
FedSplit: an algorithmic framework for fast

federated optimization

Reese Pathak
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

pathakr@berkeley.edu

Martin J. Wainwright
Department of Electrical Engineering and Computer Sciences

Department of Statistics
University of California, Berkeley

Berkeley, CA 94720
wainwrig@berkeley.edu

Abstract

Motivated by federated learning, we consider the hub-and-spoke model of dis-
tributed optimization in which a central authority coordinates the computation
of a solution among many agents while limiting communication. We first study
some past procedures for federated optimization, and show that their fixed points
need not correspond to stationary points of the original optimization problem, even
in simple convex settings with deterministic updates. In order to remedy these
issues, we introduce FedSplit, a class of algorithms based on operator splitting
procedures for solving distributed convex minimization with additive structure. We
prove that these procedures have the correct fixed points, corresponding to optima
of the original optimization problem, and we characterize their convergence rates
under different settings. Our theory shows that these methods are provably robust
to inexact computation of intermediate local quantities. We complement our theory
with some experiments that demonstrate the benefits of our methods in practice.

1 Introduction

Federated learning is a rapidly evolving application of distributed optimization for learning problems
in large-scale networks of remote clients [13]. These systems present new challenges, as they are
characterized by heterogeneity in computational resources, data across a large, multi-agent network,
unreliable communication, and privacy constraints due to sensitive client data [15].

Although distributed optimization has a rich history and extensive literature (e.g., see the sources [2,
4, 8, 28, 14, 23] and references therein), renewed interest due to federated learning has led to a
flurry of recent work in the area. Notably, McMahan et al. [17] introduced the FedSGD and FedAvg

algorithms, by adapting the classical stochastic gradient method to the federated setting, considering
the possibility that clients may fail and may only be subsampled on each round of computation.
Another recent proposal, FedProx, attempted to mitigate potential device heterogeneity issues by
applying averaged proximal updates to solve federated minimization problems. Currently, a general
convergence theory of these methods is lacking. Moreover, practitioners have documented failures of
convergence in certain settings (e.g., see Figure 3 and related discussion in the work [17]).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Our contributions: The first contribution of this paper is to analyze some past procedures, and
show that even in the favorable setting of deterministic updates (i.e., no stochastic approximation
used), these methods typically fail to preserve solutions of the original optimization problem as fixed
points. More precisely, even when these methods do converge, the resulting fixed point need not
correspond to an optimal solution of the desired federated learning problem. Since the stochastic
variants implemented in practice are approximate versions of the underlying deterministic procedures,
this implies these methods also fail to preserve the correct fixed points in general.

With the motivation of rectifying this undesirable feature, our second contribution is to introduce a
family of federated optimization algorithms, which we call FedSplit, that do preserve the correct
fixed points for distributed optimization problems of the form

minimize F (x) ··=
m∑

j=1

fj(x), (1)

where fj : R
d → R are the clients’ cost functions for variable x ∈ Rd. In machine learning

applications, the vector x ∈ Rd is a parameter of a statistical model. Our procedure and analysis
builds on a long line of work relating optimization with monotone operators and operator splitting
techniques [4, 26, 7, 1]. In this paper, we focus on the case when fj are convex functions with
Lipschitz continuous gradient [24].

2 Existing algorithms and their fixed points

We focus our discussion on deterministic analogues of two recently proposed procedures—namely,
FedSGD [17] and FedProx [16]. For analysis, it is useful to introduce the equivalent, consensus
reformulation [4] of the distributed problem (1):

minimize F (x) ··=
∑m

j=1 fj(xj)
subject to x1 = x2 = · · · = xm.

(2)

2.1 Federated gradient algorithms

The recently proposed FedSGD method [17] is based on a multi-step projected stochastic gradient
method for solving the consensus problem. For our analysis we consider the obvious deterministic
version of this algorithm, which replaces the stochastic gradient by the full gradient. Formally, given
a stepsize s > 0, define the gradient mappings

Gj(x) ··= x− s∇fj(x) for j = 1, . . . ,m. (3)

For a given integer e > 1, we define Ge
j as the e-fold composition of Gj and G0

j as the identity operator

on Rd. The FedGD(s, e) algorithm from initialization x(1) obeys the recursion for t = 1, 2, . . . :

x
(t+1/2)
j

··= Ge
j(x

(t)
j), for j ∈ [m] ··= {1, 2, . . . ,m}, and (4a)

x
(t+1)
j

··= x(t+1/2), for j ∈ [m]. (4b)

Recall that x(t+1/2) = 1
m

∑m
j=1 x

(t+1/2)
j is the block average. The following result characterizes the

fixed points of this procedure.

Proposition 1. For any s > 0 and e > 1, the sequence {x(t)}∞t=1 generated by the FedGD(s, e)
algorithm in equation (4) has the following properties: (a) if x(t) is convergent, then the local

variables x
(t)
j share a common limit x? such that x

(t)
j → x? as t → ∞ for j ∈ [m]; (b) any such

limit x? satisfies the fixed point relation

e∑

i=1

m∑

j=1

∇fj(G
i−1
j (x?)) = 0. (5)

The proof of this claim, as well as all other claims in the paper, are deferred to Appendix A of the
supplement.

2

Unpacking this claim slightly, suppose first that a single update is performed between communications,

so e = 1. In this case, we have
∑e

i=1 ∇fj(G
i−1
j (x?)) = ∇fj(x

?), so that if x(t) has a limit x, it
satisfies the relations

x1 = x2 = · · · = xm and

m∑

j=1

∇fj(xj) = 0.

