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Abstract

Motivated by federated learning, we consider the hub-and-spoke model of dis-
tributed optimization in which a central authority coordinates the computation
of a solution among many agents while limiting communication. We first study
some past procedures for federated optimization, and show that their fixed points
need not correspond to stationary points of the original optimization problem, even
in simple convex settings with deterministic updates. In order to remedy these
issues, we introduce FedSplit, a class of algorithms based on operator splitting
procedures for solving distributed convex minimization with additive structure. We
prove that these procedures have the correct fixed points, corresponding to optima
of the original optimization problem, and we characterize their convergence rates
under different settings. Our theory shows that these methods are provably robust
to inexact computation of intermediate local quantities. We complement our theory
with some experiments that demonstrate the benefits of our methods in practice.

1 Introduction

Federated learning is a rapidly evolving application of distributed optimization for learning problems
in large-scale networks of remote clients [13]. These systems present new challenges, as they are
characterized by heterogeneity in computational resources, data across a large, multi-agent network,
unreliable communication, and privacy constraints due to sensitive client data [15].

Although distributed optimization has a rich history and extensive literature (e.g., see the sources [2,
4, 8, 28, 14, 23] and references therein), renewed interest due to federated learning has led to a
flurry of recent work in the area. Notably, McMahan et al. [17] introduced the FedSGD and FedAvg
algorithms, by adapting the classical stochastic gradient method to the federated setting, considering
the possibility that clients may fail and may only be subsampled on each round of computation.
Another recent proposal, FedProx, attempted to mitigate potential device heterogeneity issues by
applying averaged proximal updates to solve federated minimization problems. Currently, a general
convergence theory of these methods is lacking. Moreover, practitioners have documented failures of
convergence in certain settings (e.g., see Figure 3 and related discussion in the work [17]).
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Our contributions: The first contribution of this paper is to analyze some past procedures, and
show that even in the favorable setting of deterministic updates (i.e., no stochastic approximation
used), these methods typically fail to preserve solutions of the original optimization problem as fixed
points. More precisely, even when these methods do converge, the resulting fixed point need not
correspond to an optimal solution of the desired federated learning problem. Since the stochastic
variants implemented in practice are approximate versions of the underlying deterministic procedures,
this implies these methods also fail to preserve the correct fixed points in general.

With the motivation of rectifying this undesirable feature, our second contribution is to introduce a
family of federated optimization algorithms, which we call FedSplit, that do preserve the correct
fixed points for distributed optimization problems of the form

minimize F(x) := ij(x), ()

where f;: R? — R are the clients’ cost functions for variable € R?. In machine learning
applications, the vector z € R? is a parameter of a statistical model. Our procedure and analysis
builds on a long line of work relating optimization with monotone operators and operator splitting
techniques [4, 26, 7, 1]. In this paper, we focus on the case when f; are convex functions with
Lipschitz continuous gradient [24].

2 Existing algorithms and their fixed points

We focus our discussion on deterministic analogues of two recently proposed procedures—namely,
FedSGD [17] and FedProx [16]. For analysis, it is useful to introduce the equivalent, consensus
reformulation [4] of the distributed problem (1):

minimize F(z) := >0, f;(x;)
subjectto z] = X2 =+ = Tyy.

2

2.1 Federated gradient algorithms

The recently proposed FedSGD method [17] is based on a multi-step projected stochastic gradient
method for solving the consensus problem. For our analysis we consider the obvious deterministic
version of this algorithm, which replaces the stochastic gradient by the full gradient. Formally, given
a stepsize s > 0, define the gradient mappings

Gj(x) =a — sV f(x) forj=1,...,m. (3)

For a given integer e > 1, we define G5 as the e-fold composition of G; and G? as the identity operator

on R?. The FedGD(s, e) algorithm from initialization z:(!) obeys the recursion for ¢ = 1,2,...:
2TV = ge(al), forj € [m] :={1,2,...,m}, and (4a)

gt = g1/, for j € [m). (4b)

Recall that 7!t/ = L Sy xg-tﬂ/ ?) is the block average. The following result characterizes the
fixed points of this procedure.

Proposition 1. For any s > 0 and e > 1, the sequence {xV}$2, generated by the FedGD(s, e)
algorithm in equation (4) has the following properties: (a) if ") is convergent, then the local
variables xg»t) share a common limit ©* such that xﬁt) — ¥ ast — oo for j € [m]; (b) any such

limit x* satisfies the fixed point relation

€ m

DY VG ) =0. 5)

i=1j=1

The proof of this claim, as well as all other claims in the paper, are deferred to Appendix A of the
supplement.



Unpacking this claim slightly, suppose first that a single update is performed between communications,
so e = 1. In this case, we have > ;_) Vf;(G% ' (%)) = Vf;(2*), so that if (") has a limit z, it
satisfies the relations

m

T =xg ==z, and vaj(xj)zo'

j=1

Consequently, provided that the losses f; are convex, Proposition 1 implies that the limit of the
sequence z(*), when it exists, is a minimizer of the consensus problem (2).

On the other hand, when e > 1, a limit of the iterate sequence =™ must satisfy equation (5), which
in general causes the method to have limit points which are not minimizers of the consensus problem.
We give a concrete example in Section 2.3.

