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Abstract. We show that the viscous resistive magnetohydrodynamics system
with Hall effect is locally well-posed in Hs(R3)×Hs+1−ε(R3) with s > 1

2
and

any small enough ε > 0 such that s− ε > 1
2
. This space is to date the largest

local well-posedness space in the class of Sobolev spaces for the system. It is
also optimal according to the predominant scalings of the two equations in the
system.
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1. Introduction

Considered in this paper is the three dimensional incompressible viscous resistive
magnetohydrodynamics with Hall effect (Hall-MHD) governed by the system:

ut + u · ∇u− b · ∇b+∇p− ν∆u = 0,

bt + u · ∇b− b · ∇u+ η∇× ((∇× b)× b)− µ∆b = 0,

∇ · u = 0,

(1.1)

accompanied with the initial conditions

(1.2) u(x, 0) = u0(x), b(x, 0) = b0(x), ∇ · u0 = ∇ · b0 = 0,

for x ∈ R3 and t ≥ 0. In the system, u represents the fluid velocity, p is the fluid
pressure and b stands for the magnetic field. The parameters ν, µ and η denote
the fluid viscosity, resistivity (electrical diffusivity) and the Hall effect coefficient,
respectively. It is important to observe that, if ∇ · b0 = 0, the divergence free
condition for b is propagated by the second equation of (1.1), see [4]. The Hall
term ∇ × ((∇ × b) × b) distinguishes (1.1) from the usual MHD system (system
(1.1) with η = 0). In contrast to the latter one, the Hall-MHD model is more
advantageous due to the fact that it can capture the essential characteristics of the
magnetohydrodynamics with strong magnetic reconnection where the Hall effect
plays a significant role. Magnetic reconnection is a fundamental dynamical process
in highly conductive plasmas in astrophysics, allowing for explosive and efficient
magnetic to kinetic energy conversion. For a more comprehensive physical back-
ground of the magnetic reconnection phenomena and the Hall-MHD model, we refer
the readers to [11, 14, 16] and references therein.

Despite its increasing popularity among the astrophysicists community, the math-
ematical understanding of the Hall-MHD model is very limited. Conceptually, we
can have a peek about the barriers from various perspectives. First, the Hall term

The author was partially supported by NSF grants DMS–1815069 and DMS–2009422.
1



2 MIMI DAI

launches new physics into the system at small length scales and hence intrinsically
challenging into the mathematical analysis. Second, it is well-known that the main
obstacle to understand the turbulent flows governed by the Navier-Stokes equation
(NSE) relies on the nonlinearity in the form of (u · ∇)u. One can imagine that
system (1.1) is more intricate than the NSE, for the former one contains the NSE
and a magnetic field equation with the Hall term which appears more singular than
(u · ∇)u. Third, the natural scaling structure is a strong motivation in the study
of both the NSE and the MHD system, who share the same scaling. However, the
Hall term destroys such natural scaling. Into more details, for the MHD system, if
(u(x, t), p(x, t), b(x, t)) solves (1.1) with η = 0 with the initial data (u0(x), b0(x)),
then the triplet (uλ(x, t), pλ(x, t), bλ(x, t)) defined by

(1.3) uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t), bλ(x, t) = λb(λx, λ2t)

solves the same system with the data

u0λ(x, t) = λu0(λx), b0λ(x, t) = λb0(λx).

The scaling (1.3) no longer holds for system (1.1) with η > 0. On the other hand,
we can extract the so-called electron MHD

(1.4) bt +∇× ((∇× b)× b) = ∆b

which has the scaling

(1.5) bλ(x, t) = b(λx, λ2t).

Since the Hall term is the most singular nonlinearity in system (1.1), it suggests
that the predominant scaling for (1.1) could be

(1.6) uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t), bλ(x, t) = b(λx, λ2t).

In fact, based on scaling (1.6), we obtained a regularity criterion for (1.1) in three
dimension which improves various criteria in the literature, see [9].

In this paper our interest is to find the largest possible (optimal) Sobolev space
where system (1.1) is locally well-posed. On this topic, it was first shown in [6]
that system (1.1) in three dimension is locally well-posed in Hs(R3)×Hs(R3) with
s > 5

2 . By taking (1.5) as the dominant scaling, in [8], we obtained the local well-
posedness of (1.1) in Hs(R3)×Hs(R3) with s > 3

2 , which improves the result of [6].
In fact, the NSE is known to be locally well-posed in Hs(R3) with s > 1

2 ; according
to scaling (1.5), one can show that the electron MHD (1.4) is locally well-posed
in Hs(R3) with s > 3

2 by standard arguments of local well-posedness. Thereby,
motivated by scaling (1.6), one would expect that system (1.1) may be locally well-
posed in Hs(R3) × Hs+1(R3) with s > 1

2 . In order to justify this conjecture, we
need to treat the energy estimates for u and b separately, namely, u in Hs and b
in Hs+1. In this situation, beside estimating the flux contribution from the Hall
term, we encounter the essential difficulty: no cancelation can be employed to deal
with the two terms b · ∇b and b · ∇u. As a matter of fact, cancelation among the
coupling terms plays a vital role in estimating both u and b in the same space Hs,
as done in [8]. To overcome this barrier due to the lack of cancelation among the
coupling terms, it comes to our mind that we need to optimize the estimates of the
flux contributed from the two terms by fully employing the diffusion of both the u
and the b. Techniques based on the paradifferential calculus enables us to operate
such optimizations. Namely, we prove the main result below.
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Theorem 1.1. Let (u0, b0) ∈ Hs(R3) × Hs+1−ε(R3) with s > 1
2 and any small

enough ε > 0 such that s− ε > 1
2 . Assume ∇ · u0 = ∇ · b0 = 0. There exists a time

T = T (ν, µ, ‖u0‖Hs , ‖b0‖Hs+1−ε) > 0 and a unique solution (u, b) of (1.1) on [0, T ]
such that

(u, b) ∈ C([0, T );Hs(R3))× C([0, T );Hs+1−ε(R3)).

