple
(
N,D, (1− γ)−1

)
.511

Initialization dependence. The first term on the right-hand side of the upper bound (3.12)512

depends on the initialization θ1. It should be noted that when viewed as a function of the513

sample size N , this initialization-dependent term decays at a faster rate compared to the514

other two terms. This indicates that the performance of Algorithm 2 does not depend on515

the initialization θ1 in a significant way. A careful look at the proof (cf. Section 4.3) reveals516

that the coefficient of ‖θ1 − θ∗‖∞ in the bound (3.12) can be made significantly smaller. In517

particular, for any p ≥ 1 the first term in the right-hand side of bound (3.12) can be replaced518

by519

c4 ·
‖θ1 − θ∗‖∞

Np
· log

p((8D/δ) · logN)

(1− γ)2p
,520

521
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attained at ω = 2/3, and in that case the bound (3.12) is valid when N & (1− γ)−3. Overall,540

for all the three stepsize choices discussed in Theorem 3.3 we require N & (1− γ)−3 in order541

to certify the upper bound. Returning to Theorem 3.2, from assumption (3.6) we see that in542

the best case scenario, Theorem 3.2 is valid as soon as N & (1 − γ)−2. Putting together the543

pieces we find that the sample size requirement for Theorem 3.3 is more stringent than that544

of Theorem 3.2. Currently, we do not know whether the minimum sample size requirements545

in Theorems 3.2 and 3.3 are necessary; answering this question is an interesting direction for546

future research.547

Simulation study. It is interesting to demonstrate the sharpness of our bounds via a548

simulation study, using the same scheme as our previous study of TD(0) with averaging. In549

Figure 3, we report the results of this study; see the figure caption for further details. At a high550

level, we see that the VRPE algorithm, with either the recentered linear stepsize (panel (a))551

or the polynomial stepsize t−2/3, produces errors that decay with the exponents predicted by552

our instance-dependent theory for λ ∈ {0.5, 1.0, 2.0}. See the figure caption for further details.553

4. Proofs. We now turn to the proofs of our main results. Throughout, we use the554

shorthand555

ΣP(θ) = covZ∼P((Z−P)θ).(4.1)556557

We also make frequent use of the sandwich relation (3.1d), restated below for convenience:558

1

2
· {ν(P, θ∗) + ρ(P, r)} ≤ ‖ diag(Σ∗(P, r))‖

1
2∞ ≤ 2 · {ν(P, θ∗) + ρ(P, r)}(4.2)559

560

4.1. Proof of Proposition 3.1. Recall the definition of the matrix ΣP(θ) from equa-561

tion (4.1), and define the covariance matrix562

Σ∗(P, r) = (I− γP)−1(γ2ΣP(θ∗) + σ2rI)(I− γP)−T .(4.3)563564

Recall that we use Z to denote a multivariate Gaussian random vector Z ∼ N (0,Σ∗(P, r)),565

and that the sequence {θ̃ ω
k }k≥1 is generated by averaging the iterates of stochastic approxi-566

mation with polynomial stepsizes (2.5b) with exponent ω. With this notation, the two claims567

of the theorem are:568

M∞(P) = E[‖Z‖∞], and(4.4a)569

lim
N→∞

E

[√
N · ‖θ̃ ω

N − θ∗‖∞
]
= E[‖Z‖∞].(4.4b)570

571

We now prove each of these claims separately.572

4.1.1. Proof of equation (4.4a). For the reader’s convenience, let us state a version of573

the Hájek–Le Cam local asymptotic minimax theorem [50, Ch.8, Ch.25]:574

Theorem 4.1. Let {Pϑ′}ϑ′∈Θ be a family of parametric models, quadratically mean differen-575

tiable with Fisher information matrices Jϑ′. Fix some parameter ϑ ∈ int(Θ), and consider a576
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18 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

function ψ : Θ → R
D that is differentiable at ϑ. Then for any quasi-convex loss L : RD → R,577

we have:578

lim
c→∞

lim
N→∞

inf
ϑ̂N

sup
ϑ′

‖ϑ′−ϑ‖2≤c/
√
N

Eϑ′

[
L
(√
N · (ϑ̂N − ψ(ϑ′))

)]
= E[L(Z)],(4.5)579

580

where the infimum is taken over all estimators ϑ̂N that are measurable functions of N i.i.d.581

data points drawn from Pϑ, and the expectation is taken over a multivariate Gaussian Z ∼582