Consequently, provided that the losses fj are convex, Proposition 1 implies that the limit of the

sequence x(t), when it exists, is a minimizer of the consensus problem (2).

On the other hand, when e > 1, a limit of the iterate sequence x(t) must satisfy equation (5), which
in general causes the method to have limit points which are not minimizers of the consensus problem.
We give a concrete example in Section 2.3.

2.2 Federated proximal algorithms

Another recently proposed algorithm is FedProx [16], which can be seen as a distributed method
loosely based on the classical proximal point method [24]. For a given stepsize s > 0, the proximal
operator of a function f : Rd → R and its associated optimal value, the Moreau envelope of f , are
given by [19, 24, 25, chap. 1.G]:

proxsf (z) ··= argmin
x∈Rd

{
f(x) +

1

2s
‖z − x‖2

}
and Msf (z) ··= inf

x∈Rd

{
f(x) +

1

2s
‖z − x‖2

}
.

We remark that when f is convex, the existence of such a (unique) minimizer for the problem implied
by the proximal operator is immediate.

With these definitions in place, we can now study the behavior of the FedProx method [16]. We
again consider a deterministic version of FedProx, in which we remove any inaccuracies introduced

by stochastic approximation. For a given initialization x(1), for t = 1, 2, . . .:

x
(t+1/2)
j

··= proxsfj (x
(t)
j), for j ∈ [m], and (6a)

x
(t+1)
j

··= x(t+1/2), for j ∈ [m]. (6b)

The following result characterizes the fixed points of this method.

Proposition 2. For any stepsize s > 0, the sequence {x(t)}∞t=1 generated by the FedProx algorithm

(see equations (6a) and (6b)) has the following properties: (a) if x(t) is convergent then, the local

variables x
(t)
j share a common limit x? such that x

(t)
j → x? as t → ∞ for each j ∈ [m]; (b) the

limit x? satisfies the fixed point relation

m∑

j=1

∇Msfj (x
?) = 0. (7)

Hence, we see that this algorithm has fixed points that will be a zero of the sum of the gradients of the
Moreau envelopes Msfj , rather than a zero of the sum of the gradients of the functions fj themselves.
When m > 1, these fixed point relations are, in general, different.

It is worth noting a very special case in which FedGD and FedProx will preserve the correct fixed
points, even when e > 1. In particular, suppose all of local cost functions share a common minimizer
x?, so that ∇fj(x

?) = 0 for j ∈ [m]. Under this assumption, we have Gj(x
?) = x? all j ∈ [m],

and hence by arguing inductively, we have Gi
j(x

?) = x? for all i > 1. Additionally recall that the
minimizers of fj and Msfj coincide. Consequently, the fixed point relations (5) and (7) corresponding
to FedGD and FedProx respecively, are both equivalent to the optimality condition for the federated
problem. However, we emphasize this condition is not realistic in practice: if the optima of fj are
exactly (or even approximately) the same, there would be little point in sharing data between devices
by solving the federated learning problem. In contrast, the FedSplit algorithm presented in the
next section retains correct fixed points for general federated learning problems without making such
unrealistic, additional assumptions.

3

3 FedSplit and convergence guarantees

We now turn to the description of a framework that allows us to provide a clean characterization
of the fixed points of iterative algorithms and to propose algorithms with convergence guarantees.
Throughout our development, we assume that each function fj : R

d → R is convex and differentiable.

3.1 An operator-theoretic view

We begin by recalling the consensus formulation (2) of the problem in terms of a block-partitioned
vector x = (x1, . . . , xm) ∈ (Rd)m, the function F : (Rd)m → R given by F (x) ··=

∑m
j=1 fj(xj),

and the constraint set E ··= {x | x1 = x2 = · · · = xm} is the feasible subspace for problem (2). By
appealing to the first-order optimality conditions for the problem (2), it is equivalent to find a vector
x ∈ (Rd)m such that ∇F (x) belongs to the normal cone of the constraint set E, or equivalently such

that ∇F (x) ∈ E⊥. Equivalently, if we define a set-valued operator NE as

NE(x) ··=
{
E⊥, x1 = x2 = · · · = xm,

∅, else
(11)

then it is equivalent to find a vector x ∈ (Rd)m that satisfies the inclusion condition

0 ∈ ∇F (x) +NE(x). (12)

where ∇F (x) = (∇f1(x1), . . . ,∇fm(xm)).

When the loss functions fj : R
d → R are convex, both ∇F and NE are monotone operators

on (Rd)m [1]. Thus, the display (12) is a monotone inclusion problem. Methods for solving
monotone inclusions have a long history of study within the applied mathematics and optimization
literatures [26, 7]. We now use this framework to develop and analyze algorithms for solving the
federated problems of interest.

3.2 Splitting procedures for federated optimization

We now describe a method, derived from splitting the inclusion relation, whose fixed points do
correspond with global minima of the distributed problem. It is an instantiation of the Peaceman-
Rachford splitting [20], which we refer to as the FedSplit algorithm in this distributed setting.

