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Abstract
We develop a non-asymptotic framework for hypothesis testing in nonparametric regression where
the true regression function belongs to a Sobolev space. Our statistical guarantees are exact in the
sense that Type I and II errors are controlled for any finite sample size. Meanwhile, one proposed
test is shown to achieve minimax rate optimality in the asymptotic sense. An important conse-
quence of this non-asymptotic theory is a new and practically useful formula for selecting the op-
timal smoothing parameter in the testing statistic. Extensions of our results to general reproducing
kernel Hilbert spaces and non-Gaussian error regression are also discussed.
Keywords: Kernel ridge regression, large deviation bound, minimax rate optimality, nonparametric
testing, non-asymptotic inference, smoothing spline

1. Introduction

Many classical statistical inferential procedures are built upon large sample theory that relies on a
growing amount of data information or a large number of samples. However, in practice, it is often
the case that only a small to moderate amount of samples are available, which limits the applica-
bility of the classic asymptotic inferential procedures. Recently, finite sample inferential theory has
provided a new perspective for statistical analysis. For instance, with the aid of various notions of
concentration inequality, [2; 3; 20; 25; 26; 33] have developed statistical inference procedures that
are theoretically valid for any fixed sample size. As far as we are aware, the parameter of interest
in these works is finite dimensional. The goal of this paper is to develop finite sample theory in
another important setting – nonparametric models.

In the asymptotic regime, there is a vast amount of literature devoted to developing theories for
nonparametric inferences such as testing and confidence band; see [30; 32]. However, little progress
has been gained towards finite sample theory for nonparametric inference procedures. Our work
can be viewed as an initial attempt to establishing a non-asymptotic framework for nonparametric
testing, which covers the existing asymptotic theory as a direct consequence. This effort requires
new technical tools such as (uniformly valid) large deviation bounds. In particular, two Wald-type
test statistic are constructed with their cut-off values being adjusted according to any finite sample.
This is in sharp contrast with conventional asymptotic tests that rely on the null limit distributions,
e.g., likelihood ratio test in [10; 23].
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We begin with smoothing spline methods for fitting nonparametric regression under Gaussian
errors. As a first attempt, we consider a test statistic simply defined as a discrepancy between the
null function and smoothing spline estimate, and develop a corresponding nonasymptotic deviation
inequality (see Theorem 3.1). Despite its simplicity, this naive test is shown minimax sub-optimal in
an asymptotic sense according to [14; 18; 4]. This is due to a non-vanishing bias term that reduces
the power. This motivates the development of a more refined non-asymptotic deviation bound (see
Theorem 3.4) for a “de-biased” smoothing spline estimate, based on which our second test statistic
is proposed and shown to achieve the minimax rate optimality by correcting the bias explicitly. To
our knowledge, this deviation bound is the first non-asymptotic expansion of the smoothing spline
estimate up to a higher-order decaying remainder term. Based on these large deviation results, Type
I and II errors are controlled for any finite sample size in both methods; see Corollaries 3.3 and
3.6. As an interesting by-product, a lower bound on the sample size is quantified to yield desirable
Type I and II errors. The relation between the proposed tests and the asymptotically valid likelihood
ratio test [23] is also highlighted. As for other smoothing-spline-based tests such as LMP [9], they
were developed from Bayesian setup and always rely on complicated null distributions involving
nuisance parameters, as reviewed in [19].

In practice, the choice of smoothing parameter is crucially important. However, it is known that
the widely used generalized cross validation (GCV, [29]) does not lead to a minimax optimal testing
procedure; see [10]. Importantly, our non-asymptotic theory yields a practically useful formula to
select an optimal smoothing parameter. To be more specific, it is obtained by directly minimizing
a separation function (that quantifies the minimal detectable signal strength) derived in the non-
asymptotic framework. As far as we are aware, this non-asymptotic formula is new.