N (0,∇ψ(ϑ)TJ†
ϑ∇ψ(ϑ)).583

Returning to the problem at hand, let ϑ = (P, r) denote the unknown parameters of the584

model and let ψ(ϑ) = θ(P) = (I− γP)−1r denote the target vector.585

In the first case where ϑ = (P, r) lies in the interior of the parameter space5, a direct586

application of Theorem 4.1 shows that587

M∞(P) = E[‖Z‖∞] where Z = N (0,∇ψ(ϑ)TJ†
ϑ∇ψ(ϑ)),(4.6)588589

where Jϑ is the Fisher information at ϑ. The following result provides a more explicit form590

of the covariance of Z:591

Lemma 4.2. We have the identity592

∇ψ(ϑ)TJ†
ϑ∇ψ(ϑ) = Σ∗(P, r) : = (I− γP)−1(γ2ΣP(θ

∗) + σ2rI)(I− γP)−T .(4.7)593594

Although the proof of this claim is relatively straightforward, it involves some lengthy and595

somewhat tedious calculations; we refer the reader to Appendix SM1.1 for the proof.596

597

Given the result from Lemma 4.2, the claim (4.4a) follows by substituting the relation (4.7)598

into (4.6). This proves the case when ϑ is in the interior of the parameter space.599

In the second case where ϑ lies on the boundary of the parameter space, with some diligent600

work, one can use the same arguments to prove the claim (4.4a). In fact, we need to show601

additionally that Theorem 4.1 also holds when ϑ lies on the boundary. The classical delta-602

method allows us to reduce the problem to showing that the local asymptotic minimax result603

holds for estimating P when P lies on the boundary, i.e., Pi,j ∈ {0, 1} for some {i, j}. This604

requires a direct and tedious verification, which we leave the details to the reader. Here we605

provide only the basic intuition. The key observation is (i) Pi,j is the mean of a Bernoulli606

random variable, and (ii) one can verify easily the local asymptotic minimax lower and upper607

bound for estimating Pi,j are precisely equal to each other, and in fact, both are equal to zero608

when Pi,j ∈ {0, 1}, since the Bernoulli variable becomes deterministic when Pi,j ∈ {0, 1}.609

4.1.2. Proof of equation (4.4b). The proof of this claim follows from the results of Polyak610

and Juditsky [40, Theorem 1], once their assumptions are verified for TD(0) with polynomial611

stepsizes. Recall that the TD iterates in equation (2.4) are given by the sequence {θk}k≥1,612

and that θ̃ ω
k denotes the k-th iterate generated by averaging.613

5More precisely, this means that P lies in the relative interior of the convex set {P : P1 = 1,P ≥ 0}.
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For each k ≥ 1, note the following equivalence between the notation of our paper and that614

of Polyak and Juditsky [40], or PJ for short:615

xk ≡ θk, γk ≡ αk, A ≡ I− γP, and ξk = (Rk − r) + (Zk −P)θk.616617

Let us now verify the various assumptions in the PJ paper. Assumption 2.1 in the PJ paper618

holds by definition, since the matrix I − γP is Hurwitz. Assumption 2.2 in the PJ paper is619

also satisfied by the polynomial stepsize sequence for any exponent ω ∈ (0, 1).620

It remains to verify the assumptions that must be satisfied by the noise sequence {ξk}k≥1.621

In order to do so, write the k-th such iterate as622

ξk = (Rk − r) + (Zk −P)θ∗ + (Zk −P)(θk − θ∗).623624

Since Zk is independent of the sequence {θi}ki=1, it follows that the condition625

lim
N→∞

E
[
‖θN − θ∗‖22

]
= 0(4.8)626

627

suffices to guarantee that Assumptions 2.3–2.5 in the PJ paper are satisfied. We now claim628

that for each ω ∈ (1/2, 1], condition (4.8) is satisfied by the TD iterates. Taking this claim as629

given for the moment, note that applying Theorem 1 of Polyak and Juditsky [40] establishes630

claim (4.4b), for any exponent ω ∈ (1/2, 1).631

It remains to establish condition (4.8). For any ω ∈ (1/2, 1], the sequence of stepsizes632

