
Bankrupting Sybil Despite Churn

Diksha Gupta
School of Computing

National University of Singapore

Singapore, Singapore

dcsdg@nus.edu.sg

Jared Saia
Department of Computer Science

University of New Mexico

Albuquerque, USA

saia@cs.unm.edu

Maxwell Young
Dept. of Computer Science and Eng.

Mississippi State University

Mississippi, USA

myoung@cse.msstate.edu

Abstract—A Sybil attack occurs when an adversary pretends
to be multiple identities (IDs). Limiting the number of Sybil
(bad) IDs to a minority is critical to the use of well-established
tools for tolerating malicious behavior, such as Byzantine
agreement and secure multiparty computation.

A popular technique for enforcing a Sybil minority is
resource burning: verifiable consumption of a network re-
source, such as computational power, bandwidth, or memory.
Unfortunately, typical defenses based on resource burning
require non-Sybil (good) IDs to consume at least as many
resources as the adversary. Additionally, they have a high cost,
even when the system membership is relatively stable.

Here, we present a new Sybil defense, ERGO, that guarantees
(1) there is always a minority of Sybil IDs; and (2) when
the system is under significant attack, the good IDs consume
asymptotically less than the bad. In particular, for churn rate
that can vary exponentially, the resource burning rate of ERGO

is O(
√

TJ + J), where T is the resource burning rate of the
adversary, and J is the join rate of good IDs.

We empirically evaluate ERGO alongside prior Sybil de-
fenses. Unlike other Sybil defense, ERGO can be combined
with machine learning techniques for identifying Sybil IDs, in
a way that maintains its theoretical guarantees. Based on our
experiments comparing ERGO with two state-of-the-art Sybil
defenses, we show that ERGO improves by up to 2 orders of
magnitude without machine learning, and up to 3 orders of
magnitude using machine learning.

Keywords-Sybil attack; resource burning; security;

I. INTRODUCTION

A Sybil attack occurs when a single adversary pretends
to be multiple identities (IDs) [27]. A classic defense is
resource burning, whereby IDs are periodically required to
consume local resources in a verifiable manner [45]. A
well-known example of resource burning is proof-of-work
(PoW) [28], but several other methods exist (see Section II).

Unfortunately, current resource burning methods always
consume resources, even when the system is not under
attack. This non-stop consumption translates into substantial
energy and monetary costs [60], [61].

Prior work shows it is sometimes possible for good IDs
to consume fewer total resources than the adversary [43].
Unfortunately, this work fails to hold in settings where the
rate at which system membership changes—often referred
to as the churn rate— is high. Many systems vulnerable to
Sybil attacks have high churn [29], [82], [87].

Thus, a key question is: Can we design a Sybil defense where

good IDs spend less than the attacker despite churn?

A. Our Contributions

We demonstrate such a defense, ERGO. Informally, our
model of churn is as follows (cf. Section II-A). Epoch

boundaries occur when the membership of good IDs changes
by a constant fraction. Churn due to bad IDs is arbitrary,
while churn due to good IDs is specified by two a priori

unknown parameters: α,β. First, the good join rate between
two consecutive epochs differs by at most an α factor.
Second, the number of good IDs that join or depart during
any duration of " seconds within an epoch differs by at most
a β-factor from the expected number over that duration.
Thus, α characterizes how the rate at which good IDs join,
denoted by ρ, changes over epochs; and β characterizes the
smoothness of good ID joins and departures within an epoch.

ERGO ensures the fraction of bad IDs is always less
than 1/6; this constant is arbitrary and can be decreased
by reducing κ, the fraction of the system resources the
adversary is assumed to control. Let the good spend rate be
the total resource burning cost for all good IDs per second.
Similarly, let T denote the adversary’s spend rate and let
J be the join rate of good IDs over the system lifetime.
All of our theorems hold with probability of error that is
o(1/n0) over a number of ID good and bad ID joins and
departures polynomial in n0, where n0 is a lower bound
on the number of good at any time in the system. In the
following, κ = 1/18 for ease of analysis, larger values can
be tolerated. Additionally, the fraction of bad IDs can be
held smaller than 1/6 by reducing κ.

Theorem 1. For κ ≤ 1/18, ERGO ensures that the fraction

of bad IDs in the system is always less than 1/6 and has

good spend rate O
(

α6β4
(

√

T (J + 1) + J
))

.

ERGO makes critical use of a second algorithm, GOOD-
JEST, that may be of independent interest. GOODJEST

estimates the good join rate assuming the fraction of bad
IDs is always less than 1/6.

Theorem 2. Assume the fraction of bad IDs is always less

than 1/6. Fix any epoch. Let ρ be the good join rate during

that epoch. Then, if J̃ is the estimate from GOODJEST at

any time during that epoch:

1/(418α4β3)ρ ≤ J̃ ≤ 267α4β5ρ.

This holds no matter how the adversary injects bad IDs.
Based on our experiments on multiple networks, GOODJEST

always provides an estimate within a factor of 10 of the true
good join rate, and often much closer (cf. Section VII-B).

We validate our theoretical results by comparing ERGO

against prior PoW defenses using real-world data from sev-
eral networks (Section VII-A). We find that ERGO performs
up to 2 orders of magnitude better than previous defenses,
according to our simulations. Using insights from these first
experiments, we engineer and evaluate several heuristics
aimed at further improving the performance of ERGO. Our
best heuristic performs up to 3 orders of magnitude better
than previous algorithms for large-scale attacks.

II. MODEL AND PROBLEM

We now describe a general network model. The system
consists of virtual identifiers (IDs), where each ID is either
good if it obeys protocol, or bad if it is controlled by the
Sybil adversary (or just adversary).

Resource-Burning Challenges. IDs can construct resource-
burning challenges of varying hardness, whose solutions
cannot be stolen or pre-computed; some examples are dis-
cussed in Section III. A k-hard challenge for any integer
k ≥ 1 imposes a resource cost of k on the challenge
solver. Our results are agnostic to the type of challenges
employed, either those discussed above or new resource-
burning schemes available for future use.

Coordination. To simplify our presentation, we assume that
there is a single server running our algorithms. However, in
Section VIII, we show how the server can be replaced with
a small committee, thus allowing our algorithms to execute
in decentralized settings.

A round is the amount of time it takes to solve a 1-hard
challenge plus time for communication between the server
and corresponding ID for issuing the challenge and returning
a solution. As is common in the literature, we assume
that good IDs have clocks that are closely synchronized.
Intuitively, if there is message delay or clock drift, then a
challenger cannot accurately measure the response time for
the ID solving the challenge; see [59] for further discussion.
Techniques for synchronizing on the order of milliseconds
are known and suffice for our purposes [63].

Adversary. A single adversary controls all bad IDs. This
pessimistically represents perfect collusion and coordination
by the bad IDs. Bad IDs may arbitrarily deviate from our
protocol, including sending incorrect or spurious messages.
The adversary can send messages to any ID at will, and can

read the messages sent by good IDs before sending its own.
It knows when good IDs join and depart, but it does not
know the private bits of any good ID.