Remark 1.2. The proof of Theorem 1.1 will be carried out for space Rn with
general n ≥ 3, although the Hall term is not physically relevant in space with di-
mension greater than 3. Ignoring the meaning of the Hall term, the proof in Section
3 shows local well-posedness of the system in the space Hs(Rn)×Hs+1−ε(Rn) with
s > n

2 − 1 and any small enough ε > 0 such that s+ 1− ε > n
2 .

Regarding the result, the fact that b needs to be in a space with higher regularity
is determined by the Hall term. Based on the scaling (1.5) of the electron MHD
(1.4), the optimal Sobolev space of well-posedness for b would be Hs+1(R3) with
s > 1

2 . However, as stated in Theorem 1.1, the obtained well-posdness space for b
is Hs+1−ε(R3) for any small ε > 0. It may be explained by getting a closer look at
the term b · ∇u. While estimating ‖b · ∇u‖Hr by applying both diffusions of u and
b, it happens that we need to take r slightly smaller than s+ 1.

2. Preliminaries

2.1. Notation. In order to avoid confusion, we specify a few notations. We denote
by A . B an estimate of the form A ≤ CB with some absolute constant C, and
by A ∼ B an estimate of the form C1B ≤ A ≤ C2B with absolute constants C1,
C2. For simplification, it is understood that ‖ · ‖p = ‖ · ‖Lp . We use Cν to denote
a constant which depends on the viscosity ν and may vary from line to line. The
same convention applies to notations Cµ and Cν,µ.

2.2. Littlewood-Paley decomposition. As in our previous articles on the local
well-posedness of magnetohydrodynamics systems, the main tool is paradifferential
calculus. To be self-contained, we recall the Littlewood-Paley decomposition theory
briefly, even though it appears in our earlier work on related topics. For a more
detailed description on this theory we refer the readers to [2] and [12].

Let F and F−1 denote the Fourier transform and inverse Fourier transform,
respectively. Define λq = 2q for integers q. A nonnegative radial function χ ∈
C∞0 (Rn) is chosen such that

χ(ξ) =

{
1, for |ξ| ≤ 3

4

0, for |ξ| ≥ 1.

Let

ϕ(ξ) = χ(
ξ

2
)− χ(ξ)

and

ϕq(ξ) =

{
ϕ(λ−1

q ξ) for q ≥ 0,

χ(ξ) for q = −1.
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For a tempered distribution vector field u we define the Littlewood-Paley projection

h = F−1ϕ, h̃ = F−1χ,

uq := ∆qu = F−1(ϕ(λ−1
q ξ)Fu) = λnq

∫
h(λqy)u(x− y)dy, for q ≥ 0,

u−1 = F−1(χ(ξ)Fu) =

∫
h̃(y)u(x− y)dy.

By the Littlewood-Paley theory, the identity

u =
∞∑

q=−1

uq

holds in the distributional sense. For brevity, we agree with the notations

u≤Q =

Q∑
q=−1

uq, ũq =
∑
|p−q|≤1

up.

Definition 2.1. A tempered distribution u belongs to the Besov space Bsp,∞ if and
only if

‖u‖Bsp,∞ = sup
q≥−1

λsq‖uq‖p <∞.

We can identify the Sobolev space Hs by the Besov space Bs2,2, i.e.

‖u‖Hs ∼

( ∞∑
q=−1

λ2s
q ‖uq‖22

)1/2

for each u ∈ Hs and s ∈ R.

Lemma 2.2. (Bernstein’s inequality. See [13].) Let n be the space dimension and
r ≥ s ≥ 1. Then for all tempered distributions u, we have

(2.7) ‖uq‖r . λ
n( 1
s−

1
r )

q ‖uq‖s.

2.3. Bony’s paraproduct and commutator. Bony’s paraproduct formula

∆q(u · ∇v) =
∑
|q−p|≤2

∆q(u≤p−2 · ∇vp) +
∑
|q−p|≤2

∆q(up · ∇v≤p−2)

+
∑
p≥q−2

∆q(ũp · ∇vp),
(2.8)

will be used constantly to decompose the nonlinear terms in energy estimate. We
will also use the notation of the commutator

(2.9) [∆q, u≤p−2 · ∇]vp := ∆q(u≤p−2 · ∇vp)− u≤p−2 · ∇∆qvp.

Lemma 2.3. The commutator satisfies the following estimate, for any 1 < r <∞

‖[∆q, u≤p−2 · ∇]vp‖r . ‖∇u≤p−2‖∞‖vp‖r.
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2.4. Auxiliary estimates. To handle the Hall term ∇×((∇×b)×b), more prepa-
ration is needed. We first introduce two more commutators and their estimates.
We define that, for vector valued functions F and G,

(2.10) [∆q, F ×∇×]G = ∆q(F × (∇×G))− F × (∇×Gq),

(2.11) [∆q,∇× F×]G = ∆q(∇× F ×G)−∇× F ×Gq.

In principle, the commutators will be used to reveal certain cancellation; and to
shift derivative from high modes to low modes. It was shown in [9] they satisfy the
following estimates.

Lemma 2.4. Let F and G be vector valued functions. Assume ∇ · F = 0 and F ,
G vanish at large |x| ∈ R3. For any 1 < r <∞, we have

‖[∆q, F ×∇×]G‖r . ‖∇F‖∞‖G‖r;

‖[∆q,∇× F×]G‖r . ‖∇F‖∞‖G‖r.

Lemma 2.5. Let F , G and H be vector valued functions. Assume F , G and H
vanish at large |x| ∈ R3. For any 1 < r1, r2 <∞ with 1

r1
+ 1

r2
= 1, we have∣∣∣∣∫

R3

[∆q,∇× F×]G · ∇ ×H dx

∣∣∣∣ . ‖∇2F‖∞‖G‖r1‖H‖r2 .

3. A priori estimate

In this section, we establish a priori estimate for regular solutions in Hs(Rn)×
Hr(Rn) with appropriate index s and r. Such estimate is the most crucial ingredient
in the argument of local well-posedness, which is rather standard for dissipative
equations, see [15]. Thus we only present the following theorem and its proof.