{αk}k≥1 satisfies the conditions633

∞∑

k=1

αk = ∞ and

∞∑

k=1

α2
k <∞.634

635

Consequently, classical results due to Robbins and Monro [41, Theorem 2] guarantee `2-636

convergence of θN to θ∗.637

4.2. Proof of Theorem 3.2. Throughout the proof, we use the notation P = (P, r)638

and P ′ = (P′, r′) to denote, respectively, the problem instance at hand and its alternative.639

Moreover, we use θ∗ ≡ θ(P) and θ(P ′) to denote the associated target parameters for each of640

the two problems P and P ′. We use ∆P = P−P′ and ∆r = r − r′ to denote the differences641

of the parameters. For probability distributions, we use P and P ′ to denote the marginal642

distribution of a single observation under P and P ′, and use PN and (P ′)N to denote the643

distribution of N i.i.d observations drawn from P or P ′, respectively.644

4.2.1. Proof structure. We introduce two special classes of alternatives of interest, de-645

noted as S1 and S2 respectively:646

S1 =
{
P ′ = (P′, r′) | r′ = r

}
, and S2 =

{
P ′ = (P′, r′) | P′ = P

}
.647648

In words, the class S1 consists of alternatives P ′ that have the same reward vector r as P,649

but a different transition matrix P′. Similarly, the class S2 consists of alternatives P ′ with650
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the same transition matrix P, but a different reward vector. By restricting the alternative P ′651

within class S1 and S2, we can define restricted versions of the local minimax risk, namely652

MN (P;S1) ≡ sup
P ′∈S1

inf
θ̂N

max
P∈{P,P ′}

EP
[√

N ·
∥∥θ̂N − θ(P)

∥∥
∞

]
, and(4.9a)653

MN (P;S2) ≡ sup
P ′∈S2

inf
θ̂N

max
P∈{P,P ′}

EP
[√

N ·
∥∥θ̂N − θ(P)

∥∥
∞

]
.(4.9b)654

655

The main part of the proof involves showing that there is a universal constant c > 0 such that656

the lower bounds657

MN (P;S1) ≥ c · γν(P, θ∗), and(4.10a)658

MN (P;S2) ≥ c · ρ(P, r)(4.10b)659660

both hold (assuming that the sample size N is sufficiently large to satisfy the condition (3.6)).661

Since we have MN (P) ≥ max {MN (P;S1),MN (P;S2)}, these lower bounds in conjunction662

with the sandwich relation (4.2) imply the claim Theorem 3.2. The next section shows how663

to prove these two bounds.664

4.2.2. Proof of the lower bounds (4.10a) and (4.10b):. Our first step is to lower bound665

the local minimax risk for each problem class in terms of a modulus of continuity between the666

Hellinger distance and the `∞-norm.667

Lemma 4.3. For each S ∈ {S1,S2}, we have the lower bound MN (P;S) ≥ 1
8 ·MN (P;S),668

where we define669

MN (P;S) := sup
P ′∈S

{√
N ·

∥∥θ(P)− θ(P ′)
∥∥
∞ | dhel(P, P ′) ≤ 1

2
√
N

}
,(4.11)670

671

where dhel(P, P
′) denotes the Hellinger distance between the two distributions P and P ′. The672

proof of Lemma 4.3 follows a relatively standard argument, one which reduces estimation to673

testing; see Appendix SM2.1 for details.674

675

This lemma allows us to focus our remaining attention on lower bounding the quantity676

MN (P;S). In order to do so, we need both a lower bound on the `∞-norm
∥∥θ(P)− θ(P ′)

∥∥
∞677

and an upper bound on the Hellinger distance dhel(P, P
′). These two types of bounds are678

provided in the following two lemmas. We begin with lower bounds on the `∞-norm:679

