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Braids groups and mapping class groups:
The Birman—Hilden theory

Dan Margalit and Rebecca R. Winarski

ABSTRACT

In the 1970s, Joan Birman and Hugh Hilden wrote several papers on the problem of relating
the mapping class group of a surface to that of a covering space. Their results provide a bridge
between the theories of mapping class groups and braid groups. We survey the work of Birman
and Hilden, give an overview of the subsequent developments, and discuss open questions and
new directions.

1. Introduction

In the early 1970s, Birman and Hilden wrote a series of now-classic papers that give a dictionary
between the theories of braid groups and mapping class groups. Their work has resulted in a
fruitful flow of ideas between the two theories, in both directions. Before describing their work,
we introduce braid groups and mapping class groups and discuss some of their connections to
other areas of mathematics.

Braid groups. The braid group on n strands is the fundamental group of the space of
(unordered) configurations of n points in the unit disk D?. We may think of an element of the
braid group as a motion of n points in D?. By tracing out the paths of the points over time in
D? x [0,1] (the [0,1] factor corresponds to time), we obtain a picture of a braid as follows:

The braid group was originally defined by Artin [3] in 1925 (in a slightly different way).

Braid groups are ubiquitous in mathematics and science because they encode the salient
features of any motion of points in the plane. The points in question can be, for example, roots
of polynomials in the complex plane, physical particles in a two-dimensional medium, or robots
moving on a factory floor. As such, braid groups play an important role in algebraic geometry,
physics, and robotics, as well as homotopy groups of spheres, operator algebras, and dynamics,
to name a few; see the comprehensive survey by Birman and Brendle [12].
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Mapping class groups. In this paper, we consider orientable surfaces, each with a (possibly
empty) set of marked points. The closed, orientable surface of genus g with n marked points
is denoted by S, ,, or Sy (when n = 0).

The mapping class group of any such surface is the group of homotopy classes of orientation-
preserving homeomorphisms that fix the boundary pointwise and that preserve the set of
marked points (homotopies must also fix the boundary and preserve the set of marked points).

The mapping class group is of central importance in mathematics. The group Mod(S,), for
example, has the following interpretations.

o It describes the orbifold fundamental group of moduli space M,.
e It classifies all surface bundles with fiber S,.
e It is isomorphic to the outer automorphism group of m;(.Sy).

The mapping class group was first studied by Dehn [23] in 1922. See the book by Farb and
the first author for an introduction to mapping class groups [29].

There is an immediate connection between braid groups and mapping class groups, as the
braid group is isomorphic to the mapping class group of the closed disk with n marked points
[29, Theorem 9.1]. Still the two are considered as separate theories, each with their own
specialized sets of tools and techniques. The Birman—Hilden theory uses covering spaces to
build a bridge between these two theories.

Birman and Hilden. The initial motivation for the work of Birman and Hilden was to find
a group presentation for Mod(Ss). (It was not until the late 1970s that Hatcher and Thurston
[35] developed an approach for finding explicit presentations for mapping class groups.) In
solving this problem, their key innovation was to relate Mod(S3) to the mapping class group
of So,6, a sphere with six marked points. Presentations for Mod(Sy¢) were already known
since that group is closely related to a braid group, and presentations for the latter had been
well studied.

Specifically, the surfaces Sy and Sy are related by a twofold branched covering map (see
Section 2 for the definitions):

'

The six marked points in the base surface Sy g are branch points. The deck transformation is
called the hyperelliptic involution of S2, and we denote it by ¢. Every element of Mod(S2) has
a representative that commutes with ¢ (see Section 4), and so it follows that there is a map

O: MOd(SQ) — MOd(SOG)

The kernel of © is the cyclic group of order two generated by (the homotopy class of) the
involution ¢. One can check that each generator for Mod(Sp¢) lifts to Mod(S2) and so © is
surjective. From this, we have a short exact sequence

1= (1) = Mod(S5) 3 Mod(Sp,6) — 1,

and hence a presentation for Mod(Sp ) can be lifted to a presentation for Mod(Ss).
But wait! The map © is not a priori well defined. More specifically, the problem is that
elements of Mod(S2) are only defined up to isotopy, and these isotopies are not required to



BRAIDS GROUPS AND MAPPING CLASS GROUPS 645

respect the hyperelliptic involution. The first paper by Birman and Hilden proves that in fact all
isotopies can be chosen to respect the involution. Birman and Hilden realized that the theory
initiated in that first paper can be generalized in various ways, and they wrote a series of
papers on the subject, culminating in the paper On Isotopies of Homeomorphisms of Riemann
Surfaces [17], published in Annals of Mathematics in 1973.

In the remainder of this article, we will give a historical account of the Birman—-Hilden theory,
from the original work of Birman and Hilden to the generalizations by Maclachlan-Harvey and
the second author of this article. We then give several applications of the theory, explain
three proof strategies for Birman—Hilden-type results, and discuss various open questions and
new directions in the theory. As we will see, the Birman—Hilden theory has had influence on
many areas of mathematics, from low-dimensional topology, to geometric group theory, to
representation theory, to algebraic geometry and more, and it continues to produce interesting
open problems and research directions.

2. Statements of the main theorem

A map of surface p : S — X is a branched covering map if there is a finite set B C X so that
the restriction S\ p~!(B) — X \ B is a covering map. We say that p is unbranched if B can
be taken to be the empty set, that is, if p is itself a covering map.