Our simulations in the appendix demonstrate the empirical advantage of the above selection
method over GCV in both the proposed test and the conventional asymptotic test such as penalized
likelihood ratio test (PLRT, [23]). Additionally, the simulation study confirms that our finite-sample
based testing procedure is uniformly more powerful than PLRT as the sample size grows (under the
same choice of smoothing parameter). Besides the non-asymptotic design, another reason for this
empirical success is that the proposed test removes a bias term from the PLRT due to penalization.
Although this bias term is asymptotically of higher order, it can significantly deteriorate the power
of the test when sample size is small to moderate. We count this as another highlight by applying
our finite sample framework.

In the end, we make some comments on related literature. [4] studies non-asymptotic minimax
rates of testing under the white noise model setting. Although the white noise model is asymptoti-
cally equivalent to nonparametric regression [17], it is not clear whether a similar relationship can
be rigorously formulated in the non-asymptotic framework. Nevertheless, one of our motivating
testing statistics (in (5)) can be viewed as a regression-adapted χ2 statistics proposed in their work.
[5] studies minimax-optimal hypothesis testing in nonparametric regression. They consider fixed-
design regression where the infinite dimensional function space can be reduced to an n-dimensional
vector space (where n is the sample size), and their separation condition is relative to the empirical
L2 norm. As noticed by [6], random-design problems are generally more challenging and delicate
than fixed-design problems. Specifically, the distribution theory of multivariate normals suffices for
analyzing the fixed design regression, while connecting the the empirical L2 metric to the L2 metric
is usually based on Bernstein type inequalities plus uniform bound arguments that require proving
or assuming certain bound on the stronger L∞ norm. In this work, our framework is under the
random-design perspective, and our technique is based on developing novel concentration inequal-
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ities and local expansions for the smoothing spline estimator in the infinite function space, which is
free of any L∞ bound condition. In addition, [5] makes some asymptotic type assumptions on the
fixed-design points for connecting empirical Fourier coefficients with the population ones, while the
results in our work are non-asymptotic and apply to any finite sample size.

The rest of this paper is organized as follows. In Section 2, background and preliminaries are
introduced. Sections 3 include the main results of this paper. In Section 3, test statistic based on
smoothing spline estimation are constructed and their non-asymptotic properties are investigated.
The methods are valid for both simple and composite hypotheses. Due to the space constraint, an
extension to general kernel ridge regression beyond smoothing spline, a simulation study and all
proofs are deferred to appendices.

2. Preliminary

In this section, we state the nonparametric models and hypothesis of interest, and also review some
basic theory of reproducing kernel Hilbert space (RKHS).

Let Dn = {(Yi, Xi) : i = 1, 2, . . . , n} be iid random samples following the nonparametric
regression model

Y = f(X) + ε, (1)

where ε is a random error with mean zero and unit variance. For simplicity, we consider the one-
dimensional case where X follows the uniform distribution over the unit interval I := [0, 1], and
assume that the design X and ε are independent. Our development can also be extended to cases
where the distribution of X is known but not uniform. We assume that f belongs to an m-th order
Sobolev space

Sm(I) =

{
f ∈ L2(I)| f (j) are abs. cont. for j = 0, 1, . . . ,m− 1, and

∫ 1

0
|f (m)(x)|2dx <∞

}
.

Let Pf denote the probability measure under f , and Ef be the corresponding expectation.
Consider the following hypothesis testing problem:

H0 : f ∈ F0, vs H1 : f 6∈ F0, (2)

where F0 is a proper subset of Sm(I). For example, F0 = {f0} for some known f0 ∈ Sm(I) in
simple hypothesis, whileF0 = {all linear functions in Sm(I)} in composite hypothesis. Our testing
statistic is constructed based on the following smoothing spline estimator

f̂n,λ = argmaxf∈Sm(I) `n,λ(f),

where `n,λ(f) is the penalized loss function defined as

`n,λ(f) = − 1

2n

n∑
i=1

(Yi − f(Xi))
2 − λ

2
J(f, f),

where λ > 0 is the penalty parameter and J(f, g) =
∫ 1

0 f
(m)(x)g(m)(x)dx for any f, g ∈ Sm(I).