2.2 Federated proximal algorithms

Another recently proposed algorithm is FedProx [16], which can be seen as a distributed method
loosely based on the classical proximal point method [24]. For a given stepsize s > 0, the proximal
operator of a function f: R¢ — R and its associated optimal value, the Moreau envelope of f, are
given by [19, 24, 25, chap. 1.G]:

1 1
pros, () = angin { £(0) + oz~ alP ) and Mos(e) = ing {0+ 5ol ol |

We remark that when f is convex, the existence of such a (unique) minimizer for the problem implied
by the proximal operator is immediate.

With these definitions in place, we can now study the behavior of the FedProx method [16]. We
again consider a deterministic version of FedProx, in which we remove any inaccuracies introduced
by stochastic approximation. For a given initialization (), fort = 1,2, .. .:

t+1/2) .

x; = prox,, (:ci.t)), for j € [m], and (62)

m§t+1) = gtt1/2) for j € [m). (6b)

The following result characterizes the fixed points of this method.

Proposition 2. For any stepsize s > 0, the sequence {x(t)}fil generated by the FedProx algorithm
(see equations (6a) and (6b)) has the following properties: (a) if x*) is convergent then, the local

variables xg-t) share a common limit x* such that x§-t) — x* ast — oo for each j € [m); (b) the
limit x* satisfies the fixed point relation

> VM., (2*) =0. 7)
j=1

Hence, we see that this algorithm has fixed points that will be a zero of the sum of the gradients of the
Moreau envelopes My, , rather than a zero of the sum of the gradients of the functions f; themselves.
When m > 1, these fixed point relations are, in general, different.

It is worth noting a very special case in which FedGD and FedProx will preserve the correct fixed
points, even when e > 1. In particular, suppose all of local cost functions share a common minimizer
x*, so that V f;(2*) = 0 for j € [m]. Under this assumption, we have G;(z*) = z* all j € [m],
and hence by arguing inductively, we have G; (x*) = z* for all ¢ > 1. Additionally recall that the
minimizers of f; and My, coincide. Consequently, the fixed point relations (5) and (7) corresponding
to FedGD and FedProx respecively, are both equivalent to the optimality condition for the federated
problem. However, we emphasize this condition is not realistic in practice: if the optima of f; are
exactly (or even approximately) the same, there would be little point in sharing data between devices
by solving the federated learning problem. In contrast, the FedSplit algorithm presented in the
next section retains correct fixed points for general federated learning problems without making such
unrealistic, additional assumptions.



2.3 Example: Incorrectness on a least squares problem

We illustrate these non-convergence results by specializing to least squares and carrying out a
simulation study on a synthetic least squares dataset. For j = 1, ..., m, suppose that we are given a
design matrix A; € R™ *d and a response vector b; € R" . The least squares regression problem
defined by all the devices takes the form

1 m
minimize F(x):= 3 Z |Ajz — bi||%. )
j=1

This problem is a special case of our general problem (1) with f;(x) = (1/2)||Ajz — b;||* for all .
When A; are full rank, the solution to this problem is unique and given by

-1 m

o = < > AIAj> > AJb;. )
j=1 j=1

Following Proposition 2, it is easy to verify that FedProx has fixed points of the form

Tadbron = (i {r-u+ sA}Aj)l})_l (i(A}Aj + (1/s>f>1A}bj)-

j=1 j=1

Following Proposition 1, it is easy to verify that FedGD has fixed points of the form'

m e—1 -1 m e—1
Toaen = <ZA}Aj{ > (I - SAJTA]-)’CD (Z { > (I- SA}Aj)k}A}bj>. (10)

j=1 k=0 j=1 \ k=0

Therefore the previous three displays show that in general, when m > 1 and e > 1—that is, with
more than one client, and more than one local update between communication rounds—we have
TFeaprox 7 Tis AN Tieqep 7 Z1y. Therefore, we see that FedProx and FedGD do not have the correct
fixed points, even with idealized deterministic updates.
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Figure 1. Plots of F(z(¥)) — F* versus iteration number ¢ for a least-squares problem (8). This
measures the difference between the optimal value and the value on round ¢ given by an algorithm.

Figure 1 shows the results of applying the (deterministic) versions of FedProx and FedSGD, with
varying numbers of local epochs e € {1, 10,100} for the least squares minimization problem (8). As
expected, we see that FedProx and multi-step, deterministic FedSGD fail to converge to the correct
fixed point for this problem. Although the presented deterministic variant of FedSGD will converge
when a single local gradient step is taken between communication rounds (i.e., when e = 1), we see
that it also does not converge to the optimal solution as soon as e > 1. See Appendix B.1 of the
supplement for additional details on this simulation study.

"Here we assume that s > 0 is small enough so that || — SAJT-AJ- llop < 1, which ensures convergence.



3 FedSplit and convergence guarantees

We now turn to the description of a framework that allows us to provide a clean characterization
of the fixed points of iterative algorithms and to propose algorithms with convergence guarantees.
Throughout our development, we assume that each function f;: R? — R is convex and differentiable.