We say that the branched covering map p has degree d if the corresponding covering map
does. In this case, a point of X with fewer than d preimages is called a branch point for p. The
set of branch points is contained in B, and moreover the set of branch points is the smallest
set B with the property that S\ p~!(B) — X \ B is a covering map.

The degree of the branched covering map p is defined to be the degree of the corresponding
covering map. The branched covering map p is said to be regular if the corresponding covering
map is. We say that p is cyclic or solvable if the deck group of the corresponding covering map
is cyclic or solvable, respectively.

Let p: S — X be a covering map of surfaces, possibly branched, possibly with boundary. We
say that f: S — S is fiber preserving if for each x € X there is a y € X so that f(p~!(z)) =
p~1(y); in other words, as the terminology suggests, f takes fibers to fibers.

Given two homotopic fiber-preserving homeomorphisms of S, we can ask if they are
homotopic through fiber-preserving homeomorphisms. If the answer is yes for all such pairs
of homeomorphisms, we say that the covering map p has the Birman—Hilden property.
An equivalent formulation of the Birman-Hilden property is whenever a fiber-preserving
homeomorphism is homotopic to the identity, it is homotopic to the identity through
fiber-preserving homeomorphisms.

We are now ready to state the main theorems of the Birman-Hilden theory. There are
several versions, proved over the years by various authors, each generalizing the previous.
The first version is the one that appears in the aforementioned Annals of Mathematics paper
[17] by Birman and Hilden and also in the accompanying research announcement Isotopies of
Homeomorphisms of Riemann surfaces [15]. Throughout, we will say that a surface is hyperbolic
if its Euler characteristic is negative.

THEOREM 2.1 (Birman—Hilden). Letp : S — X be a finite-sheeted regular branched covering
map where S is a hyperbolic surface. Assume that p is either unbranched or is solvable. Then
p has the Birman—Hilden property.

If we apply Theorem 2.1 to the branched covering map S» — Sy ¢ described earlier, then it
exactly says that the map © : Mod(S2) — Mod(Sy ) is well defined.

It is worthwhile to compare our Theorem 2.1 to what is actually stated by Birman and Hilden.
In their paper, they state two theorems, each of which is a special case of Theorem 2.1. Their
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Theorem 1 treats the case of regular covers where each deck transformation fixes each preimage
of each branch point in X . This clearly takes care of the case of unbranched covers, and also the
case of certain solvable branched covers (on one hand a finite group of homeomorphisms of a
surface that fixes a point must be a subgroup of a dihedral group, and on the other hand there
are solvable — even cyclic — branched covers that do not satisfy the condition of Theorem 1).
Birman and Hilden’s Theorem 2 deals with the general case of solvable covers, which includes
some unbranched covers.

In early 1973, Maclachlan and Harvey [47] published a paper called On Mapping Class
Groups and Teichmiiller Spaces, in which they give the following generalization of Theorem 2.1.

THEOREM 2.2 (Maclachlan-Harvey). Let p: S — X be a finite-sheeted regular branched
covering map where S is a hyperbolic surface. Then p has the Birman—Hilden property.

Maclachlan and Harvey’s work was contemporaneous with the work of Birman and Hilden
cited in Theorem 2.1, and was subsequent to the original paper by Birman and Hilden on
the hyperelliptic case. Their approach is completely different, and is framed in terms of
Teichmiiller theory.

The 2014 PhD thesis of the second author of this article is a further generalization [56].
For the statement, a preimage of a branch point is unramified if some small neighborhood is
mapped injectively under the covering map, and a cover is fully ramified if no branch point
has an unramified preimage.

THEOREM 2.3 (Winarski). Let p: S — X be a finite-sheeted branched covering map
where S is a hyperbolic surface, and suppose that p is fully ramified. Then p has the
Birman—Hilden property.

Note that all regular covers are fully ramified and also that all unbranched covers are fully
ramified. Thus Theorem 2.3 indeed implies Theorems 2.1 and 2.2. In Section 2.3 of her paper,
Winarski gives a general construction of irregular branched covers that are fully ramified. Thus
there are many examples of covering spaces that satisfy the hypotheses of Theorem 2.3 but
not those of Theorem 2.2.

We will briefly remark on the assumption that S is hyperbolic. It is not hard to construct
counterexamples in the other cases. For instance, suppose S is the torus 72 and p: S — X
is the branched covering map corresponding to the hyperelliptic involution of T2. In this
case, X is the sphere with four marked points. Rotation of T2 by 7 in one S'-factor is a
fiber-preserving homeomorphism homotopic to the identity, but the induced homeomorphism
of X acts nontrivially on the marked points and hence is not homotopic to the identity.
Thus this cover fails the Birman—Hilden property. One can construct a similar example when
S is the sphere S? and p:S? — X is the branched covering map induced by a finite-orde
rotation.

3. Restatement of the main theorem

We will now give an interpretation of the Birman—Hilden property — hence all three theorems
above — in terms of mapping class groups.

Let p: S — X be a branched covering map of surfaces. We treat each branch point in X
as a marked point, and so homeomorphisms of X are assumed to preserve the set of branch
points. Let LMod(X) denote the subgroup of the mapping class group Mod(X) consisting of
all elements that have representatives that lift to homeomorphisms of S. This group is called
the liftable mapping class group of X.
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Let SMod(S) denote the subgroup of Mod(S) consisting of the homotopy classes of all
fiber-preserving homeomorphisms. Here we emphasize that two homeomorphisms of S are
identified in SMod(S) if they differ by an isotopy that is not necessarily fiber preserving (so
that we have a subgroup of Mod(S)). We also emphasize that preimages of branch points are
not marked. Fiber-preserving homeomorphisms are also called symmetric homeomorphisms;
these are exactly the lifts of liftable homeomorphisms of X. The group SMod(S) is called the
symmetric mapping class group of S.