Let V (f, g) = E{f(X)g(X)} and 〈f, g〉 = V (f, g) + λJ(f, g). It follows that 〈·, ·〉 defines
a valid inner product in Sm(I).. Endowed with 〈·, ·〉, Sm(I) is an RKHS; see [23]. We use the
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notation ‖ · ‖ to denote the corresponding RKHS norm. Let K(x1, x2) denote the reproducing
kernel function, a function from I× I to R satisfying the reproducing property 〈Kx, f〉 = f(x) for
any x ∈ I and f ∈ Sm(I), where Kx(·) : = K(x, ·) is an element in Sm(I) for any x ∈ I. Let
Pλ denote a self-adjoint operator from Sm(I) to itself that satisfies 〈f,Pλg〉 = λJ(f, g), for all
f, g ∈ Sm(I); see [23] for the existence of such an operator.

We make the following assumption on the existence of eigen-pairs (ρν , ϕν) that simultaneously
diagonalize V and J . This assumption is commonly made in smoothing spline literature [27; 23],
and is implied by Mercer’s theorem in our regression setting; however, an extension to the non-
Gaussian setting as discussed in Section 3.4 may require a case-by-case justification.

Assumption A1 There exists ϕν ∈ Sm(I), for ν ≥ 1, satisfying cϕ := supν≥1 ‖ϕν‖sup < ∞,
where ‖ · ‖sup denotes the supremum norm, and a nondecreasing sequence of eigenvalues ρν ∼
(cρν)2m 1, where cρ > 0 is a constant, such that

V (ϕµ, ϕν) = δµν , J(ϕµ, ϕν) = ρµδµν , µ, ν = 1, 2, . . . , (3)

where δµν is the Kronecker’s delta. Furthermore, any g ∈ Sm(I) admits a Fourier expansion
g =

∑
ν V (g, ϕν)ϕν with convergence held in the ‖ · ‖-norm.

It follows from [23] that for any x ∈ I, Kx =
∑

ν≥1
ϕν(x)
1+λρν

ϕν . To simplify the presentation,
we use notation h to denote the frequently appearing quantity λ1/(2m) in the rest of the paper.
As we shall see, in smoothing spline methods quantity h plays a similar role as the bandwidth
parameter in kernel type methods that controls the bias variance trade-off. Under Assumption A1,
it is straightforward to verify the following property of Kx

‖Kx‖2 = K(x, x) =
∑
ν≥1

ϕν(x)2

1 + λρν
. h−1. (4)

3. Main Results

In this section, we construct two nonparametric test methods based on f̂n,λ. The first type is straight-
forward but sub-optimal in the minimax sense, while the second attains the minimax rate optimality
by removing the bias from the former. Our major contribution is to develop non-asymptotic theo-
retical analysis for both testing methods. Specifically, Type I and II errors can be controlled for any
finite sample size. This leads to a non-asymptotic formula in selecting the optimal λ in practice.
These non-asymptotic results are developed based on large deviation bounds between f̂n,λ and f
that are shown uniformly valid over an “unit ball” in Sm(I).

3.1. A Preliminary First-Order Testing Procedure

In this subsection, we assume Gaussian errors and uniform design, i.e., ε ∼ N(0, 1) and X ∼
Unif(I), and postpone extensions to general error distributions to Section 3.4. To illustrate the idea,
we first focus on the simple hypothesis H0 : f = f0, where f0 is a known function in Sm(I). Under

1. For two positive sequences aν and bν , denote aν . bν if aν = O(bν); aν & bν if bν = O(aν); aν � bν if aν . bν
and bν . aν ; aν ∼ bν if aν/bν tends to one when ν →∞.
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the null, f̂n,λ converges to f0 under suitable norms as sample size n tends to infinity. Naturally, the
deviation between f̂n,λ and f0 can be used as a test statistic:

Tn,λ = ‖f̂n,λ − f0‖. (5)

Despite the simple form of Tn,λ, it will be shown to be asymptotically sub-optimal. We call Tn,λ as
first-order testing in the rest of the paper.