Algorithm 1 [FedSplit] Splitting scheme for solving federated problems of the form (1)

Given initialization x ∈ R
d, proximal solvers prox_updatej : R

d
→ R

d

Initialize x(1) = z
(1)
1 = · · · = z

(1)
m = x

for t = 1, 2, . . .:
1. for j = 1, . . . ,m:

a. Local prox step: set z
(t+1/2)
j = prox_updatej(2x

(t)
− z

(t)
j)

b. Local centering step: set z
(t+1)
j = z

(t)
j + 2(z

(t+1/2)
j − x(t))

end for

2. Compute global average: set x(t+1) = z(t+1).
end for

Thus, the FedSplit procedure maintains a parameter vector z
(t)
j ∈ Rd for each device j ∈ [m].

The central server maintains a parameter vector x(t) ∈ Rd, which collects averages of the param-
eter estimates at each machine. The local update at device j is defined in terms of a proximal
solver prox_updatej(·), which typically be approximate proximal updates prox_updatej(x) ≈
proxsfj (x), uniformly in x ∈ Rd for a suitable stepsize s > 0. We make the sense of this approxi-

mation precise when we state our convergence results in Section 3.3. An advantage to FedSplit is
that unlike FedGD and FedProx, it has the correct fixed points for the distributed problem.

Proposition 3. Suppose for some s > 0, prox_updatej(·) = proxsfj (·), for all j. Suppose that

z? = (z?1 , . . . , z
?
m) is a fixed point for the FedSplit procedure, meaning that

z?j = z?j + 2
(
proxsfj (2z

? − z?j)− z?
)
, for all j ∈ [m]. (13)

Then the average x? ··= 1
m

∑m
j=1 z

?
j is optimal:

∑m
j=1 fj(x

?) = infx∈Rd

∑m
j=1 fj(x).

5

3.3 Convergence results

In this section, we give convergence guarantees for the FedSplit procedure in Algorithm 1 under
exact and inexact proximal operator implementations.

Strongly convex and smooth losses We begin by considering the case when the losses fj : R
d →

R are `j-strongly convex and Lj-smooth. We define

`∗ ··= min
j=1,...,m

`j , L∗ ··= max
j=1,...,m

Lj , and κ ··=
L∗

`∗
. (14)

Note that κ corresponds to the induced condition number of our federated problem (2).

The following result demonstrates that in this setting, our method enjoys geometric convergence to
the optimum, even with inexact proximal implementations.

Theorem 1. Consider the FedSplit algorithm with possibly inexact proximal implementations,

‖prox_updatej(z)− proxsfj (z)‖ 6 b for all j and all z ∈ Rd, (15)

and with stepsize s = 1/
√
`∗L∗. Then for any initialization, the iterates satisfy

‖x(t+1) − x?‖ 6

(
1− 2√

κ+ 1

)t ‖z(1) − z?‖√
m

+ (
√
κ+ 1)b, for all t = 1, 2, (16)

We now discuss some aspects of Theorem 1.

Exact proximal evaluations: In the special (albeit unrealistic) case when the proximal evaluations

are exact, the uniform bound (15) holds with b = 0. Consequently, given some initialization z(1), if

we want ε-accuracy, meaning ‖x(T) − x?‖ 6 ε, we see that this occurs as soon as T exceeds

T (ε, κ) = O(1)
{√

κ log

(‖z(1) − z?‖
ε
√
m

)}

iterations of the overall procedure. Here O(1) denotes a universal constant.

Approximate proximal updates by gradient steps: In practice, the FedSplit algorithm will be
implemented using an approximate prox-solver. Recall that the proximal update at device j at round
t takes the form:

proxsfj (x
(t)
j) = argmin

u∈Rd

{
sfj(u) +

1

2
‖u− x

(t)
j ‖22

︸ ︷︷ ︸
hj(u)

}
.

A natural way to compute an approximate minimizer is to run e rounds of gradient descent on the

function hj . Concretely, at round t, we initialize the gradient method with the initial point u(1) = x
(t)
j ,

and run gradient descent on hj with a stepsize α, thereby generating the sequence

u(t+1) = u(t) − α∇hj(u
(t)) = u(t) − αs∇fj(u

(t)) +
(
u(t) − x

(t)
j

)
(17)

We define prox_updatej(x
(t)
j) to be the output of this procedure after e steps.

Corollary 1 (FedSplit convergence with inexact proximal updates). Consider the FedSplit

procedure run with proximal stepsize s = 1√
`∗L∗

, and using approximate proximal updates based

on e rounds of gradient descent with stepsize α = (1 + s `∗+L∗

2)−1 initialized (in round t) at the

previous iterate x
(t)
j . Then the the bound (15) holds at round t with error at most

b 6
(
1− 1√

κ+ 1

)e ‖x(t)
j − proxsfj (x

(t)
j)‖2. (18)

Given the exponential decay in the number of rounds e exhibited in the bound (18), in practice, it
suffices to take a relatively small number of gradient steps. For instance, in our experiments to be
reported in Section 4, we find that e = 10 suffices to match the exact proximal updates. This inexact
proximal update could also be implemented with a gradient method and backtracking line search [5].

6

Smooth but not strongly convex losses We now consider the case when fj : R
d → R are Lj-

smooth and convex, but not necessarily strongly convex. In this case, the consensus objective
F (z) =

∑m
j=1 fj(zj) is an L∗-smooth function on the product space (Rd)m.2

Our approach to solving such a problem is to apply the FedSplit procedure to a suitably regu-

larized version of the original problem. More precisely, given some initial vector x(1) ∈ Rd and
regularization parameter λ > 0, let us define the function

Fλ(z) ··=
m∑

j=1

{
fj(zj) +

λ

2m
‖zj − x(1)‖2

}
. (19)

We see that Fλ : (R
d)m → R is a λ-strongly convex and L∗

λ = (L∗ + λ)-smooth function. The
next result shows that for any ε > 0, minimizing the function Fλ up to an error of order ε, using a
carefully chosen λ, yields an ε-cost-suboptimal minimizer of the original objective function F .