Lemma 4.4. (a) For any P and for all P ′ ∈ S1, we have680

∥∥θ(P)− θ(P ′)
∥∥
∞ ≥

(
1− γ

1− γ
‖∆P‖∞

)
+
·
∥∥γ(I− γP)−1∆Pθ

∗∥∥
∞ .(4.12a)681

682

(b) For any P and for all P ′ ∈ S2, we have683

∥∥θ(P)− θ(P ′)
∥∥
∞ ≥

∥∥(I− γP)−1∆r

∥∥
∞ .(4.12b)684685

See Appendix SM2.2 for the proof of this claim.686

687

Next, we require upper bounds on the Hellinger distance:688
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Lemma 4.5. (a) For each P and for all P ′ ∈ S1, we have689

dhel(P, P
′)2 ≤ 1

2

∑

i,j

((∆P)i,j)
2

Pi,j
.(4.13a)690

691

(b) For each P and for all P ′ ∈ S2, we have692

dhel(P, P
′)2 ≤ 1

2σ2r
‖r1 − r2‖22 .(4.13b)693

694

See Appendix SM2.3 for the proof of this upper bound.695

696

Using Lemmas 4.4 and 4.5, we can derive two different lower bounds. First, we have the697

lower bound MN (P;S1) ≥ M
′
N (P;S1), where698

M
′
N (P;S1) ≡ sup

P ′∈S1




√
N ·
(
1− γ ‖∆P‖∞

1− γ

)

+

·
∥∥γ(I− γP)−1∆Pθ

∗∥∥
∞ |

∑

i,j

((∆P)i,j)
2

Pi,j
≤ 1

2N



 .

(4.14a)

699

700

Second, we have the lower bound MN (P;S2) ≥ M
′
N (P;S2), where701

M
′
N (P;S2) ≡ sup

P ′∈S2

{√
N · ‖ (I− γP)−1∆r‖∞ | 1

σ2r
‖r1 − r2‖2 ≤

1

2N

}
.(4.14b)702

703

In order to complete the proofs of the two lower bounds (4.10a) and (4.10b), it suffices to704

show that705

M
′
N (P;S2) ≥

1√
2
· ρ(P, r), and(4.15a)706

M
′
N (P;S1) ≥

1

2
√
2
· γν(P, θ∗).(4.15b)707

708

Proof of the bound (4.15a). This lower bound is easy to show—it follows from the709

definition:710

M
′
N (P;S2) =

σr√
2

∥∥(I− γP)−1∆r

∥∥
∞ =

1√
2
ρ(P, r).711

712

Proof of the bound (4.15b). The proof of this claim is much more delicate. Our strategy713

is to construct a special “hard” alternative, P ∈ S1, that leads to a good lower bound on714

M
′
N (P;S1). Lemma 4.6 below is the main technical result that we require:715

Lemma 4.6. There exists some probability transition matrix P̄ with the following proper-716

ties:717

(a) It satisfies the constraint
∑

i,j
((P̄−P)i,j)

2

Pi,j
≤ 1

2N .718
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(b) It satisfies the inequalities719

∥∥P̄−P
∥∥
∞ ≤ 1√

2N
, and

∥∥γ(I− γP)−1(P̄−P)θ∗
∥∥
∞ ≥ γ√

2N
· ν(P, θ∗).720

721

See Appendix SM2.4 for the proof of this claim.722

723

Given the matrix P̄ guaranteed by this lemma, we consider the “hard” problem P : = (P̄, r) ∈ S1.724

From the definition of M′
N (P;S1) in equation (4.14a), we have that725

M
′
N (P;S1) ≥

√
N ·

(
1− γ

1− γ

∥∥P− P̄
∥∥
∞

)

+

·
∥∥γ(I− γP̄)−1(P− P̄)θ∗

∥∥
∞726

≥
√
N ·

(
1− γ

1− γ
· 1√

2N

)

+

· γ√
2N

· ν(P, θ∗) ≥ 1

2
√
2
· γν(P, θ∗),727

728

where the last inequality follows by the assumed lower bound N ≥ 4γ2

(1−γ)2
. This completes the729

proof of the lower bound (4.15b).730

4.3. Proof of Theorem 3.3. This section is devoted to the proof of Theorem 3.3, which731

provides the achievability results for variance-reduced policy evaluation.732

4.3.1. Proof of part (a). We begin with a lemma that characterizes the progress of733

Algorithm 2 over epochs:734

Lemma 4.7. Under the assumptions of Theorem 3.3 (a), there is an absolute constant c735

such that for each epoch m = 1, . . . ,M , we have:736

∥∥θm+1 − θ∗
∥∥
∞ ≤ ‖θm − θ∗‖∞

4
737

+ c





√
log(8DM/δ)

Nm

(
γ · ν(P, θ∗) + ρ(P, r)

)
+

log(8DM/δ)

Nm
· b(θ∗)