Let D denote the subgroup of SMod(S) consisting of the homotopy classes of the deck
transformations (it is a fact that nontrivial deck transformations represent nontrivial mapping
classes).

PRrROPOSITION 3.1. Let p: S — X be a finite-sheeted branched covering map where S is a
hyperbolic surface without boundary. Then the following are equivalent.

p has the Birman—Hilden property.

The natural map LMod(X) — SMod(S)/D is injective.
The natural map SMod(S) — LMod(X) is well defined.
SMod(S)/D = LMod(X).

The proposition is straightforward to prove. The main content is the equivalence of the first
two statements. The other statements, while useful in practice, are equivalent by rudimentary
abstract algebra. Using the proposition, one obtains several restatements of Theorems 2.1-2.3
in terms of mapping class groups.

Birman and Hilden also proved that for a regular cover SMod(.S) is the normalizer in Mod(.S)
of the deck group D (regarded as a subgroup of Mod(S5)), and so we can also write the last
statement in Proposition 3.1 as

Nuiod(s)(D)/D = LMod(X).

Birman and Hilden only stated the result about normalizers in the case where the deck group
is cyclic. However, by combining their argument with Kerckhoff’s resolution of the Nielsen
realization problem [41], one obtains the more general version.

There is also a version of Proposition 3.1 for surfaces with boundary. Since the mapping class
group of a surface with boundary is torsion free, the deck transformations do not represent
elements of Mod(S,). And so in this case, we can simply replace D with the trivial group.
For example, in the presence of boundary the Birman—Hilden property is equivalent to the
statement that SMod(S) = LMod(X). This will become especially important in the discussion
of braid groups below.

4. Application to presentations of mapping class groups

The original work on the Birman—Hilden theory concerns the case of the hyperelliptic involution
and is reported in the 1971 paper On the mapping class groups of closed surfaces as covering
spaces [14]. We will explain how Theorem 2.1 specializes in this case and helps to give
presentations for the associated symmetric mapping class group and the full mapping class
group in genus two.

Consider the covering space S; — Sp24+2 induced by a hyperelliptic involution of Sy. In
general, a hyperelliptic involution of S, is a homeomorphism of order two that acts by —I on
H,(Sy;Z); we remark that the hyperelliptic involution is unique up to homotopy for S; and
Sy but there are infinitely many distinct hyperelliptic involutions of S; when g > 3.

Theorem 2.1 and Proposition 3.1 give an isomorphism

SMod(Sy) /() = LMod(So,29+2)-
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In the special case of the hyperelliptic involution, we have LMod (5o 24+2) = Mod(Sp 24+2)-
Indeed, we can check directly that each half-twist generator for Mod (5o 24+2) lifts to a Dehn
twist in S,.

In the case g = 2, we further have

SMOd(Sg) = MOd(Sg)

In other words, every mapping class of Sy is symmetric with respect to the hyperelliptic
involution. The easiest way to see this is to note that each of the Humphries generators for
Mod(Ss) is a Dehn twist about a curve that is preserved by the hyperelliptic involution. We
thus have the following isomorphism:

MOd(SQ)/<L> = MOd(SO76).

Simple presentations for Mod(Sy ,,) were found by Magnus, and so from his presentation for
Mod(Sp,6) Birman and Hilden use the above isomorphism to derive the following presentation
for Mod(S5). The generators are the Humphries generators for Mod(S2), and we denote them
by T1,...,T5. The relations are:

(T3, T] =1 for |i — j| > 2

LT =T T T for 1 <7<4
(T T3TyTs) = 1
(T T T Ty Ts Ts Ty T3 ToTh ) = 1
(VT T3 Ty T Ts Ty T3 To Ty, Ty ] = 1.

The first two relations are the standard braid relations from Bg, the next relation describes the
kernel of the map Bs — Mod(Sp ), and the last two relations come from the two-fold cover:
the mapping class

T T3y T5T5 Ty T3 15T

is the hyperelliptic involution. This presentation is the culmination of a program begun
by Bergau and Mennicke [7], who approached the problem by studying the surjective
homomorphism Bs — Mod(S2) that factors through the map Mod(Sy,¢) — Mod(S2) used here.

Birman used the above presentation to give a normal form for elements of Mod(S2) and
hence a method for enumerating 3-manifolds of Heegaard genus two [11].

As explained by Birman and Hilden, the given presentation for Mod(S3) generalizes to a
presentation for SMod(S,). The latter presentation has many applications to the study of
SMod(S,). It was used by Meyer [50] to show that if a surface bundle over a surface has
monodromy in SMod(S,), then the signature of the resulting 4-manifold is zero; see also the
related work of Endo [27]. Endo and Kotschick used the Birman—Hilden presentation to show
that the second bounded cohomology of SMod(S,) is nontrivial [28]. Also, Kawazumi [40] used
it to understand the low-dimensional cohomology of SMod(S,).

