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ABSTRACT

Extracting the instantaneous heart rate (iHR) from face videos
has been well studied in recent years. It is well known that
changes in skin color due to blood flow can be captured using
conventional cameras. One of the main limitations of meth-
ods that rely on this principle is the need of an illumination
source. Moreover, they have to be able to operate under dif-
ferent light conditions. One way to avoid these constraints is
using infrared cameras, allowing the monitoring of iHR under
low light conditions. In this work, we present a simple, prin-
cipled signal extraction method that recovers the iHR from
infrared face videos. We tested the procedure on 7 partic-
ipants, for whom we recorded an electrocardiogram simul-
taneously with their infrared face video. We checked that
the recovered signal matched the ground truth iHR, show-
ing that infrared is a promising alternative to conventional
video imaging for heart rate monitoring, especially in low
light conditions. Code is available at https://github.
com/natalialmg/IR_iHR.

1. INTRODUCTION

The gold standard for monitoring instantaneous heart rate
(iHR) is electrocardiogram (ECG) [1]. Another popular non-
invasive technique is photoplethysmogram (PPG) [2,3]. Both
techniques require direct skin contact with the subject, which
might not be suitable in contexts such as driver drowsiness,
or sleep monitoring. PPG relies on measuring the rapid
variations in light absorption in an illuminated skin region
caused by the difference in absorption curves for oxigenated
and non-oxigenated blood. This principle motivated the use
of digital cameras to measure the plethysmographic signals
from face videos under ambient light conditions [4-6]. Sev-
eral methodologies for estimating heart rate from face videos
have been developed over the years [7-12]. In particular,
[13] provides a comprehensive overview of the history of the
research done in this area and compares the performance of
some of these approaches. As a general rule, most of these
methods need an illumination source, depend on color band
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manipulation, and require control over the signal acquisition
process (e.g., controlled light sources, or subjects remaining
motionless during acquisition).

The recent inclusion of infrared (IR) cameras in many
conventional devices, coupled with their resilience to low-
light and variable-light conditions, make them especially at-
tractive for remote monitoring in the context of iHR detection.
Their use has just now started to be explored in the detection
of heart rate using infrared face videos [14, 15], but so far
these approaches are limited to estimating a heart rate average
over a considerable time frame (over 30 seconds). This paper
shows that, under controlled motion conditions, it is feasible
to extract even sub-second approximations to the iHR using
basic spatiotemporal analysis and time-frequency analysis.

We describe this approach, and show its performance on
face IR videos acquired using a Kinect camera from 7 healthy
volunteers. The extracted iHR is compared against ECG and
contact PPG ground truth signals that were simultaneously
acquired.

2. NON-CONTACT PPG SIGNAL FROM IR VIDEO

Here we describe the proposed algorithm to construct the non-
contact PPG signal from an IR face video and hence extract
the instantaneous heart rate. We divide this process into three
main steps. The first step is detecting and segmenting the face
in the video into n,. disjoint spatial regions. Secondly, we take
the mean activity of each region, denoise it, and decompose it
into a smaller subset of sources. Finally, we introduce a sig-
nal quality index to select the signals of interest, and combine
them to construct the non-contact PPG signal we are after.
Figure 1 summarizes the initial preprocessing stages, while
Figure 2 shows an example of the subsequent recovery pro-
cess of the non-contact PPG.

2.1. Input IR video

For each subject, denote the recorded IR videoas V : R —
R™ ™ where V(t) denotes the recorded frame at time ¢,
which is of size n x m (height x width). Suppose the video is
sampled every 7 seconds; that is, sampled at 1/7 Hz, and the
recording starts at time O and lasts for 7' seconds. We have
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thus n; = |T/7] frames. In this study, 1/7 = 58 Hz. We
additionally assume that the subject’s head is fixed, so major
movements between frames are ignored.

2.2. Preprocessing the IR video

We detect the boundaries of the face using the Dlib landmark
detector [16] on the average face location, frame-by-frame
detection is not performed since the subject is assumed to be
immobile. An example is shown on Figure 1(a). We then
divide the area inside the detected face into n,. disjoint regions
following a predefined mesh grid.

Denote those disjoint regions as R;, ¢ = 1,...,n,. For
each video frame V; := V(j7) € R™™™, j = 1,...,n, we
compute the mean IR value on each region R;

1
Yij = R;] Z Vi(z,y).

(z,y)ER;

As a result, we obtain the data matrix
Y, € RrX7e,

In other words, the i-th row of matrix Y contains a time se-
ries with the mean IR activity over region R;, there are n,
such regions defined across the face. We will refer to these as
channels. Note that the constructed data matrix is commonly
encountered in spatiotemporal analysis. For the purposes of
this study, the face is subdivided into regions using a non-
overlapping 5 x 5-pixel grid. See Figure 1(b) for illustration.