The adversary is resource-bounded: in any single round
where all IDs are solving challenges, the adversary can
solve a κ-fraction of the challenges; this assumption is
common [5], [34], [70].

Joins and Departures. Every join and departure event is
assumed to occur at a unique point in time. In practice,
this means that the events are serialized by the server or
committee.

Whenever the adversary decides to cause a good ID depar-
ture event, the departing good ID is selected independently
and uniformly at random from the set of good IDs in the
system. Departing good IDs announce their departure. In
practice, each good ID can issue “heartbeat messages” to
the server that indicate they are still alive; the absence of
a heartbeat message is interpreted as a departure by the
corresponding ID. Thus, even departures by bad IDs are
detectable.

Every joining ID is treated as a new ID. We ensure every
joining ID is given a unique name by concatenating a join-
event counter to the name chosen by the ID. As in [30], [40],
[48], [81], we assume that every joining ID knows at least
one good ID in order to be bootstrapped into the system.

We define n0 (n0 ≥ 4) to be the minimum number
of good IDs in the system at any time. We define the
system lifetime to be the duration over which nγ

0 joins and
departures occur, for any fixed constant γ > 0.

A. Epochs, Smoothness, and Churn

Our model of good churn is quite general (cf. [44]); we
make no assumptions about the bad churn. Time is divided
into epochs whose boundaries occur when the symmetric
difference between the sets of good IDs at the start and the
end of the epoch exceeds 3/4 times the number of good IDs
at the start. Epochs are important to our model and analysis;
however, our approach does not assume knowledge of when
epochs begin or end.

Good churn is specified by two a priori unknown parame-
ters: α,β. First, the good join rate between two consecutive
epochs differs by at most an α factor. Second, the number
of good IDs that join or depart during " consecutive seconds
within an epoch differs by at most a β factor from " times
the good join rate of the epoch. Thus, α characterizes how
the good join rate changes over epochs; and β characterizes
the burstiness of good ID arrivals and departures within an
epoch.

For any time x, let G(x) be the set of good IDs, and
S(x) be the set of all IDs at time x. Also, define A#B
to denote the symmetric difference between any two sets A
and B, i.e. A#B = (A−B) ∪ (B −A).

Definition 3. For all i ≥ 1, epoch i begins at time t = 0 if

i = 1, or at time t when epoch i− 1 ends otherwise. Epoch

i ends at the smallest t′ > t such that |G(t′)#G(t)| ≥
(3/4)|G(t)|.

Let ρi be the join rate of good IDs (i.e., good join rate) in
epoch i; that is, the number of good IDs that join in epoch i
divided by the number of seconds in epoch i. The bound on
β below is necessary to obtain a lower bound on the number
of good IDs joining in an interval (See Lemma 8).

Definition 4. For any α ≥ 1 and 1 ≤ β ≤
√

5
80n0 − 1, and

any epoch i > 1, we define the following.

• α-smoothness: (1/α)ρi−1 ≤ ρi ≤ αρi−1.

• β-smoothness: For any duration of " seconds in the

epoch, the number of good IDs that join is at least &"ρi/β'
and at most (β"ρi). Also, the number of good IDs that

depart during this duration is at most (β"ρi).

Varying Churn Rate. The parameter, α captures any

possible change in the good join rate between consecutive
epochs, since there always exists an α that satisfies the
definition. Thus, the good join rate may change rapidly. For
example, suppose that say, α = 2. In this case, the good
join rate may increase exponentially from epoch to epoch.
Similarly, the good join rate may decrease exponentially
when α = 2. The parameter β ensures there can be possibly
large deviations within an epoch from the average good
join rate over the entire epoch.

Our problem: DEFID. In the well-studied GENID prob-
lem [3], [5], [6], [47], [50], there is some initial set of good
and bad IDs in a permissionless system. All good IDs must
decide on a set of S such that: all good IDs are in S; and a
O(κ)-fraction of the IDs in S are bad.

The DEFID (DEFend ID) problem generalizes GENID
to handle churn. Specifically, bad IDs join and depart in
a worst-case manner, and good IDs join in a α,β-smooth
manner for unknown α and β. Our goal is to ensure that, at
any time t, all IDs know a set St such that (1) all good IDs
are in St; and (2) a O(κ)-fraction of IDs in St are bad.

DEFID presents novel challenges. The fraction of bad IDs
increases whenever a bad ID joins or a good ID departs.
Since bad and good IDs cannot be differentiated a priori,
the desired bound on the fraction of bad IDs may be violated
via churn. Naively executing a solution to GENID after every
join and departure event would prevent this, but is expensive.

III. RELATED WORK

Churn. A common assumption in related work is that the
number of good IDs is fixed at a sufficiently large value or
can vary by at most a constant factor [12]–[16], [30], [76]–
[78], [90]. In this setting, several results by Augustine et
al. [8]–[12] address robust distributed computation, but with

the added challenge that the system membership can change
rapidly. Guerraoui et al. [40] address a challenging setting
where the system size can vary polynomially as a function
of some initial quantity of good IDs. We address the same
challenge here. However, we differ from these past works
in that our algorithmic resource costs are tuned to both the
amount of actual churn and the amount spent by an attacker.

Sybil Attacks. There is significant prior work on Sybil at-
tacks [27]. For example, see surveys [49], [66],and additional
work documenting real-world Sybil attacks [71], [86], [89].

Several results leverage social networks for Sybil defense
[65], [88], [91]. However, social-network information may
not be available in many settings. Another approach is
to use network measurements to verify the uniqueness of
IDs [33], [56], [79], but these techniques rely on accurate
measurements of latency, signal strength, or round-trip times,
and this may not always be possible. Containment strategies
are explored in overlays [24], [78], but these results do not
ensure a bound on the fraction of bad IDs.

Resource Burning. Many resource burning schemes for
Sybil defense exist. Computational puzzles consume CPU
cycles [5], [55], [70]. Proof of Space-Time, requires alloca-
tion of storage capacity [69]. Proof of useful-work consumes
CPU cycles to solve challenges applicable to real-world
scientific or engineering problems [18], [80].

A completely automated public Turing test to tell com-

puters and humans apart (CAPTCHA) is a resource-
burning tool where the resource is human effort [68], [84].
CAPTCHAs of tunable hardness have been proposed [17], as
have CAPTCHAs that channel human effort into practical
problems such as deciphering scanned words or detecting
spam [85].

In a multi-channel wireless network, Sybil attacks can be
mitigated via radio-resource testing if the adversary cannot
listen to all channels simultaneously [37], [39], [67]; the
resource here is listening capacity.

Finally, we note that Proof of Stake [4], [34], [51] is not

a resource burning technique. It requires that the “stake" of
each ID to be a globally known quantity and thus is likely
to remain relevant primarily for cryptocurrencies. Moreover,
even in that domain, it is controversial [23].

Guaranteed Spend Rate. In [41] and [43], Gupta et al.
proposed two algorithms CCOM and GMCOM that ensure
that the fraction of bad IDs is always small, with respective
good spend rates of O(T + J) and O(J +

√

T (J + 1)).
Unfortunately, the second result only holds in the case where
(1) churn is sufficiently small; and (2) there is a fixed
constant amount of time that separates all join events by
good IDs (i.e., non-bursty arrivals). ERGO does not require
these assumptions. Finally, outside of the Sybil attack,
several prior works address network security challenges with
results that are parameterized by the adversary’s cost [2],
[19], [20], [25], [26], [35], [36], [38], [53], [54], [92].

