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Abstract
This paper aims to provide understandings for the
effect of an over-parameterized model, e.g. a deep
neural network, memorizing instance-dependent
noisy labels. We first quantify the harms caused
by memorizing noisy instances, and show the
disparate impacts of noisy labels for sample in-
stances with different representation frequencies.
We then analyze how several popular solutions for
learning with noisy labels mitigate this harm at
the instance level. Our analysis reveals that exist-
ing approaches lead to disparate treatments when
handling noisy instances. While higher-frequency
instances often enjoy a high probability of an
improvement by applying these solutions, lower-
frequency instances do not. Our analysis reveals
new understandings for when these approaches
work, and provides theoretical justifications for
previously reported empirical observations. This
observation requires us to rethink the distribution
of label noise across instances and calls for differ-
ent treatments for instances in different regimes.

1. Introduction
A salient feature of an over-parameterized model, e.g. a
deep neural network, is its ability to memorize examples
(Zhang et al., 2016; Neyshabur et al., 2017), and the memo-
rization has proven to benefit the generalization performance
(Arpit et al., 2017; Feldman, 2020; Feldman & Zhang, 2020).
Nonetheless, the potential existence of label noise, com-
bined with the memorization effect, might lead to detrimen-
tal consequence (Song et al., 2020; Yao et al., 2020a; Cheng
et al., 2020b; Chen et al., 2019; Han et al., 2020; Song et al.,
2020). In light of the reported empirical evidence of harms
caused by over-memorizing noisy labels, we set out to un-
derstand this effect theoretically. Built on a recent analytical
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framework (Feldman, 2020), we demonstrate the varying
effects of memorizing noisy labels associated with instances
that sit at the different spectra of the instance distribution.

Soon since the above negative effect was empirically shown,
learning with noisy labels has been recognized as a challeng-
ing and important task. The literature has observed growing
interests in proposing defenses, see Natarajan et al. (2013);
Liu & Tao (2016); Menon et al. (2015); Liu & Guo (2020);
Lukasik et al. (2020) and many more. The second contri-
bution of this paper is to build an analytical framework to
gain new understandings of how the existing solutions fare
(Section 5). While most existing theoretical results focus on
the setting where label noise is homogeneous across train-
ing examples and focus on the distribution-level analysis,
ours invests on the instance-level and aims to quantify when
these existing approaches work and when they fail for dif-
ferent regimes of instances. Our result points out that while
noisy labels for highly frequent instances contribute more to
the drop of generalization power, they are also easier cases
to fix with. We further highlight the need for taking addi-
tional care of long-tail examples (Zhu et al., 2014), where
we prove existing solutions can have a substantial probabil-
ity of failing. Our results call for immediate attention to a
hybrid treatment of noisy instances.

To facilitate the understanding of our results, we outline the
main contributions below with pointers:

• We extend an analytical framework to quantify the effects
of memorizing noisy labels (Theorem 4 - 6).

• We highlight the scenarios when existing popular robust
learning methods succeed or fail at the instance level
(Section 4.4 & 5). We provide the conditions under which
the existing approaches improve over memorizing the
noisy labels (Theorem 7 & 11 and their corollaries), and
when not (Theorem 8 & 12 and their corollaries).

• Our results in Section 5 help explain some empirical ob-
servations reported in the literature, including i) peer
loss (Liu & Guo, 2020) induces confident prediction
(Lemma 3), and ii) when peer loss and label smooth-
ing (Lukasik et al., 2020) could perform better than loss
correction (Natarajan et al., 2013; Patrini et al., 2017),
which uses explicit knowledge of the noise rates (Sec-
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tion 5.2 & 5.3) - in contrast, peer loss does not require
this knowledge.

Due to space limit, all proofs can be found in the Appendix.

1.1. Related works

There have been substantial discussions on the memoriza-
tion effects of deep neural networks, and how memorization
relates to generalization (Zhang et al., 2016; Neyshabur
et al., 2017; Arpit et al., 2017; Feldman, 2020; Feldman
& Zhang, 2020). Most relevant to us, recent works have
reported negative consequences of memorizing noisy labels,
and have proposed corresponding fixes (Natarajan et al.,
2013; Liu & Tao, 2016; Liu & Guo, 2020; Song et al., 2020;
Yao et al., 2020a; Cheng et al., 2020b; Chen et al., 2019;
Han et al., 2020; Song et al., 2020). Different solutions
seem to be effective when guarding different type of noise,
but there lacks a unified framework to understand why one
approach would work and when they would fail.

Recently, there is increasing attention on learning with
instance-dependent noise, which proves to be a much more
challenging case (Cheng et al., 2020b;a; Xia et al., 2020;
Zhu et al., 2021a). Our work echoes this effort and empha-
sizes the instance-level understanding. This focus particu-
larly suits a study with long-tail distributions of instances
that appear with different frequencies, which is often shown
to be the case with image datasets (Zhu et al., 2014).

Common solutions toward learning with noisy labels build
around loss or label corrections (Natarajan et al., 2013;
Patrini et al., 2017; Xia et al., 2019). More recently, light
and easy-to-implement solutions are proposed too (Lukasik
et al., 2020; Liu & Guo, 2020). We delve into three of them
in Section 4. As an area with growing interests, there exist
many other solutions - we will not have space to list all, but
we want to mention the following two streams of efforts.
Sample cleaning: Sample cleaning leverages the idea of
detecting instance x whose label is corrupted (ỹ 6= y) (Jiang
et al., 2017; Han et al., 2018; Yu et al., 2019; Yao et al.,
2020a; Wei et al., 2020; Cheng et al., 2020a). Then the
training is mainly done with the selected clean instances,
with the aid of processed information from the detected
corrupted examples. Robust loss function: The literature
has also observed the proposal of robust loss functions that
perform well with dealing outlier noisy examples (Zhang &
Sabuncu, 2018; Menon et al., 2019; Charoenphakdee et al.,
2019; Wang et al., 2019).

