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Abstract

We develop a non-asymptotic framework for hypothesis testing in nonparametric regression where
the true regression function belongs to a Sobolev space. Our statistical guarantees are exact in the
sense that Type I and II errors are controlled for any finite sample size. Meanwhile, one proposed
test is shown to achieve minimax rate optimality in the asymptotic sense. An important conse-
quence of this non-asymptotic theory is a new and practically useful formula for selecting the op-
timal smoothing parameter in the testing statistic. Extensions of our results to general reproducing
kernel Hilbert spaces and non-Gaussian error regression are also discussed.

Keywords: Kernel ridge regression, large deviation bound, minimax rate optimality, nonparametric
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1. Introduction

Many classical statistical inferential procedures are built upon large sample theory that relies on a
growing amount of data information or a large number of samples. However, in practice, it is often
the case that only a small to moderate amount of samples are available, which limits the applica-
bility of the classic asymptotic inferential procedures. Recently, finite sample inferential theory has
provided a new perspective for statistical analysis. For instance, with the aid of various notions of
concentration inequality, [2; 3; 20; 25; 26; 33] have developed statistical inference procedures that
are theoretically valid for any fixed sample size. As far as we are aware, the parameter of interest
in these works is finite dimensional. The goal of this paper is to develop finite sample theory in
another important setting — nonparametric models.

In the asymptotic regime, there is a vast amount of literature devoted to developing theories for
nonparametric inferences such as testing and confidence band; see [30; 32]. However, little progress
has been gained towards finite sample theory for nonparametric inference procedures. Our work
can be viewed as an initial attempt to establishing a non-asymptotic framework for nonparametric
testing, which covers the existing asymptotic theory as a direct consequence. This effort requires
new technical tools such as (uniformly valid) large deviation bounds. In particular, two Wald-type
test statistic are constructed with their cut-off values being adjusted according to any finite sample.
This is in sharp contrast with conventional asymptotic tests that rely on the null limit distributions,
e.g., likelihood ratio test in [10; 23].
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We begin with smoothing spline methods for fitting nonparametric regression under Gaussian
errors. As a first attempt, we consider a test statistic simply defined as a discrepancy between the
null function and smoothing spline estimate, and develop a corresponding nonasymptotic deviation
inequality (see Theorem 3.1). Despite its simplicity, this naive test is shown minimax sub-optimal in
an asymptotic sense according to [14; 18; 4]. This is due to a non-vanishing bias term that reduces
the power. This motivates the development of a more refined non-asymptotic deviation bound (see
Theorem 3.4) for a “de-biased” smoothing spline estimate, based on which our second test statistic
is proposed and shown to achieve the minimax rate optimality by correcting the bias explicitly. To
our knowledge, this deviation bound is the first non-asymptotic expansion of the smoothing spline
estimate up to a higher-order decaying remainder term. Based on these large deviation results, Type
I and II errors are controlled for any finite sample size in both methods; see Corollaries 3.3 and
3.6. As an interesting by-product, a lower bound on the sample size is quantified to yield desirable
Type I and Il errors. The relation between the proposed tests and the asymptotically valid likelihood
ratio test [23] is also highlighted. As for other smoothing-spline-based tests such as LMP [9], they
were developed from Bayesian setup and always rely on complicated null distributions involving
nuisance parameters, as reviewed in [19].

In practice, the choice of smoothing parameter is crucially important. However, it is known that
the widely used generalized cross validation (GCYV, [29]) does not lead to a minimax optimal testing
procedure; see [10]. Importantly, our non-asymptotic theory yields a practically useful formula to
select an optimal smoothing parameter. To be more specific, it is obtained by directly minimizing
a separation function (that quantifies the minimal detectable signal strength) derived in the non-
asymptotic framework. As far as we are aware, this non-asymptotic formula is new.

Our simulations in the appendix demonstrate the empirical advantage of the above selection
method over GCV in both the proposed test and the conventional asymptotic test such as penalized
likelihood ratio test (PLRT, [23]). Additionally, the simulation study confirms that our finite-sample
based testing procedure is uniformly more powerful than PLRT as the sample size grows (under the
same choice of smoothing parameter). Besides the non-asymptotic design, another reason for this
empirical success is that the proposed test removes a bias term from the PLRT due to penalization.
Although this bias term is asymptotically of higher order, it can significantly deteriorate the power
of the test when sample size is small to moderate. We count this as another highlight by applying
our finite sample framework.

In the end, we make some comments on related literature. [4] studies non-asymptotic minimax
rates of testing under the white noise model setting. Although the white noise model is asymptoti-
cally equivalent to nonparametric regression [17], it is not clear whether a similar relationship can
be rigorously formulated in the non-asymptotic framework. Nevertheless, one of our motivating
testing statistics (in (5)) can be viewed as a regression-adapted x? statistics proposed in their work.
[5] studies minimax-optimal hypothesis testing in nonparametric regression. They consider fixed-
design regression where the infinite dimensional function space can be reduced to an n-dimensional
vector space (where n is the sample size), and their separation condition is relative to the empirical
L? norm. As noticed by [6], random-design problems are generally more challenging and delicate
than fixed-design problems. Specifically, the distribution theory of multivariate normals suffices for
analyzing the fixed design regression, while connecting the the empirical L? metric to the L? metric
is usually based on Bernstein type inequalities plus uniform bound arguments that require proving
or assuming certain bound on the stronger L>° norm. In this work, our framework is under the
random-design perspective, and our technique is based on developing novel concentration inequal-
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ities and local expansions for the smoothing spline estimator in the infinite function space, which is
free of any L°° bound condition. In addition, [5] makes some asymptotic type assumptions on the
fixed-design points for connecting empirical Fourier coefficients with the population ones, while the
results in our work are non-asymptotic and apply to any finite sample size.

The rest of this paper is organized as follows. In Section 2, background and preliminaries are
introduced. Sections 3 include the main results of this paper. In Section 3, test statistic based on
smoothing spline estimation are constructed and their non-asymptotic properties are investigated.
The methods are valid for both simple and composite hypotheses. Due to the space constraint, an
extension to general kernel ridge regression beyond smoothing spline, a simulation study and all
proofs are deferred to appendices.

2. Preliminary

In this section, we state the nonparametric models and hypothesis of interest, and also review some
basic theory of reproducing kernel Hilbert space (RKHS).

Let D, = {(V;,X;) : i« = 1,2,...,n} be iid random samples following the nonparametric
regression model

Y = f(X) +e ()
where ¢ is a random error with mean zero and unit variance. For simplicity, we consider the one-
dimensional case where X follows the uniform distribution over the unit interval I := [0, 1], and

assume that the design X and e are independent. Our development can also be extended to cases
where the distribution of X is known but not uniform. We assume that f belongs to an m-th order
Sobolev space

1
S™(I) = {f e L2(I)| £9) are abs. cont. for j = 0,1,...,m — 1, and / £ () [2da < oo}.
0

Let P; denote the probability measure under f, and E be the corresponding expectation.
Consider the following hypothesis testing problem:

Hy: feFy, vs Hi : [ & Fo, 2

where Fy is a proper subset of S"*(I). For example, Fy = {fo} for some known fy € S™(I) in
simple hypothesis, while 7y = {all linear functions in S™ (I)} in composite hypothesis. Our testing
statistic is constructed based on the following smoothing spline estimator

f/‘;’,)\ = argmaxfesm(l[) Zn,)\(f)a

where ¢, »(f) is the penalized loss function defined as
1< 5 A
lan(F) = =5 > (Yi= f(X0)* = SI(L.f).
i=1

where A > 0 is the penalty parameter and J(f, g) = fol ) (2)g("™) (x)dx for any f,g € S™(I).
Let V(f,g) = E{f(X)g(X)} and (f,g) = V(f,g) + AJ(f, ). It follows that (-,-) defines
a valid inner product in S (I).. Endowed with (-,-), S™(I) is an RKHS; see [23]. We use the
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notation || - || to denote the corresponding RKHS norm. Let K (x1,z2) denote the reproducing
kernel function, a function from I x I to R satisfying the reproducing property (K, f) = f(x) for
any x € I and f € S™(I), where K,(-) := K(x,-) is an element in S™(I) for any z € 1. Let
P denote a self-adjoint operator from S™(I) to itself that satisfies (f, Prg) = AJ(f,g), for all
fyg € S™(I); see [23] for the existence of such an operator.

We make the following assumption on the existence of eigen-pairs (p,, ¢, ) that simultaneously
diagonalize V' and J. This assumption is commonly made in smoothing spline literature [27; 23],
and is implied by Mercer’s theorem in our regression setting; however, an extension to the non-
Gaussian setting as discussed in Section 3.4 may require a case-by-case justification.

Assumption A1 There exists o, € S™(I), for v > 1, satisfying c, := sup,>1 ||¢v|sup < 00,
where || - ||sup denotes the supremum norm, and a nondecreasing sequence of eigenvalues p, ~
(Cpl/)2m U where ¢, > 0 is a constant, such that

V(‘Pua y) = 5;;1/7 J(Spuv Py) = Pu(sum v =1,2,..., 3)

where 0,,, is the Kronecker’s delta. Furthermore, any g € S™(I) admits a Fourier expansion
g=>.,V(9,¢v)p, with convergence held in the || - ||-norm.

It follows from [23] that for any x € I, K, = ZVZI f - /(\3;)” . To simplify the presentation,

we use notation h to denote the frequently appearing quantity \'/(2™) in the rest of the paper.
As we shall see, in smoothing spline methods quantity h plays a similar role as the bandwidth
parameter in kernel type methods that controls the bias variance trade-off. Under Assumption Al,
it is straightforward to verify the following property of K,

2
1P = K (o) = 3 2 < gt @)
v>1 L+ Apy ™

3. Main Results

In this section, we construct two nonparametric test methods based on fn A~ The first type is straight-
forward but sub-optimal in the minimax sense, while the second attains the minimax rate optimality
by removing the bias from the former. Our major contribution is to develop non-asymptotic theo-
retical analysis for both testing methods. Specifically, Type I and II errors can be controlled for any
finite sample size. This leads to a non-asymptotic formula in selecting the optimal A in practice.
These non-asymptotic results are developed based on large deviation bounds between f,, y and f
that are shown uniformly valid over an “unit ball” in 5™ (I).

3.1. A Preliminary First-Order Testing Procedure

In this subsection, we assume Gaussian errors and uniform design, i.e., € ~ N(0,1) and X ~
Unif(I), and postpone extensions to general error distributions to Section 3.4. To illustrate the idea,
we first focus on the simple hypothesis Hy : f = fo, where fj is a known function in S (I). Under

1. For two positive sequences a,, and b, denote a, < by, if a, = O(by); av 2 by if by = O(av); av <X by ifa, S by

~ ~ ~

and b, < av; ay ~ by if a, /b, tends to one when v — co.
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the null, ﬁl » converges to fp under suitable norms as sample size n tends to infinity. Naturally, the
deviation between f,, x and fj can be used as a test statistic:

Tx = | Fax — fol- (5)

Despite the simple form of 7;, y, it will be shown to be asymptotically sub-optimal. We call 7}, ) as
first-order testing in the rest of the paper.

The null hypothesis is rejected if 7}, » exceeds some threshold d,,(M) (to be defined later),
where M is a constant controlling the significance level of the test. To calibrate a finite sample valid
d,, (M), we first need to establish a large deviation bound for 7}, \ uniformly over an “unit ball” in
S™(I), defined as H™ (1) = {f € S™D)|J(f, f) < 1}.

Let cx = sup,ey /R K (, ), which is finite by following (4). Recall that h = \1/(2™),

Theorem 3.1 Let Assumption Al be satisfied. For any positive constants (h,r, M) satisfying
AN Mrh=Y2A(h) < 1/2, it holds that

sup Py (Hfm - fl= 5n(M,7“)) < 2exp(—Mnhr?), (6)
feH™ (1)

where 6,(M,r) = 20 + cx(V2Mr + (nh)~Y/2) and A(h) is an explicit function of h defined in
Remark 3.1 below.

Theorem 3.1 is proven in Section E.0.2.

Remark 3.1 The function A(h) in Theorem 3.1 is defined as A(h) = A(h,2). As will be seen
below, A(h,¢) is an explicit formula depending on Dudley’s entropy integral, which controls the
upper bound of a concentration inequality (Lemma E. 1) that plays a key role in the proof of Theorem
3.1. Specifically,

2 1
A(h,e) = ?’T\/écl—(lcgzh@ml)ﬂq, <20Kcamh(2ml)/2€>

20\7/68 \/108; (1 +exp (2co(crhm=D/2e)=1/m)) - fore > 0,

+

where T = \/log 1.5 =~ 0.6368 and the function ¥ (r), resulted from Dudley’s entropy integral (see
[28]), is defined as W (r) = [ Vlog(1 + exp(z=1/m))dx. In the above, cy is chosen as the con-
stant controlling the packing number of G := {g € S™(I) : ||g|lsup < 1,J(g,9) < c}fh*zm“},
i.e., cg satisfies, for any € > 0,

m—

2 1
log N(£,G, || - [lsup) < coh™ 2m e t/m, (7
where N (e,G, || - ||sup) is the e-packing number. Existence of such cq follows from [28; 23].