First, at what points in time should J̃ be updated? This
occurs whenever the system membership has changed by
a constant factor with respect to the current system size. In
particular, J̃ is updated when |S(t′)#S(t)| ≥ 5

8 |S(t
′)| holds

true. Since join and departure events are serialized, this is
equivalent to the property that |S(t′)#S(t)| = (58 |S(t

′)|).
We refer to (t, t′] as an interval. The execution of GOOD-
JEST divides time into consecutive, disjoint intervals.

Second, how is J̃ updated? This is done by setting J̃ to the
current system size divided by the amount of time since the
last update to J̃. In particular, we set J̃← |S(t′)|/(t′ − t).

VI. ANALYSIS

A. Analysis Overview of GOODJEST

Why does GOODJEST provide a close estimate of the
good join rate? Recall that GOODJEST divides time into
intervals. We say that an interval intersects an epoch if there
is a point in time belonging to both the interval and the
epoch. We now sketch the analysis; complete proofs are
in [44]. The proofs of the next two lemmas follow easily
from definitions.

Lemma 5. An interval intersects at most two epochs.

Lemma 6. |S(t′)| ≥ 6
13 |S(t)|.

For the remainder of this section, fix an interval that starts
at time t and ends at time t′. Let a be the number of good
IDs that have joined during the interval. All lemmas hold
with high probability in n0.

The next lemma is one of the more technically challenging
in our analysis. Recall that S(τ) is the set of all IDs in the
system at time τ . In order to upper bound the number of
joining good IDs, we need to first upper bound the number
of new, good IDs that depart, where an ID is new if it has
joined in the current interval. The key technical difficulty is
establishing this bound with high probability. To do so, we
compute the expected number of departing new, good IDs,
and then use a stochastic dominance argument and Chernoff
bounds to show tight concentration around this expectation.

Lemma 7. a ≤ 23|S(t)|+ 4.

Proof: Note that:
⌈

5
8
|S(t′)|

⌉

= |S(t′)!S(t)| ≥ |G(t′)−G(t)|

where the first step holds by the definition of an interval
and the fact that all join and leave events occur at unique
times. The next step holds since sets of good and bad IDs
are disjoint. Thus, we have:

|G(t′)−G(t)| ≤
⌈

5

8
|S(t′)|

⌉

≤
3

4
|G(t′)|+ 1

In the above, the second step holds since the fraction of

bad IDs is always less than 1/6. Hence,
|G(t′)|
|S(t′)| >

5
6 implies

that |S(t′)| < 6
5 |G(t′)|. Then:

⌈

5

8
|S(t′)|

⌉

≤
5

8
|S(t′)|+ 1 <

3

4
|G(t′)|+ 1

This gives our first key inequality:

|G(t′)−G(t)| <
3

4
|G(t′)|+ 1 (1)

Let d be the number of good IDs that have departed in
the interval. Let the random variable X be the number of
IDs in G(t) that have departed during the interval. Note that
X is stochastic since, when a good ID departs at any time
t′ ≥ t, the probability that it is an ID from G(t) equals
|G(t) ∩ G(t′)/|G(t′)|. By Equation 1, E(X) ≥ 9

40d, for
|G(t′)|/40 ≥ 1, or n0 ≥ 40. Additionally, X stochastically
dominates a simpler random variable that counts the number
of successes when there are d independent trials, each
succeeding with probability 9

40 . Hence, by Chernoff bounds,
when d ≥ |G(t)|, X ≥ 1

5d, with probability of failure that
is O(e−cn0), for some constant c > 0. For any fixed λ,
this probability is at most n−λ−1

0 for n0 sufficiently large.
Hence, by a union bound, X ≥ 1

5d over all intervals, with
probability of failure at most 1/n0.

Clearly, X ≤ |G(t)|. So by the above, we have that, with
high probability, 1

5d ≤ |G(t)|, which gives:

d ≤ 5|G(t)| (2)

Since the number of new good IDs in S(t′) is at least
a− d, then |G(t′)−G(t)| ≥ a− d. Thus:

a ≤ |G(t′)−G(t)|+ d

≤

(

3
4
|G(t′)|+ 1

)

+ 5|G(t)|

≤
3
4
(|G(t)|+ a) + 1 + 5|G(t)|

≤
23
4
|G(t)|+

3
4
a+ 1

In the above, the second step follows by applying inequal-
ities 1 and 2, and the third step by noting that |G(t′)| ≤
|G(t)|+ a. Finally, the lemma follows by isolating a in the
last inequality, to get a ≤ 23|G(t)|+ 4 ≤ 23|S(t)|+ 4.

Lemma 8. a ≥ |S(t′)|
12(1+β2) − 2 ≥ 8.

Proof: Let d be the number of good IDs that have
departed in the interval. We start by proving that:

d ≤ β2(a+ 2) + 2. (3)

By Lemma 5, an interval intersects at most two epochs. If
two epochs are intersected, let ρ, ρ′ be the good join rates
over the two epochs intersected, and ", "′ be the lengths of
the intersection. If a single epoch is intersected, let ρ and ρ′

both equal the good join rate over that epoch, and let ", "′

both be half the length of the intersection of the interval
and the epoch. Then, in every case, from β−smoothness,

Here, we sketch the bound on the good spend rate. To
begin, we partition every interval of length " into ("J̃) sub-
intervals of length at most 1/J̃, where J̃ is the estimate of
the good join rate used in the interval. Then we have the
following lemmas.

Lemma 12. Fix a sub-interval j. Let Tj be the total spend-

ing of the adversary in sub-interval j. Then, the number of

bad IDs that join in this sub-interval is at most
√

2Tj .

Proof: Let bj be the number of bad IDs joining in the
sub-interval j. Then, pessimistically assuming all bad IDs
join before any good IDs in a sub-interval, we get:

Tj ≥
bj
∑

i=1

i ≥
b2j
2

Solving the above for bj , we obtain the result.

Lemma 13. An iteration intersects at most two intervals.

Proof: We prove this by contradiction. Assume an
iteration starts at time t0 and intersects three or more
intervals. Then, there will be at least one interval that is
completely contained within the iteration. Let the first such
interval start at time t1 ≥ t0 and end at time t2 > t1. Let
na(nd) be the number of IDs that join (depart) during this
interval. Then:

na + nd ≥ |S(t1)#S(t2)| ≥
5

8
|S(t2)| ≥

5

8

(

10

11
|S(t0)|

)

=
25

44
|S(t0)|

The second step follows from the definition of an interval.
The third step holds since during an iteration, at most
|S(t0)|/11 IDs can depart, and so the system size at time t2
is at least 10

11 |S(t0)|. But the number of joins and departures
during the iteration is at most |S(t0)|/11 by the definition
of an iteration. This gives the contradiction.

Lemma 14. Fix an iteration. Let L be the length, and J
be the good join rate in this iteration. Then, the number of

sub-intervals in the iteration is at most 100α3β6(JL+10).