The null hypothesis is rejected if Tn,λ exceeds some threshold dn(M) (to be defined later),
whereM is a constant controlling the significance level of the test. To calibrate a finite sample valid
dn(M), we first need to establish a large deviation bound for Tn,λ uniformly over an “unit ball” in
Sm(I), defined as Hm(1) = {f ∈ Sm(I)|J(f, f) ≤ 1}.

Let cK = supx∈I
√
hK(x, x), which is finite by following (4). Recall that h = λ1/(2m).

Theorem 3.1 Let Assumption A1 be satisfied. For any positive constants (h, r,M) satisfying
c2
K

√
Mrh−1/2A(h) ≤ 1/2, it holds that

sup
f∈Hm(1)

Pf

(
‖f̂n,λ − f‖ ≥ δn(M, r)

)
≤ 2 exp(−Mnhr2), (6)

where δn(M, r) = 2hm + cK(
√

2Mr + (nh)−1/2) and A(h) is an explicit function of h defined in
Remark 3.1 below.

Theorem 3.1 is proven in Section E.0.2.

Remark 3.1 The function A(h) in Theorem 3.1 is defined as A(h) = A(h, 2). As will be seen
below, A(h, ε) is an explicit formula depending on Dudley’s entropy integral, which controls the
upper bound of a concentration inequality (Lemma E.1) that plays a key role in the proof of Theorem
3.1. Specifically,

A(h, ε) =
32
√

6

τ
c−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
cKc

−m
0 h(2m−1)/2ε

)
+

20
√

6ε

τ

√
log
(
1 + exp

(
2c0(cKh(2m−1)/2ε)−1/m

))
, for ε > 0,

where τ =
√

log 1.5 ≈ 0.6368 and the function Ψ(r), resulted from Dudley’s entropy integral (see
[28]), is defined as Ψ(r) =

∫ r
0

√
log(1 + exp(x−1/m))dx. In the above, c0 is chosen as the con-

stant controlling the packing number of G := {g ∈ Sm(I) : ‖g‖sup ≤ 1, J(g, g) ≤ c−2
K h−2m+1},

i.e., c0 satisfies, for any ε > 0,

logN(ε,G, ‖ · ‖sup) ≤ c0h
− 2m−1

2m ε−1/m, (7)

where N(ε,G, ‖ · ‖sup) is the ε-packing number. Existence of such c0 follows from [28; 23].

According to (6), we choose r = (nh)−1/2. In this case, the threshold becomes δn(M, (nh)−1/2),
denoted as dn(M). The following theorem, as an immediate consequence of Theorem 3.1, charac-
terizes the upper bounds of Type I and II errors for any finite sample size.
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Theorem 3.2 Let the Assumptions in Theorem 3.1 be satisfied, and let M > 0 and L > 1 be any
constants. Given that dn(M) := δn(M, (nh)−1/2) = 2hm + cK(

√
2M + 1)(nh)−1/2, then it holds

that

Type I error : Pf0(Tn,λ ≥ dn(M)) ≤ 2 exp(−M),

Type II error : sup
f−f0∈Hm(1)
‖f−f0‖≥ρn(M,L)

Pf (Tn,λ ≤ dn(M)) ≤ 2 exp(−L),

where ρn(M,L) = 4hm + cK(
√

2M +
√

2L+ 2)(nh)−1/2.

Theorem 3.2 implies that the Type I error falls below α and Type II error falls below β if we set
M = M0 := log(2/α) and L = L0 := log(2/β), respectively. Consequently, the separation rate
between f and f0 (in terms of ‖ · ‖), under which the testing power is at least 1− β, is ρn(M0, L0).

We summarize the above discussions in the Corollary below.