 ,(4.16)738

739

with probability exceeding 1− δ
M .740

Taking this lemma as given for the moment, let us complete the proof. We use the741

shorthand742

τm : =

√
log(8DM/δ)

Nm

(
γ · ν(P, θ∗) + ρ(P, r)

)
and ηm : =

log(8DM/δ)

Nm
· b(θ∗)(4.17)743

744

to ease notation, and note that τm√
2
≤ τm+1 and ηm

2 ≤ ηm+1, for each m ≥ 1. Using this745

notation and unwrapping the recursion relation from Lemma 4.7, we have746

∥∥θ̄M+1 − θ∗
∥∥
∞ ≤

∥∥θM − θ∗
∥∥
∞

4
+ c(τM + ηM )747

(i)

≤
∥∥θM−1 − θ∗

∥∥
∞

42
+
c

2
(τM + ηM ) + c(τM + ηM )748

(ii)

≤
∥∥θ1 − θ∗

∥∥
∞

4M
+ 2c(τM + ηM ).749

750
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Here, step (i) follows by applying the one-step application of the recursion (4.16), and by751

using the upper bounds τm√
2
≤ τm+1 and ηm

2 ≤ ηm+1. Step (ii) follows by repeated application752

of the recursion (4.16). The last inequality holds with probability at least 1 − δ by a union753

bound over the M epochs.754

It remains to express the quantities 4M , τM and ηM—all of which are controlled by the755

recentering sample size NM—in terms of the total number of available samples N . Towards756

this end, observe that the total number of samples used for recentering at M epochs is given757

by758

M∑

m=1

Nm � 2M · log(8MD/δ)

(1− γ)2
.759

760

Substituting the value of M = log2

(
N(1−γ)2

8 log((8D/δ)·logN)

)
we have761

c1N ≤ NM �
M∑

m=1

Nm ≤ N

2
,762

763

where c1 is a universal constant. Consequently, the total number of samples used by Algo-764

rithm 2 is given by765

MK +
M∑

m=1

Nm ≤ N

2
+
N

2
= N,766

767

where in the last equation we have used the fact thatMK = N
2 . Finally, usingM = log2

(
N(1−γ)2

8 log((8D/δ)·logN)

)
768

we have the following relation for some universal constant c:769

4M = c · N2(1− γ)4

log2((8D/δ) · logN)
770
771

Putting together the pieces and using the sandwich relation (4.2), we conclude that772

‖θM+1 − θ∗‖∞ ≤ c2
∥∥θ1 − θ∗

∥∥
∞ · log

2((8D/δ) · logN)

N2(1− γ)4
773

+ c2

{√
log(8DM/δ)

N
· ‖ diag(Σ∗(P, r))‖

1
2∞ +

log(8DM/δ)

N
· b(θ∗)

}
,774

775

for a suitable universal constant c2. The last bound is valid with probability exceeding 1− δ776

via the union bound. In order to complete the proof, it remains to prove Lemma 4.7, which777

we do in the following subsection.778

4.3.2. Proof of Lemma 4.7. We now turn to the proof of the key lemma within the779

argument. We begin with a high-level overview in order to provide intuition. In the m-th780

epoch that updates the estimate from θm to θm+1, the vector θ ≡ θm is used to recenter781

the updates. Our analysis of the m-th epoch is based on a sequence of recentered operators782

This manuscript is for review purposes only.



24 KHAMARU, PANANJADY, RUAN, WAINWRIGHT AND JORDAN

{Jm
k }k≥1 and their population analogs Jm(θ), analyzed conditionally on T̃N (θm). The action783

of these operators on a point θ is given by the relations784

Jm
k (θ) := T̂k(θ)− T̂k(θm) + T̃N (θm), and Jm(θ) := T (θ)− T (θm) + T̃N (θm).(4.18a)785786

By definition, the updates within epoch m can be written as787

θk+1 = (1− αk) θk + αkJm
k (θk) .(4.18b)788789

Note that the operator Jm is γ-contractive in ‖ · ‖∞-norm, and as a result it has a unique790

fixed point, which we denote by θ̂m. Since Jm(θ) = E [Jm
k (θ)] by construction, when studying791

epoch m, it is natural to analyze the convergence of the sequence {θk}k≥1 to θ̂m.792

