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Abstract

We study a learner-private sequential learn-
ing problem, motivated by the privacy and
security concerns due to eavesdropping at-
tacks. A learner tries to estimate an un-
known scalar value, by sequentially querying
an external database and receiving binary re-
sponses; meanwhile, a third-party adversary
observes the learner’s queries but not the re-
sponses. The learner’s goal is to design a
querying strategy with the minimum number
of queries (optimal query complexity) so that
she can accurately estimate the true value,
while the eavesdropping adversary even with
the complete knowledge of her querying strat-
egy cannot. We develop new querying strate-
gies and analytical techniques and use them
to prove almost-matching upper and lower
bounds on the optimal query complexity, ob-
taining a complete characterization of the op-
timal query complexity as a function of the
estimation accuracy and the desired levels of
privacy.

1 Introduction

Rapid developments in machine learning and data sci-
ence have compelled organizations and individuals to
increasingly rely on data to solve inference and de-
cision problems. It quickly became clear, however,
that collecting and disseminating data in bulk can ex-
pose data owners to serious privacy breaches (Dwork,
2008). To address the privacy concerns of data own-
ers, researchers and practitioners have been advocat-
ing a new learning framework, known as learning with
external workers (Konečnỳ et al., 2015). Under this
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framework, instead of allowing a learner to possess the
entire data set and conduct analysis in an offline man-
ner, data sets are kept secure by their owners, and the
learner must interact with data owners by submitting
queries and receiving responses.

While substantial progress has been achieved in pro-
tecting data owners’ privacy in such systems (Dwork,
2008; Geyer et al., 2017; Song et al., 2013; Agarwal
et al., 2018), the learner’s privacy has largely been
overlooked. Because a learner has to communicate fre-
quently with data owners in order to perform analy-
sis, their queries can be subject to eavesdropping by a
third-party adversary. That adversary, in turn, could
use the observed queries to reconstruct the learned
model, thus allowing them to free-ride at the learner’s
expense, or worse, leverage such information in future
sabotages.

In this paper, we focus on understanding how to
protect the learner’s privacy against eavesdropping
attacks, and precisely quantifying the fundamental
privacy-complexity trade-offs in such an interactive
learning system. We base our analysis on the Pri-
vate Sequential Learning model proposed by Tsitsiklis
et al. (2020). Suppose that a learner is trying to es-
timate an unknown target value X∗ ∈ [0, 1], by sub-
mitting n queries sequentially, (q1, . . . , qn) ∈ [0, 1]n,
for some n ∈ N. For each query qi, the learner re-
ceives a binary response ri = 1{X∗ ≥ qi}, indicating
the position of X∗ relative to the query, where 1{·}
denotes the indicator function. Meanwhile, there is
an adversary who observes all of the learner’s queries
(q1, . . . , qn), but not the responses (r1, . . . , rn). The
adversary then tries to estimate X∗. The learner’s
goal is to design a querying strategy with a minimal
n (optimal query complexity) so that she can esti-
mate X∗ up to an additive error of ε/2 with probabil-
ity 1 (accuracy), while no adversary can estimate X∗

up to an additive error of δ/2 with probability larger
than 1/L for some integer L ≥ 2 (privacy), even if
they are equipped with the complete knowledge of the
learner’s querying strategy. The parameter L thus cap-
tures the learner’s privacy level. In the special case of
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ous sequential decision-making problems (Fanti et al.,
2015; Luo et al., 2016; Tsitsiklis and Xu, 2018; Erturk
and Xu, 2019; Tang et al., 2020). However, most of
these models focus on protecting data and information
already in the position of the decision-maker. As such,
they do not address the unique privacy challenges aris-
ing in learning, where the learner has to protect a piece
of information that they themselves are just in the pro-
cess of discovering.