In 1972, Birman and Chillingworth published the paper On the homeotopy group of a
nonorientable surface [13]. There, they determine a generating set for the mapping class group
(= homeotopy group) of an arbitrary closed nonorientable surface using similar ideas, namely,
they exploit the associated orientation double cover and pass information through the Birman—
Hilden theorem from the orientable case. They also find an explicit finite presentation for the
mapping class group of a closed nonorientable surface of genus three, which admits a degree
two cover by So.

One other observation from the 1971 paper is that Mod(Ss2) is both a quotient of and a
subgroup of Mod(S36). To realize Mod(S2) as a quotient, we consider the map Mod(S26) —
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Mod(S2) obtained by forgetting the marked points/punctures; this is a special case of the
Birman exact sequence studied by Birman in her thesis [10]. And to realize Mod(S2) as a
subgroup, we use the Birman—Hilden theorem: since every element of Mod(S3) has a symmetric
representative that preserves the set of preimages of the branch points in Sy¢ and since
isotopies between symmetric homeomorphisms can also be chosen to preserve this set of six
points, we obtain the desired inclusion. Birman and Hilden state that ‘the former property is
easily understood but the latter much more subtle’. As mentioned by Mess [49], the inclusion
Mod(S2) — Mod(S2,6) can be rephrased as describing a multi-section of the universal bundle
over moduli space in genus two.

5. More applications to the genus two mapping class group

In the previous section, we saw how the Birman—Hilden theory allows us to transport knowledge
about the mapping class group of a punctured sphere to the mapping class group of a surface
of genus two. As the former are closely related to braid groups, we can often push results about
braid groups to the mapping class group. Almost every result about mapping class groups that
is special to genus two is proved in this way.

A prime example of this is the result of Bigelow—Budney [9] and Korkmaz [44] which states
that Mod(Ss) is linear, that is, Mod(Ss) admits a faithful representation into GLy(C) for
some N. Bigelow and Krammer independently proved that braid groups were linear, and so
the main work is to derive from this the linearity of Mod(Sy ,,). They then use the isomorphism
Mod(S2)/(t) = Mod(So,6) to push the linearity up to Mod(S2).

A second example is from the thesis of Whittlesey, published in 2000. She showed that
Mod(S3) contains a normal subgroup where every nontrivial element is pseudo-Anosov [55].
The starting point is to consider the Brunnian subgroup of Mod(Sy¢). This is the intersection
of the kernels of the six forgetful maps Mod(Sp ) — Mod(Sp5), so it is obviously normal
in Mod(Sp6). She shows that all nontrivial elements of this group are pseudo-Anosov
and proves that the preimage in Mod(S2) has a finite-index subgroup with the desired
properties.

We give one more example. In the 1980s, before the work of Bigelow and Krammer, Vaughan
Jones discovered a representation of the braid group defined in terms of Hecke algebras [39].
As in the work of Bigelow-Budney and Korkmaz, one can then derive a representation of
Mod(Sp,24+2) and then — using the Birman-Hilden theory — of SMod(S;). When g = 2, we
thus obtain a representation of Mod(S2) to GL5(Z[t,t!]). This representation was used by
Humphries [36] to show that the normal closure in Mod(S2) of the kth power of a Dehn twist
about a nonseparating curve has finite index if and only if |k| < 3.

There are many other examples, such as the computation of the asymptotic dimension of
Mod(S2) by Bell and Fujiwara [6] and the determination of the minimal dilatation in Mod(S2)
by Cho and Ham [20]; the list goes on, but so must we.

6. Application to representations of the braid group

The Birman—Hilden theorem also gives a way to embed braid groups into mapping class groups.
This is probably the most oft-used application of their results.

Let S; the orientable surface of genus g with one boundary component and let Dygiq
denote the closed disk with 2g + 1 marked points in the interior. Consider the covering space
Sy — Dsgy1 induced by a hyperelliptic involution of S;. It is well known that Mod(Dag 1)
is isomorphic to the braid group Bag+1. As in the closed case, it is not hard to see that
LMod(Ds24+41) = Mod(D34+41) (again, each of the standard generators for By, lifts to a Dehn
twist).
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One is thus tempted to conclude that SMod(S;)/(t) = Bagi1. But this is not the right
statement, since ¢ does not represent an element of Mod(S 1) Indeed, for surfaces with boundary
we insist that homeomorphisms and homotopies fix the boundary pointwise. Therefore, the
correct isomorphism is

SMod(S;) = Bagy1.
The most salient aspect of this isomorphism is that there is an injective homomorphism
Bzg+1 — MOd(S;)

The injectivity here is sometimes attributed to Perron—Vannier [52]. It is possible that they
were the first to observe this consequence of the Birman—Hilden theorem but the only nontrivial
step is the Birman—Hilden theorem.

In the case of g = 1, the representation of Bj is onto Mod(S}), and so

Similarly we have
Mod(S5?) = By x Z.

The point here is that By surjects onto SMod(S?) and the latter is almost isomorphic to
Mod(S%); the extra Z comes from the Dehn twist about a single boundary component.

One reason that the embedding of By, in Mod(S;) is so important is that if we compose
with the standard symplectic representation

Mod(S;) — Spy,(Z),
then we obtain a representation of the braid group

Bag 11 — Spay(Z).

This representation is called the standard symplectic representation of the braid group. It is
also called the integral Burau representation because it is the only integral specialization of the
Burau representation besides the permutation representation. The symplectic representation
is obtained by specializing the Burau representation at ¢ = —1, while the permutation
representation is obtained by taking ¢t = 1.

