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Abstract
The label noise transition matrix, characteriz-
ing the probabilities of a training instance being
wrongly annotated, is crucial to designing popular
solutions to learning with noisy labels. Existing
works heavily rely on finding “anchor points” or
their approximates, defined as instances belong-
ing to a particular class almost surely. Nonethe-
less, finding anchor points remains a non-trivial
task, and the estimation accuracy is also often
throttled by the number of available anchor points.
In this paper, we propose an alternative option
to the above task. Our main contribution is the
discovery of an efficient estimation procedure
based on a clusterability condition. We prove that
with clusterable representations of features, us-
ing up to third-order consensuses of noisy labels
among neighbor representations is sufficient to es-
timate a unique transition matrix. Compared with
methods using anchor points, our approach uses
substantially more instances and benefits from a
much better sample complexity. We demonstrate
the estimation accuracy and advantages of our
estimates using both synthetic noisy labels (on
CIFAR-10/100) and real human-level noisy labels
(on Clothing1M and our self-collected human-
annotated CIFAR-10). Our code and human-level
noisy CIFAR-10 labels are available at https:
//github.com/UCSC-REAL/HOC.

1. Introduction
Training deep neural networks (DNNs) relies on the large-
scale labeled datasets while they often include a non-
negligible fraction of wrongly annotated instances. The
corrupted patterns tend to be memorized by the over-
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parameterized DNNs (Xia et al., 2021; Han et al., 2020),
and lead to unexpected and disparate impacts (Liu, 2021).

A variety of approaches were proposed to address the prob-
lem of learning with noisy labels. The implementations
of a major line of them, e.g., Patrini et al. (2017); Xiao
et al. (2015); Xia et al. (2020b); Berthon et al. (2021); Xia
et al. (2019); Yao et al. (2020b); Li et al. (2021), depend
on accurate knowledge of the noise transition matrix T ,
which characterizes the probabilities of a training example
being wrongly annotated. It has been show that (Liu & Tao,
2015; Patrini et al., 2017), with perfect knowledge of T ,
the minimizer of a corrected or reweighted expected risk
(loss) defined on the noisy distribution is the same as the
minimizer of the true expected risk (loss) of the clean dis-
tribution. These results clearly established the power and
benefits of knowing T .

Estimating T is challenging without accessing clean labels.
Existing works on estimating T often rely on finding a
number of high-quality anchor points (Scott, 2015; Liu &
Tao, 2015; Patrini et al., 2017), or approximate anchor points
(Xia et al., 2019), which are defined as the training examples
that belong to a particular class almost surely. To find the
anchor point, a model needs to be trained to accurately
characterize the noisy label distribution. This model will
help inform the selection of anchor points. Again relying on
this model, T is then estimated using posterior noisy label
distributions of the anchor points.

While the anchor point approach observes a significant
amount of successes, it suffers from several limitations:
1) accurately fitting noisy distributions is challenging when
the number of label classes is high; 2) the number of an-
chor points restricts the estimation accuracy; and 3) it lacks
the flexibility to extend to more complicated noise settings.
Other methods such as confident learning (Northcutt et al.,
2017; 2021) may not explicitly identify anchor points, but
they still need to fit the noisy distributions and find some
“confident points”, thus suffer from the above limitations.

In this paper, we provide an alternative to estimate T with-
out resolving to anchor points. The only requirement we
need is clusterability, i.e., the two nearest-neighbor rep-
resentations of a training example and the example itself
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belong to the same true label class. Our main contributions
summarize as follows:
• Based on the clusterability condition, we propose a novel
T estimator by exploiting a set of high-order consensuses
information among neighbor representations’ noisy labels.
Compared with the methods using anchor points, our
estimator uses a much larger set of training examples and
benefits from a much better sample complexity.

• We prove that using up to third-order consensuses is suffi-
cient to identify the true noise transition matrix uniquely.

• Extensive empirical studies on CIFAR-10/100 datasets
with synthetic noisy labels, the Clothing1M dataset with
real-world human noise, and the CIFAR-10 dataset with
our self-collected human annotations, demonstrate the
advantage of our estimator.

• Open-source contribution and flexible extension: we will
contribute to the community 1) a generically applicable
and light tool for fast estimation of the noise transition
matrix. This flexible tool has the potential to be applied
to more sophisticated noise settings, including instance-
dependent ones (Section 3.4). 2) A noisy version of the
CIFAR-10 dataset with human-level label noise.

1.1. Related Works

In the literature of learning with label noise, a major set of
works focus on designing risk-consistent methods, i.e., per-
forming empirical risk minimization (ERM) with specially
designed loss functions on noisy distributions leads to the
same minimizer as if performing ERM over the correspond-
ing unobservable clean distribution. The noise transition ma-
trix is a crucial component for implementing risk-consistent
methods, e.g., loss correction (Patrini et al., 2017), loss
reweighting (Liu & Tao, 2015), label correction (Xiao et al.,
2015) and unbiased loss (Natarajan et al., 2013). To a certain
degree, the knowledge of it also helps tune hyperparameters
in other approaches, e.g., label smoothing (Lukasik et al.,
2020). As introduced previously, anchor points are criti-
cal for estimating the transition matrix in above mentioned
existing methods - we further elaborate this in Section 2.2.