1.1 Motivating Examples

Learning the optimal price: As discussed in Tsit-
siklis et al. (2020), dynamics similar to those in the
Private Sequential Learning model arise in the domain
of dynamic pricing. Suppose a company is conducting
market experiments to determine the release price of
a product. The goal is to learn a global parameter
about the entire consumer base, e.g., X∗ equals the
highest price to charge so that at least 50% of the con-
sumers would purchase the product. At each epoch
of the experiment, the company samples a subset of
the consumers and experiment on a test price (query).
Under the sequential learning model, the response ri
corresponds to the indicator function of whether at
least 50% of the sampled consumers would purchase
the product at price qi. Note that, due to individual
differences and the sampling process, the response is
a noisy version of its population variant, which can be
captured by the noisy variant of the model we study
in this paper. In this example, a competitor (adver-
sary) can easily access the sequence of test prices by
participating in the experiments, but does not observe
the responses. The optimal query complexity refers to
the minimum number of epochs the company takes to
estimate X∗ accurately, while making sure the eaves-
dropping adversary cannot infer the final release price.
Notice the distinction between our privacy incentive
and the incentive to protect the data owners’ privacy.
The latter aims to ensure that the query sequence does
not reveal the price each individual participant is will-
ing to pay, which varies from person to person and can
be far from X∗.

Federated Learning: Federated Learning is an
emerging machine learning model training paradigm
that has been gaining traction (Konečnỳ et al., 2015,
2016). In Federated Learning, a central learner trains
a global model by aggregating local model updates
across a large number of users. Specifically, the
learner aims to estimate the optimal model param-
eter that minimizes the population risk, i.e., θ∗ ∈
argminθ L(θ) , E [`(Z, θ)], where ` denotes the loss
function and the average is taken over the underlying
data distribution of Z. Each user has access to a lo-
cal empirical risk function `u(θ) =

1

|Su|

∑
j∈Su

`(Zj , θ)

defined over the local data sample {Zj}j∈Su
. At each

iteration i, the learner broadcasts the current model
parameter estimator θi to the users. Using their local
data, each user u runs multiple steps of gradient de-
scent θ ← θ− η∇`u(θ) starting from θi, and sends the
model update θui back to the learner. The learner ag-
gregates all the model updates to produce the model
parameter for the next iteration θi+1.

When training with thousands of users, as the learner
lacks enough administrative power over those exter-
nal workers, the Federated Learning system is highly
vulnerable to eavesdropping attacks (Kairouz et al.,
2019). An honest-but-curious adversary can partic-
ipate in the training stage by pretending to be an
user, and eavesdrop on the sequence of broadcasted
model parameters {θi} and steal the learned model.
Our private sequential learning problem can be viewed
as an abstraction of such eavesdropping attack faced
by the central learner in Federated Learning. In par-
ticular, the true model parameter θ∗ is assumed to
be in one dimension and the model parameter esti-
mator θi is viewed as a query. Then assume that
instead of the local model update θui , each user u
sends back to the learner only the directional infor-
mation sign(θui −θi) of the update. Suppose the direc-
tion of the local updates indicates the direction of the
optimal model parameter under the local loss func-
tion, that is, sign(θui − θi) = sign(θu∗ − θi), where
θu∗ ∈ argminθ `u(θ). Under this assumption, the ma-
jority vote of 1{θui ≥ θi} can be viewed as a noisy ver-
sion of 1{θ∗ ≥ θi}.

1 The majority vote corresponds to
the response ri under the binary search model.

We remark that in Federated Learning, communica-
tion bandwidth is a scarce resource. Thus, efficient
use of the queries is of fundamental importance. Al-
though the binary search model is only an abstraction
of the general Federated Learning framework, study-
ing the trade-off between accuracy, privacy and query
complexity under the binary search model can provide
valuable insights on the algorithm design in Federated
Learning. We discuss this example in more detail in
the supplementary material.

2 Problem formulation

Consider the problem of learning some unknown true
value X∗ ∈ [0, 1]. Let X̂ be the learner’s estimator

of X∗ and X̃ be the adversary’s. The learner sub-
mits queries q1, q2, ... ∈ [0, 1] sequentially. Each time a
query qi is submitted, the learner receives a response

1For example, if ` is the `1 loss, then θ∗ is the (popu-
lation) median of Z, and θu∗ is the sample median for user
u. Therefore, 1{θu∗ ≥ θi} is distributed as Bernoulli with
mean above 1/2 if θ∗ ≥ θi and below 1/2 otherwise.
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ri. When the responses are noiseless, ri = 1{X∗ ≥ qi}.
Under the noisy response setting, we assume that

ri ∼ Bernoulli(p) if X∗ ≥ qi,

ri ∼ Bernoulli(1− p) if X∗ < qi

for some p ∈ (1/2, 1). That is, each observed response
can be erroneous with probability 1− p.