According to (6), we choose r = (nh)~1/2. In this case, the threshold becomes 6, (M, (nh)~/2),
denoted as d,,(M ). The following theorem, as an immediate consequence of Theorem 3.1, charac-
terizes the upper bounds of Type I and II errors for any finite sample size.
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Theorem 3.2 Let the Assumptions in Theorem 3.1 be satisfied, and let M > 0 and L > 1 be any
constants. Given that d,(M) := 6,(M, (nh)~Y2) = 2h™ + ¢ (V2M 4 1)(nh) /2, then it holds
that

Type Ierror: Py (T \ > dp(M)) < 2exp(—M),

Type I error : sup P(Ty ) < dp(M)) < 2exp(—L),
f—foeH™(1)
lf—foll=pn(M,L)

where p,(M, L) = 4h™ + cx (V2M + V2L + 2)(nh) /2.

Theorem 3.2 implies that the Type I error falls below « and Type II error falls below g if we set
M = My :=log(2/a) and L = Ly := log(2/5), respectively. Consequently, the separation rate
between f and fj (in terms of || - ||), under which the testing power is at least 1 — 3, is p,, (Mo, Lo).
We summarize the above discussions in the Corollary below.

Corollary 3.3 Under the assumptions of Theorem 3.1, for any o, 3 € (0, 1), we have

Type Lerror:  Pr (T, > dn(log(2/a))) < a,

Type I error : sup Py(T, \ < dn(log(2/a))) < B,
f—fo€H™(1)
£ —=foll>pn(log(2/),log(2/8))

where py(log(2/a),log(2/8)) = 4h™ + cx(/2log(2/a) + \/21og(2/8) + 2)(nh)~'/2, as a
function of h, achieves its minimum at

e (c%mog(g/ a) + /0g(2/F) + \/§>2> e

8m?2n ®
The value of cx = sup,cy /hK (z, z) in (8) can be approximately determined by (4) which in
turn requires the estimate of ||, ||sup. The latter estimation can be done numerically by the spectral
decomposition of the reproducing kernel matrix w.r.t. J. For instance, the R packages gss [11] and
assist [31] both allow us to extract the kernel matrix corresponding to .J, and the eigenvectors of the
matrix provide a good estimate of the eigenfunctions.
The minimal separation rate (computed at h,) is given as

pn(Mo, Lo) = D(ck, v, ﬁ)n_#’

where D(cg, «, 3) is a positive constant depending on ¢y and («, 3) only. Nevertheless, the above
rate fails to match with the minimax lower bound, namely, p—4m/ (4m+1) (see [14; 18; 4]). Hence,
the first order testing procedure is sub-optimal from an asymptotic perspective. A finite sample valid
and asymptotically optimal testing method is further proposed in Section 3.2.

3.2. An Optimal Second-Order Testing Procedure

In this subsection, we improve the first order testing to attain minimax rate optimality. A closer
examination of T, ) reveals that its sub-optimality is due to a large bias arising from the deviation
fn, A — fo, which inflates the separation gap p,, (M, L). Fortunately, this bias can be easily removed
as shown in the following second order deviation result. This observation motivates a new testing
procedure, i.e., (10).
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Theorem 3.4 Let Assumption Al be satisfied. For any positive constants (h,r, M) satisfying
AN Mrh=Y2A(h) < 1/2, it holds that

sup Pf fn,)\ - f - l Z E’iKXi - P)\f H Z ’Yn(My T) S 2€Xp(_Mnhr2)7 (9)
ferm(1) s
where v, (M, 1) = c3/Mrh=/2A(h)6,(M,r) and §,(M,r) is defined in Theorem 3.1.

Theorem 3.4 is proven in Section E.0.2 by employing a concentration inequality (see Lemma E.1)
for an operator-valued empirical process and a contraction mapping argument.

We remark that the threshold ,, (M, r) in Theorem 3.4 converges to zero faster than the thresh-
old 6,,(M,r) in Theorem 3.1 if we choose (7, h) to satisfy 72 = (nh) ', h = o(1) and n =1 h~(6m=1)/(2m) —
o(1) (this leads to rh='2A(h) = o(1) by noting that A(h) < h~Gm=1/(4m)) In this case,
| fax — fll and [n=1 30 €K x, — Paf| are of the same asymptotic order. For this reason, we
call (6) a first-order deviation bound, and (9) a second-order deviation bound.

In view of (9), a second-order test statistic is developed as

Ton = 1fon — (T PORP — L3

n
v>1

1
1+ Ap,’

(10)

where the second term n =1 >~ o, (1 + Ap,) "1 is the expectation of |~ Y"1 | ¢;Kx,||*. The term
Prfo in T, n,\ 18 a bias correction term due to penalization. Subtracting a f-independent constant
n~'S o (14 Ap,) " in T, 5 is merely for technical simplicity in the subsequent derivations.

The Eorresponding testing rule is ¢, \ = I(\an\ > d,(M,h)), where d,,(M, h) controls Type
I error through the choice of (M, h). Based on Theorem 3.4, we will prove in Theorem 3.5 that

Type I error : Ef{pna} < er(M),

Type II error : sup E¢ {1l = ¢pr} <err(L), (11)
f—foeH™(1)
Hfifollzp”(M?L’h)
where p, (M, L, h), er(M) and er7(L) are given in Theorem 3.5. Note that d,, (M, h) and p,, (M, L, h)
are different from d,,(M) and p;, (M, L) defined in the previous section.
Under Hy : f = fo, we can decompose the test statistic 7}, y as

n

Tn,)\ = Hi Z 6 Kx,

2
1 1
- — E + higher-order remainder
n 14+ Apy

i=1 v>1
1 1<
= [ﬁ Z €6 K (X;, Xj) — E{ﬁ Z eiejK(Xi,Xj)H + higher-order remainder.
ij=1 i,j=1

12)

By controlling the first two terms in (12), we can obtain large deviation bounds for Tn, » under both
null and alternative hypotheses (see Lemma F.1 and Lemma F.2 in Section F). This leads to the
following theorem characterizing the finite sample property of the proposed test 75, ».



NONPARAMETRIC TESTING

Theorem 3.5 Suppose Assumption Al holds. For any constants (h, M, L) satisfying c%(\/M
n~12h"TA(h) < 1/2 and G In" 2R~ A(h) < 1/2, we choose the cutoff value d,,(M, h)
as

d (M, h) = n”jifmm( ), (13)

where p%- = hE[K?(X1, X2)] with X1, X2 X, and separation function

(ML h) = \/Cx +,/2L \/ Mh+—+R2n(L) (14)

where (fc = SUp e prm (1) M"Y Pagl®. Then (11) holds with

er(M)=15exp(—M)  and  err(L) = 30exp(—L). (15)

Here explicit forms of the remainder terms Ry (M) and Ry (L) are provided in Section D in the
supplement.

The following corollary is obtained as an immediate consequence of Theorem 3.5.

Corollary 3.6 Under the assumptions of Theorem 3.4, for any o, € (0, 1), we have

Type I error : Py, (TVnA > dp(log(15/a),h)) < a,
Type I error : sup Pf( na < dp(log(15/ar), h)) < B.

—focH™(1)
= foll=pn (log(15/a),log(30/5),h)

An important implication of Theorem 3.5 is that Tn » is asymptotically minimax optimal. In
fact, using the expression (13) of d,,(M, h), we see that under the asymptotic regime n — oo, the
leading term in p,, (M, L, h) scales as

ey e
CKA—I— n\/ﬁm

By minimizing this leading term w.r.t. &, we obtain the minimal separation rate
Pn(M, L, h**) = n72m/(4m+1)

when h is chosen as

A 9 1/(4m+1)
h=he = <<£§<> M) n~2/(Am+1) o =2/(4m+1) (16)

Since the alternative f is in the unit ball of H™ (1), separation condition || f — fo|| > pn(M, L, hss)
is equivalent to || f — fo||2 > C n~2™/(4m+1) for some constant C' > 0, where recall that || f — fo||2 is
the function L? norm. Consequently, the above minimal separation rate matches with the minimax
rate of testing obtained in [14; 18; 4].
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The practical implementation of Tvm A requires us to estimate (I — Py)fo. Instead of direct
estimation, we approximate it by the following “noiseless” version of smoothing spline estimator

n

FNE = argmin ; gm g %Z(fo(Xi) — F(X)2+ NI (S, ).
i—1

By applying Theorem 3.4 with ¢; ~ N (0, 0), it is easy to see that || Aan — (I —"P)) fol| has the same
derivation bound as HﬁM — fo— (l S aKx, — 73,\f0)

n
Pfo (‘

As a consequence, we can replace (I — Py ) fo in fn A by fév /{4 . In simulations, this approximated

, and therefore

- —~ 1 <&
fax — ,]LV)]\; - = E EiKXiH > 27, (M, r)) < 4exp(—Mnh7“2).
' n
i=1

version of Tvn » (by using ﬁ\ff) is found to work very well, and have a larger power than T, )
especially when fy under the null is far from zero (so that Py fy incurs a relatively large bias).

Remark 3.2 (Relation with likelihood ratio test) The non-asymptotic results obtained for T}, \ and

T, x can be extended to another type of nonparametric testing: likelihood ratio test. We first define
the penalized likelihood ratio test (PLRT) as follows

2PLRT(g) = 2(ln(9) = tar(fur))
- % D (Far(X) = 9(Xi)* + (far = 8 PalFar — 9))- (17)
i=1

In comparison, our test statistic (up to constants) can be expressed as
[ fax = 91> =V (far — 9 far — 9) + (Fax — 9, Palfar — 9)), (18)

where g = fo for T), x and g = (I — Py)fo for Tn)\. Note that the first term in (18) is the
expectation of that in (17) according to the definition of V (f, f). In Appendix K, we prove that for
any g € S™(I), the deviation between 2PLRT (g) and Hﬁ”\ — g||? is of higher order comparing to
the dominating term of d,(M, h), i.e., 4px/M /(n\'h). Therefore, after some modifications, the
results for T,, \ and Tn A also hold for 2PLRT(fo) and 2PLRT ((I — P) fo), respectively.

3.3. Extension to Composite Hypothesis

Our results can be generalized to testing composite hypothesis. For example, one composite hy-
pothesis of particular interest is whether f is a polynomial function, say with degree less than m.
In this case, a new test statistic is proposed with similar non-asymptotic guarantee and asymptotic
minimax rate optimality. For technical simplicity, we assume m > 2 throughout this section.

For simplicity, we consider testing whether f is linear in this section:

H():fG]:()VSHltfgf(),
where Fo = {f : f is linear on I'}. We propose a test statistic as

~ ~ - 1
o = [ far— PO - =3

v>1

1
14+ Ap,’
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where fH0(z) = (1,2)(D%Dx)~'DLY is the maximum likelihood estimate under Ho. Here,
Dx = (1,X) denotes the design matrix with intercept, and X = (Xi,...,X,)?. Note that
P 71{0 =

We propose to reject Hy if and only if [7°4"| > d5"™ (M, h) for some threshold d¢”™ (M, h).
In general, we will establish that for any finite sample size (as in (11))

sup Py (| | = dy™ (M, h)) e (M),
f is linear
sup Py (T3] < dm(M,m) < e (D),

feH™(1)
If+11=p50m™ (M, L,h)

19)

where d°™(M, h), e$°™ (M), e59™(L) and p®™(M, L, h) are given in Theorem 3.7. Here, f* de-
notes the projection of f onto the orthogonal complement of the space of linear functions in S™ (1),
and satisfies V' (f+,g) = Ex{f*(X)g(X)} = 0 for any linear function g (hence, Ex{f(X)} =
Ex{Xf~(X)} =0).

We still start from large deviation bounds of the test statistic under both null and alternative
hypotheses. To do so, Tvﬁo/(” needs to be decomposed as (21) based on the following arguments. Let

Jo be the true linear function in Fo from which dataset D, is generated, and let fe = anO — fo. It
follows by Theorem 3.4 that, under Hy, T-%™ can be decomposed as

~ 1 ¢ 1 1
A = H " Z €K x;, — Pxfo— fE Z Yy + higher-order remainder

=1

1 < 1 O
:[7 3 e K (X, X)) — E{—Q 3 eiejK(Xi,Xj)H
K i
2 O 2
+ | Pafo + fel|* + - Z eiPrfo(Xi) + ﬁeTDX(D;(DX)*lD;(e + higher-order remainder,
i=1

(20)
where € = (ey,...,€,)". The second equality follows from the fact that
fe(x) = (1,2)(DYDx) ' D%e:=a + Fa.
Since both fy and f. are linear functions, Pyfy = Pyfe = 12 = [Ifll3 =
fol ( fg(a:)) da. Asa consequence, the preceding display (20) can be further simplified as
Treom [ Z ei¢; K (X5, X;) { Z 313714 Xi,Xj)H
7] 1 ,] 1
2
+||fell3 + =€T Dx (D% Dx) ™' D% € + higher-order remainder. (1)
n

Based on (21), we can control the type I and type Il error of the test (see Lemma G.1 and Lemma G.2),
yielding finite sample analysis for the composite hypothesis testing procedure.