1.2. Overview of the main results: Disparate impacts
and treatments of label noise

Our first set of results, perhaps non-surprisingly, show the
disparate impact of noisy labels at the instance level. The
impact to the drop of generalization power is linearly de-

pendent on the frequency of the instance and its labels’
associated noise rate:

Theorem 1 (Disparate Impacts, Informal). For an in-
stance x that appears l times (l-appearance instance) in
the training data (with n samples), a model h memorizing
its l noisy labels leads to the following order of individual
excessive generalization error:

Ω

(
l2

n2
· (label noise rate at x)

)
Our discussions then move to how the existing treatments
fare at the instance level. We will introduce a memoriza-
tion paradox in Section 4.4 to highlight a common pitfall
when analyzing the performance of existing algorithmic
treatments at the population level, when a deep model is
considered and is able to memorize training examples. Prob-
ably more alarmingly, we then provide a set of instance-level
analysis to show the disparate treatments of several existing
learning with noisy label solutions:

Theorem 2 (Disparate Treatments, Informal). For an
instance x that appears l times in the training data (l-
appearance instance), when l is large (high-frequency in-
stance), with high probability, performing loss correction
(Natarajan et al., 2013; Patrini et al., 2017) and using peer
loss correction (Liu & Guo, 2020) on x improves generaliza-
tion performance compared to memorizing the noisy labels.
When l is small (long-tail instance), with non-negligible
probability, both loss correction and peer loss incur higher
prediction errors than memorizing the noisy labels.

2. Formulation
To reuse the main analytical framework built in Feldman
(2020), we largely follow their notations. In the clean setting,
a training dataset S = {(x1, y1), ..., (xn, yn)} is available.
Each x indicates a feature vector and each y is an associated
label. Denote by X the space of x and Y the space for y.
Jointly (x, y) are drawn from an unknown distribution P
over X × Y . Specifically, x is sampled from a distribution
D, and the true label y for x is specified by a function
f : X → Y drawn from a distribution F .

The learner’s algorithm A, as a function of the training
data S, returns a distribution of classifiers or functions
h : X → Y . By this, we consider a randomized algo-
rithm that would potentially lead to the deployment of
a randomized classifier. We define the following gener-
alization error errP(A, S) := Eh∼A(S)[errP(h)], where
errP(h) := EP [1(h(x) 6= y)] and 1(·) is the indicator func-
tion. When there is no confusion, we shall use x, y to denote
the random variables generating these quantities when used
in a probability measure. To better and clearly demonstrate
the main message of this paper, we consider discrete do-
mains ofX and Y such that |X| = N, |Y | = m. Our model,
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as well as the main generalization results, can mostly ex-
tend to a setting with continuous X (Section 4, (Feldman,
2020)). We briefly discuss it after we introduce the follow-
ing process to capture the generation of each instance x:
We follow Feldman (2020) to characterize an unstructured
discrete domain of classification problems:

• Let π = {π1, ..., πN} denote the priors for each x ∈ X .

• For each x ∈ X , sample a quantity px independently and
uniformly from the set π.

• Then the resulting probability mass function of x is given
by D(x) = px∑

x∈X px
- this forms the distribution D that

x will be drawn from.

For the case with continuous X , instead of assuming a
prior π over each x in a finite X , it is assumed there is
a prior π defined over N mixture models. Each x has a
certain probability of being drawn from each model and
then will realize according to the generative model. Each
of the generative models captures similar but non-identical
examples. With the above generation process, denote by
P[·|S] the marginal distribution over P conditional on S, we
further define the following conditional generalization error
(on the realization of the training data S):

err(π,F ,A|S) := EP∼P[·|S] [errP(A, S)] .

l-appearance instances: We denote by XS=l the set of xs
that appeared exactly l ≥ 1 times in the dataset S. The
difference in l helps us capture the imbalance of the dis-
tribution of instances. Later we show that the handling of
instances with different frequencies matters differently.

2.1. Noisy labels

We consider a setting where the training labels are noisy.
Suppose for each training instance (x, y), instead of observ-
ing the true label y, we observe a noisy copy of it, denoting
by ỹ. Each ỹ is generated according to the following model:

Tk,k′(x) := P[ỹ = k′|y = k, x], k′, k ∈ Y. (1)

We will denote by T (x) ∈ Rm×m the noise transition
matrix with the (k, k′)-entry defined by Tk,k′(x). Each
of the above noisy label generation is independent across
different x. We have access to the above noisy dataset
S̃ := {(x1, ỹ1), ..., (xn, ỹn)}.

An x that appears l times in the dataset will have l indepen-
dently generated noisy labels. One can think of these as
l similar data instances, with each of them equipped with
a single noisy label collected independently. For instance,
Figure 1 shows a collection of 10 similar “Cats" from the
CIFAR-10 dataset (Krizhevsky et al., 2009). On top of each
image, we show a “noisy" label collected from Amazon Me-
chanical Turk. Approximately, one can view each row as a

Figure 1. Sample examples of “Cats" in CIFAR-10 with noisy
labels on top. Examples are taken from (Zhu et al., 2021b).

x with 5 appearances, with each of the instances associated
with a potentially corrupted label.

T (x) varies across the dataset S, and possibly that T (x)
would even be higher for low-frequency/rare instances, due
to the inherent difficulties in recognizing and labeling them.

Note the noisy label distribution P[ỹ|x] has a larger entropy
due to the additional randomness introduced by T (x) and is
therefore harder to fit. As we shall see later, this fact poses
additional challenges, especially for the long-tail instances
that have an insufficient number of observations.

3. Impacts of Memorizing Noisy Labels
In this section, we discuss the impacts of noisy labels when
training a model that can memorize examples. Our analysis
builds on a recent generalization bound for studying the
memorization effects of an over-parameterized model.