The learner’s query qi can depend on all the past
queries and responses, and is allowed to incorpo-
rate outside randomness. Since all random vari-
ables and all random vectors with finite alphabets
can be simulated from a random variable uniformly
distributed on [0, 1], without loss of generality, let
Y ∼ Unif[0, 1] be the random seed that the learner
may use to generate queries. Then qi can be written as
fi−1(q1, ..., qi−1, r1, ..., ri−1, Y ) for some function fi−1.
Note that the first query q1 is submitted without any
information and is only a function of Y . Thus we have
q2 = f1(q1, r1, Y ) = f1(f0(Y ), r1, Y ) := φ1(r1, Y ). It
is easy to see that all qi can be written iteratively
as a function of only the past responses and Y , i.e.,
qi = φi−1(r1, ..., ri−1, Y ).

Then a querying strategy φ is defined by an initial
mapping f0 : [0, 1]→ [0, 1] used to generate q1 from Y ,
a sequence of mappings (φi)i with φi : {0, 1}

i×[0, 1]→
[0, 1] used to generate the rest of the query sequence,

and a final estimator X̂, which can depend on Y and
all the queries and responses. The adversary’s estima-
tor X̃, on the contrary, is formed with only access to
the queries and the querying strategy φ but not the
responses or the random seed Y .

The goal of the learner is to design a querying strat-
egy to ensure that she can accurately estimate X∗, but
the adversary cannot. Different ways to quantify the
estimators’ performance arise naturally when the re-
sponses are noisy versus noiseless. We discuss the two
settings separately.

2.1 Noiseless responses

Following Tsitsiklis et al. (2020), we consider both the
Bayesian setting where X∗ ∈ [0, 1] is uniformly dis-
tributed on [0, 1] and the setting where X∗ is deter-
ministic. The two settings call for different definitions
for accuracy and privacy.

Bayesian setting We assume X∗ is uniformly dis-
tributed on [0, 1], which is independent from the ran-
dom seed Y , as the learner does not know the true
value X∗ a priori. We say a strategy φ is

• ε-accurate for ε > 0, if P{|X̂ −X∗| ≤ ε/2} = 1;

• (δ, L)-private for δ > 0 and an integer L ≥ 2, if there

is no adversary X̃ such that P{|X̃ −X∗| ≤ δ/2} > 1

L
.

Deterministic setting Suppose X∗ is a determin-
istic but arbitrary number on [0, 1]. Then the only
source of randomness in the querying strategy is from
Y . We say a strategy φ is

• ε-accurate for ε > 0, if P{|X̂ − X∗| ≤ ε/2} = 1,
∀X∗ ∈ [0, 1];

• (δ, L)-private for δ > 0 and an integer L ≥ 2, if for
each query sequence q̄, the δ-covering number2 of the
information set I(q̄) is at least L. The information set
is defined as the set of all true values that could lead
to the query sequence q̄ under strategy φ with non-
negligible probability. Note that the query sequence
q is a random vector that depends on X∗ and Y , i.e.,
q = q(X∗, Y ). Formally we define

I (q̄) = {X∗ ∈ [0, 1] : P {q(X∗, Y ) = q̄} > 0} .

For both Bayesian and deterministic settings, we de-
fine the optimal query complexity as

N (ε, δ, L) = min{n : ∃φ that is both ε-accurate and

(δ, L)-private and submits at most n queries}.

Note that for a larger δ or a larger L, the (δ, L)-
private constraint is a stronger requirement. Therefore
N(ε, δ, L) is monotone nondecreasing in δ and L.

Without loss of generality, we focus on the regime
of parameters 2ε ≤ δ ≤ 1/L. To see why, note that
on one end of the spectrum, if δ > 1/L, then the
adversary can make an arbitrary guess to break the
privacy constraint: simply choosing X̃ = 1/2 yields

P{|X̃ − X∗| ≤ δ/2} = δ > 1/L. In this regime the
(δ, L)-privacy constraint is too strong to be satisfied
by any querying strategy. On the other end of the
spectrum, the regime δ ≤ 2ε is arguably not that in-
teresting, as it is unnatural to require an adversary,
who only have access to queries but not responses, to
estimate X∗ almost as accurately as the learner does.