(a) Detect facial landmarks on IR video. (b) Segment face into regions.

Fig. 1: Outline of video preprocessing pipeline. Figure a)
shows how the facial landmarks are detected using Dlib. Fig-
ure b) shows how the detected face is subdivided using a 5x5
pixel grid; these regions can be grouped into 5 major facial
areas. The mean activity signal of all grid elements compose
our observation matrix Yj.

To denoise the time series, we apply to each channel in
the data matrix Y; an order 5 bandpass Butterworth with cut-
off frequencies at 24 and 300 bpm, a range that comfortably
acommodates most normal heart rates. Denote the filtered

signals as the data matrix Y. This bandpass filter is chosen
based on the physiological knowledge that, for a normal sub-
ject, the heart rate is between 40 and 200 bpm.

2.3. Low rank spatiotemporal model

We assume that the IR video captures different physiological
dynamics, such as respiration, body movement, and hemo-
dynamics, among others. Denote these physiological sources
as X; € R™, where i = 1,...,n,; and ny < min{n,,n:}.
Note that in general X; and X; might not be orthogonal when
i # j; for example, the hemodynamics and respiration might
be coupled due to the respiratory sinus arrhythmia.

The data matrix Y is then modeled as a mixture of these
ng source signals with additive and uncorrelated noise

Y = AX + o2, (1)

where X € R"™*™t contains the physiological source signals,
A € R %" {g the source mixture matrix, Z is a noise matrix
with independent and identically distributed entries with zero
mean, unit variance and finite fourth moment, and o2 > 0 is
a scalar constant that describes the noise variance. In other
words, the recorded signal on each region, Y;, is a mixture
of different sources via A, contaminated by noise. We further
make the low rank assumption that n, is fixed and small. This
assumption means that there are limited sources of physiolog-
ical dynamics that are captured by the IR video.

2.4. Determine important sources

Due to the low-rank assumption and the high-dimensional na-
ture of the spatiotemporal model, apply SVD to the data ma-
trix Y:

Y =UAV, 2

where U € O(n,) consists of the left singular vectors, V' &
O(n4) consists of the right singular vectors, and A € R"»*"t
consists of singular values o1 > g9 > ... Omin{n,,n;} = 0-
Denote u; and v; to be the i-th left and right singular vectors
respectively. Note that V' contains the relevant temporal sig-
nals that are mixed in each region, and U their weight in each
spatial location. An example is illustrated in Figure 2.

Denote  := n;/n, and denote n is the number of sin-
gular values such that (o, /o) > 0. Since the noise level o is
in general not known, we estimate it as proposed in [17]:

median(a;)
V Hb

where p;, is the median of the Marcenko-Pastur distribution
[18] with parameter A+ = (1 £ /)2. Applying this proce-
dure to Y reduced the number of non-zero singular values by
over 80% on average.

o=



2.5. Reconstructing the non-contact PPG signal

Due to the non-orthogonal nature of physiological sources,
we cannot recover X directly from Y by applying the usual
blind source separation technique. We thus propose the fol-
lowing procedure to reconstruct the non-contact PPG signal.

Define a signal quality index (SQI) for a signal x of length
Nng as

LS e
- )
Jy7 1(f)ldf
where 2 is the Fourier transform of the time series x, and f,
is the expected heart rate of a normal subject. Note that Q(x)
quantifies how concentrated the time series x is around f,, in
the frequency domain.

We rank all temporal signals v;, where ¢ = 1,...,n},
according to their SQIs Q(v;). Consider the reordering per-
mutation ¢ : {1,...,n}} — {1,...,n}} so that Qg >
Qq(z) > . Our hemodynamic estimator, the non-contact
PPG signal denoted as PPGry, is defined as

q(J)
PPGIR = Z (7 € Rnt’
i=q(1)

for J € N chosen by the user. Here we determine J by
greedily accumulating the sources until the maximal quality
is achieved; that is,

q(j)

>

q(J) = argmax Q)
! i=q(1)

Figure 2 shows an outline of the recovery process for non-
contact PPG over the full face. Figure 3 shows the recovered
iHR signal when we applied the proposed method to the chan-
nels contained in each of the five major facial areas indepen-
dently, this is provided merely for illustration purposes. In
general, using the entire facial area provided the best results.
Figure 4 shows short time segments of non-contact PPG com-
pared against ground truth contact PPG. Additional examples
will be provided in the following sections.