The image of the integral Burau representation has finite index in the symplectic group: it is
an extension of the level two symplectic group by the symmetric group on 2g + 1 letters. The
projection onto the symmetric group factor is the standard permutation representation of the
braid group. See A’Campo’s paper [1] for details.

The kernel of the integral Burau representation is known as the hyperelliptic Torelli group.
This group is well studied, as it describes the fundamental group of the branch locus of the
period mapping from Teichmiiller space to the Siegel upper half-space; see, for instance, the
paper [19] by Brendle, Putman, and the first author of this article and the references therein.

There are plenty of variations on the given representation. Most important is that if we take
a surface with two boundary components 5’3 and choose a hyperelliptic involution, that is,
an order two homeomorphism that acts by —I on the first homology of the surface, then the
quotient is Dyg4o and so we obtain an isomorphism:

SMod(57) = Bagyo.

Also, since the inclusions S} — Sy 1 and Sz — Sy induce injections SMod(S§) — Mod(S1)
and SMod(S ) — Mod(Sg_H) we obtain embeddlngb of braid groups into mapping class groups
of closed surfaces.

In the 1971 paper, Birman and Hilden discuss the connection with representations of the
braid group. They point out the related fact that Bago surjects onto SMod(S,) (this follows
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immediately from their presentation for the latter). In the special case g = 1, this becomes the
classical fact that By surjects onto SMod(S1) = Mod(S1) = SL2(Z). We can also derive this
fact from our isomorphism Mod(S}) = Bs, the famous surjection By — Bs, and the surjection
Mod(S}) — Mod(S;) obtained by capping the boundary.

One useful application of the embeddings of braid groups in mapping class groups is that we
can often transport relations from the former to the latter. In fact, almost all of the widely used
relations in the mapping class group have interpretations in terms of braids. This is especially
true in the theory of Lefschetz fibrations; see, for instance, the work of Korkmaz [45] and
Hamada [34] and of Baykur and Van Horn-Morris [5].

7. Application to a question of Magnus

The last application we will explain is beautiful and unexpected. It is the resolution of a
seemingly unrelated question of Magnus about braid groups.

As mentioned in the previous section, the braid group B, is isomorphic to the mapping
class group of a disk D,, with n marked points. Let us write D, for the surface obtained by
removing from D,, the marked points. There is then a natural action of B,, on 71 (Dg) (with
base point on the boundary). The latter is isomorphic to the free group F,, on n letters. Basic
algebraic topology tells us that this action is faithful. In other words, we have an injective
homomorphism:

B, — Aut(F,).

This is a fruitful way to view the braid group; for instance, since the word problem in Aut(F,)
is easily solvable, this gives a solution to the word problem for B, .

Let F, ; denote the normal closure in F,, of the elements z¥, ..., z%. The quotient F,,/F,
is isomorphic to the n-fold free product Z/kZ * - - - x Z/kZ. Since the elements of B,, preserve
the set of conjugacy classes {[z1],...,[z,]}, there is an induced homomorphism

B, — Aut(F,/F, 1).
Let B, i denote the image of B,, under this map. Magnus asked:
Is B,, isomorphic to By, ,?

In other words, is the map B,, — Aut(F),/F, i) injective?
In their Annals of Mathematics paper [17], Birman and Hilden answer Magnus’ question in
the affirmative. Here is the idea. Let H,, ; denote the kernel of the map

F, = Z/kZ,

where each generator of F;, maps to 1. The covering space of D; corresponding to H,, . is a
k-fold cyclic cover S°. If we consider a small neighborhood of one of the punctures in Dy, the
induced covering map is equivalent to the connected k-fold covering space of C \ {0} over itself
(that is, the one induced by z + 2¥). As such, we can ‘plug in’ to S° a total of n points in order
to obtain a surface S and a cyclic branched covering map S — D,,. The fundamental group of S°
is H,, 1 by definition. It follows from Van Kampen’s theorem that 7 (S) = H,, 1/F, . Indeed,
a simple loop around a puncture in S° projects to a loop in D;, that circles the corresponding
puncture k times.

As in the case of the hyperelliptic involution, we can check directly that each element of B,
lifts to a fiber-preserving homeomorphism of .S. Therefore, to answer Magnus’ question in the
affirmative it is enough to check that the map B,, — Autm(S) is injective. Suppose b € B,
lies in the kernel. Then the corresponding fiber-preserving homeomorphism of S' is homotopic,
hence isotopic, to the identity. By the Birman—Hilden theorem (the version for surfaces with
boundary), b is trivial, and we are done.
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Bacardit and Dicks [4] give a purely algebraic treatment of Magnus’ question; they credit
the argument to Crisp and Paris [22]. Another algebraic argument for the case of even k was
given by Johnson [38]. Yet another combinatorial proof was given by Kriiger [46].

8. A famous (but false) proof of the Birman—Hilden theorem

When confronted with the Birman—Hilden theorem, one might be tempted to quickly offer
the following easy proof: given the branched covering map p: S — X, the fiber-preserving
homeomorphism f : S — S, the corresponding homeomorphism f: X — X, and an isotopy
H:S xI— Sfrom f to the identity map, we can consider the composition p o H, which gives
a homotopy from f to the identity. Then, since homotopic homeomorphisms of a surface are
isotopic, there is an isotopy from f to the identity, and this isotopy lifts to a fiber-preserving
isotopy from f to the identity. Quod erat demonstrandum.