Theorem 2. Given some λ ∈
(
0, ε

m‖x(1)−x?‖2

)
and any initialization x(1) ∈ Rd, suppose that we

run the FedSplit procedure (Algorithm 1) on the regularized objective Fλ using exact prox steps

with stepsize s = 1/
√

λL∗
λ. Then the FedSplit algorithm outputs a vector x̂ ∈ Rd satisfying

F (x̂)− F ? 6 ε after exceeding Õ

(√
L∗‖x(1)−x?‖2

ε

)
iterations.3

We remark that this faster convergence rate of Õ
(
t−2
)

is nearly optimal for first-order algorithms [18],
and to our knowledge such results were not known for operator splitting-based procedures prior to
this work.

4 Experiments

In this section, we present numerical results for FedSpliton some convex federated optimization
problem instances. We include additional details on these simulations in Section B of the supplement.

Logistic regression We begin with federated binary classification, where we solve,

minimize

m∑

j=1

nj∑

i=1

log(1 + e−bija
T

ijx), (20)

with variable x ∈ Rd. We generate the problem data {(aij , bij)} ⊂ Rd × {±1} synthetically; see
Section B.2.1 in the supplement for details.

We also use FedSplit to solve a multiclass classification problem, with K classes. Here we solve

minimize

m∑

j=1

{ nj∑

i=1

K∑

k=1

log(1 + e−bijka
T

ijxk) +
λ

2

K∑

k=1

‖xk‖2
}

(21)

with variables x1, x2, . . . , xK ∈ Rd, regularization parameter λ > 0, and sample size N =
∑m

j=1 nj .

Here, the problem data {(aij , bij)} ⊂ Rd × {±1}K are images and multiclass labels from the
FEMNIST dataset in the LEAF framework [6]. This dataset was proposed as a benchmark for
federated optimization; there are N = 805, 263 images, m = 3, 550 clients, and K = 62 classes.
The problem dimension is d = 6, 875; see Section B.2.2 in the supplement for additional details.

In Figure 2, we present numerical results on problems (20) and (21). We implement FedSplit with
exact proximal operators and inexact implementations with a constant number of gradient steps
e ∈ {1, 5, 10}. For comparison, we implemented a federated gradient method as previously de-
scribed (4). As shown in Figure 2(a), both FedGD with e = 1 and the FedSplit procedure exhibit
linear convergence rates. Using inexact proximal updates with the FedSplit procedure preserves the
linear convergence up to the error floor introduced by the exactness of the updates.In this case, the

2To avoid degeneracies, we assume x 7→
∑m

j=1 fj(x) is bounded below and attains its minimum.
3The Õ (·) notation denotes constant and polylogarithmic factors that are not dominant.

7

References

[1] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces.
Springer, 2nd edition, 2017.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena
Scientific, Boston, MA, 1997.

[3] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers. Protection against reconstruction and its
applications in private federated learning. Technical report, 2018. arxiv.org:1812.00984.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122,
2010.

[5] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, UK, 2004.

[6] S. Caldas, P. Wu, et al. LEAF: A benchmark for federated settings. abs/1812.01097, 2018.

[7] P. L. Combettes. Monotone operator theory in convex optimization. Math. Program., 170(1, Ser. B):177–
206, 2018.

[8] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction using
mini-batches. J. Mach. Learn. Res., 13(1):165—-202, January 2012.

[9] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact
oracle. Mathematical Programming, 146(1–2):37–75, 2014.

[10] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. J.
Mach. Learn. Res., 17(83):1–5, 2016.

[11] P. Giselsson and S. Boyd. Linear convergence and metric selection for Douglas-Rachford splitting and
ADMM. IEEE Trans. Automatic Control, 62(2):532–544, February 2017.

[12] K. Goebel and W. A. Kirk. Topics in metric fixed point theory, volume 28 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[13] P. Kairouz, H. B. McMahan, et al. Advances and open problems in federated learning. Technical report,
December 2019. arXiv.org:1912.04977.

[14] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine learning with
the parameter server. In Advances in Neural Information Processing Systems 27, pages 19—27. Curran
Associates, Inc., 2014.

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: challenges, methods and future
directions. Technical Report arxiv.org/abs/1908.07873, August 2019.

[16] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in
heterogeneous networks. Technical Report arxiv.org/abs/1812.06127, December 2018.

[17] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas. Communication-efficient learning
of deep networks from decentralized data. Technical Report arxiv.org/abs/1602.05629, February 2016.

[18] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publisher, New York, 2004.

[19] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends® in Optimization, 1(3):127–239,
2014.

[20] D. W. Peaceman and Jr. H. H. Rachford. The numerical solution of parabolic and elliptic differential
equations. Journal of the SIAM, 3(1):28–41, March 1955.

[21] M. Pilanci and M. J. Wainwright. Iterative Hessian Sketch: Fast and accurate solution approximation for
constrained least-squares. Journal of Machine Learning Research, 17(53):1–38, April 2016.