Theorem 3.1. Let (u0, b0) ∈ Hs(Rn)×Hr(Rn) with s > n
2−1 and n

2 < r ≤ s+1−ε
for small enough ε > 0. There exists a time T = T (ν, µ, ‖u0‖Hs , ‖b0‖Hr ) > 0 such
that the Hall-MHD system (1.1) has a solution (u, b) satisfying

u ∈ L∞(0, T ;Hs(Rn)) ∩ L2(0, T ;Hs+1(Rn)),

b ∈ L∞(0, T ;Hr(Rn)) ∩ L2(0, T ;Hr+1(Rn)).

The proof involves certain amount of computations and estimates which will be
divided into several lemmas, each carrying an estimate for a flux term. To start,
multiplying the first equation of (1.1) by λ2s

q ∆quq and the second one by λ2r
q ∆qbq,

and adding up for all q ≥ −1, we obtain

(3.12)
1

2

d

dt

∑
q≥−1

λ2s
q ‖uq‖22 + ν

∑
q≥−1

λ2s+2
q ‖uq‖22 ≤ −I1 − I2,

(3.13)
1

2

d

dt

∑
q≥−1

λ2r
q ‖bq‖22 + µ

∑
q≥−1

λ2r+2
q ‖bq‖22 ≤ −I3 − I4 − I5,
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with

I1 =
∑
q≥−1

λ2s
q

∫
R3

∆q(u · ∇u) · uq dx, I2 = −
∑
q≥−1

λ2s
q

∫
R3

∆q(b · ∇b) · uq dx,

I3 =
∑
q≥−1

λ2r
q

∫
R3

∆q(u · ∇b) · bq dx, I4 = −
∑
q≥−1

λ2r
q

∫
R3

∆q(b · ∇u) · bq dx,

I5 =
∑
q≥−1

λ2r
q

∫
R3

∆q((∇× b)× b) · ∇ × bq dx.

To fully exploit cancelations in the flux terms I1, I3 and I5, we will apply commu-
tator estimates along with Bony’s paraproduct and some fundamental inequalities.
While r 6= s, there is no cancelation in I2 + I4, and hence I2 and I4 will be treated
in slightly different ways.

Lemma 3.2. Let s > n
2 − 1. We have that, for some absolute constants γ1, γ2 > 0,

|I1| ≤
ν

8

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν‖u‖2+γ1

Hs + Cν‖u‖2+γ2
Hs .

Proof: Using Bony’s paraproduct (2.8) followed by the commutator notation
(2.9), I1 is decomposed as

I1 =
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

∆q(u≤p−2 · ∇up) · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

∆q(up · ∇u≤p−2) · uq dx

+
∑
q≥−1

∑
p≥q−2

λ2s
q

∫
R3

∆q(up · ∇ũp) · uq dx

=I11 + I12 + I13,

with

I11 =
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

[∆q, u≤p−2 · ∇]up · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

u≤q−2 · ∇∆qup · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

(u≤p−2 − u≤q−2) · ∇∆qup · uq dx

=I111 + I112 + I113.

Thanks to the facts
∑
q−2≤p≤q+2 ∆qup = uq and ∇ · u≤q−2 = 0, the term I112

vanishes. Notice that I12 and I13 can be treated in the analogous way as I111 and
I113, respectively. Thus we will only show the estimates of I111 and I113. Applying
the commutator estimate in Lemma 2.3 and Bernstein’s inequality to I111 gives rise
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to

|I111| ≤
∑
q≥−1

∑
|p−q|≤2

λ2s
q ‖∇u≤p−2‖∞‖up‖2‖uq‖2

.
∑
q≥−1

λ2s
q ‖uq‖22

∑
p≤q

λ
n
2 +1
p ‖up‖2

.
∑
q≥−1

λ(s+1)θ
q ‖uq‖θ2λs(2−θ)q ‖uq‖2−θ2

∑
p≤q

λ(s+1)δ
p ‖up‖δ2λs(1−δ)p ‖up‖1−δ2

(
λ−θq λ

n
2 +1−s−δ
p

)
.
∑
q≥−1

λ(s+1)θ
q ‖uq‖θ2λs(2−θ)q ‖uq‖2−θ2

∑
p≤q

λ(s+1)δ
p ‖up‖δ2λs(1−δ)p ‖up‖1−δ2 λθp−q

with constants θ and δ satisfying 0 < θ < 2, 0 < δ < 1 and

(3.14) s ≥ n

2
+ 1− θ − δ.

It then follows from Young’s inequality with (r1, r2, r3, r4) ∈ (1,∞)4 satisfying

(3.15)
1

r1
+

1

r2
+

1

r3
+

1

r4
= 1, r1 =

2

θ
, r3 =

2

δ

such that for some θ1 > 0, θ2 > 0

|I111| ≤
ν

64

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

(
λ2s
q ‖uq‖22

) (2−θ)r2
2

+
ν

64

∑
q≥−1

∑
p≤q

λ2s+2
p ‖up‖22λ

θ1
p−q + Cν

∑
q≥−1

∑
p≤q

(
λ2s
p ‖up‖22

) (1−δ)r4
2 λθ2p−q

≤ ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

λ2s
q ‖uq‖22


(2−θ)r2

2

+ Cν

∑
q≥−1

λ2s
q ‖uq‖22


(1−δ)r4

2

Notice that (3.14) and (3.15) imply that s > n
2 − 1.

To estimate I113, it follows from Hölder, Bernstein and Young’s inequalities that

|I113| ≤
∑
q≥−1

∑
|p−q|≤2

λ2s
q ‖u≤p−2 − u≤q−2‖2‖∇up‖∞‖uq‖2

.
∑
q≥−1

λ
2s+n

2 +1
q ‖uq‖32

.
∑
q≥−1

λ(s+1)θ
q ‖uq‖θ2λs(3−θ)q ‖uq‖3−θ2 λ

n
2 +1−s−θ
q

≤ ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

λ2s
q ‖uq‖22


3−θ
2−θ

for s ≥ n
2 + 1− θ and 0 < θ < 2. Thus

I1 ≤
ν

8
‖∇u‖2Hs + Cν‖u‖2+γ1

Hs + Cν‖u‖2+γ2
Hs

for s > n
2 − 1 and some γ1, γ2 > 0.

�
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Lemma 3.3. Let n
2 + s− 2r ≤ 0 and s < r. The following estimate holds

|I2| ≤
ν

8

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν‖b‖4Hr .