Proof: From Lemma 13, an iteration intersects at most
two intervals. For i ∈ {1, 2}, let ti denote time at which the
ith interval intersects the iteration for the first time; Ji be
the good join rate in the ith overlapping interval and J̃i be
the estimated good join rate set at the end of interval i. If
there is only one interval intersected, let J1 = J2, J̃1 = J̃2

and t1 = t2.
By Lemma 5, an interval intersects at most two epochs.
So, let ρ1 and ρ2 be the join rate of good IDs over the

two epochs that intersect with interval 1, and let "1 and "2,
respectively be the lengths of their intersection, with "2 = 0
if there is only one such epoch. Similarly, let ρ3 and ρ4 be
the join rate of good IDs over the two epochs that intersect

with interval 2, and let "3 and "4, respectively be the lengths
of their intersection, with "4 = 0 if there is only one such
epoch. Then, from the β-smoothness property, we have:

JL≥
4

∑

k=1

⌊

ρk"k
β

⌋

≥
4

∑

k=1

(

ρk"k
β
− 1

)

=
1

β

4
∑

k=1

ρk"k − 4 (7)

Next, let t0 denote the time at the start of the iteration. Then,
the number of sub-intervals in the iteration is:

2
∑

i=1

%(ti − ti−1)J̃i& ≤ 100α3β4

2
∑

i=1

((ti − ti−1)Ji + 1)

≤ 100α3β4

(

2 +
4
∑

k=1

%βρk$k&

)

≤ 100α3β5

(

2 +
4
∑

k=1

ρk$k + 4

)

≤ 100α3β6(JL+ 10)

In the above, the first step follows from Lemma 11; the
second step follows from β-smoothness and Lemma 5; the
third step holds since β ≥ 1; and the last step from inequality
7 by isolating the value of

∑4
k=1 ρk"k, since β ≥ 1.

Lemma 15. The number of good IDs that join over any

sub-interval is at most 418α4β4 + 1.

Proof: Let J̃ be the estimate of the good join rate in the
interval containing the sub-interval, and let ρ be the good
join rate over the epoch that contains the sub-interval. Then,
by β-smoothness, the number of good IDs that join over the
sub-interval is at most:

⌈

βρ

(

1

J̃

)⌉

≤ βρ

(

418α4β3

(

1
ρ

))

+ 1

≤ 418α4β4 + 1

In the above, the first step follows from Theorem 2.

Lemma 16. Suppose that u and v are x-dimensional vectors

in Euclidean space. For all x ≥ 1:

x
∑

j=1

√
ujvj ≤

√

√

√

√

x
∑

j=1

uj

x
∑

j=1

vj

Proof: By the Cauchy-Schwarz inequality [46], we
have:





n
∑

j=1

√
ujvj





2

≤
n
∑

j=1

uj

n
∑

j=1

vj

Taking square-roots of both sides yields the result.

Lemma 17. Fix an iteration. Let L be the length of this

iteration, J be the join rate of good IDs in the iteration,

and T be the total resource cost to the adversary during the

iteration. Then, the total entrance cost to good IDs during

the iteration is:

O
(

α11/2β7
√

(JL+ 1)T + α11β14JL
)

.

Proof: Fix a sub-interval j of the iteration. Let gj (bj)
be the number of good (bad) IDs that join in sub-interval j,
and Tj be the resource cost to the adversary in sub-interval
j. Pessimistically assuming all good IDs enter at the end
of the sub-interval, the total entrance cost to good IDs in
sub-interval j is at most:

gj
∑

k=1

(bj + k) ≤ gj
(

√

2Tj + gj
)

≤ (418α4β4 + 1)
(

√

2Tj + 418α4β4 + 1
)

The first step follows from Lemma 12, and the second step
follows from Lemma 15.

Suppose the iteration consists of t sub-intervals. Then, the
total entrance cost to the good IDs in the iteration is:

t
∑

j=1

(

(

418α4β4 + 1
)

(

√

2Tj + (418α4β4 + 1)
))

≤ (418α4β4 + 1)
√
2tT + (418α4β4 + 1)2t

= O
(

α11/2β7
√

(JL+ 1)T + α11β14JL
)

The first step follows from Lemma 16 and by noting that
∑t

j=1 Tj = T . The second step follows from using Lemma
14 to upperbound t.

Lemma 18. Fix an iteration. For this iteration, let L be

the length, D be the rate of departure, J be the join rate

of good IDs, and T be the total RB-cost to the adversary.

Then, the total spending for good IDs in this iteration is:

O
(

DL+ α11/2β7
√

(JL+ 1)T + α11β14JL
)

.

Proof: Let S be the set of IDs at the beginning of the
iteration. Let t be the number of sub-intervals; g and b be
the number of good and bad IDs that join, and d be the
total number of IDs that depart. For any sub-interval j of
the iteration, let Tj be the total RB-cost to the adversary in
that sub-interval.

Each good ID solves a 1-hard RB-challenge during
purges. Hence the cost due to purges is at most the number
of good IDs at the end of the iteration, which is at most:

12
11

|S| ≤
12
11

(11 (d+ b+ g))

≤ 12

(

DL+
t
∑

j=1

√

2Tj + JL

)

≤ 12



DL+

√

√

√

√2t
t
∑

j=1

Tj + JL





≤ 12
(

DL+
√

200α3β6(JL+ 10)T + JL
)

(8)

In the above, the first step follows since over an iteration
the number of good IDs in the system can increase by at
most |S|/11. The second step follows since the number of
ID joins and deletions in an iteration, i.e. d + b + g, is at
least |S|/11 (Step 2 of ERGO). The third step follows by

upper bounding b using Lemma 12 to bound the number
of bad IDs joining over all sub-intervals; and noting that
g = JL and b = DL. The fourth step follows from Lemma
16. The last step follows from Lemma 14 and substituting
∑t

j=1 Tj = T . Combining Equation 8 with the cost from
Lemma 17 yields the result.

Consider a long-lived system which undergoes an attack
over some limited number of consecutive iterations. A
resource bound over the period of attack, rather than over the
lifetime of the system, is stronger, and may be of additional
value to practitioners. Thus, we first provide this type of
guarantee in Lemma 19; Theorem 1 then becomes a simple
corollary of this lemma, when considered over all iterations.

For the following lemma, let I be a subset of contiguous
iterations containing all iterations numbered between x and
y inclusive, for any x and y, 1 ≤ x ≤ y. Let δ(I) be
|Sx − Sy|; and let ∆(I) be δ(I) divided by the length of
I. We note that in the proof of Theorem 1, ∆(I) will be
0. Let TI be the adversarial spend rates over I; and let JI

be the good join rate over I. Then we have the following
lemma.

Lemma 19. For any subset of contiguous iterations, I,

starting after iteration 1, the good spend rate over I is:

O
(

∆(I) + α11/2β7
√

(JI + 1)TI + α11β14JI
)

.