2.2 Noisy responses under the Bayesian

setting

The noisy response setting is a new variant of the
binary sequential search model that we focus on.
We consider the Bayesian formulation where X∗ ∼
Unif[0, 1]. Since the responses contain noise, no learner
that submits a finite number of queries can estimate
accurately with probability one. Hence the definition
for the learner’s accuracy needs to be modified. We
consider the following two natural definitions.

2The δ-covering number of A ⊆ R is defined as the size
of the smallest set N , such that ∪r∈N [r−δ/2, r+δ/2] ⊇ A.
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(a) (accurate on average) We say a querying strategy

is ε-accurate for ε > 0 if E|X̂ −X∗| ≤ ε/2;

(b) (accurate with high probability) We say a query-
ing strategy is (ε,M)-accurate for ε > 0 andM ≥ 2 (M

is not necessarily an integer) if P{|X̂ −X∗| > ε/2} ≤
1/M .

The definition of privacy is the same as that in the
noiseless case. A querying strategy is called (δ, L)-

private if no adversary’s estimator X̃ can achieve
P{|X̃ −X∗| ≤ δ/2} > 1/L.

Define the optimal query complexity as the mini-
mum number of queries needed for a querying strat-
egy to be both ε-accurate (resp. (ε,M)-accurate)
and (δ, L)-private, denoted as Navg(ε, δ, L) (resp.
Nwhp(ε,M, δ, L)).

3 Main results

3.1 Noiseless responses

When the responses are noiseless, we prove almost
matching upper and lower bounds on the optimal
query complexity in both the Bayesian and determin-
istic settings.

Bayesian setting The following is our first main
result.3

Theorem 1 (Bayesian setting). If 2ε ≤ δ ≤ 1/L, then

N(ε, δ, L) ≥L log
δ

ε
+ log

1

Lδ
− 1− 2L,

N(ε, δ, L) ≤L log
δ

ε
+ log

1

Lδ
− 1 + 2L.

Across the entire parameter regime, our result cap-
tures the impact of privacy requirement up to an ad-
ditive gap of 4L. For example, in the regime where
δ,L stay as fixed constants while ε → 0, Theorem 1
indicates that

N(ε, δ, L) ≈ L log
1

ε
+ L log δ + log

1

Lδ
.

The dominating term is L log(1/ε). Since the cost of
non-private search is log(1/ε), attained by the bisec-
tion search, the cost of privacy is roughly a multiplica-
tive factor of L.

On the other end of the spectrum where δ, ε both go
to 0 proportionally, i.e. δ = cε, we have

N(ε, δ, L) ≈ log(1/ε) + (L log c+ log(1/L)− log c) .

3Here we ignore all non-integrality issues. See the sup-
plementary material for the general statements.

The cost of privacy is characterized by the factor in
the parentheses, with a leading term L log(δ/ε) that
only scales linearly in L.

Therefore according to Theorem 1, the optimal query
complexity is highly sensitive to δ. As δ grows, we ob-
serve a phase transition where the cost of privacy grows
from additive to multiplicative. In contract to our re-
sult, the best known upper bound (Tsitsiklis et al.,
2020) and lower bound (Xu, 2018) are as follows.

L log
δ

ε
− 3L log log

δ

ε
≤ N(ε, δ, L) ≤ L log

1

Lε
+ L.

There is a large gap between these bounds. For exam-
ple, the previous upper bound suggests a multiplica-
tive cost of privacy across the entire parameter range,
and fails to uncover the additive regime.

Deterministic setting Under the deterministic set-
ting, we establish upper and lower bounds that match
up to only 8 queries.

Theorem 2 (Deterministic setting). If 2ε ≤ δ ≤ 1/L,
then

N(ε, δ, L) ≥max

{
log

1

ε
+ L, log

δ

ε
+ 2L

}
− 8,

N(ε, δ, L) ≤max

{
log

1

ε
+ L, log

δ

ε
+ 2L

}
.

Similar to the Bayesian setting, as δ grows, we observe
a phase transition in the behavior of the optimal query
complexity, with a sharp threshold at roughly δ = 2−L.
When δ is below the threshold, we have N(ε, δ, L) ≈
log(1/ε) + L. That is, the overhead due to privacy, in
terms of L, is an additive factor of L. For δ above the
threshold, we have N(ε, δ, L) ≈ log(1/ε) + 2L + log δ.
The cost of privacy is an additive factor of 2L+ log δ,
which is always between L and 2L for δ > 2−L.