[22] M. Pilanci and M. J. Wainwright. Newton sketch: A linear-time optimization algorithm with linear-
quadratic convergence. SIAM Jour. Opt., 27(1):205–245, March 2017.

[23] P. Richtárik and M. Takáč. Distributed coordinate descent method for learning with big data. J. Mach.
Learn. Res., 17(1):2657—2681, January 2016.

[24] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control Optim.,
14(5):877–898, 1976.

[25] R.T. Rockafellar and R. J-B Wets. Variational Analysis, volume 317. Springer Science & Business Media,
2009.

[26] E. K. Ryu and S.P. Boyd. Primer on monotone operator methods. Applied Computational Mathematics:
an Interational Journal, 15(1):3–43, 2016.

[27] B. E. Woodworth, K. K. Patel, S. U. Stich, Z. Dai, B. Bullins, H. B. McMahan, O. Shamir, and N. Srebro.
Is local SGD better than minibatch SGD? Technical report, 2020. arxiv.org:2002.07839.

[28] Y. Zhang, J. C. Duchi, and M. J. Wainwright. Communication-efficient algorithms for statistical optimiza-
tion. J. Mach. Learn. Res., 14(68):3321—3363, 2013.

10

Supplement to “FedSplit: an algorithmic framework for fast
federated optimization”

A Proofs

We now turn to the proofs of our main results. Prior to diving into these arguments, we first introduce
two operators that play a critical role in our analysis. Given a convex function ϕ : Rd → R, we
define

proxϕ(z) ··= argmin
x∈Rd

{
ϕ(x) +

1

2
‖z − x‖2

}
and (23a)

reflϕ(z) ··= 2proxϕ(z)− z. (23b)

These are called the proximal and reflected resolvent operators associated with the function ϕ. The
first operator is also known as the resolvent; the second operator above is also known as the Cayley
operator of ϕ. Moreover, our analysis makes use of the (semi)norm on Lipschitz continuous functions
f : Rd → R given by

Lip(f) ··= sup
x 6=y

|f(x)− f(y)|
‖x− y‖ . (24)

For short, we say that that f is Lip(f)-Lipschitz continuous when it satisfies this condition.

A.1 Proofs of guarantees for FedSplit

We begin by proving our guarantees for the FedSplit procedure, including the correctness of
its fixed points (Proposition 3); the general convergence guarantee in the strongly convex case
(Theorem 1); the general convergence guarantee in the weakly convex case (Theorem 2), and
Corollary 1 on its convergence with approximate proximal updates.

A.2 Proof of Proposition 3

By the fixed point assumption, the block average x? ··= z? satisfies the relation

proxsfj (2x
? − z?j) = x? for j = 1, 2, . . . ,m.

Since each fj is convex and differentiable, by the first-order stationary conditions implied by the
definition of the prox operator (23a), we must have

∇fj(x
?) + 1

s

{
x? −

(
2x? − z?j)

}
= ∇fj(x

?) + 1
s

{
z?j − x?

}
= 0 for j = 1, . . . ,m.

Summing these equality relations over j = 1, . . . ,m and using the fact that x? = 1
m

∑m
j=1 z

?
j yields

the zero gradient condition

m∑

j=1

∇fj(x
?) = 0.

Since the function x 7→∑m
j=1 fj(x) is convex, this zero-gradient condition implies that x? ∈ Rd is

a minimizer of the distributed problem as claimed.

A.2.1 Proof of Theorem 1

We now turn to the proof of Theorem 1. Our strategy is to prove it as a consequence of a somewhat
more general result, which we begin by stating here. In order to lighten notation, we use the fact that
the proximal operator for the function F (z1, . . . , zm) =

∑m
j=1 fj(zj) is block-separable, so that in

terms of the block-partitioned vector z = (z1, . . . , zm), we can write

proxsF (z) =
(
proxsf1(z1), . . . ,proxsfm(zm)

)
, for all z = (z1, . . . , zm) ∈ (Rd)m.

We also recall the the approximate proximal operator used in the FedSplit procedure, namely

p̃rox(z) ··= (prox_update1(z1), . . . , prox_updatem(zm)) , for all z1, . . . , zm ∈ Rd.

11

Theorem 3 (Convergence with general residuals). Suppose that the functions fj : R
d → R are

`j-strongly convex and Lj-smooth for j = 1, . . . ,m, and for t = 1, 2, . . ., define the residuals

r(t) ··= p̃rox(2z(t) − z(t))− proxsF (2z
(t) − z(t)). (25)

Then with stepsize s = 1/
√
`∗L∗, the FedSplit procedure (Algorithm 1) has a unique fixed point z?,

and the iterates satisfy

‖z(t+1) − z?‖ 6 ρt‖z(1) − z?‖+ 2

t∑

j=1

ρt−j‖r(j)‖ for t = 1, 2, . . ., (26)

where ρ ··= 1− 2/(
√
κ+ 1) is the contraction coefficient.

Let us use Theorem 3 to derive the claim stated in Theorem 1. Note that by Proposition 3, the fixed
points of Algorithm 1 are minimizers of F , hence unique under the strong convexity assumption.
Consequently, we have

‖x(t+1) − x?‖ 6
1√
m
‖z(t+1) − z?‖, for all t = 1, 2,

Using Theorem 3 and the error bound, we then conclude that

‖x(t+1) − x?‖ 6
1√
m

(
1− 2√

κ+ 1

)t
‖z(1) − z?‖+ (

√
κ+ 1)b,

as claimed.