3.1. Generalization error

Denote by π̄N the resulting marginal distribution over x:
π̄N (α) := P[D(x) = α]. π̄N controls the true frequency of
generating instances. Define the following quantity:

τl :=
Eα∼π̄N [αl+1 · (1− α)n−l]

Eα∼π̄N [αl · (1− α)n−l]
. (2)

Intuitively, τl quantifies the “importance weight" of the
l-appearance instances. Theorem 2.3 of Feldman (2020)
provides the following generalization error of an algorithm
A:
Theorem 3 (Theorem 2.3, (Feldman, 2020)). For every
learning algorithm A and every dataset S ∈ (X × Y )n:

err(π,F ,A|S) ≥ opt(π,F|S)

+
∑
l∈[n]

τl ·
∑

x∈XS=l

Ph∼A[h(x) 6= y], (3)

where in above, opt(π,F|S) := minA err(π,F ,A|S) is
the minimum achievable generalization error.

We will build our results and discussions using this general-
ization bound. Our discussion will focus on how label noise



Understanding Instance-Level Label Noise: Disparate Impacts and Treatments

can disrupt the training of a model through the changes of
the following Excessive Generalization Error:

err+(P,A|S) :=
∑
l∈[n]

τl
∑

x∈XS=l

Ph∼A(S′)[h(x) 6= y],

(4)

Note though the input of the algorithmA is the noisy dataset
S′, we are interested in the distribution conditional on the
clean dataset S - this is the true distribution that we aim
for h to generalize to. On the other hand, the distribution
induced by S′ will necessarily encode bias to the clean
distribution that we are interested in, when some labels are
indeed different from the true ones. Even though we do
not have access to S, the above “true generalization error”
is well-defined for our analysis, and nicely encodes three
quantities that are of primary interests to our study:

• τl: the “importance weight" of the l-appearance instances.

• l: the frequency of instances that categorizes how popular
a particular instance x is in the dataset.

•
∑
x∈XZ=l

Ph∼A(S′)[h(x) 6= y]: the accumulative gener-
alization error h makes for l-appearance instances.

We will also denote by

err+l (P,A, x|S) :=τl · Ph∼A(S′)[h(x) 6= y] (5)

the Individual Excessive Generalization Error caused
by a x ∈ XS=l. Easy to see that err+(P,A|S) =∑
x err

+
l (P,A, x|S).

3.2. Importance of memorizing an l-appearance
instance

Clearly Eqn. (4) informs us that different instance con-
tributes differently to the generalization error. It was
proved in Feldman (2020) even a single-appearance in-
stance x ∈ XS=1 (i.e., l = 1) will contribute to the in-
crease of generalization error at the order of Ω( 1

n ): when
πmax := maxj∈[N ] πj ≤ 1/200, we have

τ1 ≥
1

7n
· weight

(
π,

[
1

2n
,

1

n

])
,

where weight
(
π,
[
β1, β2

])
is the expected fraction of dis-

tribution D contributed by frequencies in the range [β1, β2]:

weight
(
π,
[
β1, β2

])
:= E

[∑
x∈X

D(x) · 1 (D(x) ∈ [β1, β2])

]
The expectation is w.r.t. D(x) ∼ π (and followed by the
normalization procedure). We next first generalize the above
lower bound to τl for an arbitrary l:
Theorem 4. For sufficiently large n,N , when πmax ≤ 1

20 :

τl ≥ 0.4 · l(l − 1)

n(n− 1)
· weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

])
(6)

We observe that l(l−1)
n(n−1) = O( l

2

n2 ). For instance:

• An l = O(n2/3)-appearance instance will lead to an
Ω( 1

n2/3 ) order of impact.

• An l = O(n3/4)-appearance instance will lead to an
Ω( 1√

n
) order of impact.

• An l = cn-appearance (linear) instance will lead to an
Ω(1) bound, a constant order of impact.

Secondly, for the weight
(
π,
[

2
3
l−1
n−1 ,

4
3
l
n

])
term, we have

the frequency interval at the order of length l
n −

l−1
n−1 =

n−l
n(n−1) = O( 1

n ). That is the weight term captures the fre-
quency of an O( 1

n ) interval of the sample distribution. One
might notice that there seems to be a disagreement with
the reported result in Feldman (2020) when l is small (par-
ticularly when l = 1): when ignoring the weight term τl,
an O( 1

n ) lower bound was reported, while ours leads to
an O( 1

n2 ) one. This is primarily due to different bounding
techniques we incurred. Our above bound suits the study
of l that is on a higher order than O( 1

n ). For small l, we
provide the following bound:

Theorem 5. For sufficiently large n,N and πmax ≤ 1
20 :

τl ≥ 0.4
l − 1

n− 1
· 1

1.1l
· weight

(
π,

[
0.7

l − 1

n− 1
,

4

3

l − 1

n− 1

])
When l is small, based on the above bound, we do see τl =
Ω( 1

n ), while the weight constant again captures an O( 1
n )

interval of instances. Note that this bound becomes less
informative as l grows, due to the increasing 1.1l term. Also
when l = 1, our bound becomes vacuous since l − 1 = 0.

3.3. Memorizing noisy labels

In order to study the negative effects of memorizing noisy
labels, we first define the memorization of noisy labels. For
an x ∈ XS=l and its associated l noisy labels, denote by
P̃[ỹ = k|x], k ∈ Y the empirical distribution of the l noisy
labels: for instance when l = 3 and two noisy labels are 1,
we have P̃[ỹ = 1|x] = 2

3 .

Definition 1 (Memorization of noisy labels). We call
a model h memorizing noisy labels for instance x if
Ph∼A(S′)[h(x) = k] = P̃[ỹ = k|x].

Note that the probability measure is over the randomness of
the algorithm A, as well as the potential randomness in h -
practically one can sample a classification outcome based
on the posterior prediction of h(x). Effectively the assump-
tion states that when a model, e.g. a deep neural network,
memorizes all l noisy labels for instance x, its output will
follow the same empirical distribution. It has been shown
in the literature (Cheng et al., 2020b;a) that a fully mem-
orizing neural network will be able to encode P̃[ỹ = k|x]
for each x. This is also what we observe empirically. In
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Figure 2, we simulate a 2D example: there are two classes
of instances. The outer annulus represents one class and the
inner ball is the other. Given the plotted training data, we
train a 2-layer neural network using the cross-entropy (CE)
loss. On the left panel, we observe concentrated predictions
from the trained model when labels are clean. However, the
decision boundary (colored bands with different prediction
probabilities) becomes less certain and more probabilistic
with the addition of noisy labels, signaling that the neural
network is memorizing a mixed distribution of noisy labels.