Proof: For all iterations i ∈ I, let Li be the length of
iteration i, Ji be the good join rate, Di be the good departure
rate, and Ti be the adversarial RB spend rate over iteration
i. By Lemma 18, for some constant c, the total RB-cost to
the good IDs over all iterations in I is at most:
∑

i∈I

c
(

DiLi + α11/2β7
√

(JiLi + 1)TiLi + α11β14JiLi

)

Dividing this by
∑

i∈I Li and using Lemma 16, we get:

c
∑

i∈I DiLi
∑

i∈I Li
+ cα11/2β7

√

(
∑

i∈I(JiLi + 1)
∑

i∈I Li

)
∑

i∈I TiLi
∑

i∈I Li

+ cα11β14

∑

i∈I JiLi
∑

i∈I Li

= O
(

∆(I) + α11/2β7
√

(JI + 1)TI + α11β14JI
)

which yields the result.
Proof of Theorem 1: The resource cost bound follows

immediately from Lemma 19 by noting that ∆(I) = 0 when
I is all iterations, since the system is initially empty. Then,
Lemma 12 from [44] completes the proof, by showing that
the fraction of bad is always less than 1/6.

VII. EXPERIMENTS

We now report on several empirical contributions. First,
in Section VII-A, we propose and implement numerous
heuristics for ERGO. Second, we measure the resource
burning cost for ERGO, as a function of the adversarial cost,

10-2 100 102 104 106

T

100

102

104

106

108

1010

A

Bitcoin

ERGO

ERGO-SF

CCOM

SybilControl

REMP

(a)

10-2 100 102 104 106

T

100

102

104

106

108

1010

A

BitTorrent

ERGO

ERGO-SF

CCOM

SybilControl

REMP

(b)

1/1500 1/375 1/94 1/24 1/6

Fraction of bad IDs

10-1

100

101

E
s

ti
m

a
te

d
 j

o
in

 r
a

te
/

T
ru

e
 j

o
in

 r
a

te

Bitcoin

T = 0 T = 10000

(e)

10-2 100 102 104 106

T

100

102

104

106

108

1010

A

Gnutella

ERGO

ERGO-SF

CCOM

SybilControl

REMP

(c)

10-2 100 102 104 106

T

100

102

104

106

108

1010

A
Ethereum

ERGO

ERGO-SF

CCOM

SybilControl

REMP

(d)

1/1500 1/375 1/94 1/24 1/6

Fraction of bad IDs

10-2

10-1

100

101

E
s

ti
m

a
te

d
 j

o
in

 r
a

te
/

T
ru

e
 j

o
in

 r
a

te

BitTorrent

T = 0 T = 10000

(f)

Figure 4: Plots (a) – (d) illustrate the good spend rate (A) versus adversarial spend rate (T). Plots (e) and (f) depict the
ratio of GOODJEST estimated to the true join rate for good IDs versus fraction of bad IDs.

and compare it against prior results. Third, in Section VII-B,
we evaluate the performance of the GOODJEST algorithm
by measuring the approximation factor for the join rate of
good IDs. All our experiments were written in MATLAB.

We use churn data from the following networks:

• Bitcoin. This dataset records the join and departure events
of IDs in the Bitcoin network, timestamped to the second,
over roughly 7 days [72].

• BitTorrent. This dataset simulates the join and departure
events for the BitTorrent network to obtain a RedHat ISO
image. We use the Weibull distribution with shape and scale
parameters of 0.59 and 41.0, respectively, from [82].

• Ethereum. This dataset simulates join and departure
events of IDs for the Ethereum network. Based on a study in
[52], we use the Weibull distribution with shape parameter
of 0.52 and scale parameter of 9.8.

• Gnutella. This dataset simulates join and departure events
for the Gnutella network. Based on a study in [75], we use an
exponential distribution with mean of 2.3 hours for session
time, and Poisson distribution with mean of 1 ID per second
for the arrival rate.

A. Evaluating ERGO

ERGO may incorporate other tools in order to improve
its performance, while preserving the guarantees of The-
orem 1. For example, several recent works have explored
the possibility of identifying bad IDs based on the network
topology [31], [64]. We employ the machine-learning result,
SybilFuse, which correctly classifies an ID as good or bad
with probability 0.98 based on the empirical results from
Gao et al. [31] (specifically Section IV-B, last paragraph).
ERGO functions as before with the modification that Sybil-
Fuse is used to diagnose whether a joining ID is good or
bad; in the latter case, the ID is refused entry. Several other
heuristics are explored in the full version of this work [44].
However, the above heuristic delivers the best performance
gains.

We compare the performance of ERGO against four re-
source burning based Sybil defense algorithms: CCOM [42],
SYBILCONTROL [55], REMP (a name that uses the authors’
initials) [75] and ERGO-SF, summarized below.

• CCOM. CCOM is the same as ERGO except that the
hardness of RB-challenge assigned to joining IDs is always
set to 1.

• SYBILCONTROL. Each ID solves a RB-challenge to join.
Additionally, each ID tests its neighbors with a RB-challenge

every 0.5 seconds, removing from its list of neighbors those
IDs that fail to provide a solution within a fixed time period.
These tests are not coordinated between IDs.

• REMP. Each ID solves a RB-challenge to join. Addition-
ally, each ID must solve RB-challenges every W seconds.
We use Equation (4) from [75] to compute the value of spend
rate per ID as L

W = n
Nattacker

= Tmax

κN , where L is the cost
to an ID per W seconds, n is the number of IDs that the
adversary can add to the system and Nattacker is the total
number of attackers in the system. The total good spend rate
is:

AREMP = (1− κ)N ×
L

W
=

(1− κ)Tmax

κ
(9)

to guarantee that the fraction of bad IDs is less than half.

• ERGO-SF. This is ERGO using SybilFuse (SF) with
accuracy parameter as 0.98.

Setup. For all algorithms, we measure the spend-rate, which
is based solely on the cost of solving RB-challenges. We
assume a cost of k for solving a k hard RB-challenge. We
set κ = 1/18, and let T range over [20, 220], where for each
value of T , the system is simulated for 10, 000 seconds. We
assume that the adversary only solves RB-challenges to add
IDs to the system. For REMP, we consider Tmax = 107 to
ensure correctness for all values of T considered.

Results. Figure 4 illustrates our results; we omit error bars
since they are negligible. The x-axis is the adversarial spend
rate, T ; and the y-axis is the good spend rate, A.

We cut off the plot of SYBILCONTROLwhen the algorithm
can no longer ensure that the fraction of bad IDs is less than
1/6. We also note that REMP-107 only ensures a minority
of bad IDs for up to T = 107.

ERGO always has a spend rate as low as the other
algorithms for T ≥ 100, and significantly less than the
other algorithms for large T , with improvements that grow
to about 2 orders of magnitude. Our heuristic improves
further, allowing ERGO to outperform for all T ≥ 0. This is
illustrated by ERGO-SF, which reduces costs significantly,
yielding improvements of up to three orders of magnitude
during the most significant attack tested. The spend rate for
ERGO is linear in

√
T , agreeing with our theoretical analysis.

We emphasize that the benefits of ERGO are consistent over
four disparate networks.