A.2.2 Proof of Theorem 3

We now turn to the proof of the more general claim. Given additive decomposition
F (z) =

∑m
j=1 fj(zj), the reflected resolvent induced by F is block-separable, taking the form

reflsF (z) = (reflsf1(z1), . . . , reflsfm(zm)) , for all z = (z1, . . . , zm) ∈ (Rd)m.

Similarly, consider the approximate reflected resolvent defined by the algorithm, namely

r̃efl(z) ··= 2p̃rox(z)− z, for all z = (z1, . . . , zm) ∈ (Rd)m.

It also has the same block-separable form.

Using these two block-separable operators, we can now define two abstract operators, each acting on
the product space (Rd)m, that allow us to analyze the algorithm. The first operator T underlies the

idealized algorithm, in which the proximal updates are exact, and the second operator T̂ underlies
the practical algorithm, which is based on approximate proximal updates. The idealized algorithm is
based on iterating the operator

T (z) ··= reflsF

(
reflIE (z)

)
. (27)

In this definition, we use IE to denote the indicator function for membership in the equality subspace
E, so that reflIE is the reflected proximal operator for this function.

On the other hand, the practical algorithm generates the sequence {z(t)}∞t=1 via the updates z(t+1) =

T̂ (z(t)), where T̂ : (Rd)m → (Rd)m is the perturbed operator

T̂ (z) = r̃efl
(
reflIE (z)

)
. (28)

Note that the idealized operator T and perturbed operator T̂ satisfy the relation

T̂ − T =
(
r̃efl ◦ reflIE − reflsF ◦ reflIE

)
. (29)

Our proof involves verifying that with the stepsize choice s = 1/
√
`∗L∗, the mapping T is a

contraction, with Lipschitz coefficient

Lip(T) 6 1− 2√
κ+ 1︸ ︷︷ ︸

=·· ρ

< 1. (30)

12

Taking this claim as given for the moment, the contractivity implies that T has has a unique fixed
point [12]—call it z? ∈ (Rd)m. Comparing with Proposition 3, we see that the definition of fixed
points given there agrees with the fixed point z? of the operator T , since we have the relation
reflIE (z) = 2z − z.

Using this contractivity condition, the distance between this fixed point z? and the iterates z(t) of the
FedSplit procedure can be bounded as

‖z(t+1) − z?‖ = ‖T̂ z(t) − T z?‖
(i)

6 ‖T z(t) − T z?‖+ 2‖p̃rox reflIE z(t) − proxsF reflIE z(t)‖
(ii)

6 Lip(T)‖z(t) − z?‖+ 2‖r(t)‖
(iii)

6 ρ‖z(t) − z?‖+ 2‖r(t)‖, (31)

where inequality (i) applies the triangle inequality to the relation (29) between the perturbed and

idealized operators; step (ii) follows by definition of the residual r(t) at round t; and step (iii) follows
from the bound (30) on the Lipschitz coefficient of T . Performing induction on this bound yields the
stated claim.

Proof of the bound (30): It remains to bound the Lipschitz coefficient of the idealized operator T .
Since the composite function F (z) ··=

∑m
j=1 fj(zj) is `∗-strongly convex and L∗-smooth, known

results on reflected proximal operators [11, Theorems 1 and 2] imply that with the stepsize choice
s = 1/

√
`∗L∗, the operator reflsF satisfies the bound

‖ reflsF (z)− reflsF (z
′)‖2 6

(
1− 2√

κ+ 1

)
‖z − z′‖2 for all z, z′ ∈ (Rd)m. (32)

On the other hand, the reflected proximal operator reflIE for the indicator function reflIE is non-
expansive, so that

‖ reflIE (z)− reflIE (z)‖2 6 ‖z − z′‖2 for all z, z′ ∈ (Rd)m. (33)

Applying the triangle inequality and using the definition (27) of the idealized operator T , we find that

‖T (z)− T (z′)‖2 6 ‖ reflsF

(
reflIE (z)

)
− reflsF

(
reflIE (z

′)
)
‖2

(iv)

6

(
1− 2√

κ+ 1

)
‖ reflIE (z)− reflIE (z

′)‖2
(v)

6

(
1− 2√

κ+ 1

)
‖z − z′‖2,

where step (iv) uses the contractivity (32) of the operator reflsF , and step (v) uses the non-
expansiveness (33) of the operator reflIE . This completes the proof of the bound (30).

A.2.3 Proof of Corollary 1

By construction, the function hj is smooth with parameter M ··= sL∗ + 1 and strongly convex with
parameter m ··= s`∗ + 1. Consequently, if we define the operator Hj(u) ··= u− α∇hj(u), then by

standard results on gradient methods for smooth-convex functions, the stepsize choice α = 2
M+m

ensures that the operator Hj is contractive with parameter at least ρ = 1− m
M . Thus, we have the

bound

‖u(e+1) − u∗‖2 6 ρe‖u(1) − u∗‖2,

where u∗ = proxsfj (x
(t)
j) is the optimum of the proximal subproblem. Unpacking the definitions of

(m,M) and recalling that s = 1/
√
`∗L∗, we have

M

m
=

sL∗ + 1

s`∗ + 1
=

√
L∗

`∗
+ 1

√
`∗
L∗

+ 1
6

√
κ+ 1,

and hence ρ 6 1− 1√
κ+1

, which establishes the claim.