10
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Theorem 3.7 Suppose that Assumption Al holds. For any constants (h, M, L) satisfying c%(\/ M
n~12h=TA(h) < 1/2 and 3NIn~?h=Y A(h) < 1/2, we choose

ase"m(M,h) = ——=V M+ R{,(M), and
(M, h) o Tn(M)
2L 2L
p™(M, L, h) = CxA+ \/? +1/dn(M,h) + " +R§,n(l}). (22)

Then (19) holds with e®™ (M) = 24 exp(—M) and e7™(L) = 60exp(—L). Here the forms of
{.n(M) and RS ,,(L) are provided in Section D in the supplement.

Similarly, we have the following corollary for the composite test.

Corollary 3.8 Under the assumptions of Theorem 3.7, for any o, B € (0, 1), we have

Type I error : sup Pf(Tcom > d(log(24/a),h)) < «,
f is linear

Type II error : sup P (TCO’” < di™(log(24/a), h)) < B.
feH™ (1)

[f+11=p50™ (log(24/cx) log(60/8),h)

Similar to the simple hypothesis testing, Theorem 3.7 provides a non-asymptotic approach
to select the smoothing parameter h by numerically minimizing the separation function h >
o™ (log(24/a),log(60/8), h). Note that the leading terms of d5°™ (M, h) and pS°™ (M, L, h) are
exactly the same as d,,(M, h) and p, (M, L, h) in Section 3.2 for simple hypothesis. Hence, the
selected / in both cases are asymptotically rate-equivalent. Under such an h, the composite testing
procedure in consideration is minimax rate-optimal. We include a numerical study in the appendix
that compares existing methods with our non-asymptotic approach of selecting the smoothing pa-
rameter h.

3.4. Extension to General non-Gaussian Regression

Suppose that D, = {(Y;,X;) : ¢ = 1,2,...,n} are iid samples generated from model (1), with

errors €; whose log-likelihood is ¢(-). Suppose that the function £(-) is three-times continuously

differentiable and is strictly concave. Let n = ¢(V(¢) and n; = ¢ (¢g;) for i = 1,...,n, and
= —E{{@(e)} > 0.

Assumption A2 There are positive constants Cy, Cy such that

E{exp(|¢M(€)]/Co)} < C1, and E {exp <sup 100) (¢ + a)| /co) } <Ci, j=2,3. (23)

la|<1
Furthermore, E{n} = 0 and E{n*} = o>

Condition (23) says that ¢(7) (€) for j = 1,2, 3 satisfies exponential tail condition. Note that for
any a € R, [exp({(e + a))de = 1. Taking first- and second-order derivatives with respect to a, it
can be shown that

/ exp(£(e + a))eD (e + a)de / exp((e + a)) [0 (e + a)? + 62 (e + a)de = 0. (24)

11
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Setting a = 0 in (24), one gets E{n} = 0 and E{n?} = o2 Therefore, Assumption A2 is a
reasonable one.

Similar to Theorems 3.1 and 3.4 for the Gaussian errors, we develop the following derivation
bounds for the first- and second-order approximations of the penalized likelihood estimate f;, ».

Theorem 3.9 Suppose that Assumptions Al and A2 are satisfied. For any positive M, r,, h satis-
fying Condition H in Section C, the following two results hold:

(i)
sup Py (1 fur = £l 2 8,(M)) < (21 +4) exp(~Mnhr2),
feH™(1)
where 0, (M) = 2h™ + 24Cock (4C1 + M)ry,.
(ii)

—~ 1 <&
— ==Y nikx,
Jor— f ~ 2 ik, +Prf

i=1

sup Pr ’ > cn(M) | < (2C) + 6) exp(—Mnhr?),
fedm™(1)

where

en(M) = CovVM(Mnhr? +logn Y28 (M rpA(h +10KC’OC'10_2h_1/25' M)?
K n n 9 n
+2¢5,C2C1h™25) (M)?(Mnhr2 4 log n) exp(—(MnhrZ +logn)/2).

Here A(h) is defined in Section 3.1.

Based on Theorem 3.9, it is straightforward to extend the testing type I/II error results in Sec-
tion 3 to the general noise setting. However, we want to point out that the proof of Theorem 3.9
is more involved. The main reason is that now we need to bound higher-order derivatives of the
log-likelihood function (which is zero given the quadratic stricture of the log-likelihood function
under Gaussian error). Details are deferred to Section J in the supplement for conserving space.

Acknowledgments

Yun Yang would like to acknowledge support by NSF DMS-1810831. Zuofeng Shang would like to
acknowledge support by NSF DMS-1821157 and NSF DMS-1764280. Guang Cheng would like to
acknowledge support by NSF DMS-1712907, DMS-1811812, DMS-1821183, Adobe Data Science
Faculty Award and Office of Naval Research (ONR N00014-18-2759). In addition, Guang Cheng
was a member of Institute for Advanced Study, Princeton in the Fall of 2019; he would like to thank
both IAS for its hospitality.

References

[1] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathemat-
ical Society, 68, 337-404.

[2] Arlot, S., Blanchard, G. and Roquain, E. (2010). Some nonasymptotic results on resampling in
high dimension, I: confidence regions. Annals of Statistics, 38, 51—82.

12



NONPARAMETRIC TESTING

[3] Arlot, S., Blanchard, G. and Roquain, E. (2010). Some nonasymptotic results on resampling in
high dimension, II: multiple tests. Annals of Statistics, 38, 83-99.

[4] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli, 8,
577—606.

[5] Baraud, Y., Huet, S. and Laurent, B. (2010). Adaptive test of linear hypotheses by model selec-
tion Annals of Statistics, 31, 225-251.

[6] Birgé, L. (2004). Model selection for Gaussian regression with random design. Bernoulli, 10,
1039—1051.

[7] Blanchard, G., Bousquet, O. and Zwald L. (2007). Statistical properties of kernel principal
component analysis. Machine Learning, 66, 259-294.

[8] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multi-
plier bootstrap for maxima of sums of high-dimensional random vectors. Annals of Statistics,
41, 2786-2819.

[9] Cox, D., Koh, E., Wahba, G. and Yandell, B. (1988). Testing the (parametric) null model hy-
pothesis in (semiparametric) partial and generalized spline models, Annals of Statistics, 16,
113-119.

[10] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks
phenomenon. Annals of Statistics, 29, 153—-193.

[11] Gu, C. (2002). Smoothing Spline ANOVA Models. Springer-Verlag.

[12] Hastie, T., Tibshirani, R. and Friedman J. H. (2001). The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer Verlag.

[13] Hsu, D., Kakade, S. K. and Zhang, T. (2012). A tail inequality for quadratic forms of subgaus-
sian random vectors. Electron. Commun. Probab., 17, 1-6.

[14] Ingster,Y. L. (1993). Asymptotically Minimax Hypothesis Testing for Nonparametric Alterna-
tives I-111. Math. Methods Statist, 2, 85—114; 3, 171-—189; 4, 249—268.

[15] Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference.
Springer: New York.

[16] Laurent, B. and Massart, P. (2000). Adaptive Estimation of A Quadratic Functional By Model
Selection. Annals of Statistics, 28, 1302—1338.

[17] Lawrence, D. D. and Mark, G. L. (1996). Asymptotic equivalence of nonparametric regression
and white noise. Annals of Statistics, 24, 2384—2398.

[18] Lepski, O. V. and Tsybakov, A. B. (2000). Asymptotically exact nonparametric hypothesis
testing in sup-norm and at a fixed point. Probability Theory and Related Fields, 117, 17—48.

[19] Liu, A. and Wang, Y. (2004). Hypothesis testing in smoothing spline models. J. Stat. Comput.
Simul., 74, 581--597.

13



NONPARAMETRIC TESTING

[20] Panov, M. and Spokoiny, V. (2015). Finite Sample Bernstein-von Mises Theorem for Semi-
parametric Problems, Bayesian Analysis, 10, 665-710.

[21] Pinelis, 1. (1994). Optimum bounds for the distributions of martingales in Banach spaces.
Annals of Probability, 22, 1679-1706.

[22] Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill. New York.

[23] Shang, Z. and Cheng, G. (2013). Local and global asymptotic inference in smoothing spline
models. Annals of Statistics, 41, 2608-2638.

[24] Shawe-Taylor, J. and Cristianini, N. (2016). Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge.

[25] Spokoiny, V. (2012). Parametric estimation. Finite sample theory. Annals of Statistics, 40,
2877-2909.

[26] Spokoiny, V. and Zhilova, M. (2015). Bootstrap confidence sets under model misspecification.
Annals of Statistics, 43, 2653-2675.

[27] Utreras, F. 1. (1988). Boundary effects on convergence rates for Tikhonov regularization. J.
Approx. Theory, 54, 235—249.

[28] vander Geer, S. A. (2000). Empirical Processes in M-Estimation. Cambridge University Press,
New York.

[29] Wahba, G. (1985). A Comparison of GCV and GML for Choosing the Smoothing Parameter
in the Generalized Spline Smoothing Problem. Annals of Statistics, 13, 1378-1402.

[30] Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philidelphia.

[31] Wang, Y. (2011). Smoothing Splines: Methods and Applications Monographs on Statistics &
Applied Probability. Chapman & Hall/CRC.

[32] Wasserman, L. (2006). All of Nonparametric Statistics (Springer Texts in Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

[33] Zhang, X. and Cheng, G. (2014). Bootstrapping high dimensional time series. arXiv preprint.

14



NONPARAMETRIC TESTING

Supplementary document to
Non-asymptotic Analysis for Nonparametric Testing

In this supplement file, additional technical support is provided.

Section A discuss the extension to the kernel ridge regression.
Section B includes a simulation study.

Section C provides Condition H that is used in Theorem 3.9.
Section D summarizes the remainder terms in Section 3.
Section E provdides the proof of Theorem 3.1 and Theorem 3.4.
Section F provides the proof of Theorem 3.5 in the main paper.
Section G provides the proof of Theorem 3.7 in the main paper.
Section H provides technical proofs of the lemmas in Section F.
Section I provides technical proofs of the lemmas in Section G.
Section J provides the proof of Theorem 3.9.

Section K provides the validity of the quadratic approximation of the PLRT test.

Section L provides a set of auxiliary results such as concentration inequalities.

Appendix A. Extension to Kernel Ridge Regression

In this section, we extend from smoothing splines to the general framework of kernel ridge regres-
sion (KRR) [12; 24], where fj is assumed to belong to a reproducing kernel Hilbert space (RKHS),
denoted as H. The corresponding KRR estimator is defined as

~ 1<
Frcnw = argmin { =S¥ = £(X0))” + M3}

1=

where || - [|3; is the norm associated with . When H is chosen as S™(I), fx R reduces to the
smoothing spline estimate f, ).

We first present a brief review on RKHS theory. Denote L?(I) as the space of square-integrable
functions on I. A subspace of L?(I) is defined as RKHS if for each = € I, the evaluation function
f — f(x) is a bounded linear functional. Any RKHS is generated by a positive semidefinite kernel
function K : T x T — R. More precisely, consider the space of all functions of the form

K
g(+) :Zka(-,vk), forsome K e N, vy €, wpeR, k=1,.... K,
k=1
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whose norm is defined by ||g||3, := ZkKle wrwi K (vg, vp). By taking the closure of this space, it
can be shown that we generate an RKHS H equipped with a norm || - ||3, and this A is uniquely
associated with the kernel K; see [1].

Our finite sample theory can be naturally extended to KRR, by replacing fn A with fK RR 1n the
test statistic Tvn a. After this replacement, it can be shown that the leading term in the separation
function pX& RR(M L, \) for testing the simple hypothesis Hy : f = fo becomes

2 1/2
\‘,_/ n
Li(N)
La(N)

id
where X1, Xo o X. By direct examinations, it can be shown that

E(K?(X1,X2)) Z
pt 1+)\p

where p,, are the eigenvalues defined in Section 2. Note that in (25), L () is increasing in A while
Ly(\) is decreasing in A\. To minimize the above leading term, we can select A = A, xrr by
equating L1 () and Lo()), i.e., solving the equation

A2 Z _ Sk (26)
1+ )\p,, 16M

Below is a list of solutions to (26) in three concrete situations:
e For polynomial kernel with p, =< 2™ the solution of equation (26) is
v ()
Ckn ’

which recovers our previous result (16) by noting the relation that h = A!/(2m),

e For finite rank kernel with p, ! < I(v < k) for a rank k > 0, the solution of equation (26) is

vVkM

A=< )
Ckmn

e For Gaussian kernel with p,, < exp(1?), the solution of equation (26) becomes

. M/ logn
T (kn
Appendix B. Simulation Study

Simulation results are provided for examining our theory. Consider the following two types of
hypotheses:

(Simple hypothesis) : f = foversus Hy : f # fo;

(Composite hypothesis) : f is linear versus H; : f is not linear,

where fo = 5(x? — z + %) Set Type I and II errors as o = 3 = 0.05.