B. Evaluating GOODJEST

For the Bitcoin network, the system initially consists of
9212 IDs, and the join and departure events are based off
the dataset from Neudecker et al. [73]. For the Bitcoin
network, the system is initialized with 10,000 IDs, and join
and departure events are simulated over 100,000 time steps.
Results for Ethereum and Gnutella are presented in [44].

In our simulations, all joins and departures from the data
sets are assumed to be good IDs. The fraction of bad IDs
varies over the values {1/1500, 1/375, 1/94, 1/24, 1/6}.

Furthermore, the adversary injects additional bad IDs at a
constant rate that can be afforded when T = 10, 000. For
every interval, we measure the ratio of the estimate from
GOODJEST to the actual good join rate.

We report our results in Figure 4. These plots demonstrate
the robustness of GOODJEST. When T = 0, our estimate is
always within range (0.08, 1.2) of the actual good join rate.
Moreover, even when T = 10, 000, our estimate is always
within range (0.08, 4) of the actual good join rate.

VIII. DECENTRALIZATION

When there is no server, we can run our algorithms using
a committee: a O(log n0) sized subset of IDs with a good
majority. This committee takes over the responsibilities of
the server, which means the committee runs GOODJEST and
ERGO in a robust, distributed fashion. Below, we discuss the
necessary model and algorithmic modifications.

A. Model Modifications

All communication among good IDs uses a broadcast
primitive, DIFFUSE, which allows a good ID to send a value
to all other good IDs within a known and bounded amount
of time, despite an adversary. Such a primitive is a standard
assumption in PoW schemes [22], [32], [34], [57]; see [62]
for empirical justification. The committee uses DIFFUSE

to issue RB-challenges; other IDs use DIFFUSE to answer
challenges.

Here, a round is the amount of time it takes to solve
a 1-hard RB-challenge plus the time for communication
between the committee and corresponding ID in order to
issue the challenge and returning a solution. In any round,
up to a constant fraction of the good IDs may depart. This
is necessary to ensure that not too many good IDs leave the
committee before they can be replaced.

B. Committee and System Initialization

GENID. To initialize our system, we require a solution to
GENID (recall Section II-A). GENID guarantees that at
initialization, (1) all good IDs agree on the same set of
IDs; and (2) at most a κ-fraction of IDs in that set are bad.
Additionally, GENID ensures that all good IDs agree on a
committee of logarithmic size with a majority of good IDs.
There are several algorithms that solve GENID in our model,
as defined in Section II [3], [5], [47], [50]. The algorithm
in [3], makes use of computational challenges, and runs in
expected O(1) rounds, and, in expectation, requires each
good ID to send O(n) bits, and solve O(1) 1-hard RB-
challenges.

C. Use and Maintenance of Committee

The committee uses State Machine Replication
(SMR) (see [1], [7], [21], [58]) to agree on an ordering
of network events so as to execute GOODJEST and ERGO

in parallel. To run SMR, the following invariant must be
maintained.

Committee Invariant: There always exists a committee

known to all good IDs. This committee has size Θ(log n0),
and a majority of good IDs.

To maintain this invariant, a new committee is elected by the
old committee at the end of each iteration. In particular, at
the end of iteration i, the old committee selects a committee
of size C log |Si|, where C > 1 is a sufficiently large con-
stant. This committee selection process can be accomplished
in our model via classic secure multiparty computation
protocols; for example, see Rabin and Ben-Or [74]. Note
that subsequent results can accomplish the same task more
efficiently, but require cryptographic assumptions. For ex-
ample, Awerbuch and Scheideler [14] describe an algorithm
specifically for random number generation that can be used
by the existing committee to select new committee members.

The algorithms of [1] and [74] work in our model (Sec-
tion II), assuming at most a 1/6 fraction of Byzantine IDs.
With the modifications above we are able to maintain the
committee invariant. See [44] for proofs.

IX. CONCLUSION

ERGO is a new Sybil-defense that efficiently employs
resource-burning to limit Sybil IDs, despite high churn.
Our experiments show that ERGO significantly decreases
resource costs when compared to other Sybil defenses.

Many open problems remain. First, can we apply the
results in this paper to build and maintain a Sybil-resistant
distributed hash table (DHT) [83]? To the best of our
knowledge, there is no such result that ensures the good
IDs pay a cost that is a slowly growing function of both the
good churn rate and the cost paid by an attacker. Second,
can we improve the costs in this paper? In [41], there is a
lower bound that asymptotically matches when α and β are
both constants. However, this lower bound only holds for a
certain class of algorithms. Can we show a lower bound for
arbitrary algorithms and any values of α and β?

Acknowledgements. This work is supported by the National
Science Foundation grants CNS 1816076 and 1816250.

REFERENCES

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. Sync
HotStuff: Simple and Practical Synchronous State Machine
Replication. IACR Cryptology ePrint Archive, 2019.

[2] A. Aggarwal, V. Dani, T. Hayes, and J. Saia. Secure One-Way
Interactive Communication. In 15th International Conference
on Distributed Computing and Networking (ICDCN), 2017.

[3] A. Aggarwal, M. Movahedi, J. Saia, and M. Zamani. Boot-
strapping Public Blockchains Without a Trusted Setup. In
Proc. of 2019 ACM Symposium on Principles of Distributed
Computing, 2019.

[4] Alyssa Hertig. Ethereum’s Big Switch: The New Roadmap
to Proof-of-Stake. www.coindesk.com/ethereums-big-switch-
the-new-roadmap-to-proof-of-stake/.

[5] M. Andrychowicz and S. Dziembowski. PoW-based dis-
tributed cryptography with no trusted setup. In Proc. of
Annual Cryptology Conference. Springer, 2015.

[6] J. Aspnes, C. Jackson, and A. Krishnamurthy. Exposing
Computationally-Challenged Byzantine Impostors. Technical
report, YALEU/DCS/TR-1332, Yale University http://www.
cs.yale.edu/homes/aspnes/papers/tr1332.pdf, 2005.

[7] H. Attiya and J. Welch. Distributed computing: Fundamen-
tals, Simulations, and Advanced Topics, volume 19. John
Wiley & Sons, 2004.

[8] J. Augustine, A. R. Molla, E. Morsy, G. Pandurangan,
P. Robinson, and E. Upfal. Storage and Search in Dynamic
Peer-to-peer Networks. In 25th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2013.

[9] J. Augustine, G. Pandurangan, and P. Robinson. Fast Byzan-
tine Agreement in Dynamic Networks. In ACM Symposium
on Principles of Distributed Computing (PODC), 2013.

[10] J. Augustine, G. Pandurangan, and P. Robinson. Fast Byzan-
tine Leader Election in Dynamic Networks. In Intl. Sympo-
sium on Distributed Computing (DISC). Springer, 2015.

[11] J. Augustine, G. Pandurangan, P. Robinson, S. Roche, and
E. Upfal. Enabling Robust and Efficient Distributed Compu-
tation in Dynamic Peer-to-Peer Networks. In Proc. of IEEE
56th Annual Symposium on Foundations of Computer Science
(FOCS), pages 350–369, 2015.

[12] J. Augustine, G. Pandurangan, P. Robinson, and E. Upfal.
Towards Robust and Efficient Computation in Dynamic Peer-
to-peer Networks. In Proc. of Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2012.