Proof: We first decompose I2 by using Bony’s paraproduct,

I2 =−
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

∆q(b≤p−2 · ∇bp) · uq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2s
q

∫
R3

∆q(bp · ∇b≤p−2) · uq dx

−
∑
q≥−1

∑
p≥q−2

λ2s
q

∫
R3

∆q(bp · ∇b̃p) · uq dx

=I21 + I22 + I23.

Due to the lack of cancelation, I21 is the worst term which can be estimated as

|I21| ≤
∑
q≥−1

λ2s+1
q ‖uq‖2

∑
|q−p|≤2

‖b≤p−2‖∞‖bp‖2

.
∑
q≥−1

λ2s+1
q ‖uq‖2

 ∑
|q−q′|≤2

‖bq′‖2

∑
p≤q

λ
n
2
p ‖bp‖2

.
∑
q≥−1

λs+1
q ‖uq‖2

 ∑
|q−q′|≤2

λrq‖bq′‖2

∑
p≤q

λrp‖bp‖2λs−rq−pλ
n
2 +s−2r
p

.
∑
q≥−1

λs+1
q ‖uq‖2

 ∑
|q−q′|≤2

λrq‖bq′‖2

∑
p≤q

λrp‖bp‖2λs−rq−p

for n
2 + s− 2r ≤ 0. As a result, Young’s inequality gives rise to

|I21| ≤
ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

 ∑
|q−q′|≤2

λrq‖bq′‖2

∑
p≤q

λrp‖bp‖2λs−rq−p

2

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

 ∑
|q−q′|≤2

λrq′‖bq′‖2

∑
p≤q

λrp‖bp‖2λs−rq−p

2

where we used the fact λrq ∼ λrq′ for |q − q′| ≤ 2 to obtain the last step. We also
point out that the constant Cν in the second line is different from that in the first
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line. Then we apply Jensen’s inequality, if s < r,

|I21| ≤
ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

 ∑
|q−q′|≤2

λrq′‖bq′‖2

2∑
p≤q

λ2r
p ‖bp‖22λs−rq−p

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

∑
|q−q′|≤2

λ2r
q′ ‖bq′‖22

∑
p≤q

λ2r
p ‖bp‖22

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

∑
|q−q′|≤2

λ2r
q′ ‖bq′‖22

∑
p≥−1

λ2r
p ‖bp‖22

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

λ2r
q ‖bq‖22

2

.

To analyze the term I22, we recall that

|I21| ≤
∑
q≥−1

λ2s+1
q ‖uq‖2

∑
|q−p|≤2

‖b≤p−2‖∞‖bp‖2.

On the other hand, the following inequality holds

|I22| ≤
∑
q≥−1

λ2s
q ‖uq‖2

∑
|p−q|≤2

‖bp‖2‖∇b≤p−2‖∞

≤
∑
q≥−1

λ2s
q ‖uq‖2

∑
|p−q|≤2

‖bp‖2λq‖b≤p−2‖∞.

Thus, we claim that I22 shares the same estimate as I21.
In order to estimate I23, we first move the derivative from high modes to low

modes in I23, by applying integration by parts

|I23| =

∣∣∣∣∣∣
∑
q≥−1

∑
p≥q−2

λ2s
q

∫
R3

∆q(bp ⊗ b̃p) · ∇uq dx

∣∣∣∣∣∣ .
It then follows from Hölder’s and Bernstein’s inequalities

|I23| .
∑
q≥−1

λ2s+1
q ‖uq‖2

∑
p≥q−4

‖bp‖2‖bp‖∞

.
∑
q≥−1

λ2s+1
q ‖uq‖2

∑
p≥q−4

λ
n
2
p ‖bp‖22

.
∑
q≥−1

λs+1
q ‖uq‖2

∑
p≥q−4

λ2r
p ‖bp‖22λsq−pλ

n
2 +s−2r
p

.
∑
q≥−1

λs+1
q ‖uq‖2

∑
p≥q−4

λ2r
p ‖bp‖22λsq−p
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for n
2 + s− 2r ≤ 0. Applying Young’s inequality, Jensen’s inequality and changing

order of the summations yields

|I23| ≤
ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

 ∑
p≥q−4

λ2r
p ‖bp‖22λsq−p

2

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

∑
p≥q−4

λ4r
p ‖bp‖42λsq−p

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
p≥−1

λ4r
p ‖bp‖42

∑
q≤p+4

λsq−p

≤ ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν

∑
q≥−1

λ2r
q ‖bq‖22

2

.

Combining the estimates of I21, I22 and I23 above, we conclude the proof.
�

Lemma 3.4. Let s > n
2 − 1 and n

4 + s
2 < r < s + 2 − ε with small enough ε > 0.

We have the estimate

|I3| ≤
ν

8

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

8

∑
q≥−1

λ2r+2
q ‖bq‖22 + Cν,µ‖u‖2+γ3

Hs + Cν,µ‖b‖2+γ4
Hr

for some constants γ3, γ4 > 0.

Proof: As for I1, we first decompose I3 by Bony’s paraproduct

I3 =
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(u≤p−2 · ∇bp) · bq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(up · ∇b≤p−2) · bq dx

+
∑
q≥−1

∑
p≥q−2

λ2r
q

∫
R3

∆q(up · ∇b̃p) · bq dx

=I31 + I32 + I33,

and further decompose I31 by using the commutator to

I31 =−
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

[∆q, u≤p−2 · ∇]bp · bq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

(u≤q−2 · ∇∆qbp) · bq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

((u≤p−2 − u≤q−2) · ∇∆qbp) · bq dx

=I311 + I312 + I313.
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It is not hard to see that I312 = 0. By the commutator estimate in Lemma 2.3, we
infer

|I311| ≤
∑
q≥−1

∑
|p−q|≤2

λ2r
q ‖∇u≤p−2‖∞‖bp‖2‖bq‖2

.
∑
q≥−1

λ2r
q ‖bq‖22

∑
p≤q

λ
n
2 +1
p ‖up‖2

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(2−θ)q ‖bq‖2−θ2

∑
p≤q

λ(s+1)δ
p ‖up‖δ2λs(1−δ)p ‖up‖1−δ2

(
λ−θq λ

n
2 +1−s−δ
p

)
.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(2−θ)q ‖bq‖2−θ2

∑
p≤q

λ(s+1)δ
p ‖up‖δ2λs(1−δ)p ‖up‖1−δ2 λθp−q

for parameters θ and δ satisfying 0 < θ < 2, 0 < δ < 1 and

(3.16) s ≥ n

2
+ 1− θ − δ.