16



NONPARAMETRIC TESTING

e For simple hypothesis testing, data were generated as follows

1
Yi=folXi) ta, @ NO1), X Unif(0.1), and fo(e) = gea® + fola).
27
e For composite hypothesis testing, data were generated as follows
1
Vi = 5X+fo(Xi) e, & PON(0,1), X; M Unif(0,1), and fo(z z) = ¢ (2’ ~a+).
(28)

Note that the function f. in model (28) lies in the orthogonal complement of the subspace of linear
functions in the sense that E{ f.(X)} = E{X f.(X)} = 0 for any scaling constant c.

We first consider simple hypothesis testing. In some cases, the cutoff value d,(log(15/a), h)
(see Corollary 3.6) provided in (13) can be quite conservative due to the use of some loose con-
centration inequalities. In practice, we suggest choosing an “exact” cutoff value d/, (log(15/«), h)
by Monte Carlo simulation. Specifically, by conditioning on X, we simulate a number of synthetic
datasets {Y (¥} from the null model Y(k = fo(X;) + N(0, 1), each of which yields a new test

statistic T( ). Set d! ! (log(15/cr), h) as the (1 — «)-th sample quantile of {T ) N

In snnulatlons we chose h by directly minimizing p,, (log(15/c), log(30 / B), h). Note that we
did not replace d,, by d/, in the above minimization to save computational cost. Such a choice of
h is supported by our simulations, and denoted as hrg. Then, d},(log(15/a), hps) is used as the
cutoff value for the testing procedure. Note that all constants in p, (M, L, h) such as px, (x and
ck only depend on h and the eigenvalues of the reproducing kernel operator, which can be well
approximated by the empirical eigenvalues of the reproducing kernel matrix.

For simple hypothesis, we compare four testing procedures:

(S1) The proposed fn » with the smoothing parameter hg;

(S2) PLRT statistic PLRT( fo) as described in Remark 3.2 with the same hpg;
(S3) The proposed Tn,  with h selected by GCV?, denoted as hgov;

(S4) PLRT statistic PLRT( fo) with the same hgcov .

The cut-off value for PLRT in S2 and S4 is obtained from Monte Carlo simulation and the null limit
distribution given in [23], respectively. Simulation results are reported in Table 1. The rejection
proportion (RP) under ¢ = 0 reflects the Type I error, while under ¢ # 0, RP reflects the power.

Overall, all four procedures have comparable type I errors, i.e., ¢ = 0, for any sample size. As
for power performances, we note that (i) the test using h g is always more powerful than that using
haevs (1) T, » is always more powerful than PLRT given the same choice of h. In other words,
S1 is always the most powerful one. The observation (i) justifies the finite sample advantage of the
non-asymptotic formula in selecting h, while (ii) supports the need of removing estimation bias in
nonparametric testing; see Remark 3.2. The third observation is that as c increases, hgcoy continues
decreasing and becomes closer to h g, but never reaches hrg. This is consistent with their different
asymptotic orders (recall hpg < n~Y/2m+1/2) and hgeoy < n=1/@m+1)),

For composite hypothesis, we compare two testing procedures:

2. The hgcv is obtained by using the ss7 function in the R package assist
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n c hes  RPrs  p Prppr haov RPgov  RPlLay
0 0.046 0.052 0.142(0.008) 0.052 0.054
50 1 0.126 0.100 0.092 0.138(0.009) 0.088 0.084
2 0.396 0.340 0.134(0.009) 0.323 0.310
3 0.822 0.764 0.128(0.009) 0.752 0.748
0 0.048 0.048 0.122(0.007) 0.053 0.052
100 1 0.108 0.264 0.170 0.117(0.008) 0.167 0.144
2 0.650 0.558 0.112(0.007) 0.493 0.474
3 0.976 0.934 0.110(0.003) 0.924 0918
0 0.050 0.048 0.104(0.006) 0.051 0.050
200 1 0.092 0.368 0.334 0.102(0.007) 0.325 0.290
2 0.896 0.862 0.098(0.006) 0.832 0.816
3 1.00 1.00 0.094(0.003) 1.00 1.00
0 0.046 0.048 0.096(0.006) 0.048 0.048
1 0.426 0.404 0.094(0.006) 0.397 0.394
300 0.084
2 0.968 0.946 0.092(0.005) 0.930 0914
3 1.00 1.00 0.090(0.005) 1.00 1.00
0 0.052 0.050 0.091(0.004) 0.049 0.054
400 1 0.079 0.668 0.640 0.087(0.005) 0.631 0.618
2 1.00 1.00 0.085(0.004) 1.00 1.00
3 1.00 1.00 0.084(0.003) 1.00 1.00

Table 1: Simulation results for simple hypothesis testing. hgoy is an average value over 500 repli-
cates (that varies as ¢). RPrg, RPprrT, RPgcvand RPéCV are average rejection pro-

portions by 7T}, y with hpg, PLRT with hrg, T}, » with hgcy and PLRT with hgcy re-
spectively, over 500 replicates.
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n | e hgr o RPEE b, RPER
0 0.060 0.310(0.023) 0.082
1 12 . . .

50 0047 0.126 0.296(0.020) 0.084
2 0.210 0.282(0.020) 0.122
3 0.348 0.270(0.021) 0.274
0 0.054 0.283(0.020) 0.064
1 0.156 0.275(0.019) 0.104

100 0.214
2 0.234 0.265(0.019) 0.174
3 0.512 0.252(0.016) 0.380
0 0.046 0.224(0.018) 0.044
1 .22 2 .01 .1

200 0.145 0.220 0.208(0.016) 0.166
2 0.636 0.188(0.015) 0.536
3 0.932 0.176(0.015) 0.822
0 0.054 0.184(0.017) 0.046
1 2 . . .

300 0.102 0.254 0.175(0.013) 0.190
2 0.714 0.165(0.015) 0.656
3 0.976 0.153(0.014) 0.882
0 0.054 0.164(0.013) 0.050
1 0.290 0.156(0.014 0.256

400 0.096 ? ( )
2 0.862 0.146(0.013) 0.788
3 1.00 0.138(0.012) 0.946

Table 2: Simulation results for composite hypothesis testing. hge’y, is an average value over 500
replicates (that varies as ¢). RP;¢" and RPE, are average rejection proportions by 777%™
with h7¢" and PLRT with AZ7,, respectively, over 500 replicates.
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(C1) The proposed fﬁo)f” with h%°g", selected by numerically minimizing the separation function

in Theorem 3.7;

(C2) PLRT statistics PLRT( fp) with h selected by GCV, denoted as hgovs.
Simulation results are reported in Table 2. We observe similar phenomena as in the simple testing
case. In particular, C1 is uniformly more powerful than C2 due to the use of h%°g".
Appendix C. Condition H in Theorem 3.9
Condition H consists of:

(i) ™12 < min{1/(6¢ck),1/(4cke)};

(i) h™t1/2 < 8cg /5;

(i) hY/?r, <1,

(iv) 72¢% (e + M)r,h~1/2 < 1;

(v) 288c4(4e + M)(Mnhr2 +logn)h=3/?r, < 1;

(vi) cZ(Mnhr2+logn)/Mh=1r2 A(h)+(48¢)"/* exp(—(Mnhr2+logn)/4)ch™? < 1/6,

where A(h) = A(h,2) is a known function of A given in Remark 3.1.

Appendix D. Remainder terms

In this subsection, we summarize the remainder terms appeared in Section 3.

Simple hypothesis testing:

2 CK 6v/2¢2
Ron(M) = K KM
0n(M) (\/§n3/2h + \/§n3/2\/ﬁ+ nb/2 )
V2 ek 8cK 3/4 4 2 8c2 43
+ <n7/4f ﬁn5/4f> M= (H (M) + w2y 2n2h> M,

Ri (M) = Ro (M) 4 2R3, (M) <(1 > #)m oK W+ Ron(M ))

n 211+)\py n

2
Ro (M) = E(Ms/él + M)+ Royn(M) + Ry (M),
Ry (M) = cieV/ M~ 2R A(h) 6 (M, (nh)~12),

Rua(40) = 1,00 230 (1 (332 5 o VAT 4 ).
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Composite hypothesis testing:

2 2
c o CK CK 6\/§CK S
0.0(M) = (\/§n3/2h + V2n3/2\/h * n5/2 ) M

+Q§£ﬁ \@iZV)AﬁM+<4+8%f+4%>

n  n3/2h  2n2h
¢ o(M) = RS (M) + RS, (M) + R3,,(M) + 2R3 ,(M) (lz ! )1/2
1,n — fon 4,n 3,n 3,n n £ 1+ >\Py

4
+ 2R 4 Ro(ht >+R§,n>,

5 (M) = (MWHJ@+RM@@+«&M()+R W(M))?

+2(R3n(M) + R5,,(M)) ( 1+ 1+1)\Pu)1/2 4T/K»\ﬁ+R0n( ))
§ a(M) = T(1+2F+M1/2(1 \/7—]\;)_1/2+%§x/ﬂ(1—;— %
o) =4 (4 + 2 JZ><1+<1—;—¢¥—JZ>1>-

Appendix E. Proof of large deviation bounds for smoothing spline estimates
E.0.1. PRELIMINARIES FOR PENALIZED LIKELIHOOD ESTIMATION

Before formal proofs, let us introduce some preliminaries. Considering model (1) parametrized by
the unknown regression function f € H™(1). The Fréchet derivative of the penalized loss function
. at g € S™(I) can be identified as

DlA(9)gr = = 3760~ g(X)g1(X1) — (Pagon) = (Sua(o)s ),
=1

when operated on arbitrary function g; in S™(I). Let S\(g) = E¢{Sn(9)} be expectation of
Sna(g), for any g € S™(I). We denote the second- and third-order Fréchet derivatives of S by
DSy, and D?S). By the optimality of the smoothing spline estimator fn A» We have S, ,\(fn A) =0.
Therefore, S, »(f) can be expressed as

n

1
Snalf) =~ eikx, = Paf. (29)

i=1

The Fréchet derivatives of S,  and DS, » are denoted DS, x(g)g192 and D?S,, x(9)g19293. These
derivatives can be explicitly written as

D% A(9)9192 = DSpa(9)g192 = n~ " Y €P(V; — g(Xi))g1(Xi)g2(Xi) — (Pagr, g2),
=1
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n
D%, 7(9)919295 = D* S A(9)g19205 = n ™" > L(Y; — g(X4))g1(X:)g2(Xi)g3(Xi).
i=1
We have the following concentration inequality for sum of iid elements {Kx, : i =1,...,n},
which plays a critical role in proving our large deviation bounds for the smoothing spline estimator.

A proof is deferred to Section E.0.3. Recall that G := {g € S™(I) : ||gllsup < 1,J(g,9) <
2R 2m,

Lemma E.1 Suppose that 1, r(2; g) is a measurable function defined upon z = (y,x) € Y x I
and g € G satisfying 1y, r(2;0) = 0 and the following Lipschitz continuity condition: for any
feH™1),i=1,...,nandany g1,92 € G,

W)n,f(Zi;gl) - wn,f(Zi;QZ)’ < C;(lhl/zugl - gZHsup- (30)

Then for any constantt > 0 and n > 1,

t2
sup Py [ supl|Zus(9)] > ¢ s2exp(— )
FeH™(1) f(geg ! A(h)?

where recall A(h) = A(h,2) and

Zn,y(9) = \/lﬁ > W (Zi;9)Kx, — Ef{ton s (Zi;9)Kx, }].
=1

E.0.2. PROOFS OF THEOREM 3.1 AND THEOREM 3.4

Given the development in the previous part, we are now ready to prove the two large deviation
bounds in Theorem 3.1 and Theorem 3.4.