3.1 An operator-theoretic view

We begin by recalling the consensus formulation (2) of the problem in terms of a block-partitioned
vector z = (z1,...,2,) € (R?)™, the function F: (RY)™ — R given by F(z) := >1" | f;(x;),
and the constraint set F := {z | z1 = 29 = - - - = Z,,, } is the feasible subspace for problem (2). By
appealing to the first-order optimality conditions for the problem (2), it is equivalent to find a vector
x € (R?)™ such that VF(z) belongs to the normal cone of the constraint set F, or equivalently such

that VF(z) € E*. Equivalently, if we define a set-valued operator Nz as

EL T1=To=+"=2
— 5 my 11
N () {@, else an
then it is equivalent to find a vector z € (R%)™ that satisfies the inclusion condition
0 € VF(z) + Ng(z). (12)

where VF (z) = (Vfi(x1), ..., Vin(@m)).

When the loss functions f;: R? — R are convex, both VF and Nz are monotone operators
on (RY)™ [1]. Thus, the display (12) is a monotone inclusion problem. Methods for solving
monotone inclusions have a long history of study within the applied mathematics and optimization
literatures [26, 7]. We now use this framework to develop and analyze algorithms for solving the
federated problems of interest.

3.2 Splitting procedures for federated optimization

We now describe a method, derived from splitting the inclusion relation, whose fixed points do
correspond with global minima of the distributed problem. It is an instantiation of the Peaceman-
Rachford splitting [20], which we refer to as the FedSplit algorithm in this distributed setting.

Algorithm 1 [FedSplit] Splitting scheme for solving federated problems of the form (1)
Given initialization z € R%, proximal solvers prox_update T R? — R?
Initialize () = z%l) == 7(71) =
fort=1,2,...
l.forj=1,...,m:
a. Local prox step: set zy“/z) = prox_update; (2z® — z;t))

b. Local centering step: set zj(.tﬂ) = zj(-t) + 2(z~§-t+1/2) — 5L‘<t>)
end for

2. Compute global average: set x
end for

(t4+1) — 5(t+1)

Thus, the FedSplit procedure maintains a parameter vector z](-t) € R for each device j € [m)].

The central server maintains a parameter vector z(*) € R, which collects averages of the param-
eter estimates at each machine. The local update at device j is defined in terms of a proximal
solver prox_update;(-), which typically be approximate proximal updates prox_update;(z) ~
prox,; (x), uniformly in = € R for a suitable stepsize s > 0. We make the sense of this approxi-

mation precise when we state our convergence results in Section 3.3. An advantage to FedSplit is
that unlike FedGD and FedProx, it has the correct fixed points for the distributed problem.

Proposition 3. Suppose for some s > 0, prox_update, () = prox, 5 (+), for all j. Suppose that
2* = (z%,..., 25, is a fixed point for the FedSplit procedure, meaning that

=12 (pmxsfj (255 — 2}) — 7*) . forall j € [m]. (13)

Then the average * := - ;nzl z7 is optimal: Z;nzl fi(z*) = inf, cRra Z;nzl fi(z).



3.3 Convergence results

In this section, we give convergence guarantees for the FedSplit procedure in Algorithm 1 under
exact and inexact proximal operator implementations.

Strongly convex and smooth losses We begin by considering the case when the losses f;: R? —
R are /;-strongly convex and L ;-smooth. We define

L*
l,:= min ¥, L* := max L;, and k:=—. (14)

j=1,....m j=1,....m E*
Note that x corresponds to the induced condition number of our federated problem (2).

The following result demonstrates that in this setting, our method enjoys geometric convergence to
the optimum, even with inexact proximal implementations.

Theorem 1. Consider the FedSplit algorithm with possibly inexact proximal implementations,
|[prox_update;(z) — prox s (2)[| <b  forall jandall = € RY, (15)

and with stepsize s = 1/\/€.L*. Then for any initialization, the iterates satisfy

D) L) — o>
20D — 2% < (1 \/E+1> I= \/mz L (yr+vp, orant=12... 6

We now discuss some aspects of Theorem 1.

Exact proximal evaluations: In the special (albeit unrealistic) case when the proximal evaluations
are exact, the uniform bound (15) holds with b = 0. Consequently, given some initialization 2D if
we want e-accuracy, meaning |z(7) — 2*|| < e, we see that this occurs as soon as 7' exceeds

T(e, k) = O(l){\/glog ('Z(:\/_mz*n> }

iterations of the overall procedure. Here O(1) denotes a universal constant.

Approximate proximal updates by gradient steps: In practice, the FedSplit algorithm will be
implemented using an approximate prox-solver. Recall that the proximal update at device j at round
t takes the form:

¢ . 1
prox,;, (ng)) = argmin { sf;(u) + §||u - xgt)H% }.
u€eR4

hj(u)

A natural way to compute an approximate minimizer is to run e rounds of gradient descent on the
function h;. Concretely, at round ¢, we initialize the gradient method with the initial point uM) = xét),

and run gradient descent on h; with a stepsize a, thereby generating the sequence
D = u® — aVh;(w®) = u® —asVfu®) + (u® — xg»t)) (17)
(®)
J
Corollary 1 (FedSplit convergence with inexact proximal updates). Consider the FedSplit
1

procedure run with proximal stepsize s = T and using approximate proximal updates based

on e rounds of gradient descent with stepsize o = (1 + s%)_1 initialized (in round t) at the
previous iterate xg»t). Then the the bound (15) holds at round t with error at most

1
VR
Given the exponential decay in the number of rounds e exhibited in the bound (18), in practice, it
suffices to take a relatively small number of gradient steps. For instance, in our experiments to be

reported in Section 4, we find that e = 10 suffices to match the exact proximal updates. This inexact
proximal update could also be implemented with a gradient method and backtracking line search [5].