This probably sounds convincing, but there are two problems. First of all, the composition
po H is really a homotopy between po f and p which are maps from S to X; since H is not
fiber preserving, there is no way to convert this to a well-defined homotopy between maps
X — X. The second problem is that H might send points that are not preimages of branch
points to preimages of branch points; so even if we could project the isotopy, we would not
obtain a homotopy of X that respects the marked points.

In the next two sections, we will outline proofs of the Birman—Hilden theorem in various
cases. The reader should keep in mind the subtleties uncovered by this false proof.

9. The unbranched (= easy) case

Before getting to the proof of the Birman—Hilden theorem, we will warm up with the case
of unbranched covers. This case is much simpler, as all of the subtlety of the Birman—Hilden
theorem lies in the branch points. Still the proof is nontrivial, and later we will prove the more
general case by reducing to the unbranched case.

In 1972, Birman and Hilden published the paper Lifting and projecting homeomorphisms
[16], which gives a quick proof of Theorem 2.1 in the case of regular unbranched covers.
Following along the same lines, Aramayona, Leininger, and Souto generalized their proof to
the case of arbitrary (possibly irregular) unbranched covers [2]. We will now explain their proof.

Let p: S — X be an unbranched covering space of surfaces, and let f:S — S be a fiber-
preserving homeomorphism that is isotopic to the identity. Without loss of generality, we may
assume that f has a fixed point. Indeed, if f does not fix some point x, then we can push p(z)
in X by an ambient isotopy, and lift this isotopy to S until z is fixed. As a consequence, f
induces a well-defined action f, on 71(S). Since f is isotopic to the identity, f, is the identity.
If f is the corresponding homeomorphism of X, then it follows that f, is the identity on the
finite-index subgroup p,(m1(S)) of 71 (X). From this, plus the fact that roots are unique in
71(X), we conclude that f, is the identity. By basic algebraic topology, f is homotopic to the
identity, and hence it is isotopic to the identity, which implies that f is isotopic to the identity
through fiber-preserving homeomorphisms, as desired.

10. Three (correct) proofs of the Birman—Hilden theorem

In this section, we present sketches of the proofs of all three versions of the Birman-—
Hilden theorem given in Section 2. We begin with the original proof by Birman and Hilden,
which is a direct attack using algebraic and geometric topology. Then we explain the proof
from Maclachlan and Harvey’s Teichmiiller theoretic approach, and finally the combinatorial
topology approach of the second author, which gives a further generalization.



BRAIDS GROUPS AND MAPPING CLASS GROUPS 653

The Birman—Hilden proof: Algebraic and geometric topology. As in the statement of
Theorem 2.1, let p:S — X be a regular branched covering space where S is a hyperbolic
surface. As in Theorem 1 of the Annals of Mathematics paper by Birman and Hilden [17],
we make the additional assumption here that each deck transformation for this cover fixes
each preimage of each branch point in X. Theorem 2.1 will follow easily from this special
case. Let f be a fiber-preserving homeomorphism of S and assume that f is isotopic to the
identity.

Let x be the preimage in S of some branch point in X. The first key claim is that
f(z) =z [17, Lemma 1.3]. Thus if we take the isotopy H from f to the identity and restrict
it to x, we obtain an element « of m;(S,x). Birman and Hilden argue that o« must be
the trivial element. The idea is to argue that « is fixed by each deck transformation (this
makes sense since the deck transformations fix z), and then to argue that the only element
of m(S) fixed by a nontrivial deck transformation is the trivial one (to see this, regard «
as an isometry of the universal cover H? and regard a deck transformation as a rotation
of H?).

Since « is trivial, we can deform it to the trivial loop, and by extension we can deform
the isotopy H to another isotopy that fixes x throughout. Proceeding inductively, Birman and
Hilden argue that H can be deformed so that it fixes all preimages of branch points throughout
the isotopy. At this point, by deleting branch points in X and their preimages in S, we reduce
to the unbranched case.

Finally, to prove their Theorem 2, which treats the case of solvable covers, Birman and
Hilden reduce it to Theorem 1 by factoring any solvable cover into a sequence of cyclic covers
of prime order. Such a cover must satisfy the hypotheses of their Theorem 1.

It would be interesting to use the Birman—Hilden approach to prove the more general theorem
of Winarski. There is a paper by Zieschang from 1973 that uses similar reasoning to Birman
and Hilden and recovers the result of Maclachlan and Harvey [57].

Maclachlan and Harvey’s proof: Teichmiiller theory. Let p:S — X be a regular branched
covering space where S is a hyperbolic surface. We will give Maclachlan and Harvey’s argument
for Theorem 2.2 and at the same time explain why the argument gives the more general result
of Theorem 2.3.

The mapping class group Mod(S) acts on the Teichmiiller space Teich(.S), the space of isotopy
classes of complex structures on S (or conformal structures on .S, or hyperbolic structures on S,
or algebraic structures on S). Let X° denote the complement in X of the set of branch points.
There is a map = : Teich(X°) — Teich(S) defined by lifting complex structures through the
covering map p (one must apply the removable singularity theorem to extend over the preimages
of the branch points).