Proof of Theorem 3.1 For any g, g1 € S™(I), we have the following sequence of identities,

1 — A
lan(9) = =5 > (Yi = 9(Xi)* = I (g.9).
=1
1 n
Snalg) = o Z(Y; —9(Xy))Kx, — Pxg,
=1

1 n
DSua(9)gr =~ D g1(Xi)Kx, —Pag1, and DS, 5(g) = 0.
=1

For any f € S™(I), define f) = f+S\(f). It follows from [23, Proposition 2.3] that DSy (f) =
—1id, where id denotes the identity operator. Then

S\(fx) = SA(f) = DSX(f)(fa = f) = =(fn = f) = =5Sa(f),

hence, Sy (f\) = 0. Meanwhile,

[x = FIE=IS\HI = [IPAfIl < VAJ(f) < h™.
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By using the property Sy (fx) = 0, we have the following bound

[Saa(I = 1S (f2) = Sa(A)]
< ST~ A, — B(( ~ MCOK ]+ I S kx|
i=1 =1

Now we bound the two terms on the right hand side, respectively.
To bound the first term, we apply Lemma E. 1, with 1, ((Z; g) = g/(cxh™/2) = i h/2g(X),
to obtain

1 n
P <sug Hg Z[g(Xi)KXi — E{g(X)Kx}]| > cK(nh)_1/2t> < exp(—t?/A(h)?), t > 0.
9¢€ i=1
(€2
If we let the event

£, = {sup 1= S la(x) Kx, — B{g(X)Kx}| < cKM”QrAw)} 7

9€9 =1

then (31) implies P(E) < exp(—Mnhr?). Since we have f = (f — f1)/(cxh 2| f = £rll) € G
we obtain that on &,

H*Z[ (X)) Ex, — B{f(X)Kx}]| < exM'*rA(n),

leading to the following bound for the first term
1 « .
1 DI = XD Ex, = B{( = S)OKX NI < M2 2 Ah),
i=1

To bound the second term, let ¥ = [K(X;, X;)]1<i j<n and € = (€1, ..., €,)T. By the Hanson-
Wright inequality (see, for example, [13]), we have

P(eT'Se > tr(X) 4+ 24/tr(X2) Mnhr? + 2||S|| p Mnhr?) < exp(—Mnhr?),
where || - || 7 is the Frobenius norm. Since
n
(L) = Y K(X;,X;) < cgnh™,
i=1

tr(z?) = ZKX“X L
i,7=1

12 < \/tr(22)§c%<nh_1,

we get that

1 n
P (Hn ZfiKXiH > cx(V2Mr + (nh)_l/Q)) < exp(—Mnhr?).

=1
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Now if we let event
1 n
& ={l-D_ eix|| < ex(V2Mr+ (nh) ")},
i=1

then we have P(£/)) > 1 — exp(—Mnhr?), and on &/, the second term can be bounded as
1 n
Iy el < ex(VEMr + (nh) ),
1=

Putting pieces together, we obtain that with probability at least P(E,NE!,) > 1—2 exp(—Mnhr?),

1Sua(F) < EMY2Rm=Y2r A(R) + e (V2Mr + (nh)~Y2) := ¢ /2. (32)

Now let us consider the following class of operators, indexed by functions f in S (I), as
Ty(9) = g+ Sur(fa+g), forallge S™(I).

By adding and subtracting the same term, we can express 1’y as

Ti(g) = —DSA(f2) ' [DSna(fr)g — DSA(f2)g]
—DS\(f2) " [Sua(Hr+ 9) = Sun(£) = DSpaA(£)g]
—DS\(fr) " S (f2)
= DSua(fa)g — DSx(f2)g + Sna(fr)

-

= — > lg(X) Kx, = E{g(X)Kx}] + Spa(f2)-
=1

By (32), we obtain that with probability at least 1 — 2 exp(—Mnhr?), for any g € S™(I),

n

1 /
1Tt (9)| < H; Z[g(Xi)Kxi — E{g(X)Kx}]|| +7'/2 (33)
=1
< A MYVEhTV2AR) gl + /2 <0, (34)

where the last inequality follows by the condition cZ M'/2rh=1/2A(h) < 1/2. Since for any
g1,92 € S™(I),

177 (91) = T (g2)
= 11 Yl — 92)(X0)Kx, — E{{or — 02) () K}
=1

< EMYPrhTY2AMR) g — goll < (1/2)]lg1 — g2,

Ty is a contraction mapping on B(r’). Therefore, by the contraction mapping theorem [22], there
exists g € B(r') such that S,, x(fx + ¢g) = 0. Since the smoothing spline estimate f,, y also satisfies
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Sm(ﬁh A) = 0, and the solution is unique, we must have ]?n A = [ + g. Hence, inequality (33)
yields || fnx — fI| = llg]| < A™ + r’. Consequently, we obtain

sup Pr ([[far = £Il = 6,(M, 7)) < 2exp(~Mnhr?),
fedm™(1)
where 6, (M, ) = 20" +cg (V2Mr+(nh)~/2). This expression of 8, follows from ¢2 M'/2rh=1/2 A(h) <
1/2, leading to 1’ = 2c2 M2 =121 A(h) + 2cx (V2Mr + (nh)~1/2) < h™ 4 2cx (V2Mr +
(nh)~1/2).

Proof of Theorem 3.4 Given the development in the proof of Theorem 3.1, the proof for this
theorem is easy. Let us define g, = f,, » — f. Note thaton &, N &},

[SuA(f + gn) = Sua(f) = (SA(f + gn) = SNl

n

153 lon (X0 Kx, — B{ga(X) K|
=1

Cie M Prh =2 A(R))| gl
AMY 22 A(R) 6, (M, r).

IN N

Moreover, by recalling that DS\ (f) = —id, we have the identity

Sualf +gn) = Sua(f) = (SA(f + gn) = SA(S))
= 0— Sn,)\(f) - DS)\(f)gn =9n — n,)\(f)'

Therefore, we have

sup Py (Hﬁ”\ — [ = Sun(Hl = &MYV 2rh=Y2 A(R)6, (M, 7“)) < 2exp(—Mnhr?).
feH™(1)

E.0.3. PROOF OF LEMMA E.1

For any f € H"(1) and n > 1, and any functions g1, g2 € G, we have the following bound for
each additive component in the sum,

| (Vn, £ (Zis 91) — U, £ (Zi5 92)) K x, || < C;_(lhl/zHgl — gallsuperh ™% = [|g1 — g2l sup-

For fixed g1, g2, we apply the bounded difference inequality (see, for example, Theorem 3.5 of [21])
to obtain the following concentration inequality for the sum,

t2

7 (1Zn,5(91) = Zn, g (g2) ]| > #) 8llg1 — 0212

> , foranyt > 0. 35)

Due to the equivalence between the sub-Gaussian tail of a random variable and its Orlicz norm
(Lemma 8.1 in [15]), we obtain

120500 = Zu (@)l < V2L ll91 — g2l
2

where || - ||, denotes the Orlicz norm associated with 12(s) = exp(s?) — 1. Let 7 = /log 1.5 =
0.6368 and ¢(M) = 1o(7x). Then it is easy to check that ¢(1) < 1/2, and for any =,y > 1,
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d(M) ¢(y) < ¢(xy). By applying Lemma 8.2 in [15], we have the following relationship between
the Orlicz norm of the max of [ (I € N) random variables and the max of their individual Orlicz
norms,

2 1
) < = )
Il max &y, < —vy (1) max [I&fy., (36)
for any random variables &1, . . ., &.

Next we apply a “chaining” argument to prove the desired concentration inequality based on
(35). LetTy Cc T3 C Ty C --- C T = G be a sequence of finite nested sets satisfying the
following properties:

1. for any Tj and any s,t € T}, ||s — t||sup > €277; each T} is “maximal” in the sense that if
one adds any point in 7}, then the inequality will fail;

2. the cardinality of 77 is upper bounded by
log |Tj| < log N(€277,G, || - [lsup) < cocy! ™h~m=1/@m) (gg=7)=1/m

where ¢y > 0 is absolute constant; Here we used the fact that the covering entropy of an
R-ball in S™(I) relative to the sup-norm is of order R~1/™.

3. each element ¢;1 € T}y is uniquely linked to an element ¢; € 7} which satisfies ||t; —
tjillsup < €277

Based on this sequence {71}, : k > 0}, for arbitrary sy 1, tg+1 € Tht1 With ||sg1 —trp1]|sup <
¢ we can choose two chains (both of length £ +2) {t; : 0 <j<k+1}and{s;: 0<j<k+1}
with ¢;,s; € T; for 0 < j < k + 1, such that the end points sy and ?( satisfy

k

k
Iso — tollsup < > _[lIs5 — sj1llsup + 15 — tiallsup) + 8611 — tesallsup < 2> €277 +¢ < 5e,
j=0 j=0

26



NONPARAMETRIC TESTING

implying ||| Zy, £ (s0)—Zn, f (to HHw < 5v/24¢. Recall that function ¥(r) = [, \/log(1 + exp(z~1/™)) dx.
Now, it follows from (36) that

max || Zn f (k1) = Zn,p(tks1) — (Zn,(80) — Zn,f(to))

Sk+1:tk+1€Tk41

< 7. +(u) — Z,
< et 1 Zn,5(w) = Zn, g (v)
u, v link each other
4 k
< - - Nzijil sy Iy 0l 7 llsu H Zn _Zn H
< U TG ) a1 tw) = 2]
u, v link each other
k
44/24 .
< [lsup)) €27
T j—
/karl
< v \/1og 1+exp (coc M py—(2m=1)/(2m) (£2-7) - 1/m))52 J
5/2
< 32\[/ \/log 1+exp (cocl_(l/mh—@m—l)/(?m)M—l/m>> dx

_ 32[ 71 mh (2m— 1/2\1’<CKCO h(?m—l)/25>.
T

On the other hand, we have

Z, -7
| 12050 - Z)

[lu—v|lsup <5¢
2 2 _
< ;¢2(\To\2) max 120, () = Zn,r()llly, < Z¥2 YN (G, || - llsup)?) (5V/24e).

’
l[u=vllsup<5¢
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Combining these two bounds together, we obtain

max [ Zos(s) - Zn,f<t>|\

S,tGTk+1

[ls—tllsup<e
< max || Zn (skt1) = Zn,f(tks1) — (Zn,s(s0) — Zn, £ (t0))

Skt+15tk+1€T k41

n H max | Zn,s () = Zng(0)
u,v€Tp
[lu—v|lsup <5¢
32 1 2

< B8 pp-tn-nig (chcamh<2m‘”/ 26) + 205 (N (e, 6, - ) (5V/22)
<

32\/661_(166nh—(2m—1)/2\11 <;Cchmh(2m—1)/2€>
T

10v/24¢
+ T

\/log (1 + exp (2co(cxghZm=1/2g)=1/m))
= A(h,e),

where in the last step we used the definition of A(h, ¢).

Now consider any two functions g1, g2 € G with ||g1 — g2||sup < €/2. For any k > 2, since
Ty is “maximal” due to our construction, there must exist (sg,t;) € T2 such that max{[|g1 —
Sk llsups 192 — tk|lsup } < £27F, which also implies || s — tx|sup < €. Therefore, we can decompose
the difference between Z,, (g1) and Z,,_¢(g2) by
12n.£(91) = Zn, 1 (g2)
12n.£(91) = Zn, 5 (st)|| + |20, (92) = Zn. s )| + 1| 20,5 (1) — Znp (i)
4/ne2"+  max || Zns(u) — Zns(0)]|.

u, €T

l[u=vllsup<e

<
<

Now we can obtain

H swp (| Zug(g1) — Zng(
g1,92€G

llg1=g2lsup<e/2

< 4yne2~F) log2+H max || Zn.p(u) — Zn ()|
u, €T
lu—vllsup<e

< 4yne27%/\/log2 + A(h,e) — A(h,e), by letting k — oc.

Taking € = 2 in the above inequality, we obtain

P2

< A(h,2) = A(h).

\ sup 1 Zus(01) — Zos(g2)]
g1,92€G

P2
Hgl_gQHsupSI

Consequently, by choosing g2 = 0 and using the equivalence between sub-Gaussian tails and the
Orlicz norm (Lemma 8.1 in [15]), we obtain

2
Py | sup || Zy, >t] <2exp (—) .
7 (geg 1Zn,s(9)] ) pra
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This completes the proof.

Appendix F. Proof of Theorem 3.5

We will make use of the following two lemmas that control the type I and type II errors of the test.
Their proofs are provided in the supplement.

Lemma F.1 (Type I error) For any M > 0 satisfying the conditions of Theorem 3.4, it holds that

Py, <\Tn,x} > o AT Rl,n(M)> < 15exp(—M), (37)
nvh

where p3. = hE[K?(X1, X2)] with X1, X2 X, and the explicit form of the remainder term
Ry (M) is provided in Section D.

Lemma F.2 (Type Il error) For any L > 0 satisfying the conditions of Theorem 3.4, we have

2V2 (I =P)(f — fo)ll | 4rr
NG +n\/ﬁ> VL

+Ryn(L)) < 30exp(—L), (38)

sup Py (|Ton — (= P)(F — fo) ] = (
f—focH™(1)

where the explicit form of the remainder term Ry (L) is provided in Section D.
Now, we will prove the theorem. By applying Lemma F.1, if we set M = log(15a~!), then
Pty (|Tnp| > dn(M, 1)) < o
By using Lemma F.2, we obtain

sup Py(|Ton| < dn(M, b))
If=follzpn(M,L,h)
= s Pl =P~ )2 = (Tl = —du (M, 1) + (I =P = fo)ll - ﬁ )

Ilf=foll=pn(M,L,k)
+ 2V2(|(1 = PA)(f = fo)ll VI %)

\/ﬁ
< s P(Tal - 0= PG - PP 2 2\/§||(I—\7?)(f—fo)|ﬁ
lf—=Foll>pn(M,L,h) =
+ (2O L) = VaA— 22 )~ a,01,) - 25)

<30exp(—L),

where (x = supge fym 1) A~ Y|Pygl|? and p,, (M, L, ) is the solution to the equation:

(pnMLh VRN — ) d(Mh)—%_Rgn()
ie. pn(M,L,h)= Fﬂ/ﬁ\/ +—+R2n(L)
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Appendix G. Proof of Theorem 3.7

Similar to the simple hypothesis testing case, we make use of the following two lemmas that control
the type I and type II errors of the composite test. Their proofs are provided in the supplement.