Corollary 3.3 Under the assumptions of Theorem 3.1, for any α, β ∈ (0, 1), we have

Type I error : Pf0(Tn,λ ≥ dn(log(2/α))) ≤ α,
Type II error : sup

f−f0∈Hm(1)
‖f−f0‖≥ρn(log(2/α),log(2/β))

Pf (Tn,λ ≤ dn(log(2/α))) ≤ β,

where ρn(log(2/α), log(2/β)) = 4hm + cK(
√

2 log(2/α) +
√

2 log(2/β) + 2)(nh)−1/2, as a
function of h, achieves its minimum at

h∗ =

(
c2
K(
√

log(2/α) +
√

log(2/β) +
√

2)2

8m2n

)1/(2m+1)

. (8)

The value of cK = supx∈I
√
hK(x, x) in (8) can be approximately determined by (4) which in

turn requires the estimate of ‖ϕν‖sup. The latter estimation can be done numerically by the spectral
decomposition of the reproducing kernel matrix w.r.t. J . For instance, the R packages gss [11] and
assist [31] both allow us to extract the kernel matrix corresponding to J , and the eigenvectors of the
matrix provide a good estimate of the eigenfunctions.

The minimal separation rate (computed at h∗) is given as

ρn(M0, L0) = D(cK , α, β)n−
m

2m+1 ,

where D(cK , α, β) is a positive constant depending on cK and (α, β) only. Nevertheless, the above
rate fails to match with the minimax lower bound, namely, n−4m/(4m+1) (see [14; 18; 4]). Hence,
the first order testing procedure is sub-optimal from an asymptotic perspective. A finite sample valid
and asymptotically optimal testing method is further proposed in Section 3.2.

3.2. An Optimal Second-Order Testing Procedure

In this subsection, we improve the first order testing to attain minimax rate optimality. A closer
examination of Tn,λ reveals that its sub-optimality is due to a large bias arising from the deviation
f̂n,λ − f0, which inflates the separation gap ρn(M,L). Fortunately, this bias can be easily removed
as shown in the following second order deviation result. This observation motivates a new testing
procedure, i.e., (10).
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Theorem 3.4 Let Assumption A1 be satisfied. For any positive constants (h, r,M) satisfying
c2
K

√
Mrh−1/2A(h) ≤ 1/2, it holds that

sup
f∈Hm(1)

Pf

(∥∥∥∥f̂n,λ − f −
(

1

n

n∑
i=1

εiKXi − Pλf

)∥∥∥∥ ≥ γn(M, r)

)
≤ 2 exp(−Mnhr2), (9)

where γn(M, r) = c2
K

√
Mrh−1/2A(h)δn(M, r) and δn(M, r) is defined in Theorem 3.1.

Theorem 3.4 is proven in Section E.0.2 by employing a concentration inequality (see Lemma E.1)
for an operator-valued empirical process and a contraction mapping argument.

We remark that the threshold γn(M, r) in Theorem 3.4 converges to zero faster than the thresh-
old δn(M, r) in Theorem 3.1 if we choose (r, h) to satisfy r2 = (nh)−1, h = o(1) and n−1h−(6m−1)/(2m) =
o(1) (this leads to rh−1/2A(h) = o(1) by noting that A(h) . h−(2m−1)/(4m)). In this case,
‖f̂n,λ − f‖ and ‖n−1

∑n
i=1 εiKXi − Pλf‖ are of the same asymptotic order. For this reason, we

call (6) a first-order deviation bound, and (9) a second-order deviation bound.
In view of (9), a second-order test statistic is developed as

T̃n,λ = ‖f̂n,λ − (I − Pλ)f0‖2 −
1

n

∑
ν≥1

1

1 + λρν
, (10)

where the second term n−1
∑

ν≥1(1 + λρν)−1 is the expectation of ‖n−1
∑n

i=1 εiKXi‖2. The term
Pλf0 in T̃n,λ is a bias correction term due to penalization. Subtracting a f -independent constant
n−1

∑
ν≥1(1 + λρν)−1 in T̃n,λ is merely for technical simplicity in the subsequent derivations.

The corresponding testing rule is φn,λ = I(|T̃n,λ| ≥ dn(M,h)), where dn(M,h) controls Type
I error through the choice of (M,h). Based on Theorem 3.4, we will prove in Theorem 3.5 that

Type I error : Ef0 {φn,λ} ≤ eI(M),

Type II error : sup
f−f0∈Hm(1)

‖f−f0‖≥ρn(M,L,h)

Ef {1− φn,λ} ≤ eII(L), (11)

where ρn(M,L, h), eI(M) and eII(L) are given in Theorem 3.5. Note that dn(M,h) and ρn(M,L, h)
are different from dn(M) and ρn(M,L) defined in the previous section.