Figure 2. A 2D example illustrating the memorization of noisy la-
bels. Left panel: Training with clean labels. Right panel: Training
with random 20% noisy labels. Example with 40% noisy labels
can be found in the Appendix.

Figure 3. Memorization effects on CIFAR-10 with noisy labels.

We further illustrate this in Figure 3 where we train a neural
network on the CIFAR-10 dataset with synthesized noisy
labels. The top row simulated simple cases with instance-
independent noise T (x) ≡ T , while the bottom one synthe-
sized an instance-dependent case1. In each row, from Left to
Right, we show the progressive changes in the distribution
of losses2 across different training epochs. Preferably, we
would like the training to return two distributions of losses
that are less overlapped so the model can better distinguish
the clean (colored in blue) and corrupted instances (colored
in orange). However, we do observe that in both cases, the
neural network fails to separate the clean instances from the
corrupted ones and memorizes a mixture of both.

This definition of memorization is certainly a simplification

1We defer the empirical details to the Appendix.
2To better visualize the separation of the instances, we follow

Cheng et al. (2020a) to plot the distribution of a normalized loss by
subtracting the CE loss with a normalization term

∑
k P[h(x) =

k]/m, resulting possibly negative losses on x-axis.

but it succinctly characterizes the situation when there are l
similar but non-identical instances, the deep neural network
would memorize the noisy label for each of them, which
then results in memorizing each realized noisy label class
a P̃[ỹ = k|x] fraction of times. This definition would also
require the instances (x’s) to be rather independent, or each
x’s own label information is the most dominant one, which
is likely to be true when N is large enough to separate X .
Most of our observations would remain true as long as the
memorization leads h to predict in the same direction of
P̃[ỹ = k|x]. In particular, when h does not fully remember
the empirical label distribution, we conjecture that our main
results hold if the memorization preserves orders: for any
two classes k, k′, if P̃[ỹ = k|x] > P̃[ỹ = k′|x], we require
h to satisfy Ph∼A(S′)[h(x) = k] > Ph∼A(S′)[h(x) = k′].
This simplification in Definition 1 greatly enables a clear
presentation of our later analysis.

3.4. Impacts of memorizing noisy labels

Based on Theorem 4, we summarize our first observation
that over-memorizing noisy labels for higher frequency in-
stances leads to a bigger drop in the generalization power:

Theorem 6. For x ∈ XS=l with true label y, h memorizing
its l noisy labels leads to the following order of individual
excessive generalization error err+l (P,A, x|S):

Ω

 l2

n2
· weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

])
·
∑
k 6=y

P̃[ỹ = k|x]


We would like to note that with large l,

∑
k 6=y P̃[ỹ =

k|x]→
∑
k 6=y Ty,k(x) - not surprisingly, the higher proba-

bility an instance is observing a corrupted label, the higher
generalization error it will incur. The bound informs us
that over-memorizing high-frequency instances lead to a
larger negative impact on the generalization. However, we
shall see later the higher-frequency instances are in fact the
easier ones to fix! On the other hand, memorizing the noisy
labels for the lower frequency/appearance instances leads to
a smaller drop in generalization performance. Nonetheless,
they do incur non-negligible changes. For instance, misre-
membering a single instance with l = 1 leads to an O( 1

n )
increase in generalization error. Later we show a small l
poses additional challenges in correcting the mistakes.

4. Learning with Noisy Labels
In this section, we quickly review a subset of popular and
recently proposed solutions for learning with noisy labels.

4.1. Loss correction

Arguably one of the most popular approaches for correcting
the effects of label noise is through loss correction using the
knowledge of T (x) (Natarajan et al., 2013; Liu & Tao, 2016;
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Patrini et al., 2017). Let’s denote by ` : Rm × Y → R+

the underlying loss function we adopted for training a deep
neural network. Denote by `(h(x), y) the loss incurred by
h on instance (x, y), and `(h(x)) = [`(h(x), y′)]y′∈Y the
column vector form of the loss. We will assume each T (x)
is invertible that T−1(x) well exists. Loss correction is done
via defining a surrogate loss function ˜̀as follows:

`LC(h(x)) = T−1(x) · `(h(x)). (7)

The reason for performing the above correction is due to the
following established unbiasedness property: Denote by ỹ
the one-hot encoding column vector form of the noisy label
ỹ: ỹ := [0; ...; 1︸︷︷︸

ỹ′s position

; ...; 0], we have:

Lemma 1 (Unbiasedness of `LC, (Natarajan et al., 2013)).
Eỹ|y[ỹ> · `LC(h(x))] = `(h(x), y).

The above lemma states that when conditioning on the dis-
tribution of ỹ|y, `LC(h(x)) is unbiased in expectation w.r.t.
the true loss `(h(x), y). In Section 4.4, we explain how
this unbiasedness is established for the binary classifica-
tion setting. Based on Lemma 1, one can perform empiri-
cal risk minimization over

∑n
i=1 ỹ

>
i · `LC(h(xi)), hoping

the empirical sum will approximately converge to its ex-
pectation which will then equalize to the true empirical
loss

∑n
i=1 `(h(xi), yi). Of course, a commonly made as-

sumption/requirement when applying this approach is that
T (x) ≡ T, ∀x, and T can be estimated accurately enough.
There exist empirical and extensive discussions on how to
do so (Patrini et al., 2017; Xia et al., 2019; Yao et al., 2020b;
Zhang et al., 2021; Li et al., 2021).

4.2. Label smoothing

Label smoothing has demonstrated its benefits in improving
learning representation (Müller et al., 2019). A recent paper
(Lukasik et al., 2020) has also proved the potential of label
smoothing in defending training against label noise. Denote
by 1 the all-one vector, and a smoothed and soft label is
defined as yLS := (1 − a) · ỹ + a

m · 1, where a ∈ [0, 1]
is a smoothing parameter. That is, yLS is defined as a lin-
ear combination of the noisy label ỹ and an uninformative
and uniform label vector 1. Then each instance x will be
evaluated using yLS: y>LS · `(h(x)).