13

A.2.4 Proof of Theorem 2

Recalling the definition (19) of the regularized objective Fλ, note that it is related to the unregularized

objective F via the relation Fλ(x) = F (x) + mλ
2 ‖x− x(1)‖2, where x(1) is the given initialization.

The proposed procedure is to compute an approximation to the quantity

x?
λ
··= argmin

x∈Rd

(
m∑

j=1

{
fj(x) +

λ

2
‖x− x(1)‖2

}

︸ ︷︷ ︸
=:Fλ(x)

)
.

Now suppose that we have computed a vector x̂ ∈ Rd satisfies Fλ(x̂) − Fλ(x
?
λ) 6 ε/2. Letting

F ? = F (x?) denote the optimal value of the original (unregularized) optimization problem, we have

F (x̂)− F ? =
{
F (x̂)− Fλ(x

?
λ)
}
+
{
Fλ(x

?
λ)− F (x?)

}
. (34)

By definition of Fλ, we have F (x̂) 6 Fλ(x̂). Moreover, again using the definition of Fλ, we have

Fλ(x
?
λ)− F (x?) = Fλ(x

?
λ)− Fλ(x

?) +
mλ

2
‖x? − x(1)‖2

6
mλ

2
‖x? − x(1)‖2,

where the inequality follows since x?
λ minimizes Fλ by definition. Substituting these bounds into the

initial decomposition (34), we find that

F (x̂)− F ?
6

{
Fλ(x̂)− Fλ(x

?
λ)
}
+

mλ

2
‖x? − x(1)‖2

6
ε

2
+

ε

2
= ε. (35)

where the inequality follows since since x̂ is (ε/2)-cost-suboptimal for Fλ, and by our selection of
λ. Thus to finish the proof, we simply need to check how many iterations it takes to compute an
(ε/2)-cost-suboptimal point for Fλ.

Let us define the shorthand notation L ··=
∑m

j=1 Lj and κλ ··= L∗+λ
λ . Since Fλ is a sum of

functions that are λ-strongly convex and (Lj + λ)-smooth, it follows that from initialization x(1), the

FedSplit algorithm outputs iterates x(t) satisfying the bound

Fλ(x
(t+1))− Fλ(x

?
λ)

(i)

6
L+mλ

2
‖x(t+1) − x?

λ‖2

(ii)

6
L+mλ

2

(
1− 2√

κλ + 1

)2t ‖x(1) − z?λ‖2
m

. (36)

In the above reasoning, inequality (i) is a consequence of the smoothness of the losses fj when
regularized by λ, along with the first-order optimality condition for x?

λ; and bound (ii) then follows
by squaring the guarantee of Theorem 1 with b = 0. By inverting the bound (36), we see that in order
to achieve an ε/2-optimal solution, it suffices to take the number of iterations t to be lower bounded
as

t >

⌈√
κλ + 1

4
log

{
(L+ λm)‖x(1) − z?λ‖2

m

}⌉
.

Evaluating this bound with the choice κλ = 1 + L∗/λ and recalling the bound (35) yields the claim
of the theorem.

A.3 Characterization of fixed points

In this section we give the two fixed point results for FedSGD and FedProx as stated in Section 3.1.

14

A.3.1 Proof of Proposition 1

We begin by characterizing the fixed points of the FedSGD algorithm. By definition, any limit point
(x?

1, . . . , x
?
m) ∈ (Rd)m must satisfy the fixed point relation

x?
j =

1

m

m∑

j=1

Ge
j(x

?
j), j = 1, 2, . . . ,m.

Thus, the limits x?
j are common, and this gives part (a) of the claim. Expanding the iterated operator

Ge
j gives part (b).

A.3.2 Proof of Proposition 2

We now characterize the fixed points of the FedProx algorithm. By definition, any limit point
(x?

1, . . . , x
?
m) satisfies

x?
j =

1

m

m∑

j=1

proxsfj (x
?
j), j = 1, 2, . . . ,m. (37)

Thus, the limits x?
j are common, and this gives part (a) of the claim.

For any convex function, f : Rd → R, the proximal operator satisfies

proxsf (v) = v − s∇Msf (v), for all s > 0 and v ∈ Rd.

Using this identity in display (37) yields part (b) of the claim.

B Details for simulation studies

All of the experiments were conducted on a 2.6 GHz Intel Core i7 processor, in Python 3.7.3. Our
logistic regression experiments used CVXPY, convex programming [10] software that we used to
implement the exact proximal operators.

B.1 Results presented in Figure 1

For the simulation, we construct a least squares problem where for j ∈ [m], the response vector

bj ∈ Rnj obeys the linear model bj = Ajx0 + vj , where x0 ∈ Rd is the unknown parameter vector

to be estimated, and the noise vectors vj are independently distributed as vj
ind.∼ N

(
0, σ2Inj

)
for some

σ > 0. For our experiments reported here, we constructed a random instance of such a problem with
m = 25, d = 100, nj ≡ 500 and σ2 = 0.25. We generated the design matrices with i.i.d.entries

of the form (Aj)kl
i.i.d.∼ N (0, 1), for k = 1, . . . , nj and l = 1, . . . , d. The aspect ratios of Aj satisfy

nj > d for all j, thus by construction the matrices Aj are full rank with probability 1.