It then follows from Young’s inequality with (r1, r2, r3, r4) ∈ (1,∞)4 satisfying

(3.17)
1

r1
+

1

r2
+

1

r3
+

1

r4
= 1, r1 =

2

θ
, r3 =

2

δ

such that

|I311| ≤
ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

32

∑
q≥−1

λ2r+2
q ‖bq‖22

+ Cν,µ

∑
q≥−1

λ2s
q ‖uq‖22

1+γ3

+ Cν,µ

∑
q≥−1

λ2r
q ‖bq‖22

1+γ4

for some constants γ3, γ4 > 0. Notice that (3.16) and (3.17) imply for large enough
r2 and r4, and δ, θ close enough to 1, there exists a small ε > 0 such that

s ≥ n

2
− θ + ε >

n

2
− 1.

The term I313 can be treated similarly as I113. However, since r > s and hence
λ2r
q > λ2s

q , it involves more effort to distribute the wavenumber to achieve an
appropriate estimate. Therefore, we choose to carry out the details in the following.
Applying Hölder’s inequality yields

|I313| ≤
∑
q≥−1

λ2r
q ‖bq‖2

∑
|p−q|≤2

‖u≤p−2 − u≤q−2‖2‖∇bp‖∞.

To shorten the presentation, we identify the finite sum
∑
|p−q|≤2 ‖u≤p−2−u≤q−2‖2

by ‖uq‖2 and
∑
|p−q|≤2 ‖∇bp‖∞ by ‖∇bq‖∞, which only changes the estimate up
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to a constant multiple. Thus, we have

|I313| .
∑
q≥−1

λ2r
q ‖bq‖2‖uq‖2‖∇bq‖∞

.
∑
q≥−1

λ
2r+n

2 +1
q ‖uq‖2‖bq‖22

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(2−θ)q ‖bq‖2−θ2 λ(s+1)δ

q ‖uq‖δ2λs(1−δ)q ‖uq‖1−δ2

(
λ
n
2 +1−s−θ−δ
q

)
.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(2−θ)q ‖bq‖2−θ2 λ(s+1)δ

p ‖up‖δ2λs(1−δ)p ‖up‖1−δ2

for parameters θ and δ satisfying 0 < θ < 2, 0 < δ < 1 and

s ≥ n

2
+ 1− θ − δ.

We can finish the estimate of I313 as that of I311 and hence

|I313| ≤
ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

32

∑
q≥−1

λ2r+2
q ‖bq‖22

+ Cν,µ

∑
q≥−1

λ2s
q ‖uq‖22

1+γ3

+ Cν,µ

∑
q≥−1

λ2r
q ‖bq‖22

1+γ4

for some constants γ3, γ4 > 0.
Following the similar strategy as for I311, we estimate I32 as follows,

|I32| ≤
∑
q≥−1

λ2r
q ‖bq‖2

∑
|q−p|≤2

‖up‖2‖∇b≤p−2‖∞

.
∑
q≥−1

λ2r
q ‖bq‖2

 ∑
|q−q′|≤2

‖uq′‖2

∑
p≤q

λ
n
2 +1
p ‖bp‖2

.
∑
q≥−1

λs+1
q

 ∑
|q−q′|≤2

‖uq′‖2

λ(r+1)θ
q ‖bq‖θ2λr(1−θ)q ‖bq‖1−θ2

·
∑
p≤q

λrp‖bp‖2λr−s−1−θ
q−p λ

n
2−s−θ
p

.
∑
q≥−1

λs+1
q

 ∑
|q−q′|≤2

‖uq′‖2

λ(r+1)θ
q ‖bq‖θ2λr(1−θ)q ‖bq‖1−θ2 ·

∑
p≤q

λrp‖bp‖2λr−s−1−θ
q−p

for 0 < θ < 1 and

(3.18) s ≥ n

2
− θ.

It then follows from Young’s inequality and Jensen’s inequality, with the triplet
(2, 2

θ ,
2

1−θ ) satisfying

(3.19) r − s− 1− θ < 0
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such that

|I32| .
ν

32

∑
q≥−1

λ2s+2
q

 ∑
|q−q′|≤2

‖uq′‖2

2

+
µ

32

∑
q≥−1

λ2s+2
q ‖bq‖22

+ Cν,µ

∑
q≥−1

λ2r
p ‖bp‖22

 1
1−θ

≤ ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

32

∑
q≥−1

λ2s+2
q ‖bq‖22 + Cν,µ

∑
q≥−1

λ2r
p ‖bp‖22

 1
1−θ

The constraints (3.18) and (3.19) implies that for θ = 1− ε

s > r − 1− θ, s ≥ n

2
− 1 + ε >

n

2
− 1.

The term I33 can be estimated in an analogous way as for I23. To not over burden
the analysis with computations, we omit the details and claim

|I33| ≤
ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

32

∑
q≥−1

λ2s+2
q ‖bq‖22 + Cν,µ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ4/2

for some constant γ4 > 0.
�

Lemma 3.5. Let the index r and s satisfy conditions in Lemma 3.4. In addition,
assume r ≤ s+ 1− ε for a small enough constant ε > 0. We have

|I4| ≤
ν

32

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

32

∑
q≥−1

λ2r+2
q ‖bq‖22

+ Cν,µ‖u‖2+γ5
Hs + Cν,µ‖b‖2+γ6

Hr + Cν,µ‖b‖2+γ7
Hr

for various constants Cν,µ depending on ν, µ, and some constants γ5, γ6, γ7 > 0.

Proof: As usual, using Bony’s paraproduct, I4 can be written as

I4 =−
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(b≤p−2 · ∇up) · bq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(bp · ∇u≤p−2) · bq dx

−
∑
q≥−1

∑
p≥q−2

λ2r
q

∫
R3

∆q(b̃p · ∇up) · bq dx

=I41 + I42 + I43.