Though label smoothing has shown promising advantages
over loss correction, there are few theoretical understandings
of why so, except for its high-level idea of being “conserva-
tive" when handling noisy labels.

4.3. Peer loss

Peer loss (Liu & Guo, 2020) is a different line of solution
that promotes the use of multiple instances simultaneously
while evaluating a particular noisy instance (x, ỹ). A salient

feature of peer loss is that the implementation of it does not
require the knowledge of T (x). The definition for peer loss
has the following key steps:

• For each (x, ỹ) we aim to evaluate, randomly drawn two
other sample indices p1, p2 ∈ [n].

• Pair xp1 with ỹp2 , define peer loss:

`PL(h(x), ỹ) := `(h(x), ỹ)− `(h(xp1), ỹp2). (8)

When T (x) ≡ T , it was proved in (Liu & Guo, 2020) that
for binary classification with equal label prior, when ` is the
0-1 loss, minimizing peer loss returns the same minimizer
of E[`(h(x), y)] on the clean distribution.

4.4. Memorization paradox

Some of the above approaches have established strong the-
oretical guarantees of recovering the optimal classifier in
expectation when using only noisy training labels (Natara-
jan et al., 2013; Liu & Guo, 2020; Ma et al., 2020). Why
would we need a different understanding? First of all, most
theoretical results assumed away the outstanding challenges
of having an unknown number and distribution of noise rate
matrix T (x) (either needed for estimation purpose or for
handling them implicitly) and focused on a single transition
matrix T . Secondly, the existing error analysis often focuses
on the distribution level, while we would like to zoom in to
each instance that occurs with a different frequency.

In addition, we now highlight a paradox introduced by a
commonly made assumption that the noisy labels and the
model’s prediction t are conditionally independent given
true label y: P[t, ỹ|y] = P[t|y] · P[ỹ|y], or that t is simply
deterministic that it does not encode the information of ỹ.
This assumption is often needed when evaluating the ex-
pected generalization error under noisy distributions. The
independence can be justified by modeling ỹ as being con-
ditionally independent of feature x, which the prediction t
is primarily based on.

Let’s take loss correction for an example. For a clear
demonstration, let’s focus on the binary case y ∈ {−1,+1}.
Consider a particular x, define e−(x) := P[ỹ = +1|y =
−1, x], e+(x) := P[ỹ = −1|y = +1, x] and T (x):

T (x) :=

[
1− e−(x) e−(x)
e+(x) 1− e+(x)

]
(9)

Easy to verify its inverse is:

T−1(x) =
1

1− e+(x)− e−(x)

[
1− e+(x) −e−(x)
−e+(x) 1− e−(x)

]
(10)

For the rest of this section, without confusion, let’s short-
hand e+(x), e−(x) as e+, e−. Then loss correction (Eqn.
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(7)) takes the following form:

`LC(h(x),−1) =
(1− e+) · `(h(x),−1)− e− · `(h(x),+1)

1− e+ − e−

`LC(h(x),+1) =
(1− e−) · `(h(x),+1)− e+ · `(h(x),−1)

1− e+ − e−

Consider the case with true label y = +1. The following
argument establishes the unbiasedness of `LC (reproduced
from Natarajan et al. (2013), with replacing and instantiating
a prediction t with h(x)):

Eỹ|y=+1[`LC(h(x), ỹ)]

= (1− e+) · `LC(h(x),+1) + e+ · `LC(h(x),−1)

= (1− e+)
(1− e+) · `(h(x),−1)− e− · `(h(x),+1)

1− e+ − e−

+ e+
(1− e−) · `(h(x),+1)− e+ · `(h(x),−1)

1− e+ − e−
= `(h(x),+1) = `(h(x), y = +1) ,

That is the conditional expectation of `LC(h(x), ỹ) recovers
the true loss `(h(x), y). Nonetheless, the first equality as-
sumed the conditional independence between h and ỹ, given
y. When h is output from a deep neural network and memo-
rizes all noisy labels ỹ, the above independence condition
can be challenged. As a consequence, it is unclear whether
the classifiers that fully memorize the noisy labels would
result in a lower empirical loss during training. We call the
above observation the memorization paradox. We conjec-
ture that this paradox leads to inconsistencies in previously
observed empirical evidence, especially when training a
deep neural network solution that memorizes labels well. In
the next section, we will offer new explanations for how the
proposed solutions actually fared when the trained neural
network is able to memorize the examples.

5. How Do Solutions Fare at Instance Level?
In this section, we revisit how the above solutions offer
fixes at the instance level and under what conditions they
might fail to work. Unless stated otherwise, throughout the
section, we focus on a particular instance x ∈ XS=l with
true label y and l corresponding noisy labels ỹ’s, one for
each appearance. With limited space, the goal is to provide
a template for carrying out further analysis for methods that
are of individual interest. The three presented approaches
were selected carefully as representatives for:

• Mainstream approaches (loss correction, label correction,
loss reweighting etc) that use noise transition matrix T
(loss correction in this paper).

• Robust losses that regularize against noisy outliers (label
smoothing in this paper).

• More recent approaches that do not require the noise

transition matrix (peer loss in this paper).

5.1. Loss correction

We start with loss correction and notice that the loss correc-
tion step is equivalent to the following “label correction"
3 procedure. Denote by P(ỹ) := [P[ỹ = k|x]]k∈Y the vec-
tor form of the distribution of noisy label ỹ, and y as the
vector form of one-hot encoding of the true label y. As
assumed earlier, the generation of noisy label ỹ follows:
P(ỹ) := T>(x) · y. When T (x) is invertible (commonly
assumed), we will have y = (T−1(x))> · P(ỹ), that is
when P(ỹ) is the true and exact posterior distribution of
ỹ, (T−1(x))> · P(ỹ) recovers y. Based on the above ob-
servation, easily we can show that (using linearity of ex-
pectation) loss correction effectively pushed h to memorize
(T−1(x))> · P(ỹ) = y, i.e. the clean label:

Eỹ|y[ỹ> · `LC(h(x))]

=Eỹ|y[ỹ> · T−1(x) · `(h(x))]

=Ey′∼(T−1(x))>·P(ỹ)

[
(y′)> · `(h(x))

]
=y> · `(h(x)) (11)

That is loss correction encourages h to memorize the true
label y, therefore reducing P[h(x) 6= y] to 0 to improve
generalization.