B.2 Results presented in Figure 2

B.2.1 Synthetic dataset

Here, we have design matrices Aj ∈ Rnj×d and label vectors bj ∈ {1,−1}nj . We denote the rows

of Aj by aij ∈ Rd for i = 1, . . . , nj . The conditional probability of positive class label bij = 1
under unknown parameter vector x0 is then

P{bij = 1} =
ea

T

ijx0

1 + ea
T

ij
x0

, for i = 1, . . . , nj . (38)

Given observations of this form, we solve the logistic regression problem, This problem is smooth
and convex,and clearly a special case of the more general class of federated problems (1).

We construct random instances of logistic regression problems with the settings d = 100, nj ≡ 1000

and m = 10. Hence, we have a total sample size of n = 10000. We draw aij
i.i.d.∼ N (0, Id) for all i, j

and x0
i.i.d.∼ N (0, Id). The binary labels then are constructed to follow the Bernoulli model (38).

15

B.2.2 FEMNIST datset

For this experiment only, we used Amazon EC2 to carry out these experiments (on c5.metal

instances). The original dataset is comprised of 28× 28 images, which we vectorize in row major
order to obtain data points in uij ∈ R784. We further preprocessed these datapoints by adding a

constant feature, and adding (Ru)+ and (Gu)+, where R ∈ {±1}3000×784 and G ∈ R3000×784 are
filled with i.i.d. Rademacher and standard Normal entries. Here, (·)+ denotes the entrywise positive
part of a vector. Therefore our final datapoints are

aij = (1, uij , (Ruij)+, (Guij)+) ∈ R6785.

There were K = 62 classes in the dataset; we encode the labels as vectors bij ∈ {±1}K . Formally,
if aij belongs to class k ∈ [K], we set bij = 2ek − 1, where ek denotes the kth standard basis vector

in RK .

We added the additional random features given above to improve the performance of our model on
held out data. We set λ = 0.01 by cross-validation on a smaller subsample of the FEMNIST dataset.
Formally, for each client, we select a random, 20% fraction of the data to reserve as a heldout set,
not used for training our classifier. We train the one-versus-all multiclass classifier, according to the
objective given in (21) by FedSplituntil approximately satisfying the optimality condition of the
distributed problem. We then compute the accuracy of our multiclass classifier on the held out data
and repeated this for choices of λ ∈ [10−3, 103]; λ = 0.01 worked best on the held out data, giving
an accuracy of 73%. As mentioned in the paper, the proximal solves for FedSplitwere carried out
using accelerated gradient descent.

B.3 Results presented in Figure 3

We now describe the results of a simulation study that demonstrates the accuracy of these predicted
iteration complexities. At a high level, our strategy is to construct a sequence of problems, indexed
by an increasing sequence of condition numbers κ, and to estimate the number of iterations required
to achieve a given tolerance ε > 0 as a function of κ. In order to do, it suffices to consider ensembles
of least squares problems (8), but with a carefully constructed collection of design matrices, which
we now describe.

For a given integer ` > 2, let O(`) denote the set of `× ` orthogonal matrices over the reals, and let
Unif(O(`)) denote the uniform (Haar) measure on this compact group. With this notation, we begin
by sampling i.i.d.random matrices

U
(κ)
j ∼ Unif(O(nj)) and V

(κ)
j ∼ Unif(O(d)), for j = 1, . . . ,m. (39)

For a given condition number κ > 1, we define a padded diagonal matrix—that is

Λ
(κ)
j =

[
diag(λ

(κ)
j) 0d,(n−d)

]
where λ

(κ)
j = (

√
κ, 1, . . . , 1) ∈ Rd.

Above, the matrix 0d,(nj−d) ∈ Rd×(nj−d) has all entries equal to zero. Given the random orthogonal

matrices and the matrix Λ
(κ)
j ∈ Rnj×d, we then construct the design matrices A

(κ)
j ∈ Rnj×d by

setting

A
(κ)
j

··= U
(κ)
j Λ

(κ)
j V

(κ)
j , for all j = 1, . . . ,m.

These choices ensure that the federated least squares objective (8) has condition number κ.

As before, the response vectors b
(κ)
j obey a Gaussian linear measurement model,

b
(κ)
j = A

(κ)
j x0 + v

(κ)
j , for j = 1, . . . ,m, and for all κ ∈ K.

We again take v
(κ)
j

ind.∼ N
(
0, σ2Inj

)
. In our experiments, we draw the parameter x0 ∼ N (0, Id), and

use the parameter settings

m = 10, d = 100, nj ≡ 400, and σ2 = 1.

With these settings, we iterated over a collection of condition numbers κ ∈
{100, 100.5, . . . , 103.5, 104}. For each choice of κ, after generating a random instance as described
above, we measured the number of iterations required for FedGD and the FedSplit procedures,
respectively, to reach a target accuracy ε = 10−3, which is modest at best.

16

	Introduction
	Existing algorithms and their fixed points
	Federated gradient algorithms
	Federated proximal algorithms
	Example: Incorrectness on a least squares problem

	FedSplit and convergence guarantees
	An operator-theoretic view
	Splitting procedures for federated optimization
	Convergence results

	Experiments
	Discussion
	Proofs
	Proofs of guarantees for FedSplit
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Corollary 1
	Proof of Theorem 2

	Characterization of fixed points
	Proof of Proposition 1
	Proof of Proposition 2

	Details for simulation studies
	Results presented in Figure 1
	Results presented in Figure 2
	Synthetic dataset
	FEMNIST datset

	Results presented in Figure 3