Suppose that we have taken K steps within epoch m. Applying the triangle inequality793

yields the bound794

‖θm+1 − θ∗‖∞ = ‖θK+1 − θ∗‖∞ ≤
∥∥∥θK+1 − θ̂m

∥∥∥
∞

+
∥∥∥θ̂m − θ∗

∥∥∥
∞
.(4.18c)795

796

With this decomposition, our proof of Lemma 4.7 is based on two auxiliary lemmas that797

provide high-probability upper bounds on the two terms on the right-hand side of inequal-798

ity (4.18c).799

Lemma 4.8. Let (c1, c2, c3) be positive numerical constants, and suppose that the epoch800

length K satisfies one the following three stepsize-dependent lower bounds:801

(a) K ≥ c1
log(8KMD/δ)

(1−γ)3
for recentered linear stepsize αk = 1

1+(1−γ)k ,802

(b) K ≥ c2 log(8KMD/δ)·
(

1
1−γ

)( 1
1−ω

∨ 2
ω )

for polynomial stepsize αk = 1
kω with 0 < ω < 1,803

(c) K ≥ c3

log
(

1
1−α(1−γ)

) for constant stepsize αk = α ≤ (1−γ)2

log(8KMD/δ) · 1
52·322 .804

Then after K update steps with epoch m, the iterate θK+1 satisfies the bound805

‖θK+1 − θ̂m‖∞ ≤ 1

8
‖θm − θ∗‖∞ +

1

8
‖θ̂m − θ∗‖∞ with probability at least 1− δ

2M .(4.19)806
807

See Appendix SM3.1 for the proof of this claim.808

809

Our next auxiliary result provides a high-probability bound on the difference ‖θ̂m − θ∗‖∞.810

Lemma 4.9. There is an absolute constant c4 such that for any recentering sample size811

satisfying Nm ≥ 42 · 92 · log(MD/δ)
(1−γ)2

, we have812

‖θ̂m − θ∗‖∞ ≤ 1
9‖θm − θ∗‖∞ + c4





√
log(8DM/δ)

Nm

(
γ · ν(P, θ∗) + ρ(P, r)

)
+

log(8DM/δ)

Nm
· b(θ∗)



 ,813

814

with probability exceeding 1− δ
2M .815

See Appendix SM3.2 for the proof of this claim.816

817
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With Lemmas 4.8 and 4.9 in hand, the remainder of the proof is straightforward. Recall from818

equation (4.17) the shorthand notation τm and ηm. Using our earlier bound (4.18c), we have819

that at the end of epoch m (which is also the starting point of epoch m+ 1),820

∥∥θm+1 − θ∗
∥∥
∞ ≤ ‖θK+1 − θ̂m‖∞ + ‖θ̂m − θ∗‖∞821

(i)

≤
{‖θm − θ∗‖∞

8
+

1

8

∥∥∥θ̂m − θ∗
∥∥∥
∞

}
+
∥∥∥θ̂m − θ∗

∥∥∥
∞

822

=
‖θm − θ∗‖∞

8
+

9

8
·
∥∥∥θ̂m − θ∗

∥∥∥
∞

823

(ii)

≤ ‖θm − θ∗‖∞
8

+
1

8

{
‖θm − θ∗‖∞ + c4(τm + ηm)

}
824

≤ ‖θm − θ∗‖∞
4

+ c4(τm + ηm),825
826

where inequality (i) follows from Lemma 4.8(a), and inequality (ii) from Lemma 4.9. Finally,827

the sequence of inequalities above holds with probability at least 1 − δ
M via a union bound.828

This completes the proof of Lemma 4.7.829

4.3.3. Proof of Theorem 3.3, parts (b) and (c). The proofs of Theorem 3.3 parts (b)830

and (c) require versions of Lemma 4.7 for the polynomial stepsize (2.5b) and constant step-831

size (2.5a), respectively. These two versions of Lemma 4.7 can be obtained by simply replacing832

Lemma 4.8, part (a), by Lemma 4.8, parts (b) and (c), respectively, in the proof of Lemma 4.7.833