The above is a clean case with accessing P(ỹ), the exact
noisy label distribution, which differs from the empirical
noisy label distribution P̃[ỹ = k|x] that a deep neural net-
work can access and memorize. This is mainly due to the
limited number, l, of noisy labels for an x ∈ XS=l. Denote
by P̃(ỹ) the vector form of P̃[ỹ = k|x]. Let yLC be the
“corrected label" following from the distribution defined by
(T−1(x))> · P̃(ỹ):

Corrected Label: yLC = (T−1(x))> · P̃(ỹ).

Denote by x(1), ..., x(l) the l appearance of x, and
ỹ(1), ..., ỹ(l) the corresponding noisy labels. Similar to
Eqn. (11) we can show that:

1

l

l∑
i=1

ỹ>(i) · `LC(h(x))

=EP̃(ỹ)[ỹ
> · T−1(x) · `(h(x))]

=y>LC · `(h(x)) (12)

That is, the empirical loss for x with loss correction is equiv-
alent with training using yLC! Next we will focus on the
binary case: T (x) is fully characterized and determined
by e+(x), e−(x) (Eqn. 9). We will follow the assumption
made in the literature that e+(x) + e−(x) < 1 (noisy labels

3Please note that our “ label correction" definition differs from
the existing ones in the literature.



Understanding Instance-Level Label Noise: Disparate Impacts and Treatments

are at least positively correlating with the true label). Easy
to prove that the two entries of yLC add up to 14:
Lemma 2. yLC[1] + yLC[2] = 1.

However, it is possible that (T−1(x))> · P̃(ỹ) is not a valid
probability measure, in which case we will simply cap yLC
at either [1; 0] or [0; 1]. Denote by yLC the random variable
drawn according to yLC. We again call h memorizing yLC if
P[h(x) = k] = P[yLC = k|x], ∀k ∈ Y . Let’s simplify our
argument by assuming the following equivalence:
Assumption 1. The trained model h using loss correction
(minimizing Eqn. (12)) is able to memorize yLC.

The first message we are ready to send is: For an x with
large l, with high probability, loss correction returns
smaller generalization error than memorizing noisy la-
bels. Denote by sgn(y) the sign function of y. For
x ∈ XS=l, consider a non-trivial case that P̃[ỹ 6= y|x] > 05:
Theorem 7. For an x ∈ XS=l with true label y, w.p. at
least 1− e−2l(1/2−esgn(y)(x))2 , h memorizing yLC returns a
lower error P[h(x) 6= y] than memorizing the noisy label
s.t. P[h(x) = k] = P̃[ỹ = k|x].

The above theorem implies when l ≥ log 1/δ

2( 1
2−e+(x))

2 , memo-

rizing yLC improves the excessive generalization error with
probability at least 1− δ. As a corollary of Theorem 7:
Corollary 1. For an x ∈ XS=l with true label y, w.p. at
least 1 − e−2l( 1

2−esgn(y)(x))
2

, performing loss correction
for x ∈ XS=l improves the excessive generalization error
err+l (P,A, x|S) by

Ω

(
l2

n2
· weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

]))
The above corollary is easily true due to definition of
err+l (P,A, x|S), Theorem 6 & 7, as well as Assumption 1.

Our next message is: For an xwith small l, loss correction
fails with a substantial probability. Denote by DKL( 1

2‖e)
the Kullback-Leibler distance between two Bernoulli 0/1
random variables of parameter 1/2 and e. Consider a non-
trivial case that P̃[ỹ 6= y|x] < 1, we prove:
Theorem 8. For an x ∈ XS=l with true label y, w.p. at
least 1√

2l
· e−l·DKL( 1

2‖esgn(y)(x)), h memorizing yLC returns
a higher error P[h(x) 6= y] than memorizing noisy label ỹ.

When l is small, the reported probability in Theorem 8 is

a non-trivial one. Particularly, when l ≤
log 1√

2δ

DKL( 1
2‖esgn(y)(x))

,
with probability at least δ, memorizing yLC (or performing
loss correction) leads to worse generalization power.

4For binary labels {−1,+1}, the first entry of the vectors
corresponds to −1 (yLC[1]), the second for +1 (yLC[2]).

5For trivial cases, our claims would simply be that loss correc-
tion performs equally well since the memorizing the noisy label is
already equivalent with memorizing the true label.

5.2. Label smoothing

Denote by yLS the “soft label" for the distribution vector
yLS, and again we call h memorizing yLS if P[h(x) = k] =
P̃[yLS = k|x], ∀k ∈ Y - P̃[yLS = k|x] denotes the empirical
distribution for yLS (empirical average of the soft label yLS):

P̃[yLS = k|x] = (1− a) · P̃[ỹ = k|x] +
a

m
. (13)

Consider the binary classification case. Denote the follow-
ing event: E+ := {P̃[ỹ = +1|x] > P̃[ỹ = −1|x]} and Ē+
denotes the opposite event P̃[ỹ = +1|x] < P̃[ỹ = −1|x].
For a non-trivial case P̃[ỹ 6= y|x] ∈ (0, 1):
Theorem 9. For an x ∈ XS=l with true label y = +1,
when E+ happens, h memorizing the smooth label yLS leads
to a higher error P[h(x) 6= y] than memorizing corrected
label yLC. When Ē+ happens, h memorizing yLS has a
lower error P[h(x) 6= y] than memorizing yLC.