2.6. Estimation of the instantaneous heart rate

Denote the short time Fourier transform (STFT) of the con-
structed non-contact PPG signal as Sppg,, € Crex(ne/2),
where Sppg., (t, f) is the STFT coefficient at time ¢/7 and
frequency f/T. From the STFT we extract the dominant
curve using the curve extractor proposed in [19],

¢ =arg max Z log |Sep,, (t, c(t))] ®)

_/\Z|

)= c(t — 1)]) € N™,
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Fig. 2: Top half of figure shows left (u) and right (v) singular
vectors sorted by SQI in descending order. The resulting ac-
cumulated non-contact PPG (PPG+y) is shown on the bottom,
ground truth contact PPG is shown for comparison. Contact
and noncontact PPG show well matched cycles.
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Fig. 3: Results of applying the proposed framework to the
channels contained in each of the 5 major facial areas inde-
pendently. All areas contain a measure of iHR information,
the best results are obtained by analyzing the full face as a
whole. Ground truth PPG is provided for comparison.

where A > 0 is a regularization constant. The iHR is thus
determined by

iHR := ¢/T € R™.

Figure 5 shows the obtained PPG:y and its STFT; ground
truth iHR from ECG is also shown for comparison.

3. EXPERIMENTS

We acquired 9 simultaneous ECG, PPG, and IR face video
using a standard patient monitor (Philips IntelliVue MP70 Pa-
tient Monitor) and a Microsoft Kinect camera. The clocks in
the Kinect camera and the patient monitor were synchronised
with a time accuracy of £1s. Acquisitions were done over
7 healthy subjects. The subjects were asked to look straight
into the camera and maintain a steady posture, but otherwise
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Fig. 4: Estimated PPG:z (solid blue) compared against
ground truth contact PPG (dashed red) at 10s and 5s
timescales for two datasets. Overall, cycles are well matched
between contact and noncontact PPG. Datasets are taken from
subjects with dissimilar resting heartrate.

behave, blink, and breathe normally. The instantaneous heart
rate (iHR) was estimated from the IR video using the process
described in Section 2. Ground truth iHR was extracted from
the ECG signal using the R-peak detection algorithm imple-
mented in the python library biosppy [20].

4. RESULTS

For each of the 9 datasets we measured the differences be-
tween the recovered iHR signal and ground truth using root
mean square error (RMSE) and relative error

1 i liHR(t) — iHRpca(t)|
ntt 1 iHREcg(t) '

Table 1 shows these values. Figure 5 shows the extracted
iHR signals. Implemented code is available at https://
github.com/natalialmg/IR_1iHR.
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Fig. 5: Recovered noncontact PPG (PPG:z) and its corre-
sponding STFT are shown for dataset 9 and 8. Dotted orange
line shows the ground truth iHR recovered from ECG signal.
Spectrograms show good correspondence between recovered
IR iHR and ground truth iHR.

In general, RMSE results averaged for longer time-frames
(30s) are satisfactory. Perhaps surprisingly, RMSE results for
iHR at 1s intervals are also reasonable. Figure 5 shows good

Dataset / RMSE [bpm] Relative

Subject error [%]
Every Is Every 10s Every 30s Every 30s

din 5.39 4.27 4.03 4.50

d2/1 5.61 4.99 5.22 6.51

d3r2 4.71 4.44 3.70 4.40

d4/72 3.59 2.87 1.33 1.56

ds/3 4.39 3.86 1.95 2.60

de/4 4.95 4.65 291 3.58

d7/s 2.21 1.31 1.02 1.60

dg/6 3.30 1.42 0.23 0.25

d9/7 2.38 1.26 0.66 1.08

Table 1: Error measures across datasets

correspondence between the ground truth ECG iHR and the
STFT of the recovered non-contact PPG.

5. CONCLUDING REMARKS

In this paper, we extracted non-contact PPG from IR facial
video. We showed that a simple, principled method based on
matrix decomposition was sufficient to recover instantaneous
heart rate with small relative errors on a second-by-second
basis when subjects remain relatively stationary.

This suggests the viability of IR for non-contact PPG,
particularly when we consider the low-light and varying-
light performance of IR in general compared to traditional
RGB methods. Additional work is required to adequately
and robustly correct for motion artifacts. Improvements
can be done on the process by which we combine the sin-
gular vectors to obtain our final hemodynamic estimator.
Finally, more research needs to be done on the characteriza-
tion of absorption curves of biological processes of interest
in the near infrared spectrum. We leave this physiologi-
cal research as a future collaborative work. We could also
consider more sophisticated time-frequency representation
tools to further analyze the obtained non-contact PPG signal
for the instantaneous heart rate estimation. A more gen-
eral manifold learning algorithm and matrix denoise tech-
nique can be applied to capture motion and time latency;
for example, due to the high dimensional nature of Y, the
matrix Y can be denoised by the optimal shrinkage algo-

rithm proposed in [21]: ¥ = 27:1 on(o;/o)u;vl, where

\/T
(y>*—B-1)>—48 y>1++B

= Yy
n(y) 0 <1+ VB
shrinkage under the Frobenius norm. This approach has the
potential to further improve the overall quality of the signal.
We will explore these possibilities in future work.

is the optimal
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