We define prox_update; (z3”) to be the output of this procedure after e steps.

b< (1 ) ol — prox,; (z{)]l. (18)



Smooth but not strongly convex losses We now consider the case when f;: R? — R are L;-
smooth and convex, but not necessarily strongly convex. In this case, the consensus objective
F(z)= Z;”Zl f;(z;) is an L*-smooth function on the product space (R%)™.2

Our approach to solving such a problem is to apply the FedSplit procedure to a suitably regu-
larized version of the original problem. More precisely, given some initial vector (1) € R? and
regularization parameter A > 0, let us define the function

V= S LA+ ol — IR} (19)

Jj=1

We see that Fy: (RY)™ — R is a A-strongly convex and L} = (L* + \)-smooth function. The
next result shows that for any € > 0, minimizing the function F’\ up to an error of order ¢, using a
carefully chosen J, yields an e-cost-suboptimal minimizer of the original objective function F'.

Theorem 2. Given some \ € (0, m) and any initialization V) € R?, suppose that we

run the FedSplit procedure (Algorithm 1) on the regularized objective I\ using exact prox steps
with stepsize s = 1/\/AL}. Then the FedSplit algorithm outputs a vector T € R satisfying

(D _gr (12 \ . .
F(Z) — F* < ¢ after exceeding O L= =212 ) iterations.?
€

We remark that this faster convergence rate of 0] (t‘2) is nearly optimal for first-order algorithms [18],
and to our knowledge such results were not known for operator splitting-based procedures prior to
this work.

4 Experiments

In this section, we present numerical results for FedSpliton some convex federated optimization
problem instances. We include additional details on these simulations in Section B of the supplement.

Logistic regression We begin with federated binary classification, where we solve,

m Ny

minimize Z Z log(1 4 e~bis al; ), (20)

j=1i=1

with variable z € R?. We generate the problem data {(a;;,b;;)} C R? x {£1} synthetically; see
Section B.2.1 in the supplement for details.

We also use FedSplit to solve a multiclass classification problem, with K classes. Here we solve

m

K
minimize Z{ZZlog 1 e buna;er +%ZHMH2} 21
k=1

= i=1 k=1

with variables 21, 2o, . .., zx € RY, regularization parameter A > 0, and sample size N = Z;"Zl n

Here, the problem data {(a;;,bi;)} € R? x {£1}¥ are images and multiclass labels from the
FEMNIST dataset in the LEAF framework [6]. This dataset was proposed as a benchmark for
federated optimization; there are N = 805, 263 images, m = 3,550 clients, and K = 62 classes.
The problem dimension is d = 6, 875; see Section B.2.2 in the supplement for additional details.

In Figure 2, we present numerical results on problems (20) and (21). We implement FedSplit with
exact proximal operators and inexact implementations with a constant number of gradient steps
e € {1,5,10}. For comparison, we implemented a federated gradient method as previously de-
scribed (4). As shown in Figure 2(a), both FedGD with e = 1 and the FedSplit procedure exhibit
linear convergence rates. Using inexact proximal updates with the FedSplit procedure preserves the
linear convergence up to the error floor introduced by the exactness of the updates.In this case, the

?To avoid degeneracies, we assume >_j~, fi(z) is bounded below and attains its minimum.
>The O (-) notation denotes constant and polylogarithmic factors that are not dominant.
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Figure 2. Cost versus iteration for FedGD and FedSplit. (a) Plot of the optimality gap F'(z¥)) — F*
versus the iteration number ¢ for the logistic regression problem (20). This measures the difference
between the optimal cost value and cost of an iterate returned at round ¢ by a given algorithm. (b) Plot

of cost I’ (cc(t)) versus iteration ¢ for the FEMNIST multiclass logistic problem (21).

inexact proximal updates with e = 10—that is, performing 10 local updates per each round of global
communication—suffice to track the exact FedSplit procedure up to an accuracy below 10, In
Figure 2(b), we see that FedSplit similarly outperforms FedGD on actual client data.”.

Dependence on problem conditioning It is well-known that the convergence rates of first-order
methods are affected by problem conditioning. First, let us re-state our theoretical guarantees in
terms of iteration complexity. We let T'(, k) denote the maximum number of iterations required so
that, for any problem with condition number at most k, the iterate 2D withT =T (e, k) satisfies
the bound F(x(T)) — F* < e. For federated objectives with condition number  as defined in (14),
FedSplit and FedGD have iteration complexities

Treasplit (e, k) = O(Vklog(1/e)) and TreaGrad(e, k) = O(klog(1/e)). (22)

This follows from Theorem 1 and standard results from convex optimization theory [18]. Hence,
whereas FedSplit has a more expensive local update, it has much better dependence on the condition
number . In the context of federated optimization, this iteration complexity should be interpreted
as the number of communication rounds between clients and the coordinating entity. Hence, this
highlights a concrete tradeoff between local computation and global communication in these methods.
Note that while acclereated first-order methods matches the iteration complexity of FedSplit, they
are sensitive to stepsize misspecification and are not robust to errors incurred in gradient updates [9].
This is in contrast to the inexact convergence guarantees that FedSplit enjoys (see Theorem 1).