Under H0 : f = f0, we can decompose the test statistic T̃n,λ as

T̃n,λ =

∥∥∥∥ 1

n

n∑
i=1

εiKXi

∥∥∥∥2

− 1

n

∑
ν≥1

1

1 + λρν
+ higher-order remainder

=
[ 1

n2

n∑
i,j=1

εiεjK(Xi, Xj)− E
{ 1

n2

n∑
i,j=1

εiεjK(Xi, Xj)
}]

+ higher-order remainder.

(12)

By controlling the first two terms in (12), we can obtain large deviation bounds for T̃n,λ under both
null and alternative hypotheses (see Lemma F.1 and Lemma F.2 in Section F). This leads to the
following theorem characterizing the finite sample property of the proposed test T̃n,λ.
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Theorem 3.5 Suppose Assumption A1 holds. For any constants (h,M,L) satisfying c2
K

√
M

n−1/2h−1A(h) ≤ 1/2 and c2
K

√
Ln−1/2h−1A(h) ≤ 1/2, we choose the cutoff value dn(M,h)

as

dn(M,h) =
4ρK

n
√
h

√
M +R1,n(M), (13)

where ρ2
K = hE[K2(X1, X2)] with X1, X2

iid∼ X , and separation function

ρn(M,L, h) =
√
ζKλ+

√
2L

n
+

√
dn(M,h) +

2L

n
+R2,n(L), (14)

where ζK = supg∈Hm(1) λ
−1‖Pλg‖2. Then (11) holds with

eI(M) = 15 exp(−M) and eII(L) = 30 exp(−L). (15)

Here explicit forms of the remainder terms R1,n(M) and R2,n(L) are provided in Section D in the
supplement.

The following corollary is obtained as an immediate consequence of Theorem 3.5.

Corollary 3.6 Under the assumptions of Theorem 3.4, for any α, β ∈ (0, 1), we have

Type I error : Pf0(T̃n,λ ≥ dn(log(15/α), h)) ≤ α,

Type II error : sup
f−f0∈Hm(1)

‖f−f0‖≥ρn(log(15/α),log(30/β),h)

Pf (T̃n,λ ≤ dn(log(15/α), h)) ≤ β.

An important implication of Theorem 3.5 is that T̃n,λ is asymptotically minimax optimal. In
fact, using the expression (13) of dn(M,h), we see that under the asymptotic regime n → ∞, the
leading term in ρn(M,L, h) scales as

√
ζKλ+

√
4ρK

n
√
h

√
M.

By minimizing this leading term w.r.t. h, we obtain the minimal separation rate

ρn(M,L, h∗∗) � n−2m/(4m+1)

when h is chosen as

h = h∗∗ ≡

((
4ρK
ζK

)2

M

)1/(4m+1)

n−2/(4m+1) � n−2/(4m+1). (16)

Since the alternative f is in the unit ball of Hm(1), separation condition ‖f − f0‖ ≥ ρn(M,L, h∗∗)
is equivalent to ‖f−f0‖2 ≥ C n−2m/(4m+1) for some constantC > 0, where recall that ‖f−f0‖2 is
the function L2 norm. Consequently, the above minimal separation rate matches with the minimax
rate of testing obtained in [14; 18; 4].
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The practical implementation of T̃n,λ requires us to estimate (I − Pλ)f0. Instead of direct
estimation, we approximate it by the following “noiseless” version of smoothing spline estimator

f̂NLn,λ = argminf∈Sm(I)
1

n

n∑
i=1

(f0(Xi)− f(Xi))
2 + λJ(f, f).

By applying Theorem 3.4 with εi ∼ N(0, 0), it is easy to see that ‖f̂NLn,λ − (I−Pλ)f0‖ has the same

derivation bound as
∥∥f̂n,λ − f0 −

(
1
n

∑n
i=1 εiKXi − Pλf0

) ∥∥, and therefore

Pf0

(∥∥∥∥f̂n,λ − f̂NLn,λ −
1

n

n∑
i=1

εiKXi

∥∥∥∥ ≥ 2γn(M, r)

)
≤ 4 exp(−Mnhr2).