[13] B. Awerbuch and C. Scheideler. Group Spreading: A Pro-
tocol for Provably Secure Distributed Name Service. In
31st International Colloquium on Automata, Languages, and
Programming (ICALP), 2004.

[14] B. Awerbuch and C. Scheideler. Robust Random Number
Generation for Peer-to-peer Systems. In 10th Intl. Conference
On Principles of Distributed Systems (OPODIS), 2006.

[15] B. Awerbuch and C. Scheideler. Towards a Scalable and
Robust DHT. In 18th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2006.

[16] B. Awerbuch and C. Scheideler. Towards Scalable and Robust
Overlay Networks. In 6th Intl. Workshop on Peer-to-Peer
Systems (IPTPS), 2007.

[17] H. S. Baird, M. A. Moll, and S.-Y. Wang. ScatterType: A
legible but hard-to-segment CAPTCHA. In 8th International
Conference on Document Analysis and Recognition, 2005.

[18] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of
Work from Worst-Case Assumptions. In Annual International
Cryptology Conference (CRYPTO). Springer, 2018.

[19] M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young. How
to Scale Exponential Backoff: Constant Throughput, Polylog
Access Attempts, and Robustness. In 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2016.

[20] M. A. Bender, J. T. Fineman, M. Movahedi, J. Saia, V. Dani,
S. Gilbert, S. Pettie, and M. Young. Resource-Competitive
Algorithms. SIGACT News, 46(3), Sept. 2015.

[21] A. Bessani, J. Sousa, and E. E. Alchieri. State Machine
Replication for the Masses with BFT-SMART. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 355–362. IEEE, 2014.

[22] BitcoinWiki. BitcoinWiki Network. https://en.bitcoin.it/wiki/
Network\#Standard_relaying.

[23] CoinDesk. Vulnerable? Ethereum’s Casper Tech Takes Criti-
cism at Curacao Event. www.coindesk.com/fundamentally-
vulnerable-ethereums-casper-tech-takes-criticism-curacao,
2018.

[24] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. An-
derson. Sybil-Resistant DHT Routing. In 10th European
Symposium On Research In Computer Security, 2005.

[25] V. Dani, T. Hayes, M. Movahedi, J. Saia, and M. Young.
Interactive Communication with Unknown Noise Rate. In-
formation and Computation, 2017.

[26] V. Dani, M. Movahedi, J. Saia, and M. Young. Interactive
Communication with Unknown Noise Rate. In Colloquium
on Automata, Languages, and Programming (ICALP), 2015.

[27] J. Douceur. The Sybil Attack. In Proc. of Second Interna-
tional Peer-to-Peer Symposium (IPTPS), 2002.

[28] C. Dwork and M. Naor. Pricing via Processing or Combatting
Junk Mail. In Proc. of 12th Annual International Cryptology
Conference on Advances in Cryptology, 1993.

[29] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and
T. Anderson. Profiling a Million User DHT. In 7th ACM
SIGCOMM Conference on Internet Measurement, 2007.

[30] A. Fiat, J. Saia, and M. Young. Making Chord Robust
to Byzantine Attacks. In 13th European Symposium on
Algorithms (ESA), 2005.

[31] P. Gao, B. Wang, N. Z. Gong, S. R. Kulkarni, K. Thomas,
and P. Mittal. Sybilfuse: Combining Local Attributes with
Global Structure to Perform Robust Sybil Detection. In
2018 IEEE Conference on Communications and Network
Security (CNS), 2018. https://www.princeton.edu/~pmittal/
publications/sybilfuse-cns18.pdf.

[32] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Back-
bone Protocol: Analysis and Applications. In 34th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2015.

[33] S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus.
Guaranteeing Spoof-Resilient Multi-Robot Networks. In
Robotics: Science and Systems, 2015.

[34] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich.
Algorand: Scaling Byzantine Agreements for Cryptocurren-
cies. In 26th Symposium on Operating Systems Principles
(SOSP), 2017.

[35] S. Gilbert, V. King, S. Pettie, E. Porat, J. Saia, and M. Young.
(Near) Optimal Resource-Competitive Broadcast with Jam-
ming. In 26th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2014.

[36] S. Gilbert, V. King, J. Saia, and M. Young. Resource-
Competitive Analysis: A New Perspective on Attack-
Resistant Distributed Computing. In 8th ACM International
Workshop on Foundations of Mobile Computing, 2012.

[37] S. Gilbert, C. Newport, and C. Zheng. Who Are You?
Secure Identities in Ad Hoc Networks. In 28th International
Symposium on Distributed Computing (DISC), 2014.

[38] S. Gilbert and M. Young. Making Evildoers Pay: Resource-
Competitive Broadcast in Sensor Networks. In 31th Sympo-
sium on Principles of Distributed Computing (PODC), 2012.

[39] S. Gilbert and C. Zheng. SybilCast: Broadcast on the Open
Airwaves. In 25th Annual ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA), 2013.

[40] R. Guerraoui, F. Huc, and A.-M. Kermarrec. Highly Dynamic
Distributed Computing with Byzantine Failures. In Sympo-
sium on Principles of Distributed Computing (PODC), 2013.

[41] D. Gupta, J. Saia, and M. Young. Proof of Work Without All
the Work. arXiv preprint arXiv:1708.01285, 2017.

[42] D. Gupta, J. Saia, and M. Young. Proof of Work Without
All the Work. In Proc. of 19th International Conference on
Distributed Computing and Networking (ICDCN), 2018.

[43] D. Gupta, J. Saia, and M. Young. Peace Through Superior
Puzzling: An Asymmetric Sybil Defense. In 33rd IEEE Intl.
Parallel and Distributed Processing Symposium, 2019.

[44] D. Gupta, J. Saia, and M. Young. Bankrupting Sybil Despite
Churn, 2020. https://arxiv.org/abs/2010.06834.

[45] D. Gupta, J. Saia, and M. Young. Invited paper: Resource
burning for permissionless systems. In 27th International
Conference on Structural Information and Communication
Complexity (SIROCCO), 2020.

[46] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge
University Press, 2012.

[47] R. Hou, I. Jahja, L. Luu, P. Saxena, and H. Yu. Randomized
View Reconciliation in Permissionless Distributed Systems.
IEEE Intl. Conference on Computer Communications (INFO-
COM), 2018.

[48] M. O. Jaiyeola, K. Patron, J. Saia, M. Young, and Q. M.
Zhou. Tiny Groups Tackle Byzantine Adversaries. In IEEE
Intl. Parallel and Distributed Processing Symposium, 2018.

[49] R. John, J. P. Cherian, and J. J. Kizhakkethottam. A Survey
of Techniques to Prevent Sybil Attacks. In Intl. Conference
on Soft-Computing and Networks Security (ICSNS), 2015.

[50] J. Katz, A. Miller, and E. Shi. Pseudonymous Secure
Computation from Time-Lock Puzzles. Citeseer, 2014.

[51] A. Kiayias, A. Russell, B. David, and R. Oliynykov.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain
Protocol. In J. Katz and H. Shacham, editors, 37th Annual
International Cryptology Conference (CRYPTO), 2017.