Some recently proposed risk-consistent approaches do not
require the knowledge of transition matrix, including: LDMI

(Xu et al., 2019) based on an information theoretical mea-
sure, peer loss (Liu & Guo, 2020) by punishing over-
agreements with noisy labels, robust f -divergence (Wei
& Liu, 2021), and CORES2 (Cheng et al., 2020) built on
a confidence-regularizer. However, to principally handle a
more complicated case when the noise transition matrix de-
pends on each feature locally, i.e., instance-dependent noise,
the ability to estimate local transition matrices remains a
significant and favorable property. Examples include the
potential of applying local transition matrices to different
groups of data (Xia et al., 2020b), using confidence scores

to revise transition matrices (Berthon et al., 2021), and es-
timating the second-order information of local transition
matrices (Zhu et al., 2021). Thus we need an estimation
approach that scales and generalizes well to these situations.

As a growing literature, we are aware of other promising
approaches that do not rely on the estimation of T , e.g.,
focusing on the numerical property of loss functions and
designing bounded loss functions (Amid et al., 2019a;b;
Zhang & Sabuncu, 2018; Wang et al., 2019; Gong et al.,
2018; Ghosh et al., 2017; Shu et al., 2020), using sample
selection to pick up reliable instances from the dataset (Jiang
et al., 2018; Han et al., 2018; Yu et al., 2019; Yao et al.,
2020a; Wei et al., 2020), among many more. We compare
to some of the popular ones using experiments.

2. Preliminaries
This section introduces the preliminaries, including problem
formulation, anchor points, and the clusterability condition.

2.1. Our Setup

We summarize the important definitions as follows.

Clean/Noisy distribution The traditional classification
problem with clean labels often builds on a set of N train-
ing examples denoted by D := {(xn, yn)}n∈[N ], where
[N ] := {1, 2, · · · , N}. Each example (xn, yn) could be
seen as a snapshot of random variable (X,Y ) drawn from
a clean distribution D. Let X and Y denote the space of
feature X and label Y , respectively. In our considered
weakly-supervised classification problem, instead of having
access to the clean dataset D, the learner could only ob-
tain a noisy dataset D̃ := {(xn, ỹn)}n∈[N ], where the noisy
label ỹn may or may not be the same as yn. Noisy exam-
ples (xn, ỹn) are generated according to random variables
(X, Ỹ ) drawn from a distribution D̃.

Noise transition matrix We model the relationship be-
tween (X,Y ) and (X, Ỹ ) using a noise transition matrix
T (X), where each element Tij(X) represents the probabil-
ity of mislabeling a clean label Y = i to the noisy label
Ỹ = j, i.e. Tij(X) := P(Ỹ = j|Y = i,X). We call T (X)
the local transition matrix in this paper since it is defined
for a particular feature X . Most of the literature would
focus on the case where the noise is independent of feature
X: T (X) ≡ T . The knowledge of T enables a variety of
learning with noisy label solutions. Below we illustrate solu-
tions with the celebrated loss correction approach (Natarajan
et al., 2013; Patrini et al., 2017).

The learning task The classification task aims to iden-
tify a classifier f : X → Y that maps X to Y accu-
rately. We focus on minimizing the empirical risk using
DNNs with respect to the cross-entropy (CE) loss defined
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as `(f(X), Y ) = − ln(fX [Y ]), Y ∈ [K], where fX [Y ]
denotes the Y -th component of column vector f(X) and K
is the number of classes.

2.2. Loss Correction and Estimating T

In the popular loss correction approach (Patrini et al., 2017),
when the noise transition matrix is known, forward or back-
ward loss correction can be applied to design a corrected
loss. For example, the forward loss correction function can
be designed as: `→(f(X), Ỹ ) := `(T>f(X), Ỹ ), where
T> denotes the transpose of matrix T . If T is perfectly
known in advance, it can be shown that the minimizer of the
corrected loss under the noisy distribution is the same as the
minimizer of the original loss ` under the clean distribution
(Patrini et al., 2017).

We would like to emphasize that in addition to loss correc-
tion, the knowledge of noise transition matrices is poten-
tially useful in other approaches, especially when dealing
with the challenging instance-dependent label noise where
T (X) differs for different X . For example, it was shown
that knowing T (X) helps improve the robustness of peer
loss when the noise transition matrix differs across instances
(Zhu et al., 2021), and can help improve fairness guarantees
when label noise is group-dependent (Wang et al., 2021).
Knowing T also tends to be helpful in setting hyperpa-
rameters in sample selection (Han et al., 2018) and label
smoothing (Lukasik et al., 2020; Wei et al., 2021).

Estimating T with anchor points The traditional ap-
proach for estimating T relies on anchor points (Scott,
2015; Liu & Tao, 2015), which are defined as the train-
ing examples (Xs) that belong to a specific class almost
surely. Formally, an x is an anchor point for the class i
if P(Y = i|X = x) is equal to one or close to one (Xia
et al., 2019). Further, if P(Y = i|X = x) = 1, we have
P(Ỹ = j|X = x) =

∑
k∈[K] TkjP(Y = k|X = x) = Tij .

The matrix T can be obtained via estimating the noisy class
posterior probabilities for anchor points heuristically (Pa-
trini et al., 2017) or theoretically (Liu & Tao, 2015).

While the anchor point approach observes a significant
amount of successes, this method suffers from three ma-
jor limitations:

• The implementation of it requires that the trained model
can perfectly predict the probability of the noisy labels,
which is challenging when the number of classes is high,
and when the number of training instances is limited.

• The number of available and identifiable anchor points
can become a bottleneck even if the posterior distribution
can be perfectly learned.

• The lack of flexibility to zoom into a subset of training
data also limits its potential to be applied to estimate
local transition matrices for more challenging instance-

Figure 1. Illustration of k-NN label clusterability.

dependent settings (Xia et al., 2019).