First we notice that I42 and I43 can be estimated as I311 and I33, respectively.
While I41 needs to be treated in a different way, since cancellation is not available



14 MIMI DAI

here. Applying Hölder’s inequality and Bernstein’s inequality first, we get

|I41| ≤
∑
q≥−1

λ2r
q ‖bq‖2

∑
|q−p|≤2

‖b≤p−2‖∞‖∇up‖2

.
∑
q≥−1

λ2r+1
q ‖bq‖2

 ∑
|q−q′|≤2

‖uq′‖2

∑
p≤q

λ
n
2
p ‖bp‖2.

Normally, we would carry the finite sum
(∑

|q−q′|≤2 ‖uq′‖2
)

of five terms to the
end of the estimate, as what we did in estimating I32. We realize that replac-
ing

(∑
|q−q′|≤2 ‖uq′‖2

)
by ‖uq‖2 would give the same estimate up to a constant

multiple. Thus, to avoid lengthy inequalities, we proceed to estimate I41 as follows

|I41| .
∑
q≥−1

λ2r+1
q ‖bq‖2‖uq‖2

∑
p≤q

λ
n
2
p ‖bp‖2

.
∑
q≥−1

(
λ(r+1)δ
q ‖bq‖δ2

)(
λr(1−δ)q ‖bq‖1−δ2

)(
λ(s+1)η
q ‖uq‖η2

)(
λs(1−η)
q ‖uq‖1−η2

)

·

∑
p≤q

λrp‖bp‖2λ
r+1−s−δ−η
q−p λ

n
2 +1−s−δ−η
p


.
∑
q≥−1

(
λ(r+1)δ
q ‖bq‖δ2

)(
λr(1−δ)q ‖bq‖1−δ2

)(
λ(s+1)η
q ‖uq‖η2

)(
λs(1−η)
q ‖uq‖1−η2

)

·

∑
p≤q

λrp‖bp‖2λ
r+1−s−δ−η
q−p



provided that n
2 + 1− s− δ− η ≤ 0. We apply Young’s inequality with parameters

1 ≤ r1, r2, r3, r4, r5 ≤ ∞ satisfying

1

r1
+

1

r2
+

1

r3
+

1

r4
+

1

r5
= 1, r1 =

2

δ
, r3 =

2

η
,

for some δ, η ∈ (0, 1). It yields that

|I41| ≤
ν

64

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

64

∑
q≥−1

λ2r+2
q ‖bq‖22 + Cν,µ

∑
q≥−1

λr(1−δ)r2q ‖bq‖(1−δ)r22

+ Cν,µ
∑
q≥−1

λs(1−η)r4
q ‖uq‖(1−η)r4

2 + Cν,µ
∑
q≥−1

∑
p≤q

λrp‖bp‖2λ
r+1−s−δ−η
q−p

r5

.
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Assume r < s−1+δ+η. Using Jensen’s inequality to the last term and exchanging
the order of summation gives rise to

∑
q≥−1

∑
p≤q

λrp‖bp‖2λ
r+1−s−δ−η
q−p

r5

.
∑
q≥−1

∑
p≤q

λrr5p ‖bp‖
r5
2 λ

r+1−s−δ−η
q−p

.
∑
p≤−1

λrr5p ‖bp‖
r5
2

∑
q≥p

λr+1−s−δ−η
q−p

.

∑
p≤−1

λ2r
p ‖bp‖22


r5
2

.

Thus one can choose δ and η close enough to 1 and r2, r4, r5 large enough such that
(1 − δ)r2 = 2 + γ5, (1 − η)r4 = 2 + γ6 and r5/2 = 1 + γ7/2 with γ5, γ6, γ7 > 0. It
then follows that

|I41| ≤
ν

64

∑
q≥−1

λ2s+2
q ‖uq‖22 +

µ

64

∑
q≥−1

λ2r+2
q ‖bq‖22

+ Cν,µ‖u‖2+γ5
Hs + Cν,µ‖b‖2+γ6

Hr + Cν,µ‖b‖2+γ7
Hr

Indeed, one can choose δ + η = 2− ε with ε = 1
2 [s− (n2 − 1)].

�

Lemma 3.6. Let r > n
2 . Then I5 satisfies

|I5| ≤
µ

16

∑
q≥−1

λ2r+2
q ‖bq‖22 + Cµ‖b‖2+γ8

Hr + Cµ‖b‖2+γ9
Hr

for some constants γ8, γ9 > 0.

Proof: Applying Bony’s paraproduct first, we decompose I5 to

I5 =
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(b≤p−2 × (∇× bp)) · ∇ × bq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(bp × (∇× b≤p−2)) · ∇ × bq dx

+
∑
q≥−1

∑
p≥q−2

λ2r
q

∫
R3

∆q(bp × (∇× b̃p)) · ∇ × bq dx

=I51 + I52 + I53.

Using the commutator notation (2.10), I51 can be further decomposed as

I51 =
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

[∆q, b≤p−2 ×∇×]bp · ∇ × bq dx

+
∑
q≥−1

λ2r
q

∫
R3

b≤q−2 × (∇× bq) · ∇ × bq dx

+
∑
q≥−1

∑
|p−q|≤2

λ2r
q

∫
R3

(b≤p−2 − b≤q−2)× (∇× (bp)q) · ∇ × bq dx

=I511 + I512 + I513,
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where we used the fact
∑
q−2≤p≤q+2 ∆qbp = bq. It is clear that I512 = 0 due to the

cross product property. By the commutator estimate in Lemma 2.5, we infer

|I511| .
∑
q≥−1

∑
|p−q|≤2

λ2r+1
q ‖∇b≤p−2‖∞‖bp‖2‖bq‖2

.
∑
q≥−1

λ2r+1
q ‖bq‖22

∑
p≤q

λp‖bp‖∞

.
∑
q≥−1

λ2r+1
q ‖bq‖22

∑
p≤q

λ
1+n

2
p ‖bp‖2

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(2−θ)q ‖bq‖2−θ2

∑
p≤q

λ(r+1)δ
p ‖bp‖δ2λr(1−δ)p ‖bp‖1−δ2 λ

1+n
2−r−δ

p λ1−θ
q

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(2−θ)q ‖bq‖2−θ2

∑
p≤q

λ(r+1)δ
p ‖bp‖δ2λr(1−δ)p ‖bp‖1−δ2 λ1−θ

q−p

for 0 < θ < 2, 0 < δ < 1 and

(3.20) r ≥ n

2
+ 2− (θ + δ), 1− θ < 0.