In Figure 3, we present the results of a simulation study that shows these iteration complexity
estimates are accurate in practice. We construct a sequence of least squares problems with varying
condition number between 10 and 10000. We then look at the number of iterations required to obtain
an e-cost suboptimal solution with ¢ = 1072; see Section B.3 in the supplement for additional
simulation details. In this way, we obtain estimates of the functions x +— TFedGrad(lO_37 k) and
K+ TRedSplit (10*3, k), which measure the dependence of the iteration complexity on the condition
number. Figure 3 provides plots of these estimated functions.

Consistent with our theory, we see that FedGD has an approximately linear dependence on the
condition number, whereas the FedSplit procedure has much milder dependence on conditioning.
Concretely, for an instance with condition number £ = 10000, the FedGD procedure requires on
the order of 34000 iterations, whereas the FedSplit procedure requires roughly 400 iterations.
Therefore, while FedSplit involves more expensive intermediate proximal updates, it enjoys a
smaller iteration count, which in the context of this federated setting indicates a significantly smaller
number of communication rounds between clients and the the centralized server.

4Given the large scale nature of this example, we implement an accelerated gradient method for the proximal
updates, terminated when the gradient of the proximal objective drops below 1075,
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Figure 3. Dependence of algorithms on the conditioning. (a) Plot of log cost suboptimality of iterate z®
versus iteration ¢ for condition number x € {100, 1000, 10000}. (b) Plots of the iteration complexity
T(e; k) versus & at tolerance level ¢ = 107 for the FedGD and FedSplit procedures.

5 Discussion

We highlight a few interesting directions for future work on federated learning and FedSplit . First,
in practice, it is standard to use stochastic optimization algorithms in solving large-scale machine
learning problems, and we are currently analyzing stochastic approximation procedures as applied
to the device-based proximal updates underlying our method. Our results on the incorrectness of
previously proposed methods and the work of Woodworth and colleagues [27] on the suboptimality
on multi-step stochastic gradient methods, highlight the need for better understanding of the tradeoff
between the accuracy of stochastic and deterministic approximations to intermediate quantities
and rates of convergence in federated optimization. We also mention the possibility of employing
stochastic approximation with higher-order methods, such as the Newton sketch algorithm [21, 22].
It is also important to consider our procedure under asynchronous updates, perhaps under delays in
computation. Finally, an important desideratum in federated learning is suitable privacy guarantees
for client the local data [3]. Understanding how noise aggregated through differentially private
mechanisms couples with our inexact convergence guarantees is a key direction for future work.

Broader Impact

As mentioned in the introduction, a main application of federated optimization is to large-scale
statistical learning, as carried out by application developers and cell phone manufacturers. On the
other hand, learning from federated data is also inherent to other settings where data is not stored
centrally: consider, for example, collecting clinical trial data across multiple hospitals and running a
centralized analysis. Therefore, we envision analysts who are operating in these settings—where data
is not available centrally due to communication barriers or privacy constraints—as main benefactors
of this work. Our methods enjoy the same trade-offs with respect to biases in data, failures of
systems, as other standard first-order algorithms. We believe that having convergent algorithms in this
federated setting should help promote good practices with regard to analyzing large-scale, federated,
and sensitive datasets.
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Supplement to “FedSplit: an algorithmic framework for fast
federated optimization”

A Proofs

We now turn to the proofs of our main results. Prior to diving into these arguments, we first introduce
two operators that play a critical role in our analysis. Given a convex function ¢: RY — R, we
define

1

prox,(z) := arg min {cp(m) + -z — x||2} and (23a)
zeR4 2

refl,(2) := 2 prox,(z) — . (23b)

These are called the proximal and reflected resolvent operators associated with the function ¢. The
first operator is also known as the resolvent; the second operator above is also known as the Cayley
operator of ¢. Moreover, our analysis makes use of the (semi)norm on Lipschitz continuous functions
f: R4 — R given by

Lip(f) := sup M (24)

azy [T — Y

For short, we say that that f is Lip(f)-Lipschitz continuous when it satisfies this condition.

A.1 Proofs of guarantees for FedSplit

We begin by proving our guarantees for the FedSplit procedure, including the correctness of
its fixed points (Proposition 3); the general convergence guarantee in the strongly convex case
(Theorem 1); the general convergence guarantee in the weakly convex case (Theorem 2), and
Corollary 1 on its convergence with approximate proximal updates.

A.2 Proof of Proposition 3

By the fixed point assumption, the block average x* := 2* satisfies the relation

proxsfj(Qx*—zJ*-) =" forj =1,2,...,m.