2.3. Clusterability

The alternative we are seeking builds on the notion of cluster-
ability. Intuitively, clusterability implies that two instances
are likely to have the same labels if they are close to each
other (Gao et al., 2016). To facilitate the discovery of close-
by instances, our solution will resolve to representation
learning (Bengio et al., 2013). Recent literature shows, even
though label noise makes the model generalizes poorly, it
still induces good representations (Li et al., 2020). Formally,
for a neural network with both convolutional layers and
linear layers, e.g., ResNet (He et al., 2016), we denote the
convolution layers by function fconv and the representations
by X̄ := fconv(X). With the above, we define k-Nearest-
Neighbor (k-NN) label clusterability1 as:

Definition 1 (k-NN label clusterability). We call a dataset
D satisfies k-NN label clusterability if ∀n ∈ [N ], the rep-
resentation x̄n and its k-Nearest-Neighbor x̄n1

, · · · , x̄nk

belong to the same true class.

See Figure 1 for an illustration of the k-NN clusterability.
There are three primary properties of the definition:

• The k1-NN label clusterability condition is harder to
satisfy than k2-NN label clusterability when k1 > k2;

• The cluster containing the same clean labels is not re-
quired to be a continuum, e.g., in Figure 1, two clusters
of class “1” can be far away;

• Our k-NN label clusterability only requires the existence
of these feasible points, i.e., specifying the true class is
not necessary.

The k-NN label clusterability likely holds in many tasks,
such as image classification when features are well-extracted
by convolutional layers (Han et al., 2019; Ji et al., 2019;
Kolesnikov et al., 2019) and each feature belongs to a unique
true class. The high-level intuition is that similar represen-
tations should belong to the same label class. One can
consider a label generation process (Feldman, 2020; Liu,
2021) where the feature distribution is modeled as a mixture

1Distances are measured between representations. Feature xn
and its representation x̄n refer to the same data point in different
views.
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of many disjoint sub-distributions, and the labeling function
maps each sub-distribution to a unique label class. There-
fore, samples from the same sub-distribution have the same
true label. In this paper, instead of requiring identical labels
for a big cluster defined by a large k, we will only require the
2 nearest neighbors to have the same clean labels with the
example itself, i.e., 2-NN label clusterability. Its feasibility
will be demonstrated in Section 5.3.

Comparison to anchor points The anchor point approach
relies on training a classifier to identify anchor points and the
corresponding true class. Our label clusterability definition
does not require the knowledge of true label class as claimed
in the third property. Moreover, if good representations are
available apriori, our method is model-free.

Next, we will elaborate our proposed T estimator lever-
aging 2-NN label clusterability. Relaxation of 2-NN label
clusterability is discussed in Appendix C.1.

3. The Power of High-Order Consensuses
We now present our alternative to estimate T . Our idea
builds around the concept of using high-order consensuses
of the noisy labels Ỹ s among each training instance and its
2-NN. In this section, we consider the case when T (X) is
the same for different X , i.e., T (X) ≡ T .

3.1. Warm-up: A Binary Example

For a gentle start, consider binary cases (K = 2) with
classes {1, 2}. Short-hand error rates e1 := T12 := P(Ỹ =

2|Y = 1), e2 := T21 := P(Ỹ = 1|Y = 2). p1 := P(Y =
1) denotes the clean prior probability of class-1.

We are inspired by the matching mechanism for binary er-
ror rates estimation (Liu & Chen, 2017; Liu et al., 2020).
Intuitively, with 1-NN label clusterability, for two repre-
sentations in the same dataset with minimal distance, their
labels should be identical. Otherwise, we know there must
be exactly one example with the corrupted label. Similarly,
if k-NN label clusterability holds, by comparing the noisy
label of one representation with its k-NN, we can write
down the probability of the k + 1 noisy label consensuses
(including agreements and disagreements) as a function of
e1, e2, p1.

Going beyond votes from k-NN noisy labels To infer
whether the label of an instance is clean or corrupted, one
could use the 2-NN of this instance and take a majority vote.
For example, if the considered instance has the label “1” and
the other two neighbors have the label “2”, it can be inferred
that the label of the considered instance is corrupted since
“2” is in the majority. Nonetheless, this inference would be
wrong when the 2-NN are corrupted. Increasing accuracy of
the naive majority vote (Liu & Liu, 2015) or other inference

approaches (Liu et al., 2012) requires stronger clusterability
that more neighbor representations should belong to the
same clean class. Our approach goes beyond simply using
the votes among k-NNs. Instead, we will rely on the statis-
tics of high-order consensuses among the k-NN noisy labels.
As a result, our method enjoys a robust implementation with
only requiring 2-NN label clusterability.

Consensuses in binary cases We now derive our approach
for the binary case to deliver our main idea. We present
the general form of our estimator in the next subsection.
Let Ỹ1 be the noisy label of one particular instance, Ỹ2 and
Ỹ3 be the noisy labels of its nearest neighbor and second
nearest neighbor. With 2-NN label clusterability, their clean
labels are identical, i.e. Y1 = Y2 = Y3. For Ỹ1, noting
P(Ỹ1 = j) =

∑
i∈[K] P(Ỹ1 = j|Y1 = i) · P(Y1 = i), we

have the following two first-order equations:

P(Ỹ1 = 1) = p1(1− e1) + (1− p1)e2,

P(Ỹ1 = 2) = p1e1 + (1− p1)(1− e2).