Lemma G.1 (Type I error) If fy is a linear function and M € (0,n/4] satisfies the conditions of
Theorem 3.4, then it holds that

Pfo(\ Tem| > f/fiWJrR (M ))§24exp(—M),

where the form of R‘fn(M ) is provided in Section D.

Lemma G.2 (Type Il error) For any L > 0 satisfying the conditions of Theorem 3.4, it holds that

2V2|fH =Paftll | 4k
sup  Pr([T" = f* = PaftI?| = - VI
o Pr(IT-t - Pt > (B )

+ R5,(L)) < 60exp(—L),

where the form of RS ,, (L) is provided in Section D.

Now we prove the theorem. By applying Lemma G.1, if we set M = log(24 a~!), then

sup Py, (IT55"| > die™ (M, h)) <
fo 1s linear

By using Lemma G.2, we obtain
sup  Pp(TER"] < deom (M, b))

feH™(1)
[l fH11=p50™ (M, L,h)

2L \2
= sw o P =P = T = —da (M) + (1 = Pastl = )

feEH™(1) n
I+ 11>p50™ (M, L,h)

+2\/§HfL—73AfLH\fL_2L)

\/ﬁ n
1 1

< com J__P L >2\/§Hf —Prf H\/E

< s o B(ITR- 1 - Pt 2 =

If+11=p50™ (M, L,h)

+ (P (M, ) = V/Geh - ) — e (aa ) - )

n
<(2e+ 26) exp(—L),

where (x = Supgepm (1) A~ Y|Pygl|? and pc™ (M, L, h) is the solution to the equation:

(pem (0, L, ) = V/Coeh — ) dwm(Mh)—%—R WD),

ie. p™(M,L,h) = /{x +\/2L \/coth +—+R (L)
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Appendix H. Proof of the lemmas in Section F

We first prove some relevant large deviation inequalities, which are needed in the proofs of these
lemmas.

H.0.1. SOME LARGE DEVIATION INEQUALITIES

First, we consider the quadratic form

n n
1 2
Z_j K(Xi X)) = 5 Y GRG0 X)+ 5 > agR (X, X,),

i=1 1<i<j<n

Vi Un

where V,, collects all diagonal terms and U, collects non-diagonal terms. We provide concentration
inequalities for V,, and U,, separately. Here, we may assume that ¢; are iid 1-sub-Gaussian random
variables.

Lemma H.1 Forany x > 0, it holds that

1 1 22 CK \/ﬁ 2K 3/4 42 M
P(Vn_n;qu)\pl, Z(n;f—f_n\/E) 2n n\f( ) +T§%)§56XP(_M)’

where ci = sup,p h'/?|| Ky|| = supyep b2 K2 (2, x).

Lemma H.2 For any M > 0, it holds that

Pl = (2 + S )T+

where p%- = h E[K?(X1, X2)).

4 82
3/4 = K < —
\/§n5/4fM + (n + )M) < 8exp(—M),

The following lemma provides large deviation bound for n=1 Y7, ¢; f(X;) over f € S™(I).

Lemma H.3 Forany M > 0, it holds that
1/2

1< Il f]] 2||f|!1/2 2||f||su
P(|= X VoM M3/ ZHLISWP hr) <9 —M).
s (\n;ef< |2 7 VM + ) < 2exp(-M)

H.0.2. PROOF OF LEMMA F.1

Direct calculations yield that under Hy, the remainder term in equation (12) is

| fax = fo = Sua(fo)I* + 2(far — fo — Su(fo), Sur(0)).

Then the claimed bound follows by applying Lemma H.1 and Lemma H.2 to the first term in equa-
tion (12) and using the bound in (40) with f = fj for the above remainder term (see the proof of
Lemma F.2 below).
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H.0.3. PROOF OF LEMMA F.2

Direct calculations gives

To = o = 1 = Suald) 4+ Sua(D) = (T =PORIP = 2 3
v>1 v
_ (7 2_ 1 1
I,
1 For = f = Sun(DIP +2(Fux = f = San(f)s f = (L =Pa) fo + Sunf) -

Ry
First, we provide a non-asymptotic bound for the remainder term R,,. By Theorem 3.4 (choose
r? = (nh)™1), for any M > 0

sup Py (Ilfan = F = Sua(F) > Ran(M)) < 2exp(=M), (39)
fesm (I

where remainder term
Ry (M) =i/ Mn~ Ph=t A(R) 6, (M, (nh)~1/?),

with 8, (M, 7) = 2h™ + ¢ (V2Mr 4 (nh)~/?) the “effective” estimation convergence rate. From
an asymptotic perspective, this remainder term R3 ,, (M) corresponds to the higher-order error—
converging to zero faster than the estimation convergence rate &, (M, (nh)~1/?).

Combining Lemma H.1, Lemma H.2 and inequality (39), we obtain the following large devia-
tion bound for the remainder term R,,,

P(|Rn| > Ran(M)) < 15exp(—M), (40)

where the remainder term

1 1 /2 4
Ryn(M) = R3,(M)+2Rs o (M)(1 + <5 > ¥ )+ ﬁm + Ron(M)).

v>1

Next, we consider the leading term I,,. Simple calculation suggests

L = (I =P = fo)lIP +2((I = PA)(f = fo) Sup(0)) + [Sar(0)]* — % 27 +1)\P
v>1 v

=T = PAT — fo)l? 420 S ek, (T = P — o)+ 1Sa (0)I Bl Sua )]
=1

Whn

The first and the second terms in the stochastic component W,, (E W,, = 0) can be bounded by
Lemma H.3 and Lemma F.1, respectively, yielding

2VE (=P = o)l , 4ok
Vvn nvh

) VM + Ry, (M) + %(M3/4 + M)) < 15exp(—M),
(41)

P(1wa| > (
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where we have used the fact that || f — fol|, ||f — follsup < 1 for f — fo € H™(1).
Combining (40) and (41), we obtain

__— s (VI = PO — fo)ll . 4ok
fes}}lf(l)pf(\Tn,A 1f = fo+PasIP] = ( v ) VI
i %(M?’/4 + M) + Ron(M) + R47n(M)) < 30 exp(—M),

which yields the claimed result.

Appendix I. Proof of the lemmas in Section G

In this subsection, we prove the two lemmas in Section G . We use Px to denote the marginal
probability measure of the covariate { X;}? ;.

1.0.1. PROOF OF LEMMA G.1

By Cauchy-Schwarz inequality, we have
9 ~75 1 .
|felF =@ + @B + B° < 2a° + 252,
Since (@, B)T = (DX Dx)~' D%, we can further derive that

Ifel3 < 26" Dx (DX Dx) " Dxe. (42)

After simple calculations, it is easy to show that the largest eigenvalue \x of matrix (D)T( Dx)tis

2 2
n+2?_1X?+\/(Z?_1X3—n) +a(Tmx) N

5 =
2(" i XP - (Z?:l Xi) ) "
By Hanson-Wright inequality, the denominator D,, satisfies
Px(Dn <2n(n—1) — 2ny/(n — 1)M — 2nM) < exp(—M)

for all M > 0. By Cauchy-Schwarz inequality and 0 < X; < 1, the numerator /V,, satisfies

n
Ny <2n+2) X7 <d4n.

i=1
Combining the last two displays, we obtain
2 1 M M\-1
PX<)\X2*(1_*— *—*> )SeXP(—M)
n n n n

forall M < n/4.
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Combining the above display with inequality (42), we obtain that it holds with probability at
least 1 — exp(—M) that

2 1 M My
2 < 2T Dy (DY D) 1D (1—7— 7_7) .
153 < 2 Dx(DEDx) D (1 - - /2

Moreover, since D X(Dgp(D X)_ID;F( is a projection matrix with rank 2, we have, by Hanson-
Wright inequality, that for any M > 0

22N
P(—eTDX(DTDX) 1pTe> 2 +

n n

- )<exp( M).

Combining the last two displays, we obtain that for all M < n/4

P (- 1 A0

< 2exp(—M). (43)

P{IfIB+ 2 Dx(DEDx) ' DRe >4 (5 +

Finally, the claimed result is a direct sequence by applying Lemma H.1, Lemma H.2, equa-
tion (21) and equation (43) to the first four terms, and the bound (46) in the proof of Lemma G.2 to
the remainder term in decomposition (21).

1.0.2. PROOF OF LEMMA G.2

Write f(z:? = fE(z) + fl x) where f¥(x) = a + Bz is the linear part of f and function ft
satisfies [; f*(z)dP(x) o ( (f1)(x) dP(x) = 0. Direct calculation gives fHO = fL+ fx + for
and

Tt = 1o = 1= S0+ £+ 5ua(D) = 1 = S5 = 50— L S

=|f* + Sur(0) = Paf — fx — fel|> = E[|Sn(0)]?
1 Fox = F = San(DIP +20Fnn — = Sun(F)s f+ Sunf — X = f¥ = f2),

where fi£(z) = (1, )7 (D% Dx) ' DEfH(X]) and f1(X]) = (F1(X0)..... 1 (Xa)T. Use
the property that P,g = 0 for all linear functions g, we further obtain

Lt = |1 = Paf* + 800 (0) = fx = felP = ESu (0]
g

+ ||ﬁ1,>\ - f - Sn,A(f)HQ + 2<ﬁ1,)\ - f - Sn)\(f)vfl - PAfJ_ + Sn)\(o) - f? - f6> :

~
C
R¢

We first provide a non-asymptotic bound for the remainder term RS . Similar to the proof of
Lemma F.2, by Theorem 3.4 (choose 72 = (nh)~1), we have for any M > 0

sup Py (1fur = f = Sual£)ll > Ran(M)) < 2exp(~M). (44)
fresm(I)
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According to the proof of Lemma F.2, we have

Pl za(t Y2 My L MMV g pan, as)

n n n n

for all M < n/4. The following lemma provides non-asymptotic bounds for || f5 ||, whose proof is
provided in Appedix L.0.4.

Lemma L1 Forany M € (0,n/4), we have

32 1 M M\-2
PRI =2 =M (1=~ = /= = =) 7} < sexp(-M).
n n n n

Combining (44), (45), Lemma 1.1 and Lemma F.1, we obtain the following tail bound for the
remainder term R,

P(|R;| > Rg,,(M)) < 24exp(—M), (46)

where the remainder term

£ (M) = B (M) +2Rs M)~ Paf I+ (5 3

v>1

1 >1/2

dpk
\/ Ron RS,
15 ap, M+Ron(M)+ 3,n)

n

with

2( \/ M)1/2( _1_ M M)—1/2+4\/§\/M(1_1_ M M>—1
Next, we consider the leading term I;,. Simple calculation suggests
Ln = |[f = Paf 1P+ 20 = Paf. 8ua(0)) + 1Sun (0)II* — E[Sp(0)]7
5 fell® = 20fx + fe f1 = PafT + 80 (0))

n n n n n

n

1
=t =PafHP+ 2( Yo alix, f1=PA) + 18un (017 = B[S (0]

i=1

Wi
F N fx + fell? = 20f% + fo, 5= Paft 4 Snn(0)).
Wi

Similar to the proof of Lemma F.2, we have the following tail bound for W7, ,

P(We,| > (zﬁHft/%P”uH :’:ﬁ)erRo”( )+ 2 (M 4 M)) < 15exp(—~M).
(47)

Combining (45), Lemma I.1 and Lemma F.1, we obtain the following tail bound for W3,

P(IWs,| = B, +2Rs,, (IF- - PAfL||+( ZHlAp)l/Z ijW+ROn( ))) < 20exp(—).

(48)
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Combining (40) and (41), we obtain that for all M € (0,n/4],

s P(|Tx st pagt| = (RSP ey gy

feH™(1) Vn nvh
2 ¢ 1 1 1 1 \Y2  dpk
+ R5 , + 2R3, <||f —Prfrll+ (EZW> +ﬁVM+RO,n(M))
v>1 v

2
+ Z(M¥ 4 M) + Ro(M) + RS, (M) ) < 60exp(—M),

which yields the claimed result.