Since each f; is convex and differentiable, by the first-order stationary conditions implied by the
definition of the prox operator (23a), we must have
V@) +H{a" — (22" - 2))} = V@) +2{zf—2*} =0 forj=1,....m.

Summing these equality relations over j = 1, ..., m and using the fact that z* = + Z;"Zl z} yields

the zero gradient condition "
m
> Vi) = o.
j=1

Since the function = — ZTzl f;(x) is convex, this zero-gradient condition implies that z* € R% is
a minimizer of the distributed problem as claimed.

A.2.1 Proof of Theorem 1

We now turn to the proof of Theorem 1. Our strategy is to prove it as a consequence of a somewhat
more general result, which we begin by stating here. In order to lighten notation, we use the fact that
the proximal operator for the function F (21, ..., zy,) = Y71, f;(2;) is block-separable, so that in
terms of the block-partitioned vector z = (z1, . .., 2z, ), We can write

prox p(z) = (prox,; (z1),...,prox,; (zm)), forallz= (z1,...,2m) € (RH)™.

We also recall the the approximate proximal operator used in the FedSplit procedure, namely

prox(z) := (prox_update,(z;),...,prox_update,  (z,)), forallz,..., 2, € R%.
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Theorem 3 (Convergence with general residuals). Suppose that the functions f;: R? — R are

£;-strongly convex and Lj-smooth for j = 1,...,m, and fort = 1,2, ..., define the residuals
r® = prox(2z() — z(M) — prox, (221 — z). (25)

Then with stepsize s = 1/+/£,L*, the FedSplit procedure (Algorithm 1) has a unique fixed point z*,
and the iterates satisfy

t
20D — 25 < pM 2 = 2|+ 23 " p D fort=1,2,.., (26)

j=1
where p :=1 — 2/(\/k + 1) is the contraction coefficient.

Let us use Theorem 3 to derive the claim stated in Theorem 1. Note that by Proposition 3, the fixed
points of Algorithm 1 are minimizers of F', hence unique under the strong convexity assumption.
Consequently, we have

1
2D — 2% < ﬁ”z(tﬂ) —2*|, forallt=1,2,...

Using Theorem 3 and the error bound, we then conclude that

1 2\ 1) ox
128 = 2*[| + (V& 4+ 1)b,

D) o4 < — (1 - —2

as claimed.

A.2.2 Proof of Theorem 3

We now turn to the proof of the more general claim. Given additive decomposition
F(z) = 3772, fi()), the reflected resolvent induced by F is block-separable, taking the form

reflp(2) = (reflss, (21),. .., reflsy, (21,)), forallz = (z1,...,2,) € (RY)™.
Similarly, consider the approximate reflected resolvent defined by the algorithm, namely
refl(z) := 2prox(z) — z, forall z = (z1,...,2m) € (RT)™.
It also has the same block-separable form.

Using these two block-separable operators, we can now define two abstract operators, each acting on
the product space (R%)™, that allow us to analyze the algorithm. The first operator 7~ underlies the

idealized algorithm, in which the proximal updates are exact, and the second operator 7 underlies
the practical algorithm, which is based on approximate proximal updates. The idealized algorithm is
based on iterating the operator

T (2) := reflyp (refly, (2)). 27

In this definition, we use /g to denote the indicator function for membership in the equality subspace
E, so that refly,, is the reflected proximal operator for this function.

On the other hand, the practical algorithm generates the sequence {z(t) 122, via the updates 2+ =
T(2®), where T : (RY)™ — (R%)™ is the perturbed operator

T(z) = refl(refly, (2)). (28)
Note that the idealized operator 7 and perturbed operator T satisfy the relation
T-T= (IféﬁoreﬂIE—reﬂsporeﬂlE). (29)

Our proof involves verifying that with the stepsize choice s = 1/+/£,.L*, the mapping T is a
contraction, with Lipschitz coefficient

. 2
Lip(T) < 1— N < 1. (30)
————
= p
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Taking this claim as given for the moment, the contractivity implies that 7 has has a unique fixed
point [12]—call it z* € (R%)™. Comparing with Proposition 3, we see that the definition of fixed
points given there agrees with the fixed point z* of the operator 7, since we have the relation
refl; (2) =2z — 2.

Using this contractivity condition, the distance between this fixed point z* and the iterates z(*) of the
FedSplit procedure can be bounded as

120D — 21| = | T2 = 72|
70 _ T 4 2 prow o _ ®
< || Tz Tz*|| + 2||proxrefl;, z prox,prefl;, 2|
(i)
< Lip(T) )|z — 2" +2(r?|

(iii)
< pllz® = 2*|| + 2)r @, 31)

where inequality (i) applies the triangle inequality to the relation (29) between the perturbed and
idealized operators; step (ii) follows by definition of the residual r® at round ¢; and step (iii) follows
from the bound (30) on the Lipschitz coefficient of 7. Performing induction on this bound yields the
stated claim.