For the second-order consensuses, we have

P(Ỹ1 = j1, Ỹ2 = j2)

(a)
=

∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2|Y1 = i, Y2 = i) · P(Y1 = i)

(b)
=

∑
i∈[K]

P(Ỹ1 = j1|Y1 = i) · P(Ỹ2 = j2|Y2 = i) · P(Y1 = i),

where equality (a) holds due to the 2-NN label clusterability,
i.e., Y1 = Y2(= Y3) w.p. 1, and equality (b) holds due to
the conditional independency between Ỹ1 and Ỹ2 given their
clean labels. In total, there are four second-order equations
for different combinations of Ỹ1, Ỹ2, e.g.,

P(Ỹ1 = 1, Ỹ2 = 1) = p1(1− e1)2 + (1− p1)e2
2,

P(Ỹ1 = 1, Ỹ2 = 2) = p1(1− e1)e1 + (1− p1)e2(1− e2).

Similarly, given Y1 = Y2 = Y3, there are eight third-order
equations defined for consensuses among Ỹ1, Ỹ2, Ỹ3 , e.g.,

P(Ỹ1 = 1, Ỹ2 = 1, Ỹ3 = 1) = p1(1− e1)3 + (1− p1)e3
2.

Figure 2 illustrates the above consensus checking process.
We leave more details and full derivations to Appendix A.
The left-hand side of each above equation is the probability
of a particular first-, second-, or third-order consensus pat-
tern of Ỹ , which could be estimated given the noisy dataset
D̃. These consensus patterns encode the high-order infor-
mation of T . Later in Section 4.1, we will prove that given
the consensus probability (LHS), the first three order con-
sensus equations we presented above are sufficient to jointly
identify a unique solution to T , which indeed corresponds
to the true T .
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Figure 2. Illustration of high-order consensuses.

3.2. Estimating T : The General Form
We generalize this idea to classifications with multiple
classes. For a K-class classification problem, define p :=
[P(Y = i), i ∈ [K]]> and

Tr := T · Sr, ∀r ∈ [K], (1)

where Sr := [er+1, er+2, · · · , eK , e1, e2, · · · er] is a
cyclic permutation matrix, and er is the K × 1 column
vector of which the r-th element is 1 and 0 otherwise. The
matrix Sr cyclically shifts each column of T to its left
side by r units. Similar to the previous binary example,
the LHS of the equation is the probability of different dis-
tributions of Ỹ s among each instance and its 2-NN. Let
(i + r)K := [(i + r − 1) mod K] + 1. For the first-,
second-, and third-order consensuses, we can respectively
denote them in vector forms as follows (∀r ∈ [K], s ∈ [K]).

c[1] = [P(Ỹ1 = i), i ∈ [K]]>,

c[2]r = [P(Ỹ1 = i, Ỹ2 = (i + r)K), i ∈ [K]]>,

c[3]r,s=[P(Ỹ1 = i, Ỹ2 = (i + r)K , Ỹ3 = (i + s)K), i ∈ [K]]>.

Denote by ◦ the Hadamard product of two matrices. We
now present the system of consensus equations for estimat-
ing T and p in the general form:

Consensus Equations

• First-order (K equations):

c[1] := T>p, (2)

• Second-order (K2 equations):

c[2]
r := (T ◦ Tr)>p, r ∈ [K], (3)

• Third-order (K3 equations):

c[3]
r,s := (T ◦ Tr ◦ Ts)>p, r, s ∈ [K]. (4)

While we leave the full details of derivation to Appendix A,
we show one second-order consensus below for an example:

e>
j c

[2]
r = P(Ỹ1 = j, Ỹ2 = (j + r)K)

(a)
=

∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Ỹ2 = (j + r)K |Y2 = i)P(Y1 = i)

=
∑
i∈[K]

Ti,j · Ti,(j+r)K · pi
(b)
= e>

j (T ◦ Tr)>p,

where equality (a) holds again due to the 2-NN label cluster-
ability and the conditional independency (similar to binary
cases), and equality (b) holds due to Tr[i, j] = Ti,(j+r)K .

We note that although there are higher-order consensuses
according to this rule, we only consider up to third-order
consensuses of Ỹ as shown in Eqns. (2)–(4). For ease of
notation, we define two stacked vector-forms for c[2]

r,s, c
[3]
r,s :

c[2] : = [(c[2]
r )>, ∀r ∈ [K]]>, (5)

c[3] : = [(c[3]
r,s)
>, ∀r, s ∈ [K]]>. (6)

3.3. The HOC Estimator

Solving the consensus equations requires estimating the con-
sensus probabilities c[1], c[2], and c[3]. In this subsection,
we will first show the procedures for estimating these proba-
bilities and then formulate an efficient optimization problem
for T and p. To summarize, there are three steps:

• Step 1: Find 2-NN for each x̄n from the noisy dataset D̃.
• Step 2: Compute each ĉ[ν] using x̄n and their 2-NN.
• Step 3: Formulate the optimization problem in (10).

Denote by E ⊆ [N ]. We elaborate on each step as follows.
Step 1: Find 2-NN Given the noisy dataset {(xn, ỹn), n ∈
E}, for each representation x̄n = fconv(xn), we can find its
2-NN x̄n1 , x̄n2 as:

n1 = arg min
n′∈E,n′ 6=n

Dist(x̄n, x̄n′), n2 = arg min
n′∈E,n′ 6=n 6=n1

Dist(x̄n, x̄n′),

and the corresponding noisy labels ỹn1
, ỹn2

. Dist(A,B)
measures the distance between A and B - we will use Dist
as the negative cosine similarity in our experiment.