Appendix J. Proof of Theorem 3.9

The proof of (i) is finished in two parts.
PartI: Let f € H™ (1) be the parameter based on which the data are drawn. Define an operator
mapping S™(I) to S™(I):

Tif(g) = g+ Sx(f +g), g € S™(I).
First observe that

1SN = IPAfll = sup [(Pxf, g)| < VB2 = bh™.

lgll=1

Let 71, = 2h™. Let B(r1,) = {g € S™(I) : |lg]| < rin} be the ri,-ball. For any g € B(riy),
using DS\ (f) = —id (see [23]) and ||g|lsup < cxh™/?ri, = 2exh™ Y2 < 1, it is easy to see
that

1Tl < Mg+ 93 +9) = SA(HI+ SN

1 1
— |lg+ DSx(f)g + / / sD2S\(f + s5'g)ggdsds’|| + |Sx(F)]
0 0
1 1
= /O /0 SD25\(f + 5'g)ggdsds’| + | Sx(f)]

1 1
— / / SE{UO (Y — £(X) — s5'g(X))g(X)2K x }dsds'|| + r1n/2
0 0

IA

1 1
exch™1/? /0 /0 SE{sup €01~ )] 9(X)*} +rin?

cxCoCro2h™12)g[12/2 + 710 /2
CKCOC1072h71/2T%n/2 + Tln/Q
cxCoCro 2™V 20 4 11, /2 < 31, /4,

IN A

where the last step follows from the assumption cxCoCro2h™1/2 < 1 /4. Therefore, 77y maps
B(r1y,) to itself.
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For any ¢1,¢92 € B(r1,), denote g = g3
cxh™V2||ga + sg|| < 2exh™Y?ry, = degh™Y2h™ < 2/3. According to [23], we have that for
any f € S™(I), < cgh~ V2| f||. Therefore,

1T1f(g1) — T1z(g2) |l
= g1 — g2 + SA(f +91) — SA(f + 92)l

1
= g1 — 92 +/ DS\(f + g2 + sg)gds||
0

1
— /0 IDSA(f + g2 + 59) — DSA(F)gds|

1 1
= | / / D2S,(f + 5'(g2 + 59))(g2 + sg)gdsds’|
0 0

1 1
< / / IELO (Y — F(X) — & (g2(X) + 59(X)))(02(X) + 59(X))g(X) K}
0 0
1

< exh V2 / E{sup (9 (5 — a)] - |g2(X) + s9(X)| - [9(X)]}

0 la]<1

1
< exh V20200 / g2+ sgllds]lgl]
0

< 2ex0 2CoCLR g
= 4CKCOClO'_2hm_1/2HgH = 4CK00010_2hm_1/2||91 - g2l|-

Since 4cxCoCro2h™~1/2 < 1, this shows that Ty is a contraction mapping which maps B(71,,)

into B(r1,,). By contraction mapping theorem (see [22]), T ¢ has a unique fixed point ¢’ € B(r1,)
satisfying Th¢(¢') = ¢’ Let fx = f 4+ ¢’. Then Sx(fx) = 0and || fn — f|| < 7in.

Part II: For any f € H™(1), under (1) with f being the truth, let f) be the fucntion obtained
in Part I. Obviously, || fx — flsup < cxh ™21, = 2cxh™ /2 < 1/3. Then it can be shown that
for all g1, g2 € S™(I),

HDSA(f,\) DSA(f)]QlQQ’
= |B{(tPD(Y = fr(X)) = (DY — f(X)))g1(X)g2(X)}]
a)

< !E{FEW '(n+a)|- !fA( ) = F(X)] - |g1(X)g2(X)}]
< CoCrexh™ Priol|gll - g2l < lgrll - llg2l/2.

where the last inequality follows by CoCregh™/?r,072 = 2CoCrexo 2h™1/2 < 1/2. To-

gether with the fact DS\ (f) = —id, we get that the operator norm |[DS)(f\) + id| operator <

1/2. This implies that DSy (fy) is invertible with operator norm within [1/2,3/2], and hence,

HDS)\(f)\)_lHoperator <2
Define an operator Th¢(g) = g — [DSA(f2)] " 1Sur(fr + 9), g € S™(I) and rewrite it as

Tor(9) = —DSx(fr) ' [DSua(f1)g — DSA(f)9]
—DS\(f2) " [Sua (S + 9) = Sua(S) — DSua(f)9]
—DSy\(£2) 1S (£
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Denote the above three terms by Iy7, Iof, I3y, respectively.
Fori = 1,...,n, let R; = (M(Y; — fA(X))Kx, — Ef{{M(Y — f1(X))Kx}. By direct
calculations, it can be shown that

1B (Y = f(X)Kx

= s (B — f(X))Kx},9)]

= HSI||l£1 |EA (DY = f1(X))g(X)}

= s (B {00+ 0200 - KO0+ 590+ () = AXD) - A

llgll=1

= swp B {0 (700~ 50N |+ 5B {090+ s(F(X) — AKX - fA<X>>2g<X>}\

lgll=1

= s =0 By ((70) NG00} + 3By {0+ 500 ~ AN - A Pa(x) )

IN

1fx = fIl + ;CKh_l/QEf{|Su<P1 P (n+ a)| - (LX) = £(X))?)

1
< rip+ icKh_l/QCOCm_Qr%n < 511, /4,

where the second last inequality follows by Assumption A2, i.e., E{supjq|<; 103) (n+a)|} < CoCh,

and the last inequality follows by condition hm=1/2 < 52 /(4cx CyCh). Therefore, it can be shown
by ”f/\ - f”sup < 1/3 that

IRl < (60 (Y; = (X)) K x| + 5710 /4

IN

1 1
D)+ S0P ()| + — sup [P (n+a)| | exh™ /2 + 5ri, /4
3 Ee

< eh™ P + S0 ()] + 5 sup 163 (n + )| + 5r1,/4.

Using Cauchy-Schwarz inequality,

ESex __NRN < (Cjex sh < Crexp(2)
P 2COCKh71/2 = L1exp 4COCK = ~16Xp '

Let 6 = hr,/(4Cyck ). Recall that h/2r,, < 1 which implies § < (4CocKh_1/ 2)=1. Therefore,

E{exp(d||R;||)} < Ciexp(2). Moreover, for x > 0 and any constant ¢ > 0, exp(M) — 1 —

M < MZ?exp(M) and M~2exp(cz) > c?exp(2)/4. Let ¢ = (2Coch/?)~1 — 5. Clearly,

¢ > (4Chcxh™?)~1, So, we have

Epfexp(d[|Rill) — 1 — o[ Rill}

E{(8]|Rill)* exp(3]| i )}

5246Xp(72)
2

IN

IN

Ep{exp(c||Ril) exp(d]|Ril|) }
6% 4 exp(—2)(16CEckh 1) Cy exp(2) < 64C2C 5 h™ 162

IN
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It follows by Theorem 3.2 of [21] that, for L(M) = 4Cyck (4C1 + M),
n
Py <|| Z Ri|| > L(M)m‘n> < 2exp (—L(M)dnry, + 64C'§Clc%(nh_152) = 2exp(—Mnhr?).
We note that the right hand side in the above inequality does not depend on f. It is easy to see that
Sua(fa) = Sun(fr) = Sa(fr) = 137 | Ri. Let
Ent = {[SpA (S < L(M)rn},

then sup pe pym (1) Pr(E5 1) < 2exp(—Mnhr}).
It follows by Assumption A2 that sup g gym (1) Pr(Ey 2) < 2C1 exp(—Mnhr2), where £, 2 =

N, A;,and A; = {sup|a|§1 109) (n; + a)| < Co(Mnhr2 +1logn), j = 2,3}. Define

(i = [r(Xy))
Co(Mnhr2 + logn)

W (Zisg) = Ia, et h ' 2g( X))

n7f
Sup e prm1) Pr(ES5) < 2exp(—Mnhr2), where £,3 = {supyeq 20} (g)ll < /MnhrZA(h)}
For any g € S™(I)\{0}, let g = g/d.,, where d/, = cxh~/?||g||. It is easy to see that

and Zfll}(g) = ﬁ Z?:1[¢(1) (Zi;9)Kx, — Ef{ws}(Zi; 9)Kx,}]. Tt follows by Lemma E.1 that

Igllsup < cxch™?llgll = exch™?|g]l/d}, = 1, and (49)
_ - —om A(9,9) —2, —om
J(9,9) = d, *J(9,9) = h™? W_ cith~2m L (50)

Therefore, g € G. Consequently, on &, 3, forany g € S (I)\{0}, we get ||ZT(L1])0 (@) < /Mnhr2A(h)

which leads to that
*HZ (Y = A(X))g(Xi) Kx, La, — E{ @ (Y = f(X0))g(Xi) Kx, 1a |

< cKC’O(Mnhr +logn)\/ Mh=1r2 A(h)||gll-

Note that the above inequality also holds for g = 0.
On the other hand, for any f, g € S (I), by Cauchy-Schwartz inequality,

IEH{EP(Y; — fu(Xi)g(Xi) Kx, Lac}|

= Ef{ﬁlg 163 (i + a)| - 1g(Xi) [ TacYerch ™'/

< Ef{(s?g €3 (n; + a)|)*Tac }' P E{g(X)*} P erch ™1/

< Ef{<§1|1;1:>1 162 (i + a) )} APE (A E{g(X)?} Perch ™2
< oM 48CECH)  exp(—(Mnhr? +logn)/4)exh 2 ||g|,
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where in the last inequality we have used the fact

Py(A§) < 2C exp(—(Mnhr? + logn)). (51)

In summary, we have shown that for any f € H™(1), on &, 2 N &, 3, uniformly for g € S™(I),

HDSn A(f2)g = DS\(fA)gll

= 4!2 (Vi = A(X0))g(Xi)Ex, — Bp{tP(Y; — fA(X:)g(Xi) Kx, ]|

= *HZ M(Yi = MA(X)g(X) Kx, La, — Ep{¢®) (i — fa(X0))g(Xi) Kx, Y|

IA

fuz (Vi — (X)X ExTa, — EH{EO(Y; ~ [(X)g(X)KxIa ]|

+HEf{£ (Vi — £l Xi))g(Xi)Kx; Lac}|

(c%-Co(Mnhr? +logn)y/Mh=1r2 A(h)
+0 1 (48CHCF)/ exp(—(Mnhr;, +logn) /4)exh™ /%) ||g]l < |lg]l/6. (52)

IA

Define T3¢(g9) = Spa(fa+9)—Sua(f3) —DSpa(fr)g. Letry, = 6L(M)ry. Forany g1, g2 €

B(TQn)a and s € [, let g9 =491 — g2, then ||g2 + Sg”sup < ||gl||sup + ||92||sup < 2CKh

~1/2,..  _
[2py, =

48Coc2(4C, +M)r,h ™12 < 2/3. On &, 2NE,, 3, for any g1, g2 € B(ra,,) and letting g = g1 — go,
we have

IN

IA

IN

1 T35(91) — T (g2)|l
1S A(fr +91) = Spa(fr +g2) — DSuA(fr)gll

1 1
1 [ DSt + (0 + 50002 + s
1 1
| [ ID2 S0t + 02+ s9)) a2 + sadgldsas
/ / ||f§je (Vi — Fa(X) — 5/ (92(X0) + s9(X0) (92(X5) + 59(Xi))g(X)) K x, | dsds’

/ / sup 16O (m; + @)] - g2 + 59lsup - |9 llsup | K x| dsds’

2C’0(Mnhrn + log n)(cxh )39, |g|l
48C3ck (ACY + M)(Mnhr? + logn)h ™ ?r,|g|| < ||lg1 — g2]|/6. (53)

Taking g2 = 0 in (53) we get that || T57(g1)|| < [g1]//6 for any g1 € B(r2,). Therefore, it follows
by (52) and (53) that, for any f € H™(1),on &, = E,1 N Ep2 N Ey 3 and for any g € B(ray,),

T2 (9)Il < 2([lgll/6 + llgll/6 + r2n/6) < 2(r2n/6 + 720/6 + 120 /6) = T2n,

meanwhile, for any g1, g2 € B(r2,), replacing g by g1 — go in (52) we get that

1T25(91) — Tar(92) || < 2([lgr — g2[1/6 + [lgr — 92[1/6) = 2[lg1 — g2ll/3.
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Therefore, for any f € H™(1), on &,, Ty is a contraction mapping from B(r2;,) to itself. By
contraction mapping theorem, there exists uniquely an element g” € B(ra,) s.t. To¢(g"”) = ¢”. Let
fax = fxtg" Thenon &, [ fux—fIl < Ifx=FllH 1 far—Fall < rintron = 200™ +6L(M)ry,
The desired conclusion follows by the trivial fact: sup y¢ ym 1y Pr(€y;) < (2C1+4) exp(—M nhr2).
Proof of (i) is completed.

Next we show (ii).