Proof of the bound (30): It remains to bound the Lipschitz coefficient of the idealized operator 7T .
Since the composite function F(z) := >."" | f;(z;) is £.-strongly convex and L*-smooth, known
results on reflected proximal operators [11, Theorems 1 and 2] imply that with the stepsize choice
s = 1/+/¢,L*, the operator refl, r satisfies the bound

| reflyp(2) — reflyp (2|2 < (1 |z—2|ls  forallz,2’ € (RH)™.  (32)

- Jeri)

On the other hand, the reflected proximal operator refl;, for the indicator function refl;, is non-
expansive, so that

| refl;, (z) —refl;, (2)|l2 < ||z — 2|2 forall z, 2/ € (RY)™. (33)
Applying the triangle inequality and using the definition (27) of the idealized operator 7, we find that
IT(2) = T(2')ll2 < || reflsp (refls, (2)) — reflyp (refls, ()]

(iv) 2
< (1 - W) | refir, (2) —reflr, (2)]]2
(v) 2
<(1- )z =2l
QN IR P

where step (iv) uses the contractivity (32) of the operator reflsr, and step (v) uses the non-
expansiveness (33) of the operator refl;, . This completes the proof of the bound (30).

A.2.3 Proof of Corollary 1

By construction, the function h; is smooth with parameter M := sL* + 1 and strongly convex with
parameter m := sl, + 1. Consequently, if we define the operator H;(u) := v — aVh;(u), then by
standard results on gradient methods for smooth-convex functions, the stepsize choice av = Mim
ensures that the operator H is contractive with parameter at least p = 1 — 7. Thus, we have the
bound

(e+1)

[l FY — |z < pflla — o,

where u* = prox,, (x;t)) is the optimum of the proximal subproblem. Unpacking the definitions of

(m, M) and recalling that s = 1//¢,L*, we have

M sL*+1 1
7256 [ = < VE+1,
m Sty + £§+1

and hence p < 1 which establishes the claim.

_1
T /RFL?
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A.2.4 Proof of Theorem 2

Recalling the definition (19) of the regularized objective F, note that it is related to the unregularized
objective I via the relation F) (z) = F(z) + 2|z — (1|2, where z(!) is the given initialization.
The proposed procedure is to compute an approximation to the quantity

x} := arg min (Z {f](x) + %HZE _x(1)||2}>~

2
d
zeR =1

=:Fx(z)

Now suppose that we have computed a vector 7 € R satisfies F)\(Z) — Fi(z%) < £/2. Letting
F* = F(x*) denote the optimal value of the original (unregularized) optimization problem, we have

F(@) - F* = {F@) - FA@}) } + {F\@3) - F@") }. (34)
By definition of F’, we have F'(Z) < F(Z). Moreover, again using the definition of F)\, we have
mA
Fy(a}) = F(a*) = F(@}) = Fa(2*) + =~ [l — 22
mA

< == * _ .(1))2
et =20,

where the inequality follows since = minimizes F by definition. Substituting these bounds into the
initial decomposition (34), we find that

_ _ by
F(@) - F* < {F,\(J:) - Fx(a:f\)} + %Hx* ONE
g g
< = — = £.
S5 + 2 € 35)

where the inequality follows since since 7 is (e/2)-cost-suboptimal for F), and by our selection of
A. Thus to finish the proof, we simply need to check how many iterations it takes to compute an
(e/2)-cost-suboptimal point for F.

Let us define the shorthand notation L := Z;nzl L; and k) = L*;')‘. Since F) is a sum of

functions that are A-strongly convex and (Lj + A)-smooth, it follows that from initialization (), the
FedSplit algorithm outputs iterates 2(*) satisfying the bound

® L A
Fa(@) = Fy(a) € 502 o) — a2
(i) T, 2t (1) _ k2
i L+mA (1_ 2 ) ||z N . (36)
2 VEx+1 m

In the above reasoning, inequality (i) is a consequence of the smoothness of the losses f; when
regularized by A, along with the first-order optimality condition for x3; and bound (ii) then follows
by squaring the guarantee of Theorem 1 with b = 0. By inverting the bound (36), we see that in order
to achieve an ¢/2-optimal solution, it suffices to take the number of iterations ¢ to be lower bounded
as

- 1) %2
. F/KZ_Fllog{(L—i_/\m)Hw 2X]| }-‘

m

Evaluating this bound with the choice k) = 1 + L* /) and recalling the bound (35) yields the claim
of the theorem.

A.3 Characterization of fixed points

In this section we give the two fixed point results for FedSGD and FedProx as stated in Section 3.1.
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A.3.1 Proof of Proposition 1

We begin by characterizing the fixed points of the FedSGD algorithm. By definition, any limit point
(z%,...,25) € (RY)™ must satisfy the fixed point relation

1 & .
x;ZEZG;(x;), i=1,2,...,m.
j=1

Thus, the limits =
Gf gives part (b).

7 are common, and this gives part (a) of the claim. Expanding the iterated operator

A.3.2 Proof of Proposition 2
We now characterize the fixed points of the FedProx algorithm. By definition, any limit point
(x7,...,z},) satisfies

m

1 .
x;:EZproxsfj(x;), ji=12...,m. (37)
j=1

Thus, the limits :c]* are common, and this gives part (a) of the claim.

For any convex function, f: R¢ — R, the proximal operator satisfies
prox,;(v) = v —sVM,s(v), foralls>0andv € R

Using this identity in display (37) yields part (b) of the claim.