Step 2: Empirical mean Denote by 1{·} the indicator
function taking value 1 when the specified condition is met
and 0 otherwise. Let E be a set of indices and |E| be the
number of them. The probability of each high-order consen-
sus could be estimated by the empirical mean using a partic-
ular set of sampled examples in E: {(ỹn, ỹn1

, ỹn2
), n ∈ E}

as follows (∀i).

ĉ[1][i] =
1

|E|
∑
n∈E

1{ỹn = i},

ĉ[2]r [i] =
1

|E|
∑
n∈E

1{ỹn = i, ỹn1 = (i + r)K}, (7)

ĉ[3]r,s[i] =
1

|E|
∑
n∈E

1{ỹn = i, ỹn1 = (i + r)K , ỹn2 = (i + s)K}.

The motivation of identifying a subset E for the estimators
is due to the desired provable convergence to the expecta-
tion. Each 3-tuple in the sample should be independent and
identically distributed (i.i.d.) so that each ĉ[ν] is consistent.
However, the existence of nearest neighbors, e.g., when both
n and n1 belong to E and n is a 2-NN of n1, may violate
the i.i.d. property of these 3-tuples. Denote by

E∗3 = arg max
E⊆[N ]

|E|, s.t. |{n, n1, n2, ∀n ∈ E}| = 3|E|.
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Then any subset E ⊆ E∗3 guarantees the i.i.d. property.
Note it is generally time-consuming to find the best E.
For an efficient solution (with empirical approximation),
we randomly sample |E| center indices from [N ] and re-
peat Step 1 and Step 2 multiple times with different E (as
Line 3 – Line 8 in Algorithm 2). We will further discuss the
magnitude of |E| in Section 4.2 and Appendix B.3.

Step 3: Optimization With ĉ[1], ĉ[2], and ĉ[3], we formu-
late the optimization problem in (8) to jointly solve for T ,p.

minimize
T ,p

3∑
ν=1

‖ĉ[ν] − c[ν]‖2 (8a)

subject to Eqns. (1) – (6) (8b)
pi ≥ 0, Tij ≥ 0, i, j ∈ [K] (8c)∑
i∈[K]

pi = 1,
∑
j∈[K]

Tij = 1, i ∈ [K]. (8d)

The crucial components in (8) are:

• Objective (8a): the sum of errors from each order of
consensus, where the error is defined in `2-norm.

• Variable definitions (8b): the closed-form relationship
between intermediate variables (such as c[ν] and Tr) and
the optimized variables (T and p).

• Constraints (8c) and (8d): feasibility of a solution.

Challenges for solving the constrained optimization
problem The problem in (8) is a constrained optimization
problem with K(K + 1) variables, K(K + 1) inequality
constraints, and (K + 1) equality constraints, and it is gen-
erally hard to guarantee its convexity. Directly solving this
problem using the Lagrangian-dual method may take a long
time to converge (Boyd et al., 2004).

Unconstrained soft approximation Notice that both p
and each row of T are probability measures. Instead of di-
rectly solving for T and p, we seek to relax the constraints
by introducing auxiliary and unconstrained variables to rep-
resent T and p. Particularly, we turn to optimizing variables
T̄ ∈ RK×K and p̄ ∈ RK that are associated with T and p
by T := σT (T̄ ), p := σp(p̄), where σT (·) and σp(·) are
softmax functions such that

Tij :=
exp(T̄ij)∑

k∈[K] exp(T̄ik)
, pi :=

exp(p̄i)∑
k∈[K] exp(p̄k)

. (9)

Therefore, we can drop all the constraints in (8) and focus
on solving the unconstrained optimization problem with
K(K + 1) variables. Our new optimization problem is
given as follows:

minimize
T̄ ,p̄

3∑
ν=1

‖ĉ[ν] − c[ν]‖2 (10a)

subject to Eqns. (1) – (6), Eqn. (9). (10b)

Algorithm 1 The HOC Estimator
1: Input: Rounds: G. Sample size: |E|. Noisy dataset:
D̃ = {(xn, ỹn)}n∈[N ]. Representation extractor: fconv.

2: Initialization: Set ĉ[1], ĉ[2], ĉ[3] to 0. Extract represen-
tations xn ← fconv(xn), ∀n ∈ [N ]. T̄ = KI − 11>.
p̄ = 1/K. // I: identity matrix, 1: all-ones column vector.

3: repeat
4: E ← RndSmp([N ], |E|); // sample |E| center indices
5: {(ỹn, ỹn1 , ỹn2), n ∈ [E]} ← Get2NN(D̃, E);

// find the noisy labels of the 2-NN of xn, n ∈ [E]

6: (ĉ
[1]
tmp, ĉ[2]

tmp, ĉ[3]
tmp)← CountFreq(E) // as Eqn. (7)

7: ĉ[ν] ← ĉ[ν] + ĉ
[ν]
tmp, ν ∈ {1, 2, 3};

8: until G times
9: ĉ[ν] ← ĉ[ν]/G, ν ∈ {1, 2, 3}; // estimate c[ν] G times

10: Solve the unconstrained problem in (10) with
(ĉ

[1]
, ĉ[2], ĉ[3]) by gradient decent, get T̄ and p̄

11: Output: Estimates T̂ ← σT (T̄ ), p̂← σp(p̄).