It then follows from Young’s inequality with (r1, r2, r3, r4) ∈ (1,∞)4 satisfying

(3.21)
1

r1
+

1

r2
+

1

r3
+

1

r4
= 1, r1 =

2

θ
, r3 =

2

δ

such that

|I511| ≤
µ

16

∑
q≥−1

λ2r+2
q ‖bq‖22 + Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ̄1

+ Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ̄2

for some constants γ̄1, γ̄2 > 0. The conditions (3.20) and (3.21) imply that

(3.22) r ≥ n

2
+ 2− 2 + ε >

n

2
, α >

1

θ
=

1

2− ε
>

1

2

provided θ close enough to 2 and δ close enough to 0.
The term I513 is estimated as follows,

|I513| ≤
∑
q≥−1

∑
|p−q|≤2

λ2r
q

∫
R3

|(b≤p−2 − b≤q−2)× (∇× (bp)q) · ∇ × bq| dx

.
∑
q≥−1

∑
|p−q|≤2

λ2r
q ‖∇bq‖∞‖b≤p−2 − b≤q−2‖2‖∇bp‖2

.
∑
q≥−1

λ
2r+n

2 +2
q ‖bq‖32

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(3−θ)q ‖bq‖3−θ2 λ

n
2 +2−r−θ
q

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(3−θ)q ‖bq‖3−θ2

for 0 < θ < 2 and

(3.23) r ≥ n

2
+ 2− θ =

n

2
+ 2− 2 + ε >

n

2
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provided θ = 2− ε with small enough ε. Thus, we have by Young’s inequality that

|I513| ≤
µ

16

∑
q≥−1

λ2r+2
q ‖bq‖22 + Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ̄3

for some constant γ̄3 > 0.
Notice that

|I52| =

∣∣∣∣∣∣
∑
q≥−1

∑
|q−p|≤2

λ2r
q

∫
R3

∆q(∇× b≤p−2 × bp) · ∇ × bq dx

∣∣∣∣∣∣
.
∑
q≥−1

∑
|q−p|≤2

λ2r+1
q ‖bp‖2‖∇b≤p−2‖∞‖bq‖2,

thus I52 enjoys the same estimate as for I511.
To estimate I53, we proceed as, by using Hölder’s inequality and Bernstein’s

inequality

|I53| ≤
∑
q≥−1

∑
p≥q−2

λ2r
q

∫
R3

|∆q(bp ×∇× b̃p) · ∇ × bq| dx

.
∑
q≥−1

λ2r
q ‖∇bq‖∞

∑
p≥q−3

‖bp‖2‖∇bp‖2

.
∑
q≥−1

λ
2r+1+n

2
q ‖bq‖2

∑
p≥q−3

λp‖bp‖22

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(1−θ)q ‖bq‖1−θ2

∑
p≥q−3

λ(r+1)δ
p ‖bp‖δ2λr(2−δ)p ‖bp‖2−δ2

· λ1−2r−δ
p−q λ

n
2 +2−r−(θ+δ)
q

.
∑
q≥−1

λ(r+1)θ
q ‖bq‖θ2λr(1−θ)q ‖bq‖1−θ2

∑
p≥q−3

λ(r+1)δ
p ‖bp‖δ2λr(2−δ)p ‖bp‖2−δ2 λ1−2r−δ

p−q

for 0 < θ < 1, 0 < δ < 2 and

(3.24) r ≥ n

2
+ 2− (θ + δ), 1− 2r − δ < 0.

Then by Young’s inequality with (r1, r2, r3, r4) ∈ (1,∞)4 satisfying

(3.25)
1

r1
+

1

r2
+

1

r3
+

1

r4
= 1, r1 =

2

θ
, r3 =

2

δ

and Jensen’s inequality, we have

|I53| ≤
µ

16

∑
q≥−1

λ2r+2
q ‖bq‖22 + Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ̄4

+ Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ̄5

for some constants γ̄4, γ̄5 > 0. Again, (3.24) and (3.25) imply

r >
n

2
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provided r2, r4 are large enough. To summarize, we have for r > n
2

|I5| ≤
µ

16

∑
q≥−1

λ2r+2
q ‖bq‖22+Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ8/2

+Cµ

∑
q≥−1

λ2r
p ‖bp‖22

1+γ9/2

for some constants γ8, γ9 > 0. In fact, we can take γ8/2 as the smallest number of
γ̄1, ...., γ̄5 and γ9/2 as the largest one of these constants.

�
We are ready to show the uniform estimate for ‖u(t)‖2Hs + ‖b(t)‖2Hr on a short

time interval.

Lemma 3.7. Assume r and s satisfy

s >
n

2
− 1, r >

n

2
,
n

4
+
s

2
< r ≤ s+ 1− ε

for a small enough constant ε > 0. There exists a time T = T (ν, µ, ‖u0‖Hs , ‖b0‖Hr )
and a constant Cν,µ depending on ν and µ such that

‖u(t)‖2Hs + ‖b(t)‖2Hr ≤ Cν,µ
(
‖u0‖2Hs + ‖b0‖2Hr

)
, ∀t ∈ [0, T ].

Proof: Combining (3.12), (3.13), and the estimates in Lemma 3.2 to Lemma
3.6, there exist various constants Cν,µ depending on ν and µ such that

d

dt

(
‖u‖2Hs + ‖b‖2Hr

)
+ ν‖∇u‖2Hs + µ‖∇b‖2Hr

≤Cν,µ
(
‖u‖2Hs + ‖b‖2Hr

)1+γ
+ Cν,µ

(
‖u‖2Hs + ‖b‖2Hr

)1+γ

with constants γ = min{γ1, ..., γ9} > 0 and γ = max{γ1, ..., γ9} > 0. It thus
follows that, there exists a time T = T (ν, µ, ‖u0‖Hs , ‖b0‖Hr ) > 0 and constant
C = C(ν, µ, ‖u0‖Hs , ‖b0‖Hr ) depending on ν, µ, ‖u0‖Hs and ‖b0‖Hr such that for
t ∈ [0, T ],

‖u(t)‖2Hs + ‖b(t)‖2Hr ≤ C(ν, µ, ‖u0‖Hs , ‖b0‖Hr )
(
‖u0‖2Hs + ‖b0‖2Hr

)
.