B Details for simulation studies

All of the experiments were conducted on a 2.6 GHz Intel Core i7 processor, in Python 3.7.3. Our
logistic regression experiments used CVXPY, convex programming [10] software that we used to
implement the exact proximal operators.

B.1 Results presented in Figure 1

For the simulation, we construct a least squares problem where for j € [m)], the response vector
b; € R™ obeys the linear model b; = A;xg + vj, where zy € R? is the unknown parameter vector
to be estimated, and the noise vectors v; are independently distributed as v; N (0, O'2Inj) for some
o > 0. For our experiments reported here, we constructed a random instance of such a problem with
m =25, d=100,n; =500 and o2 =0.25. We generated the design matrices with i.i.d.entries
of the form (A; ) 1N (0,1),fork=1,...,n;andl =1,...,d. The aspect ratios of A; satisfy
n; > d for all j, thus by construction the matrices A; are full rank with probability 1.

B.2 Results presented in Figure 2
B.2.1 Synthetic dataset

Here, we have design matrices A; € R"*¢ and label vectors b; € {1, —1}". We denote the rows
of A; by a;; € R%fori = 1,...,n;. The conditional probability of positive class label b;; = 1
under unknown parameter vector xg is then

T
eaij o

P{b,; =1} = , fori =1,...,n;j. (38)

1 + %%
Given observations of this form, we solve the logistic regression problem, This problem is smooth
and convex,and clearly a special case of the more general class of federated problems (1).

We construct random instances of logistic regression problems with the settings d = 100, n; = 1000
and m = 10. Hence, we have a total sample size of n = 10000. We draw a;; ES (0,1;) foralli,j
and x TN (0,1,). The binary labels then are constructed to follow the Bernoulli model (38).
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B.2.2 FEMNIST datset

For this experiment only, we used Amazon EC2 to carry out these experiments (on c5.metal
instances). The original dataset is comprised of 28 x 28 images, which we vectorize in row major
order to obtain data points in u;; € R84, We further preprocessed these datapoints by adding a
constant feature, and adding (Ru); and (Gu)y, where R € {£1}3000%784 and G € R3000%784 gre
filled with i.i.d. Rademacher and standard Normal entries. Here, () denotes the entrywise positive
part of a vector. Therefore our final datapoints are

Q5 = (1,1},”‘, (Ruij)+, (Gu”)_i_) c R6785,

There were K = 62 classes in the dataset; we encode the labels as vectors b;; € {£1}%. Formally,
if a;; belongs to class k € [K], we set bi; = 2ex, — 1, where e, denotes the kth standard basis vector
in RE.

We added the additional random features given above to improve the performance of our model on
held out data. We set A = 0.01 by cross-validation on a smaller subsample of the FEMNIST dataset.
Formally, for each client, we select a random, 20% fraction of the data to reserve as a heldout set,
not used for training our classifier. We train the one-versus-all multiclass classifier, according to the
objective given in (21) by FedSplituntil approximately satisfying the optimality condition of the
distributed problem. We then compute the accuracy of our multiclass classifier on the held out data
and repeated this for choices of A € [1073,103]; A = 0.01 worked best on the held out data, giving
an accuracy of 73%. As mentioned in the paper, the proximal solves for FedSplitwere carried out
using accelerated gradient descent.

B.3 Results presented in Figure 3

We now describe the results of a simulation study that demonstrates the accuracy of these predicted
iteration complexities. At a high level, our strategy is to construct a sequence of problems, indexed
by an increasing sequence of condition numbers «, and to estimate the number of iterations required
to achieve a given tolerance € > 0 as a function of . In order to do, it suffices to consider ensembles
of least squares problems (8), but with a carefully constructed collection of design matrices, which
we now describe.

For a given integer £ > 2, let O(¢) denote the set of ¢ x ¢ orthogonal matrices over the reals, and let
Unif(O(¢)) denote the uniform (Haar) measure on this compact group. With this notation, we begin
by sampling i.i.d.random matrices

U;R) ~ Unif(O(n;)) and V}(K) ~ Unif(O(d)), forj=1,...,m. (39)

For a given condition number « > 1, we define a padded diagonal matrix—that is
A;H) = diag(AgK)) 0(17(n—d):| where ASK) = (\/E7 17 SRR) 1) € Rd'

Above, the matrix Og,(n; —a) € R % (=) has all entries equal to zero. Given the random orthogonal

matrices and the matrix Ag»n) € R™*? we then construct the design matrices A;“) € R >4 by
setting

AW = UPARVI ] forall j =1, m.

These choices ensure that the federated least squares objective (8) has condition number &.
As before, the response vectors bgfg) obey a Gaussian linear measurement model,
b;'/”) = Ag-“)xo + v§“), forj=1,...,m, andforallx € K.

. ind. .
We again take vj(-ﬁ) N (07 0217” ) In our experiments, we draw the parameter 2o ~ N (0, I;), and
use the parameter settings

m =10, d=100, n; =400, and o*=1.
With these settings, we iterated over a collection of condition numbers & S
{10°,10%5,...,10%,10*}. For each choice of x, after generating a random instance as described

above, we measured the number of iterations required for FedGD and the FedSplit procedures,
respectively, to reach a target accuracy ¢ = 103, which is modest at best.
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