Equations in (10b) are presented only for a clear objective
function. Given the solution of problem (10), we can calcu-
late T and p according to Eqn. (9). Note the search space
of T before and after soft approximation differs only in
corner cases (before: Tij ≥ 0, after: Tij > 0). For each
original and non-corner T , there exists a soft approximated
T that leads to the same transition probabilities. Thus the
soft approximation preserves the property of T , e.g. the
uniqueness in Theorem 1. Algorithm 1 summarizes our
High-Order-Consensus (HOC) estimator.

3.4. Flexible Extensions to Instance-Dependent Noise

Algorithm 1 provides a generically applicable and light tool
for fast estimation of T . The flexibility makes it possible to
be applied to more sophisticated instance-dependent label
noise. We briefly discuss possible applications to estimating
the local noise transition matrix T (X).

Locally homogeneous label noise Intuitively, by consider-
ing a local dataset in which every representation shares the
same T (X), the method in Section 3.2 can then be applied
locally to estimate the local T (X). Specially, using a “way-
point” x̄n, we build a local dataset D̃n that includes the M -
NN of x̄n, i.e., D̃n = {(xn, ỹn)} ∪ {(xni

, ỹni
), ∀i ∈ [M ]},

where {ni, i ∈ [M ]} are the indices of the M -NN of x̄n.
We introduce the following definitions:

Definition 2 (M -NN noise clusterability). We call D̃n sat-
isfies M -NN noise clusterability if the M -NN of x̄n have
the same noise transition matrix as xn, i.e., T (xn) =
T (xni

), ∀i ∈ [M ].

Definition 3 ((H,M)-coverage). We call D̃ satisfies
(H,M)-coverage if there exist H instances x̄h(n), n ∈ [H]

such that D̃ = ∪Hn=1D̃h(n), where each D̃h(n) satisfies
M -NN noise clusterability.
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Note Dentition 2 focuses on the clusterability of noise tran-
sition matrices, which is different from the clusterability
of the true classes of labels. When M -NN noise cluster-
ability holds for x̄n, the label noise in local dataset D̃n is
effectively homogeneous. If D̃ further satisfies (H,M)-
coverage, we can divide the training data D̃ to H local
sub-datasets D̃h(n), n ∈ [H] and separately apply Algo-
rithm 1 on each of them. The local estimates allow us to
apply loss correction separately using different T (X) at dif-
ferent parts of the training data. Besides, when there is no
M -NN noise clusterability, we may require knowing prop-
erly constructed sub-spaces to separate the data, with each
part of them sharing similar noise rates (Xia et al., 2020a;b).
We leave more detailed discussions in Appendix C.2.

4. Theoretical Guarantees
We will prove that our consensus equations are sufficient
for estimating a unique T , and show the advantage of our
approach in terms of a better sample complexity than the
anchor point approach.

4.1. Uniqueness of Solution

Before formally presenting the uniqueness guarantee, we
introduce two assumptions as we will need.

Assumption 1 (Nonsingular T ). The noise transition ma-
trix is non-singular, i.e., Rank(T ) = K.

Assumption 2 (Informative T ). The diagonal elements of
T are dominant, i.e., Tii > Tij , ∀i ∈ [K], j ∈ [K], j 6= i.

Assumption 1 is commonly made in the literature and en-
sures the effect of label noise is invertible (Van Rooyen &
Williamson, 2017). Assumption 2 characterizes a particular
permutation of row vectors in T (Liu et al., 2020). See more
discussions on their feasibility in Appendix C.3. The unique-
ness is formally stated in Theorem 1. The proof is sketched
at the end of main paper and detailed in Appendix B.1.

Theorem 1. When D̃ satisfies the 2-NN label clusterability
and T is nonsingular and informative, with a perfect knowl-
edge of c[ν], ν = 1, 2, 3, the solution of consensus equations
(2) – (4) returns the true T uniquely.

Challenges Proving Theorem 1 is challenging due to: 1)
The coupling effect between T and p makes the structure of
solution T unclear; 2) Naively replacing p, e.g., using p =
(T>)−1c[1], will introduce matrix inverse, which cannot
be canceled with the Hadamard product; 3) A system of
third-order equations with K2 variables will have up to 3K

2

solutions and the closed-form is not explicit.

Local estimates Our next corollary 1 extends Theorem 1
to local datasets, when T can be heterogeneous.

Corollary 1. When D̃ satisfies (H,M)-coverage, each

D̃h(n) satisfies 2-NN label clusterability, and T (xh(n)) is
nonsingular and informative, with a perfect knowledge of
the local c[ν], ν = 1, 2, 3, the solution of consensus equa-
tions (2) – (4) is unique and recovers T (xh(n)).

4.2. Sample Complexity

We next show that with the estimates ĉ[1], ĉ[2], and ĉ[3],
HOC returns a reasonably well solution.

Recall that, in Section 3.3, Step 2 requires a particular
E ⊆ E∗3 to guarantee the i.i.d. property of the sample
{(ỹn, ỹn1 , ỹn2), n ∈ E}. For a tractable sample complexity,
we focus on a particular dataset D̃ and feature extractor
fconv such that 1) |E∗3 | = Θ(N) and 2) Tij = 1−Tii

K−1 , ∀j 6=
i, i ∈ [N ], j ∈ [N ]. Supposing each tuple is drawn from
non-overlapping balls, condition 1) is satisfied when the
number of these non-overlapping balls covering the repre-
sentation space is Θ(N). See Appendix B.2 for a detailed
example when the representations are uniformly distributed.
Lemma 1 shows the error upper bound of our estimates
ĉ[ν], ν = 1, 2, 3. See Appendix B.3 for the proof.
Lemma 1. With probability 1−δ, ∀ν, l, the estimation error
|ĉ[ν][l]−c[ν][l]| is bounded at the order ofO(

√
ln(1/δ)/N).