It completes the proof of the lemma and concludes the proof of Theorem 3.1.

4. Uniqueness and continuity

In this section, we establish the uniqueness of solutions stated in Theorem 1.1.
The continuity in time can be obtained through a rather standard procedure, see
[15]; hence we omit the proof.

Theorem 4.1. Let ε > 0 be small enough. Assume (u1, b1, p1) and (u2, b2, p2)
are solutions of (1.1)-(1.2) in Hs(Rn) × Hs+1−ε(Rn) satisfying the estimates in
Theorem 3.1. Then (u1, b1) = (u2, b2).

Proof: The difference (U,B, π) = (u1−u2, b1−b2, p1−p2) satisfies the equations

Ut + u2 · ∇U − b2 · ∇B + U · ∇u1 −B · ∇b1 +∇π = ν∆U,

Bt + u2 · ∇B − b2 · ∇U + U · ∇b1 −B · ∇u1 −∇× ((∇× b2)×B)

+∇× ((∇×B)× b1) = µ∆B.

(4.26)
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The goal is to obtain a Grönwall type of inequality for the L2 energy of (U,B).
Thus, we take inner product of the equations of U and B in (4.26) with U and B,
respectively, to arrive at

d

dt

(
1

2
‖U‖22 +

1

2
‖B‖22

)
+ ν‖∇U‖22 + µ‖∇B‖22

=

∫
Rn

(b2 · ∇)B · U dx+

∫
Rn

(B · ∇)b1 · U dx−
∫
Rn

(u2 · ∇)U · U dx

−
∫
Rn

(U · ∇)u1 · U dx+

∫
Rn

(b2 · ∇)U ·B dx+

∫
Rn

(B · ∇)u1 ·B dx

−
∫
Rn

(u2 · ∇)B ·B dx−
∫
Rn

(U · ∇)b1 ·B dx

+

∫
Rn
∇× ((∇× b2)×B) ·B dx−

∫
Rn
∇× ((∇×B)× b1) ·B dx.

(4.27)

Since (u1, b1) and (u2, b2) are in Hs(Rn)×Hs+1−ε(Rn) with s > n
2 −1, so is (U,B).

Thus it can be justified that many terms on the right hand side vanish, i.e.∫
Rn

(u2 · ∇)U · U dx = 0,

∫
Rn

(u2 · ∇)B ·B dx = 0,∫
Rn
∇× ((∇×B)× b1) ·B dx = 0∫

Rn
(b2 · ∇)B · U dx+

∫
Rn

(b2 · ∇)U ·B dx = 0.

We are left to estimate the five non-zero flux terms. The first one is estimated as∣∣∣∣∫
Rn

(B · ∇)b1 · U dx
∣∣∣∣ =

∣∣∣∣∫
Rn

(B · ∇)U · b1 dx
∣∣∣∣

≤‖B‖2‖∇U‖2‖b1‖∞

≤ν
8
‖∇U‖22 + Cν‖B‖22‖b1‖2∞

≤ν
8
‖∇U‖22 + Cν‖B‖22‖b1‖2Hs+1−ε

where we used the embedding Hs+1−ε ⊂ L∞ for s+ 1− ε > n
2 (since we can choose

ε = 1
2 [s− (n2 − 1)] and s > n

2 − 1). Analogous computation shows∣∣∣∣∫
Rn

(U · ∇)u1 · U dx
∣∣∣∣ ≤ ν

8
‖∇U‖22 + Cν‖U‖22‖u1‖2Hs+1 ,

∣∣∣∣∫
Rn

(B · ∇)u1 ·B dx
∣∣∣∣ ≤ µ

8
‖∇B‖22 + Cµ‖B‖22‖u1‖2Hs+1 ,

∣∣∣∣∫
Rn

(U · ∇)b1 ·B dx
∣∣∣∣ ≤ µ

8
‖∇B‖22 + Cµ‖U‖22‖b1‖2Hs+1−ε .
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In the end, we estimate the Hall term as follows∣∣∣∣∫
Rn
∇× ((∇× b2)×B) ·B dx

∣∣∣∣ =

∣∣∣∣∫
Rn

((∇× b2)×B) · ∇ ×B dx
∣∣∣∣

≤‖∇×B‖2‖∇ × b2‖∞‖B‖2

≤µ
8
‖∇B‖22 + Cµ‖∇ × b2‖2∞‖B‖22

≤µ
8
‖∇B‖22 + Cµ‖∇b2‖2Hs+1−ε‖B‖22.

The estimates above along with (4.27) give us
d

dt

(
‖U‖22 + ‖B‖22

)
+ ν‖∇U‖22 + µ‖∇B‖22

≤Cν,µ
(
‖u1‖2Hs+1 + ‖∇b2‖2Hs+1−ε + ‖b1‖2Hs+1−ε

) (
‖U‖22 + ‖B‖22

)
≤Cν,µ

(
‖u1‖2Hs+1 + ‖∇b2‖2Hs+1−ε + C

) (
‖U‖22 + ‖B‖22

)
.

It follows from Grönwall’s inequality that

‖U(t)‖22 + ‖B(t)‖22

≤
(
‖U(0)‖22 + ‖B(0)‖22

)
eCCν,µt exp

{
Cν,µ

∫ t

0

‖u1(τ)‖2Hs+1 + ‖∇b2(τ)‖2Hs+1−ε dτ

}
.

Since U(0) = B(0) = 0, u1 ∈ L2(0, T ;Hs+1) and b2 ∈ L2(0, T ;Hs+2−ε), we infer

‖U(t)‖22 + ‖B(t)‖22 = 0, ∀t ∈ [0, T ].

�
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