In comparison, the best known upper and lower
bounds in prior work (Tsitsiklis et al., 2020) are

log
δ

ε
+ 2L ≤ N(ε, δ, L) ≤ log

1

Lε
+ 2L,

which are not tight except for the lower bound in the
large δ regime, and fail to capture the behavior of the
optimal query complexity when δ is small. In particu-
lar, the previous upper bound is completely indepen-
dent of δ, and the previous lower bound reduces to a
trivial bound of log(1/ε) when δ < 2−2L. Examples of
the comparison between our results and the existing
bounds are illustrated in Figures 1 and 2, under the
Bayesian and deterministic settings, respectively.

The sharp bounds in Theorems 1 and 2 can be ex-
tend to multiple dimensions. We show that for
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for the diameter of the small interval. Queries lead-
ing to the identification of such an interval (type (i))
do not significantly compromise the learner’s privacy,
because the interval’s size is too large for the adver-
sary to extract useful information. Beyond this point,
however, the learner must submit further queries to
narrow the range of X∗ down to ε, and these queries
must be carefully obfuscated. In other words, effective
queries at this point should serve to accomplish tasks
(ii) and (iii) simultaneously. As such, in the design
of the optimal strategy, we divide learning into two
phases:

1. a pure-learning phase, corresponding to task (i),
where the sole focus of the learner is to identify a small
interval containing the target X∗, and

2. a private-refinement phase, corresponding to tasks
(ii) and (iii), where queries serve to simultaneously
refine and obfuscate a fine-grained estimate of X∗.

Compared with the single-phase strategy in Tsitsik-
lis et al. (2020), our strategy shifts all obfuscation ef-
forts into the later phase. In the pure learning phase,
we first runs a bisection search to locate X∗ within a
length Lδ interval J . In the private-refinement phase,
borrowing the idea of replication (Xu, 2018), we divide
J into L length δ subintervals. In the true subinterval
containing X∗, the queries are submitted via the bisec-
tion search. Meanwhile, cloned queries are submitted
in the other L − 1 subintervals in parallel, to ensure
that the adversary cannot infer the true subinterval
with probability higher than 1/L.

The bisection search in the first phase takes
log(1/(Lδ)) queries. The second phase consists of a
log(δ/ε)-cost bisection search replicated L times. Thus
the query complexity of this two-phase querying strat-
egy is roughly log(1/(Lδ)) + L log(δ/ε).

Although this two-phase strategy is intuitively moti-
vated, it is far from evident why it is information-
theoretically optimal. To establish its optimality, we
design an intelligent strategy of the adversary, and use
that to show an almost matching lower bound on the
optimal query complexity.

The previous lower bound considers an adversary
who adopts the proportional-sampling strategy, where
the adversary proportionally samples from all queries
to produce an estimator X̃. To improve upon
the previous bound, we consider a more intelligent
adversary’s strategy named truncated proportional-
sampling, where the adversary disregards the first K
queries and proportionally samples from the rest of
the queries. We show that under this adversary’s
strategy, any learner’s strategy with less than roughly

log(1/(Lδ)) + L log(δ/ε) queries is either non-private
or non-accurate. Deliberately discarding the first K
queries is seemingly counter-intuitive, and is crucial
for obtaining the tight lower bound. To show why ig-
noring information leads to information-theoretically
optimal estimation is highly non-trivial. The heuristic
reasoning is that the first few queries could negatively
impact the adversary’s estimator since they are very
unlikely to be close to X∗. Another difficulty is to
determine the number of queries to discard. Through
our analysis, we discover a subtle but interesting dual-
ity between the learner and the adversary: the number
of queries disregarded by the adversary K is exactly
the number of queries submitted in the pure-learning
phase under the learner’s optimal strategy. However,
in the proof of our lower bound, this argument with
discarded queries is effective against any learner strat-
egy, regardless of what the learner tries to achieve with
these early queries.

Below is an outline of the lower bound proof. Under
a truncated proportional-sampling adversary, for any
querying strategy that is (δ, L)-private, we have

1

L
≥P

{∣∣∣X̃ −X∗
∣∣∣ ≤ δ

2

}

=

∑n

i=K+1
P{qi ∈ [X∗ − δ/2, X∗ + δ/2]}

n−K
,

where n is the total number of queries. We then show
that by choosing K ≈ log(1/(Lδ)), for any querying
strategy that is ε-accurate, the expected number of
queries of qK+1, ..., qn in [X∗ − δ/2, X∗ + δ/2] is at
least about log(δ/ε). Therefore n ≥ K + L log(δ/ε) is
a rough lower bound for the optimal query complexity.