Lemma 1 is effectively the sample complexity of estimating
|E∗3 | i.i.d. random variables by the sample mean. Due to
assuming a uniform diagonal T , we only need to consider
the estimation error of T̂ii. For each i ∈ [K], see the result
in Theorem 2 and the proof in Appendix B.4.

Theorem 2. When Tii >
1−P(Y=i)+(K−1)P(Ỹ=i)

K(K−1)P(Y=i) , w.p. 1−
2δ, |T̂ii − Tii| is bounded at the order of O(

√
ln(1/δ)/N).

Theorem 2 indicates the sample complexity of our solution
has the same order in terms of N compared to a standard
empirical mean estimation in Lemma 1. Remark 1 shows
our approach is better than using a set of anchor points in
the sample complexity.
Remark 1 (Comparison). The methods based on anchor
points estimate T with NAC < N (NAC � N in many
cases) anchor points. Thus w.p. 1− δ, the estimation error
is at the order of O(

√
ln(1/δ)/NAC).

5. Experiments
We present experiment settings as follows.

Datasets and models HOC is evaluated on three bench-
mark datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and Clothing1M (Xiao et al., 2015). For the standard
training step, we use ResNet34 for CIFAR-10 and CIFAR-
100, and ResNet50 for Clothing1M. The representations
come from the outputs before the final fully-connected layer
of ResNet34/50. The distance between different representa-
tions is measured by the negative cosine similarity.
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Figure 3. Comparison of estimation errors of T given by T-Revision (Xia et al., 2019) and our HOC estimator. The error is measured by
the matrix L1,1-norm with a normalization factor K, i.e. ‖T̂ − T ‖1,1/K. Forward: Using the forward corrected loss (Patrini et al., 2017)
Reweight: Using the reweighted loss (Liu & Tao, 2015). Symmetric noise is applied.

Table 1. The best epoch (clean) test accuracy (%) with synthetic label noise.

Method Inst. CIFAR-10 Inst. CIFAR-100
η = 0.2 η = 0.4 η = 0.6 η = 0.2 η = 0.4 η = 0.6

CE (Standard) 85.66±0.62 76.89±0.93 60.29±1.17 57.26±1.33 41.33±0.89 25.08±1.85
Peer Loss (Liu & Guo, 2020) 89.52±0.22 83.44±0.30 75.15±0.82 61.13±0.48 48.01±0.12 33.00±1.47

LDMI (Xu et al., 2019) 88.67±0.70 83.65±1.13 69.82±1.72 57.36±1.18 43.06±0.97 26.13±2.39
Lq (Zhang & Sabuncu, 2018) 85.66±1.09 75.24±1.07 61.30±3.35 56.92±0.24 40.17±1.52 25.58±3.12
Co-teaching (Han et al., 2018) 88.84±0.20 72.61±1.35 63.76±1.11 43.37±0.47 23.20±0.44 12.43±0.50
Co-teaching+ (Yu et al., 2019) 89.82±0.39 73.44±0.38 63.61±1.78 41.62±1.05 24.73±0.85 12.25±0.35

JoCoR (Wei et al., 2020) 88.82±0.20 71.13±1.94 63.88±2.05 44.55±0.62 23.92±0.32 13.05±1.10
Forward (Patrini et al., 2017) 87.87±0.96 79.81±2.58 68.32±1.68 57.69±1.55 42.62±0.92 27.35±3.42
T-Revision (Xia et al., 2019) 90.31±0.37 84.99±0.81 72.06±3.40 58.00±0.20 40.01±0.32 40.88±7.57

HOC Global 89.71±0.51 84.62±1.02 70.67±3.38 68.82±0.26 62.29±1.11 52.96±1.85
HOC Local 90.03±0.15 85.49±0.80 77.40±0.47 67.47±0.85 61.20±1.04 49.84±1.81

Noise type HOC is tested on both synthetic label noise
and real-world human label noise. The synthetic label
noise includes two regimes: symmetric noise and instance-
dependent noise. For both regimes, the noise rate η is the
overall ratio of instances with a corrupted label in the whole
dataset. The symmetric noise is generated by randomly
flipping a clean label to the other possible classes w.p. η
(Xia et al., 2019). The basic idea of generating instance-
dependent noise is to randomly generate one vector for each
class (K vectors in total) and project each incoming feature
onto these K vectors (Xia et al., 2020b). The label noise
is added by jointly considering the clean label and the pro-
jection results. See Appendix D.1 for more details. The
real-world human noise comes from human annotations.
Particularly, for the 50, 000 training images in CIFAR-10,
we re-collect human annotations2 from Amazon Mechani-
cal Turk (MTurk) in February 2020. For the Clothing1M
dataset, we train on 1 million noisy training instances re-
flecting the real-world human noise.

2We only collect one annotation for each image with a cost of
¢10 per image.

5.1. Performance of Estimating T

We compare HOC with T-revision (Xia et al., 2019) follow-
ing the flow: 1) Estimation→ 2) Training→ 3) Revision.
For a fair comparison, we follow their training framework
and parameter settings to get representations. Particularly,
we obtain the same model as the one that T-revision adopts
before revision. As illustrated in Figure 3, compared with
the dynamical revision adopted in T-revision, HOC does not
need to change or adapt in different epochs and still achieves
lower estimation errors no matter the model is trained with
forward corrected loss or reweighted loss.