For any f € H™(1), let fn)\ be the penalized MLE of f. Let g, = fn,A —f, (M) =
210 + 6L(M)ry,, d, = cch™1/25! (M), and for g € G define

(D (n; — dy,g(Xi)) — £ ()
Co(Mnhr2 +logn)(cxh=1/2)25/ (M) Av

¢£L%}(Zi;9) =
where A; is the event defined in (i). Under the imposed conditions, we get that

cxch™Y 26, (M) = 2eich™ 2 + 6 L(M)egch™/?r, < 2/3. o4)
Then for any g1, 92 € G,

Wﬁf}(zi; 9) — ¢£L%}(Zi; 92)|

1 1 1

" Co(Mnhr2 + logn)(cxh—1/2)25" (M) 60 (s — dpyg1 (X)) — €0 (m; — dpga(X3)) | L,
1

~ Co(Mnhr2 +logn)(cxh=1/2)28! (M)

1 600 = 025 + 502050 1 (XD 02050 1 (K s,

1

< (@ (n; + a)|La, || g1 — gollsu

= Co(Mnhr2 +logn)(cxh=1/2)28 (M) ‘i?£| (i + )4 lgr = g2llsup

= cx'h"?||g1 — gollsup-

Let £0,4 = {supyeg | 271 (9)|| < /MnhrZ A(R)}, where 2,7} (g) = = S0, [437)(Z 9) Kx, —
Ef {wff}(ZZ, 9)Kx,}], E]% denotes the expectation with respect to Z (under Py). It follows by
Lemma E.1 that sup y¢ gym 1) Pr(E) 4) < 2 exp(—Mnhr2).

On the other hand, for any g € G, using Pf(AS) < 2C; exp(—(Mnhr2 + logn)) we get

IIEf{(ﬁ(l)(m —dn9(X;)) — E(l)(m))KXJAg}H

< Ef{sup 62 (m; + )| - d),|g(X)| - | Kx, | Lac}
< dnexhVPEF{sup [0 (n; + a)| - Tac}
la]<1
< (exh™Y2)28 (M)y/ 20201 /201 exp(—(Mnhr2 +logn)/2)

= 2c%CoC1h~ 1<5;L(M)e;~<p(—(]\/.l'nh7"n—|—logn)/2).
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On &, = &, N Eyu, we have ||gy|| < &, (M). Let § = g,/d,. Then we get that
[SnA(f + gn) = Sua(f) = (SA(f + gn) = SA())

= %H Z[(f(l)(m — gn(X3)) — (D () Kx, — E{ (0D (i — gn(X3)) — €1 (i) K x, H|

IN

fCo(Mnhr +logn)(cxch™/%)26), (M HZ PNZs9)Kx, - EF W (Z:9) Kx |

+00(Mnh?" +logn)(cxh™/%)%5], (M HEf{( Y(n; — d,9(Xi)) — €0 (1) K x, Lag Y|

(M)
fCo(Mnhr +logn)(cxh™/%)28! (M) - /n/Mnhr2 A(h
+Co(Mnhr? +logn)(cxh™'/%)%8! (M) - QCKCOClh_lég(M) exp(—(MnhrZ +1logn)/2)
= &CoVM(Mnhr? +logn)h=Y/28 (M)r,A(h)
4265, C2C R 25! (M)?(Mnhr? 4 logn) exp(—(Mnhr2 + logn)/2) = ay,. (55)

IN

It is easy to show that

1 1
I / / sDQS,\(f + 85" gn) gngndsds’||
o Jo

1 1
— H/O /0 SE?{EB)(Y _ f(X) _ Sslgn(X))gn(X)QKx}dsds,H

IN

1 1
exch™\/? / / SEZ{0D) (1 — 55/ ga(X))|gn(X)?}dsds’
0 0
< gexh ™ E{sup (9 + a)lga(X)%)
la]<1

1
< gexh” Y200C1o72|gn)? < Kcocla 2R (M)? = B (56)

Since Sy A (f + gn) = 0 and DSy (f) = —id, from (55) and (56) we have on En,

1 1
on > [1San(f) + DSA(f)gn + / / sD2Sy(f + 55'gn)gngndsds’
0 0
1 1
= 1Sua(f) —gn + / / sD2Sy(f + 55'gn)gngndsds’
0 0
1 1
> 1Surlf) = gall — | /0 /0 SD2S\(f + 55'90) gugndsds’|.

which implies that R
Hfm/\ - f - Smx\(f)” < C"(M)7

where ¢, (M) 1= oy, + (5. Since sup e gm ) Pf(gﬁ) < (2C1 + 6) exp(—Mnhr2), the proof is
completed.
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Appendix K. A quadratic approximation of the PLRT test

For arbitrary f € H™(1), let fn » be the penalized MLE. From now on, we let the event ﬂ?zlgmj
hold, where &, ; for j = 1,2, 3,4 are defined as in the proof of Theorem 3.9. Recall that these
events satisfy

sup Pr ( _1&55) < (2C1 +6) exp(—Mnhr?).
feH™(1)

Letg, = f — fA'n A- Using Taylor’s expansion, we get that

PLRT,\(f) = Laa(f) = lur(Fan)
= Lur(Far + 9n) = lon(Fan)

1 1
= / / $DSp\(fax + 58" gn)gngndsds’
0 0

1 1
_ / / SIDSur(Fox + 55Gn) — DS r(f)gngndsds’
0 0

+51DSuA (1) = DS Plgngn + 5D (Hongn.

Forany s, s’ € [, itis easy to see that Hf—ﬁ%x—ss’ganup = (158" )||gnllsup < cxh™ Y2680 (M) <
2/3 (see (54)).

[DSur(Fax + 55'Gn) — DSnur(F)]gngn]

n

1
< DI = Fan = 5890(X0) = €Y = J(X0))lgn (X0)?)
i=1
1 n
< — su 6(3) i+ a)l - n 3u
< 22 s 0+ 0l ki
< Co(Mnhr? + logn)(exch ™28, (A1)
Define o s
L i Xl ¢ h
v (Zisg) = )9 X1)cic Ia, g€G,

Co(Mnhr2 +logn)
where A; is defined in (i). Then it is easy to see that for any g1, g2 € G,

@3 3 (@) (n;)| L4, _
6 Zis) ~ 020 £ oy Sl =l < g =

n

@3
V Mnhr2 A(h }andZ )( sz N n}(ZZ,g)KX Ef{wnf i;9)Kx,}]. From now on,
we assume mj:15n,] holds

It can be seen by (51) and independence between 1 and X that
(B 0:)gn(Xi)*Lag}l < B{IEP (03) Lag} E{gn(X)*)

It follows by Lemma E. 1 that sup s gm 1y P (£ 5) < 2exp(—Mnhry,), where £, 5 = {supyeg ||Zfl3}(g)|| <

< o 2B{|e () P12 Py (AD) g2
< 073 /201C3V/2C exp(— (Ml + logn) 2)6, (M)?

2CoC1o 2 exp(—(MnhrZ +logn)/2)8,, (M)>.
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Note that

HDSn,)\<f) - DS)\(f)}gngn‘

= 9 (607~ BF 0 (7

< IZK( Y(00)9n(Xi)* La, = EF {0 (00) 9 (X0)* La Y| + | EF (€ (1) gn(Xi)* Lag}|

= !<%Z[€(2)(m>gn(?{ VL Kx, = EF P (00)gn(X) La, Kx, 3], gn) | + 1 EFLEP (1) gn(Xi)*Lag}|
=1

< II*Z[ Y(00) 9 (Xi) La, K x, — BFLCP (00) 9 (X) La Kx JI| - gl + | EF 6P () g (X2)* Lag .
=1

Letting § = g,,/d.,, where d, = cxh™/26! (M), we get that

H* Z[ ) (0:)gn (Xi)1a, Kx, — EF{t® (0;)gn(Xi) L4, K x, }]|

=1
= *HZ Xi)Ia,Kx, — EZ{0®) (0)g(Xi) L4, K x, }]|
d, 1/2
= ”C(Mnhr +logn)exh™ /HZ Zi;9)Kx, —Efwnf( 59 Kx

= Co(Mnhr%+logn>(CKh*”2)2n*”25;( 224 @)|
< VMCyc% (Mnhr? +logn)h™ 25" (M)r, A(h),

where the last inequality follows by g € G.
By the above analysis, it holds that

HDSn,)\<f) - DS}\(f)}gngn‘
< VMCy(Mnhr? +logn)h =28 (M), A(h) + 2CoCro~ 2 exp(—(Mnhr2 + logn) /2)8. (M)2.

Therefore, for any f € H™(1), on ﬂ?zlgn,j, it holds that

1
[PLRTA(f) + 5 llgnl”|

< %cocé((Mnhr;i + logn)h=3/25" (M)3 + %\/MCgc%((MnhrfL + logn)h =25 (M)?r, A(h)
+CCro 268! (M)? exp(—(Mnhr? +logn)/2) =

Appendix L. Proofs of the auxilliary results

L.0.1. PROOF OF LEMMA H.1

Since € are independent sub-exponential random variables given (X1,...,X,). Therefore, by

standard tail bounds for sub-exponential random variables [16, Lemma 1], we have that for any
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M >0

q

where g2 = > | K*(X;, X;). Now we apply Hoeffding’s inequality to obtain

> 2,V M + 2h’1c%(M> <2exp(—M),  (57)

i 612 K(XHXZ) - Zn:K(XZ,XZ)

i=1 i=1

- [nM
LX) — 12| > "7 < —
PX(‘ ;:1 K(Xi, Xi) —nE | Kx,|| ’ =z e\ 5 ) < 2exp(—M), (58)
P f K2(Xi, X:) > nE || Kx,|* %,/LM < exp(—M) 59
X(i—l i» Xi) =N X; +h 2>_eXP— . (59)

Since (Xy,...,X,) and (eq,...,€,) are indepedent, we can apply inequalities (57), (58) and (59)
to obtain

n 2
M
P[>0 & K(X0 )~ nB K| = VIR 4+ ey V20D 4 20 My " |
=1

< 5exp(—M),

where we used the fact that || Kx,|| < h™'/2ck and the inequality \/z +y > \/x/2 + \/y/2 for
x,y > 0. This is equivalent to the claimed result since E{||S,, 1 (0)||?} = n " E || Kx, |

L.0.2. PROOF OF LEMMA H.2

By Hanson-Wright inequality [13], given (X7, ..., X,) forany M > 0

PE< Y e K(Xi, X;)| = 2e,V/M + 2an) < 2exp(—M), (60)

1<i<j<n

where 2 = D 1<icj<n K?(X;,X;) and fn, = Amax(K,). Here for a p.s.d. matrix A, Amax(4)

stands for its largest eigenvalue, and the kernel matrix K,, = [K (X, X;)]nxn.
By the bounded differences inequality, for any M > 0
2 .2 2.2
2%v v n°py  4n‘cy |M
Px( 30 K(Xi, X)) > S SRE [0 ) < exp(— ). (61)
1<i<j<n

By Theorem 4 in [7], for any x > 0

0 E|Kx|* 3
PX f > 424/ ” X” CK,/ <3exp M). (62)

Here . is the largest eigenvalue of integral operator K on S™*(I) defined as

K(uw) = 3 5, 0(w6,0)
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so that

1
_ /0 WK (u,)dP(w).

It is easy to see that u = (1 + Ap;)~! < 1, which combined with (62) implies

3
PX<fnZn—i—2 nE||Kx,||*+ CKUnx <3exp M). (63)

Since (X1, ...,X,,) and (€1, ..., €,) are indepedent, we can combine inequalities (60), (62) and
(63), and use the fact that E || K x, ||* < h2c}; to obtain

2npi an3/4 ek 374 4y/nc? 3c2
P ‘ § e K (X5, X )> M+ —= M3y onM KM KoM
( e K ( J)—\/E\/ +<7§\/E +2nM 4 == +\/ﬁ )

< Sexp(—M),

1<i<j<n

which implies the claimed result.

L.0.3. PROOF OF LEMMA H.3

Since ¢; are 1-sub-Gaussian, we have

e Zhﬂ X0| 2 17y 220 ) < 2001

given (X1,...,X,) for any fixed function f in S™(I), where ||f||2 = n=1> ", f3(X;). B
Bernstein’s inequality

2|lf 2|f
Py (112 2 112+ 20 vz ¢ 2w 0 < e,
Combining the last two displayed results yields the claimed inequality.

L.0.4. PROOF OF LEMMA 1.1

Since f5 is a linear function, we have J(fx, f3) = 0 and

I £51? = 1f%115 < 2[(D% Dx) " DX fH(XT)IP < 22X DX (XTI
:2A§<{<ZfL(Xi))2 + (infL(Xi)f}, (64)
=1 =1

where Ay is the largest eigenvalue of matrix (D% Dx)~1
According to the proof of Lemma F.2, A x has the following tail bound

PX<)\X > n<1 oM %>_1> < exp(—M)

n n n

forall M < n/4.
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Now consider the two terms inside the curly brackets of (64). Since f € H™(1), we have
| f*]loo < 1. By definition, we know that Ex[f+(X)] = Ex[X f+(X)] = 0. As a consequence,
an application of Hoeffding’s inequality yields

Px () Zn: (X3
=1

Px () z": XifH(Xi)
i—1

>V2n M) <2exp(—M), and

>V2nM) <2exp(—M), forallz > 0.

Combining the last three displays and inequality (64), we obtain

P{Hf)%HZ > %M <1— % - % - %>_2} < 5exp(—M),

forany M < n/4.
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