[52] S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and
M. Bailey. Measuring Ethereum Network Peers. In Internet
Measurement Conference, 2018.

[53] V. King, S. Pettie, J. Saia, and M. Young. A Resource-
Competitive Jamming Defense. Distributed Computing,
September 2017.

[54] V. King, J. Saia, and M. Young. Conflict on a Communication
Channel. In Proc. of 30th Symposium on Principles of
Distributed Computing (PODC), 2011.

[55] F. Li, P. Mittal, M. Caesar, and N. Borisov. SybilControl:
Practical Sybil Defense with Computational Puzzles. In 7th

ACM Workshop on Scalable Trusted Computing, 2012.

[56] Y. Liu, D. R. Bild, R. P. Dick, Z. M. Mao, and D. S. Wallach.
The Mason Test: A Defense Against Sybil Attacks in Wireless
Networks Without Trusted Authorities. IEEE Transactions on
Mobile Computing, 14(11), 2015.

[57] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena. A Secure Sharding Protocol For Open
Blockchains. In Proc. of ACM Conference on Computer and
Communications Security (CCS), 2016.

[58] N. A. Lynch. Distributed algorithms. Elsevier, 1996.

[59] D. Malkhi. The BFT Lens: Hot-Stuff and Casper.

https://dahliamalkhi.wordpress.com/2018/03/13/casper-in-
the-lens-of-bft/, 2018.

[60] Ars Technica. Mining Bitcoins Takes Power, but is
it an Environmental Disaster? http://arstechnica.com/
business/2013/04/ mining-bitcoins-takes-power-but-is-it-an-
environmental -disaster, 2013.

[61] The Economist. Why Bitcoin Uses So Much Energy.
www.economist.com/the-economist-explains/2018/07/09/
why-bitcoin-uses-so-much-energy, 2018.

[62] A. Miller, J. Litton, A. Pachulski, N. Spring, N. Gupta,
D. Levin, and B. Bhattacharjee. Discovering Bitcoin’s Public
Topology and Influential Nodes, 2015. http://cs.umd.edu/
projects/coinscope/coinscope.pdf.

[63] D. L. Mills. Improved Algorithms for Synchronizing Com-
puter Network Clocks. IEEE/ACM Transactions on Network-
ing, 3(3), 1995.

[64] S. Misra, A. S. M. Tayeen, and W. Xu. SybilExposer: An
Effective Scheme to Detect Sybil Communities in Online So-
cial Networks. In IEEE Intl. Conference on Communications
(ICC), 2016.

[65] A. Mohaisen and S. Hollenbeck. Improving Social Network-
Based Sybil Defenses by Rewiring and Augmenting Social
Graphs. In 14th Intl. Workshop on Information Security
Applications (WISA), 2014.

[66] A. Mohaisen and J. Kim. The Sybil Attacks and Defenses:
A Survey. Smart Computing Review, 3(6), 2013.

[67] D. Mónica, L. Leitao, L. Rodrigues, and C. Ribeiro. On the
Use of Radio Resource Tests in Wireless Ad-Hoc Networks.
In 3rd Workshop on Recent Advances on Intrusion-Tolerant
Systems, 2009.

[68] M. Moradi and M. Keyvanpour. CAPTCHA and its Alter-
natives: A Review. Security and Communication Networks,
8(12), 2015.

[69] T. Moran and I. Orlov. Simple Proofs of Space-Time and
Rational Proofs of Storage. In Annual Intl. Cryptology
Conference. Springer, 2019.

[70] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem, 2008. http://bitcoin.org/bitcoin.pdf.

[71] T. Neudecker. Bitcoin Cash (BCH) Sybil Nodes on the
Bitcoin Peer-to-Peer Network, 2017. http://dsn.tm.kit.edu/
publications/files/332/bch_sybil.pdf.

[72] T. Neudecker. Personal correspondence, 2019.

[73] T. Neudecker, P. Andelfinger, and H. Hartenstein. Timing
Analysis for Inferring the Topology of the Bitcoin Peer-to-
Peer Network. In Proc. of 13th IEEE International Confer-
ence on Advanced and Trusted Computing (ATC), July 2016.

[74] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and
Multiparty Protocols with Honest Majority. In 21st annual
ACM symposium on Theory of computing, 1989.

[75] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta. Limiting
Sybil attacks in Structured P2P Networks. In IEEE Intl. Con-
ference on Computer Communications (INFOCOM), 2007.

[76] J. Saia and M. Young. Reducing Communication Costs
in Robust Peer-to-Peer Networks. Information Processing
Letters, 106(4), 2008.

[77] C. Scheideler. How to Spread Adversarial Nodes? Rotate! In
37th Symposium on Theory of Computing (STOC), 2005.

[78] C. Scheideler and S. Schmid. A Distributed and Oblivious

Heap. In 36th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’09, 2009.

[79] M. Sherr, M. Blaze, and B. T. Loo. Veracity: Practical Secure
Network Coordinates via Vote-based Agreements. In Proc. of
USENIX Annual Technical Conference, 2009.

[80] A. Shoker. Sustainable Blockchain through Proof of Exercise.
In 2017 IEEE 16th International Symposium on Network
Computing and Applications (NCA). IEEE, 2017.

[81] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), 2001.

[82] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-
to-peer Networks. In 6th ACM Conference on Internet
Measurement (IMC), 2006.

[83] G. Urdaneta, G. Pierre, and M. van Steen. A Survey of DHT
Security Techniques. ACM Computing Surveys, 43(2), 2011.

[84] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In In-
ternational conference on the theory and applications of
cryptographic techniques. Springer, 2003.

[85] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum. reCAPTCHA: Human-Based Character Recogni-
tion via Web Security Measures. Science, 321(5895), 2008.

[86] L. Wang and J. Kangasharju. Real-World Sybil Attacks
in BitTorrent Mainline DHT. In Proc. of IEEE Global
Communications Conference (GLOBECOM), 2012.

[87] L. Wang and J. Kangasharju. Measuring Large-Scale Dis-
tributed Systems: Case of BitTorrent Mainline DHT. In IEEE
13th Intl. Conference on Peer-to-Peer Computing, 2013.

[88] W. Wei, F. Xu, C. C. Tan, and Q. Li. SybilDefender:
A Defense Mechanism for Sybil Attacks in Large Social
Networks. IEEE Transactions on Parallel & Distributed
Systems, 24(12), 2013.

[89] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai.
Uncovering Social Network Sybils in the Wild. In Conference
on Internet Measurement Conference (IMC), 2011.

[90] M. Young, A. Kate, I. Goldberg, and M. Karsten. Towards
Practical Communication in Byzantine-Resistant DHTs.
IEEE/ACM Transactions on Networking, 21(1), Feb. 2013.

[91] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-
Guard: Defending Against Sybil Attacks via Social Networks.
Proc. of 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM), 36, Aug. 2006.

[92] M. Zamani, J. Saia, and J. Crandall. TorBricks: Blocking-
Resistant Tor Bridge Distribution. In International Sym-
posium on Stabilization, Safety, and Security of Distributed
Systems (SSS). Springer, 2017.