As a consequence, we can replace (I − Pλ)f0 in T̃n,λ by f̂NLn,λ . In simulations, this approximated

version of T̃n,λ (by using f̂NLn,λ ) is found to work very well, and have a larger power than Tn,λ
especially when f0 under the null is far from zero (so that Pλf0 incurs a relatively large bias).

Remark 3.2 (Relation with likelihood ratio test) The non-asymptotic results obtained for Tn,λ and
T̃n,λ can be extended to another type of nonparametric testing: likelihood ratio test. We first define
the penalized likelihood ratio test (PLRT) as follows

2PLRT (g) : = 2(`n,λ(g)− `n,λ(f̂nλ))

=
1

n

n∑
i=1

(f̂n,λ(Xi)− g(Xi))
2 + 〈f̂n,λ − g,Pλ(f̂n,λ − g)〉. (17)

In comparison, our test statistic (up to constants) can be expressed as

‖f̂n,λ − g‖2 = V (f̂n,λ − g, f̂n,λ − g) + 〈f̂n,λ − g,Pλ(f̂n,λ − g)〉, (18)

where g = f0 for Tn,λ and g = (I − Pλ)f0 for T̃n,λ. Note that the first term in (18) is the
expectation of that in (17) according to the definition of V (f, f). In Appendix K, we prove that for
any g ∈ Sm(I), the deviation between 2PLRT (g) and ‖f̂n,λ− g‖2 is of higher order comparing to
the dominating term of dn(M,h), i.e., 4ρK

√
M/(n

√
h). Therefore, after some modifications, the

results for Tn,λ and T̃n,λ also hold for 2PLRT (f0) and 2PLRT ((I − Pλ)f0), respectively.

3.3. Extension to Composite Hypothesis

Our results can be generalized to testing composite hypothesis. For example, one composite hy-
pothesis of particular interest is whether f is a polynomial function, say with degree less than m.
In this case, a new test statistic is proposed with similar non-asymptotic guarantee and asymptotic
minimax rate optimality. For technical simplicity, we assume m ≥ 2 throughout this section.

For simplicity, we consider testing whether f is linear in this section:

H0 : f ∈ F0 vs H1 : f 6∈ F0,

where F0 = {f : f is linear on I}. We propose a test statistic as

T̃ comn,λ = ‖f̂n,λ − f̂H0
n ‖2 −

1

n

∑
ν≥1

1

1 + λρν
,

9
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where f̂H0
n (x) = (1, x)(DT

XDX)−1DT
XY is the maximum likelihood estimate under H0. Here,

DX = (1,X) denotes the design matrix with intercept, and X = (X1, . . . , Xn)T . Note that
Pλf̂H0

n = 0.
We propose to reject H0 if and only if |T̃ comn,λ | ≥ dcomn (M,h) for some threshold dcomn (M,h).

In general, we will establish that for any finite sample size (as in (11))

sup
f is linear

Pf

(
|T̃ comn,λ | ≥ dcomn (M,h)

)
≤ ecomI (M),

sup
f∈Hm(1)

‖f⊥‖≥ρcomn (M,L,h)

Pf

(
|T̃ comn,λ | < dcomn (M,h)

)
≤ ecomII (L),

(19)

where dcomn (M,h), ecomI (M), ecomII (L) and ρcomn (M,L, h) are given in Theorem 3.7. Here, f⊥ de-
notes the projection of f onto the orthogonal complement of the space of linear functions in Sm(I),
and satisfies V (f⊥, g) = EX{f⊥(X)g(X)} = 0 for any linear function g (hence, EX{f⊥(X)} =
EX{Xf⊥(X)} = 0).