4.2 The deterministic setting with noiseless

responses

The story is slightly different under the deterministic
setting. Unlike the Bayesian setting where the adver-
sary only needs to perform well when averaging over
a random X∗, here the adversary can no longer make
guesses. Knowing that the adversary cannot guess, the
learner only needs to worry about privacy breaches in
a δ-width interval containing X∗. Moreover, before
reaching this interval, the learner can ensure privacy
by injecting possible alternative locations of X∗ along
each query sequence. That, recalling the queries’ three
tasks from the start of this section, corresponds to
reusing queries for tasks (i) and (iii). In particular,
we will design a query strategy that mirrors the two-
phase architecture described for the Bayesian setting,
with a coarse learning phase followed by that of a re-
finement. However, obfuscation efforts (iii) are now
implemented during the first phase.
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Recall that under the deterministic setting, a query-
ing strategy is called (δ, L)-private if for each query
sequence q̄, the δ-covering number of the information
set I(q̄) is at least L. Similar to the idea in Tsitsik-
lis et al. (2020), we achieve (δ, L)-privacy by planting
L possible locations of X∗ into the query sequence.
Each possibility is planted via a “guess”, which refers
to a pair of queries ε-apart. These guesses are used
to throw the adversary off track, since the adversary
cannot tell whether a guess is correct (i.e. whether X∗

is between the pair of queries), without observing the
responses.

Compared to the strategy in Tsitsiklis et al. (2020)
where the guesses are planted on an even grid on [0, 1],
we propose a scheme that is much more efficient. The
high-level idea of our algorithm is to maximize the
number of queries reused for tasks (i) and (iii). In
other words, we want the guesses to not only help con-
ceal the location of X∗ from the adversary, but also
help the learner location X∗ at the same time.

When δ ≤ 2−L, we submit the guesses along the tra-
jectory of a bisection search in order to optimize ef-
ficiency. That is, the first guess is at 1/2 (i.e. the
learner submits 2 queries at 1/2,1/2 + ε); the second
guess is at 1/4 or 3/4, depending on whether X∗ is
above or below 1/2; so on and so forth. However,
once one of the guesses is tested to be correct, to keep
this finding from the adversary, the learner continues
to submit the remaining guesses via a “fake” bisec-
tion. By fake bisection we mean a simulated bisection
search where the binary responses are generated i.i.d.
Bernoulli(1/2).

When δ > 2−L, the guesses submitted via bisection are
not all δ-apart from each other, hence (δ, L)-privacy is
not guaranteed. To resolve this problem, we design a
more sophisticated strategy that searches for X∗ in a
less aggressive manner, so as to not approach the true
value too rapidly. See the supplementary material for
a detailed construction of the querying strategy.

Once all the guesses are submitted, we run a final bi-
section search to narrow down the range of X∗ to an
ε-length interval. As before, if a guess has been tested
to be correct, the learner switches to a fake bisection
instead.

Under the strategy described above, the first L guesses
consist of 2L queries, and they help narrow down the
range of X∗ into a length max{2−L, δ} intervals. In
total the learner submits 2L + log(max{2−L, δ}/ε) =
max{log(1/ε) + L, log(δ/ε) + 2L} queries.

When δ > 2−L, the lower bound shown in Xu (2018)
is tight. Our analysis to obtain the sharp lower bound
when δ ≤ 2−L is as follows. We dissect the query se-

quence, and separately investigates those queries that
can be used both for protecting privacy and searching
for X∗, and those queries that only fulfill one purpose.
More specifically, for each fixed querying strategy that
is both ε-accurate and (δ, L)-private, we show the ex-
istence of an interval I roughly of length δ and X∗ ∈ I
such that when X∗ is the true value, there are

(a) at least log(1/δ) − 3 queries outside of I that are
at least δ away from each other.

(b) at least log(δ/ε) queries in I.

(c) at least L− 5 pairs of queries outside of I that are
no more than ε apart.