The key point in the proof is that = is injective. One way to see this is to observe that
Teichmiiller geodesics in Teich(X°) map to Teichmiiller geodesics in Teich(S) of the same
length. Indeed, the only way this could fail would be if we had a Teichmiiller geodesic in
Teich(X°) where the corresponding quadratic differential had a simple pole (= 1-pronged
singularity) at a branch point and some preimage of that branch point was unramified (1-
pronged singularities are only allowed at marked points, and preimages of branch points are
not marked). This is why the most natural setting for this argument is that of Theorem 2.3,
namely, where p is fully ramified.

Let Y denote the image of =. The symmetric mapping class group SMod(.S) acts on Y and
the kernel of this action is nothing other than D. The liftable mapping class group LMod(X)
acts faithfully on Teich(X°) and hence — as Z is injective — it also acts faithfully on Y.
It follows immediately from the definitions that the images of SMod(S) and LMod(X) in the
group of automorphisms of Y are equal. It follows that SMod(.S)/D is isomorphic to LMod(X),
as desired.
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Winarski’s proof: Combinatorial topology. Let p:S — X be a fully ramified branched
covering space where S is a hyperbolic surface. To prove Theorem 2.3, we will show that
® : LMod(X) — SMod(S)/D is injective.

Suppose f € LMod(X) lies in the kernel of ®. Let ¢ be a representative of f. Since ®(f) is
trivial, we can choose a lift ¢ : S — S that is isotopic to the identity; thus ¢ fixes the isotopy
class of every simple closed curve in S. The main claim is that ¢ fixes the isotopy class of
every simple closed curve in X. From this, it follows that f has finite order in LMod(X). Since
ker(®) is torsion free [56, Proposition 4.2], the theorem will follow.

So let us set about the claim. Let ¢ be a simple closed curve in X, and let ¢ be its preimage
in S. By assumption, ¢(¢) is isotopic to ¢ and we would like to leverage this to show ¢(c) is
isotopic to ¢. There are two stages to the argument: first dealing with the case where ¢(c) and
c are disjoint, and then in the case where they are not disjoint, we reduce to the disjoint case.

If p(c) and ¢ are disjoint, then $(¢) and ¢ are disjoint. Since the latter are isotopic,
they co-bound a collection of annuli Aq,...,A,. Then, since orbifold Euler characteristic is
multiplicative under covers, we can conclude that p(UA;) is an annulus with no branch points
(branch points decrease the orbifold Euler characteristic), and so ¢ and ¢(c) are isotopic.

We now deal with the second stage, where ¢(c) and ¢ are not disjoint. In this case, ¢(¢) and
¢ are not disjoint either, but by our assumptions they are isotopic in S. Therefore, $(¢) and é
bound at least one bigon.

Consider an innermost such bigon B. Since B is innermost, p(B) is an innermost bigon
bounded by ¢(c¢) and ¢ in X (the fact that B is innermost implies that p|B is injective). If
there were a branch point in p(B), then since p is fully ramified, this would imply that B was
a 2k-gon with k > 1, a contradiction. Thus, we can apply an isotopy to remove the bigon p(B)
and by induction we reduce to the case where ¢(c¢) and ¢ are disjoint.

For an exposition of Winarski’s proof in the case of the hyperelliptic involution, see the book
by Farb and the first author of this article [29].

11. Open questions and new directions

One of the most striking aspects of the Birman—Hilden story is the breadth of open problems
related to the theory and the constant discovery of related directions. We mentioned a number
of questions already. Perhaps the most obvious open problem is the following.

QUESTION 11.1. Which branched covers of surfaces have the Birman—Hilden property?

Based on the discussion in Section 2 above, one might hope that all branched coverings — at
least where the cover is a hyperbolic surface — have the Birman—Hilden property. However, this
is not true. Consider, for instance, the unique simple degree three covering map p: S, — X,
where X is the sphere with 2g + 4 branch points (a branched covering map of degree d is simple
if each branch point has d — 1 preimages). As shown in Figure 1 we can find an essential curve
a in X whose preimage in S, is a union of three homotopically trivial simple closed curves.
It follows that the Dehn twist T, lies in the kernel of the map LMod(X) — SMod(Sy) and so
p does not have the Birman—Hilden property. See Fuller’s paper for further discussion of this
example and the relationship to Lefschetz fibrations [30].

Berstein and Edmonds generalized this example by showing that no simple branched covering
map of degree at least three over the sphere has the Birman—Hilden property [8], and Winarski
further generalized this by proving that no simple cover of degree at least three over any surface
has the Birman—Hilden property [56].

Having accepted the fact that not all covers have the Birman—Hilden property, one’s second
hope might be that a cover has the Birman—Hilden property if and only if it is fully ramified.
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FIGURE 1 (colour online). The simple threefold cover of Sy over the sphere. The gray curves
divide S, into three regions, each serving as a ‘fundamental domain’ for the cover. The preimages
in Sy of the branch points in S? are shown as dots but are treated as unmarked points in S,.

However, this is also false. In his personal communication, Chris Leininger has explained to
us how to construct a counterexample using the following steps. First, let S be a surface and
let z be a marked point in S. Let p: S — S be a characteristic cover of S and let Z be one
point of the full preimage p~!(2). Ivanov and McCarthy [37] observed that there is an injective
homomorphism Mod(S, z) — Mod(S,p~'(z)) where for each element of Mod(S, z), we choose
the lift to S that fixes 7. Aramayona-Leininger-Souto [2] proved that the composition of
the Ivanov-McCarthy homomorphism with the forgetful map Mod(S,p~'(z)) — Mod(S, 2) is
injective. If we then take a regular branched covering map S’ — S with branch locus Z, the
resulting cover S’ — S is not fully ramified but it has the Birman—Hilden property.