5.2. Performance of Classification Accuracy

To test the classification performance, we adopt the flow:
1) Pre-training→ 2) Global Training→ 3) Local Training.
Our HOC estimator is applied once at the beginning of
each above step. In Stage-1, we load the standard ResNet50
model pre-trained on ImageNet to obtain basic represen-
tations. At the beginning of Stage-2 and Stage-3, we use
the representations given by the current model. All experi-
ments are repeated three times. HOC Global only employs
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Table 2. The best epoch test accuracy (%) with human noise.

Method Clothing1M Human CIFAR-10
CE (standard) 68.94 83.50

CORES2 (Cheng et al., 2020) 73.24 89.98
LDMI (Xu et al., 2019) 72.46 86.33

Co-teaching (Han et al., 2018) 69.21 90.39
JoCoR (Wei et al., 2020) 70.30 90.10

Forward (Patrini et al., 2017) 70.83 86.82
PTD-R-V(Xia et al., 2020b) 71.67 85.92

HOC 73.39 90.62

one global T with G = 50 and |E| = 15k as inputs of
Algorithm 2. HOC Local uses 300 local matrices (250-NN
noise clusterability, G = 30, |E| = 100) for CIFAR-10
and 5 local matrices (10k-NN noise clusterability, G = 30,
|E| = 5k) for CIFAR-100.3 See more details in Appendix D.
Without sophisticated learning techniques, we simply feed
the estimated transition matrices given by HOC into for-
ward loss correction (Patrini et al., 2017). We report the
performance on synthetic instance-dependent label noise in
Table 1 and real-world human-level label noise in Table 2.
Comparing with these baselines (with similar data augmen-
tations), both global estimates and local estimates given by
HOC achieve satisfying performance, and the local esti-
mates indeed provide sufficient performance improvement
on CIFAR-10. When there are 100 classes, T contains 10k
variables thus local estimates with only 10k instances may
not be accurate, which leads to a slight performance drop
in HOC Local on CIFAR-100 (but it still outperforms other
methods).

Real human-level noise On CIFAR-10 with our self-
collected human-level noisy labels, HOC achieves a 0.097
estimation error in the global T and a 0.110± 0.027 error
in estimating 300 local transition matrices. See more details
in Appendix D.3.

5.3. Feasibility of 2-NN label clusterability

We show the ratio of feasible 2-NN tuples in Table 3. One
2-NN tuple is called feasible if x̄n and its 2-NN belong to
the same true class. The feature extractors are obtained
from overfitting CIFAR-10/100 with different noise levels.
For example, CIFAR-10 Inst. η = 0.2 indicates that we
use the standard CE loss to train ResNet34 on CIFAR-10
with 20% instance-dependent label noise. The convolution
layers when the model approaches nearly 100% training
accuracy are selected as the feature extractor fconv(X). Ta-
ble 3 shows, with a standard feature extractor, there are
more than 2/3 of the feasible 2-NN tuples in most cases.
Besides, reducing the sample size from 50k to 5k will not
substantially reduce the ratio of feasible 2-NN tuples.

3Our unconstrained transformation provides much better con-
vergence such that running HOC Local on CIFAR will at most
double the running time of a standard training with CE.

Table 3. The ratio of feasible 2-NN tuples with different feature
extractors. |E| = 5k: Sample 5k examples from the whole dataset
in each round, and average over 10 rounds. |E| = 50k: Check the
feasibility of all 2-NN tuples.

Feature Extractor CIFAR-10 CIFAR-100
|E| = 5k |E| = 50k |E| = 5k |E| = 50k

Clean 99.99 99.99 99.88 99.90
Inst. η = 0.2 87.88 89.06 82.82 84.33
Inst. η = 0.4 78.15 79.85 64.88 68.31

6. Conclusions
This paper has proposed a new and flexible estimator of the
noise transition matrix relying on the first-, second-, and
third-order consensuses checking among an example and its’
2-NN’s noisy labels. Future directions of this work include
extending our estimator to collaborate with other learning
with noisy label techniques. We are also interested in de-
veloping algorithms to identify critical masses of instances
that share similar noise rates such that our estimator can be
applied to local estimation more efficiently.

Proof Sketch for Theorem 1
The high-level idea of the proof is to connect the Hadamard
products to matrix products, and prove that any linear com-
bination of two or more rows of T does not exist in T .

Step I: Transform the second-order equations. By ex-
ploiting the relation between Hadamard products and matrix
products, the second-order equations can be transformed to
T>DpT = T†, where T† is fixed given c[2]

r , ∀r ∈ [K], and
Dp is a diagonal matrix with p as its main diagonals,

Step II: Transform the third-order equations. Follow-
ing the idea in Step I, we can also transform the third-order
equations to (T ◦ Ts) = TT−1

† T>‡,s, ∀s ∈ [K], where T‡,s
is fixed given c[3]

r,s, ∀r, s.

Step III: From matrices to vectors We analyze the rows
u> of T and transform the equations in Step II to (e.g.
s = 0)Au = u◦u, whereA = T‡(T

−1
† )>. Then we need

to find the number of feasible vectors u.

Step IV: Construct the (K + 1)-th vector When T is
non-singular, we prove the (K + 1)-th solution uK+1 must
be identical uk, k ∈ [K].

Wrapping-up: Unique T Step IV shows T only contains
K different feasible rows. The informativeness of T ensures
the unique order of these K rows. Thus T is unique.
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