The three sets of queries above roughly correspond to
the tasks (i),(ii),(iii). Under the assumption δ ≥ 2ε,
since the queries in (a) are all δ apart, at most L −
5 of them can overlap with queries in (c). As such,
we conclude that when X∗ is the true value, at least
(log(1/δ) − 3) + log(δ/ε) + (L − 5) = log(1/ε) + L −
8 queries are needed. The full proof is contained in
the supplementary material. The key challenge lies in
showing the existence of an I that satisfies the above.

4.3 The Bayesian setting with noisy

responses

The intuitions we gained from the noiseless response
model continue to apply. However when the responses
are noisy, we encounter some fundamental challenges
as a result of the noise in the responses. The main dif-
ficulty is in tracking the posterior distributions of X∗

for both the learner and the adversary simultaneously.
On the one hand, we want the posterior distribution of
X∗ given the responses to concentrate fast, so that the
learner can accurately estimate X∗ despite the noises.
On the other hand, we need the posterior distribution
given the queries to not concentrate too rapidly, ensur-
ing that the adversary cannot accurately learn. This
greatly complicates the design and the analysis of the
optimal querying strategy, as a closed-form expression
for the posterior distributions is out of reach in this
case.

For proof of the upper bound in the noisy response
model, an intractable posterior distribution of X∗

makes it challenging to show that a strategy is pri-
vate. Even queries that are far from X∗ can change
the shape of the posterior distribution and potentially
leak the location of X∗ to the adversary. To over-
come this difficulty, our analysis involves the design
of a querying strategy that forces certain conditional
independence structures between the query sequence
and some local neighborhood of X∗. We then use the
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conditional independence to carefully control the pri-
vacy leakage across all phases of learning.

Our querying strategies relies on an existing search al-
gorithm known as the Burnashev-Zigangirov(BZ) al-
gorithm (Burnashev and Zigangirov, 1974). Suppose
[0, 1] is divided into 1/∆ (assumed to be an integer)
equal length subintervals. The BZ algorithm estimates
the subinterval that contains X∗ by recursively query-
ing the endpoints of the subintervals and updating the
belief distribution of X∗. See the supplementary ma-
terial for a description of the BZ algorithm and its
statistical properties.

The idea behind the construction of the querying
strategies inherits from the construction under the
noiseless response setting. Recall that under the
querying strategy described in Section 4.1, the learner
first runs bisection search to locate X∗ within a length
Lδ interval. She then runs replicated bisection on the
L length δ subintervals, submitting queries via the bi-
section search in the true subinterval containing X∗

and cloning those queries in the other L − 1 subin-
tervals. When the responses are noisy, firstly we re-
place the bisection searches with the BZ algorithm.
Moreover, the learner can no longer discern the true
interval by querying the endpoints of the subinterval
only once. Instead we need to query each endpoint
enough times, so that via a maximum-likelihood type
procedure, the learner can estimate the true subinter-
val with high enough certainty.

For the lower bound proof, we get around the in-
tractable posterior distributions using two sets of tools.
Part of the proof utilizes information-theoretic argu-
ments. The key step is to establish an upper bound
on the rate of information transfer, which governs the
speed at which the learner can gather information from
the responses. That allowed us to lower bound the ex-
pected number of queries in a small interval that con-
tains X∗. For the second part of the proof, we reduce
the learner’s estimation problem to a family of binary
hypothesis testing problems between pairs of hypothe-
ses on a small interval containing X∗. We then bound
the testing errors from below using the Bhattacharyya
coefficient (Kailath, 1967).

5 Conclusion and future work

Motivated by privacy and security concerns in appli-
cations such as Federated Learning and online price
learning, we study a sequential learning problem that
focuses on protecting the learner’s privacy against
eavesdropping. A learner aims to estimate a value
by sequentially submitting queries and receiving bi-
nary responses, while ensuring an adversary who ob-
serves queries but not responses cannot estimate well.

We design new querying strategies and prove upper
bounds on the optimal query complexity. We also de-
rive almost-matching lower bounds, showing that our
querying strategies are nearly optimal. The results
are further extended to when the unknown value is in
high dimensions, and when the binary responses are
noisy. An important future direction is to investigate
how to protect the learner’s privacy in more general
online convex optimization problems, such as stochas-
tic gradient descent algorithms, where the adversary
observes the query xt but not the stochastic gradient
g(xt) at each iteration t.
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