A dynamical variant of the Birman—Hilden property was investigated by Koch—Pilgrim—
Selinger. They consider a similar situation to ours, except that they allow some of the preimages
of branch points to be marked. They find in this setting a class of examples that enjoy the
analogue of the Birman—Hilden property [42, Proposition 6.2(2)]. The corresponding version
of Question 11.1 is open.

Here is another basic question.

QUESTION 11.2. For which cyclic branched covering maps of S; over the sphere is SMod(.S,)
equal to a proper subgroup of Mod(S;)? When is it finite index?

Theorem 5 in the Annals of Mathematics paper by Birman and Hilden states for a cyclic
branched covering map S — X over the sphere have LMod(X) = Mod(X). Counterexamples
to this theorem were recently discovered by Ghaswala and the second author (see the erratum
[18]), who wrote a paper [33] classifying exactly which branched covers over the sphere have
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LMod(X) = Mod(X). Theorem 6 in the paper by Birman and Hilden states that for g > 3 and
for any cyclic branched covering map from S, to the sphere the group SMod(S,) is a proper
subgroup of Mod(Sy). The proof uses their Theorem 5, so Question 11.2 should be considered
an open question. Of course this question can be generalized to other base surfaces besides the
sphere and other types of covers. For simple branched covers over the sphere (which, as above,
do not have the Birman-Hilden property), Berstein and Edmonds [8] proved that SMod(S,)
is equal to Mod(S,).

For surfaces with boundary, Question 11.2 has been answered by Ghaswala—McLeay [31].

We can also ask about the Birman—Hilden theory for orbifolds and 3-manifolds.

QUESTION 11.3. Which covering spaces of two-dimensional orbifolds have the Birman—
Hilden property?

Earle proved some Birman-Hilden-type results for orbifolds in his recent paper [25], which
he describes as a sequel to his 1971 paper On the moduli of closed Riemann surfaces with
symmetries [24].

QUESTION 11.4. Which covering spaces of 3-manifolds enjoy the Birman—Hilden property?

Vogt proved that certain regular unbranched covers of certain Seifert-fibered 3-manifolds have
the Birman—Hilden property [54]. He also explains the connection to understanding foliations
in codimension two, specifically for foliations of closed 5-manifolds by Seifert 3-manifolds.

A specific 3-manifold worth investigating is the connect sum of n copies of S? x S'; call it
M,,. The outer automorphism group of the free group F,, is a quotient of the mapping class
group of M,, by a finite group. Therefore, one might obtain a version of the Birman—Hilden
theory for the outer automorphism group of F), by developing a Birman—Hilden theory for M,,.

QUESTION 11.5. Does M, enjoy the Birman—-Hilden property? If so, does this give a
Birman—Hilden theory for free groups?

For example, consider the hyperelliptic involution ¢ of F,,, the outer automorphism that
(has a representative that) inverts each generator of Fj,. This automorphism is realized by
the homeomorphism of M,, that reverses each S'-factor. The resulting quotient of M,, is the
3-sphere with branch locus the (n + 1)-component unlink. This is in consonance with the fact
that the centralizer of o in the outer automorphism group of F,, is the palindromic subgroup
and that the latter is closely related to the configuration space of unlinks in S3; see the paper
by Collins [21].

Next, there are many questions about the hyperelliptic Torelli group and its generalizations.
As discussed in Section 6, the hyperelliptic Torelli group is the kernel of the integral Burau
representation of the braid group. With Brendle and Putman, the first author of this article
proved [19] that this group is generated by the squares of Dehn twists about curves that
surround an odd number of marked points in the disk D,,.

QUESTION 11.6. Is the hyperelliptic Torelli group finitely generated? Is it finitely presented?
Does it have finitely generated abelianization?

There are many variants of this question. By changing the branched covering map S — D,,,
we obtain many other representations of (the liftable subgroups of) the braid group. Each
representation gives rise to its own Torelli group. Except for the hyperelliptic involution case,
very little is known. One set of covers to consider is the set of superelliptic covers studied by
Ghaswala and the second author of this article [32].
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Another aspect of this question is to determine the images of the braid groups in Sp,y(Z)
under the various representations of (finite index subgroups of) the braid group arising from
various covers S — D,,. By work of McMullen [48] and Venkataramana [53], it is known that
when the degree of the cover is at least three and n is more than twice the degree, the image
has finite index in the centralizer of the image of the deck group.

QUESTION 11.7. For which covers S — D,, does the associated representation of the braid
group have finite index in the centralizer of the image of the deck group?

There are still many aspects to the Birman—Hilden theory that we have not touched upon.
Ellenberg and McReynolds [26] used the theory to prove that every algebraic curve over Q
is birationally equivalent over C to a Teichmiiller curve. Nikolaev [51] uses the embedding
of the braid group into the mapping class group to give cluster algebraic representations of
braid groups. Kordek applies the aforementioned result of Ghaswala and the second author
of this article to deduce information about the Picard groups of various moduli spaces of
Riemann surfaces [43]. A Google search for ‘Birman—Hilden’ yields a seemingly endless supply
of applications and connections (the Annals of Mathematics paper has 164 citations on Google
Scholar at the time of this writing). We hope that the reader is inspired to learn more about
these connections and pursue their own developments of the theory.
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