Similar result can be proved for the case with y = −1
but we will not repeat the details. Repeating the proofs
for Theorem 8, we can similarly show that when l is
small, there is a substantial probability that Ē+ will happen(
≥ 1√

2l
· e−l·DKL( 1

2‖esgn(y)(x))
)

, therefore label smoothing
returns a better generalization power than loss correction.
Intuitively, consider the extreme case with l = 1, and label
smoothing has a certain correction power even when this
single noisy label is wrong. On the other hand, loss cor-
rection (and yLC) would memorize this single noisy label
for x. We view label smoothing as a safe way to perform
label correction when l is small, and when the noise rate is
excessively high such that P[Ē+] > P[E+].

5.3. Peer loss

The first message we send for peer loss is that: For an x
with larger l, peer loss extremizes h’s prediction to the
correct label with high probability. We first show that
peer loss explicitly regularizes h from memorizing noisy
labels. We use the cross-entropy loss for ` in `PL (Eqn. (8)).
Lemma 3. Denote by Q(x, ỹ) the joint distribution of h(x)
and ỹ, P(x),P(ỹ) the marginals of x, ỹ, taking expectation
of `PL over the training data distribution P(x, ỹ), one finds:

EP
[
`PL(h(x),ỹ)

]
= DKL(Q(x, ỹ)‖P(x, ỹ))

−DKL(Q(x, ỹ)‖P(x)× P(ỹ)). (14)

In above we use the standard notation DKL for KL-
divergence between two distributions. While mini-
mizing DKL(Q(x, ỹ)‖P(x, ỹ)) encourages h to repro-
duce P(x, ỹ) (the noisy distribution), the second term
DKL(Q(x, ỹ)‖P(x)×P(ỹ)) discourages h from doing so by
incentivizing h to predict a distribution that is independent
from ỹ! This regularization power helps lead the training to
generate more confident predictions, per a recent result:
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Theorem 10. [(Cheng et al., 2020a)] When minimizing
E [`PL(h(x), ỹ)], solutions satisfying P[h(x) = k] >
0, ∀k ∈ Y are not optimal.

In the case of binary classification, the above theorem im-
plies that we must have either P[h(x) = +1] → 1 or
P[h(x) = −1] → 1. We provide an illustration of this
effect in Figure 4. In sharp contrast to Figure 2, the decision
boundaries returned by training using peer loss remain tight,
despite high presence of label noise.

Figure 4. 2D example with peer loss: 20%, 40% random noise.

Now the question left is: is pushing to confident predic-
tion in the right direction of correcting label noise? If
yes, peer loss seems to be achieving the same effect as
the loss correction approach, without knowing or using
T (x). Consider the binary classification case. To simplify
our analysis, let’s consider only a class-dependent noise
setting that e+(x) ≡ e+, e−(x) ≡ e−. This simplification
is needed due to the fact that the definition of peer loss
requires drawing a global and random “peer sample". Tech-
nically we can revise peer loss to use “peer samples" that
are similar enough so that they will likely to have the same
e+(x), e−(x). Denote the priors of the entire distribution by
p+ := Py′∈F|S [y′ = +1] > 0, p− := Py′∈F|S [y′ = −1] >
0. When n is sufficiently large, we prove:

Theorem 11. For an x ∈ XS=l with true label y, w.p. at

least 1− e
−2l

p2
sgn(−y)·(1−e+−e−)2 , predicting P[h(x) = y] = 1

leads to smaller training loss in `PL (with `=CE loss).

Using above theorem and Theorem 6, consider a non-trivial
case P̃[ỹ 6= y|x] > 0 we have:

Corollary 2. For an x ∈ XS=l with true label y,

w.p. at least 1 − e

−2l

p2
sgn(−y)·(1−e+−e−)2 , training using

`PL improves the individual excessive generalization error
err+l (P,A, x|S) by:

Ω

 l2

n2
weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

])
·
∑
k 6=y

P̃[ỹ = k|x]


Both peer loss and loss correction implicitly use the poste-
rior distribution of noisy labels to hopefully extremize h(x)
to the correct direction. The difference is peer loss extrem-
izes even more (P[h(x) = k] → 1 for some k) when it is

confident. Therefore, when there is sufficient information
(i.e., l being large), peer loss tends to perform better than
loss correction which needs explicit knowledge of the true
transition matrix and performs a precise and exact bias cor-
rection step. This is also noted empirically in (Liu & Guo,
2020), and our results provide the theoretical justifications.

Similar to Theorem 8, when l is small, the power of peer
loss does seem to drop: For an x with small l, peer loss
extremizes h’s prediction to the wrong label with a sub-
stantial probability. Formally,
Theorem 12. For an x ∈ XS=l with true label y, w.p. at
least 1√

2l
e−l·DKL( 1

2‖esgn(y)), predicting P[h(x) = −y] = 1

leads to smaller training loss in `PL.

For a non-trivial case that P̃[ỹ 6= y|x] < 1, this implies
higher prediction error than memorizing the noisy labels.

6. Takeaways and Conclusion
We studied the impact of a model memorizing noisy labels.
This paper proved the disparate impact of noisy labels at
the instance level, and then the fact that existing treatments
can often lead to disparate outcomes, with low-frequency
instances being more likely to be mistreated. This observa-
tion is particularly concerning when a societal application is
considered, and the low-frequency examples are drawn from
a historically disadvantaged population (thus low presence
in data). Specifically:

Frequent instance While high-frequent instances (large l)
have a higher impact on the generalization bound, and miss-
classifying one such example would be more costly, our
analysis shows that due to the existence of a good number
of noisy labels, existing approaches can often counter the
negative effects with high probability.

Long-tail instance For a rare instance x with small l, while
missing it would incur a much smaller penalty in general-
ization, still, its impact is non-negligible. Moreover, due
to the severely limited label information, we find the noise
correction approaches would have a substantial probability
of failing to correct such cases.

The above observations require us to rethink the distribution
of label noise across instances and might potentially require
different treatments for instances in different regimes.
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Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio,

E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., et al. A closer look at memorization in
deep networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 233–
242. JMLR. org, 2017.

Ash, R. Information theory. Dover, 1990.