5. Discussion. In this paper, we have undertaken an instance-specific analysis of the834

problem of policy evaluation in discounted Markov decision processes. Our contribution is835

three-fold. First, we provided a non-asymptotic instance-dependent local-minimax bound on836

the `∞-error for the policy evaluation problem under the generative model. Next, via care-837

ful simulations, we showed that the standard TD-learning algorithm—even when combined838

with Polyak-Ruppert iterate averaging—does not yield ideal non-asymptotic behavior as cap-839

tured by our lower bound. In order to remedy this difficulty, we introduced and analyzed840

a variance-reduced (VR) version of the standard TD-learning algorithm which achieves our841

non-asymptotic instance-dependent lower bound up to logarithmic factors. We close with842

some discussions of interesting open directions.843

Exploring the connection between variance and higher-order terms. Underlying our results844

is an exploration of the variance of various algorithms together with their higher-order error845

terms. Note that both Polyak–Ruppert averaging and the variance reduction (VR) device are846

methods by which the natural stochastic approximation iterates are stabilized; in that sense,847

the abstract phenomenon of “variance reduction” is common to both algorithms. On the other848

hand, the higher-order terms in the error of the averaging estimator (which vanish as N → ∞)849

end up dominating the risk for small sample sizes, but the VR update is more effective at850

controlling these higher-order error terms. Another typical method that achieves variance851

reduction is adding minibatching to stochastic approximation. Now one would still expect852

that if minibatching were employed in conjunction with averaging, the issue above of large853

higher-order terms would persist unless the batch size was chosen to grow with the effective854

horizon 1/(1−γ); indeed, in our VR update, we use a large sample size (of the order (1−γ)−3)855
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to recenter our updates in each epoch. A deeper exploration of the interaction between the856

variance of an algorithm with its higher-order terms is an interesting open direction in related857

problems.858

Sharp characterization of sample size threshold. Both the upper and lower bounds discussed859

in this paper hold when the sample size is bigger than an explicit threshold; relaxing this860

minimum sample size requirement is an interesting future research direction. We note that861

this question is quite a delicate one; indeed, deriving sharp thresholds on such a worst-case862

sample size “barrier” in tabular reinforcement learning has been a topic of recent focus (see,863

e.g. the very recent paper [33]).864

Accommodating Markov noise and function approximation. In this paper, our study of of865

policy evaluation was restricted to the tabular case, and focused on providing `∞-bounds under866

the generative model. Arguably, the more relevant setting in practice is where we do not have867

access to a simulator and instead observe a trajectory of observations from the Markov chain.868

In this setting, the most natural guarantees are usually obtained in a weighted `2-norm (see,869

e.g., Tsitsiklis and Van Roy [48]). It is an interesting open question as to whether variance-870

reduced policy evaluation still has good performance in this setting. Our current analysis—871

much of our which relies on specific contraction properties that hold for the empirical Bellman872

update—does not immediately apply. Understanding the instance-specific (sub-)optimality of873

Polyak—Ruppert averaging in the Markov setting is also an interesting problem in its own874

right. We note that preliminary progress in this direction has been made by a subset of the875

current authors in papers written shortly after ours [35, 36]; they provided upper bounds on876

averaged stochastic approximation with control on higher-order terms. However, this analysis877

does not offer any guidance about the optimality of these terms.878

Extensions to the Hurwitz case and other error metrics. Finally, let us briefly comment on879

the case of solving the linear system Aθ∗ = b from noisy observations of the pair (A, b). This880

problem has received significant attention in the case when the matrix −A is Hurwitz6 [40,881

4, 29, 35], and the policy evaluation setting considered in this paper is a special case. Indeed,882

Proposition 3.1 has a direct analog in the more general Hurwitz setting. On the other hand,883

while our non-asymptotic lower bound in Theorem 3.2 uses some properties that are specific884

to the MRP setting, we expect that a similar lower bound ought to apply to a large subclass885

of Hurwitz matrices. Our simulations in Section 3.2 were shown for a particular family of886

Hurwitz matrices, corresponding to a collection of MRPs with varying discount factor, but we887

expect that a similar phenomenon ought to hold for other carefully constructed families. Note888

that while the simulations in Section 3.2 were illustrated for the `∞-norm, Polyak–Ruppert889

averaging is also clearly suboptimal for this family in other norms (e.g. the `2 norm) since890

our instance made use of a two-dimensional example and the error would behave equivalently891

in all `p norms. Finally, as alluded to above, our proof of Theorem 3.3 leverages the MRP892

setting and contractivity properties with respect to the `∞ norm, and it is an interesting open893

question whether a similar result can be proved in the general Hurwitz case for arbitrary894

norms.895
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