Charoenphakdee, N., Lee, J., and Sugiyama, M. On sym-
metric losses for learning from corrupted labels. In Inter-
national Conference on Machine Learning, pp. 961–970,
2019.

Chen, P., Liao, B. B., Chen, G., and Zhang, S. Understand-
ing and utilizing deep neural networks trained with noisy
labels. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1062–1070. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/
v97/chen19g.html.

Cheng, H., Zhu, Z., Li, X., Gong, Y., Sun, X., and Liu, Y.
Learning with instance-dependent label noise: A sample
sieve approach. arXiv preprint arXiv:2010.02347, 2020a.

Cheng, J., Liu, T., Ramamohanarao, K., and Tao, D. Learn-
ing with bounded instance-and label-dependent label
noise. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML ’20, 2020b.

Feldman, V. Does learning require memorization? a short
tale about a long tail. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pp.
954–959, 2020.

Feldman, V. and Zhang, C. What neural networks mem-
orize and why: Discovering the long tail via influence
estimation. NeurIPS, 2020.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I.,
and Sugiyama, M. Co-teaching: Robust training of deep
neural networks with extremely noisy labels. In Advances
in neural information processing systems, pp. 8527–8537,
2018.

Han, B., Niu, G., Yu, X., Yao, Q., Xu, M., Tsang, I., and
Sugiyama, M. Sigua: Forgetting may make learning with
noisy labels more robust. In International Conference on
Machine Learning, pp. 4006–4016. PMLR, 2020.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L.
Mentornet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. arXiv preprint
arXiv:1712.05055, 2017.

Jiang, L., Huang, D., Liu, M., and Yang, W. Beyond syn-
thetic noise: Deep learning on controlled noisy labels.
In International Conference on Machine Learning, pp.
4804–4815. PMLR, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Li, X., Liu, T., Han, B., Niu, G., and Sugiyama, M. Provably
end-to-end label-noise learning without anchor points.
arXiv preprint arXiv:2102.02400, 2021.

Liu, Q., Peng, J., and Ihler, A. T. Variational inference for
crowdsourcing. Advances in neural information process-
ing systems, 25:692–700, 2012.

Liu, T. and Tao, D. Classification with noisy labels by
importance reweighting. IEEE Transactions on pattern
analysis and machine intelligence, 38(3):447–461, 2016.

Liu, Y. and Guo, H. Peer loss functions: Learning from
noisy labels without knowing noise rates. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML ’20, 2020.

Lukasik, M., Bhojanapalli, S., Menon, A. K., and Kumar,
S. Does label smoothing mitigate label noise? arXiv
preprint arXiv:2003.02819, 2020.

Ma, X., Huang, H., Wang, Y., Romano, S., Erfani, S., and
Bailey, J. Normalized loss functions for deep learning
with noisy labels. In International Conference on Ma-
chine Learning, pp. 6543–6553. PMLR, 2020.

Menon, A., Van Rooyen, B., Ong, C. S., and Williamson,
B. Learning from corrupted binary labels via class-
probability estimation. In International Conference on
Machine Learning, pp. 125–134, 2015.

Menon, A. K., Rawat, A. S., Reddi, S. J., and Kumar, S. Can
gradient clipping mitigate label noise? In International
Conference on Learning Representations, 2019.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In Advances in Neural Information
Processing Systems, pp. 4694–4703, 2019.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. In Advances in neural
information processing systems, pp. 1196–1204, 2013.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro,
N. Exploring generalization in deep learning. In Advances
in neural information processing systems, pp. 5947–5956,
2017.

http://proceedings.mlr.press/v97/chen19g.html
http://proceedings.mlr.press/v97/chen19g.html


Understanding Instance-Level Label Noise: Disparate Impacts and Treatments

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and
Qu, L. Making deep neural networks robust to label noise:
A loss correction approach. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July
2017.

Song, H., Kim, M., Park, D., and Lee, J.-G. Prestopping:
How does early stopping help generalization against label
noise? 2020.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J.
Symmetric cross entropy for robust learning with noisy
labels. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 322–330, 2019.

Wei, H., Feng, L., Chen, X., and An, B. Combating noisy
labels by agreement: A joint training method with co-
regularization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
13726–13735, 2020.

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and
Sugiyama, M. Are anchor points really indispensable in
label-noise learning? arXiv preprint arXiv:1906.00189,
2019.

Xia, X., Liu, T., Han, B., Wang, N., Gong, M., Liu, H., Niu,
G., Tao, D., and Sugiyama, M. Parts-dependent label
noise: Towards instance-dependent label noise. arXiv
preprint arXiv:2006.07836, 2020.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. Learn-
ing from massive noisy labeled data for image classifica-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2691–2699, 2015.

Yao, Q., Yang, H., Han, B., Niu, G., and Kwok, J. T. Search-
ing to exploit memorization effect in learning with noisy
labels. In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML ’20, 2020a.

Yao, Y., Liu, T., Han, B., Gong, M., Deng, J., Niu, G., and
Sugiyama, M. Dual t: Reducing estimation error for
transition matrix in label-noise learning. arXiv preprint
arXiv:2006.07805, 2020b.

Yu, X., Han, B., Yao, J., Niu, G., Tsang, I. W., and
Sugiyama, M. How does disagreement help gener-
alization against label corruption? arXiv preprint
arXiv:1901.04215, 2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhang, Y., Niu, G., and Sugiyama, M. Learning noise
transition matrix from only noisy labels via total variation
regularization. arXiv preprint arXiv:2102.02414, 2021.

Zhang, Z. and Sabuncu, M. Generalized cross entropy loss
for training deep neural networks with noisy labels. In
Advances in neural information processing systems, pp.
8778–8788, 2018.

Zhu, X., Anguelov, D., and Ramanan, D. Capturing long-
tail distributions of object subcategories. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 915–922, 2014.

Zhu, Z., Liu, T., and Liu, Y. A second-order approach
to learning with instance-dependent label noise. CVPR,
2021a.

Zhu, Z., Song, Y., and Liu, Y. Clusterability as an alternative
to anchor points when learning with noisy labels. ICML,
2021b.