We still start from large deviation bounds of the test statistic under both null and alternative
hypotheses. To do so, T̃ comn,λ needs to be decomposed as (21) based on the following arguments. Let

f0 be the true linear function in F0 from which dataset Dn is generated, and let fε = f̂H0
n − f0. It

follows by Theorem 3.4 that, under H0, T̃ comn,λ can be decomposed as

T̃ comn,λ =

∥∥∥∥ 1

n

n∑
i=1

εiKXi − Pλf0 − fε
∥∥∥∥2

− 1

n

∑
ν≥1

1

1 + λρν
+ higher-order remainder

=
[ 1

n2

n∑
i,j=1

εiεjK(Xi, Xj)− E
{ 1

n2

n∑
i,j=1

εiεjK(Xi, Xj)
}]

+ ‖Pλf0 + fε‖2 +
2

n

n∑
i=1

εiPλf0(Xi) +
2

n
εTDX(DT

XDX)−1DT
Xε + higher-order remainder,

(20)
where ε = (ε1, . . . , εn)T . The second equality follows from the fact that

fε(x) = (1, x)(DT
XDX)−1DT

Xε : = α̂+ β̂ x.

Since both f0 and fε are linear functions, Pλf0 = Pλfε = 0, and hence, ‖fε‖2 = ‖fε‖22 =∫ 1
0

(
fε(x)

)2
dx. As a consequence, the preceding display (20) can be further simplified as

T̃ comn,λ =
[ 1

n2

n∑
i,j=1

εiεjK(Xi, Xj)− E
{ 1

n2

n∑
i,j=1

εiεjK(Xi, Xj)
}]

+‖fε‖22 +
2

n
εTDX(DT

XDX)−1DT
Xε + higher-order remainder. (21)

Based on (21), we can control the type I and type II error of the test (see Lemma G.1 and Lemma G.2),
yielding finite sample analysis for the composite hypothesis testing procedure.

10
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Theorem 3.7 Suppose that Assumption A1 holds. For any constants (h,M,L) satisfying c2
K

√
M

n−1/2h−1A(h) ≤ 1/2 and c2
K

√
Ln−1/2h−1A(h) ≤ 1/2, we choose

dcomn (M,h) =
4ρK

n
√
h

√
M +Rc1,n(M), and

ρcomn (M,L, h) =
√
ζKλ+

√
2L

n
+

√
dn(M,h) +

2L

n
+Rc2,n(L). (22)

Then (19) holds with ecomI (M) = 24 exp(−M) and ecomII (L) = 60 exp(−L). Here the forms of
Rc1,n(M) and Rc2,n(L) are provided in Section D in the supplement.

Similarly, we have the following corollary for the composite test.

Corollary 3.8 Under the assumptions of Theorem 3.7, for any α, β ∈ (0, 1), we have

Type I error : sup
f is linear

Pf (T̃ comn,λ ≥ dcomn (log(24/α), h)) ≤ α,

Type II error : sup
f∈Hm(1)

‖f⊥‖≥ρcomn (log(24/α),log(60/β),h)

Pf (T̃ comn,λ ≤ dcomn (log(24/α), h)) ≤ β.

Similar to the simple hypothesis testing, Theorem 3.7 provides a non-asymptotic approach
to select the smoothing parameter h by numerically minimizing the separation function h 7→
ρcomn (log(24/α), log(60/β), h). Note that the leading terms of dcomn (M,h) and ρcomn (M,L, h) are
exactly the same as dn(M,h) and ρn(M,L, h) in Section 3.2 for simple hypothesis. Hence, the
selected ĥ in both cases are asymptotically rate-equivalent. Under such an ĥ, the composite testing
procedure in consideration is minimax rate-optimal. We include a numerical study in the appendix
that compares existing methods with our non-asymptotic approach of selecting the smoothing pa-
rameter h.

3.4. Extension to General non-Gaussian Regression

Suppose that Dn = {(Yi, Xi) : i = 1, 2, . . . , n} are iid samples generated from model (1), with
errors εi whose log-likelihood is `(·). Suppose that the function `(·) is three-times continuously
differentiable and is strictly concave. Let η = `(1)(ε) and ηi = `(1)(εi) for i = 1, . . . , n, and
σ2 = −E{`(2)(ε)} > 0.

Assumption A2 There are positive constants C0, C1 such that

E{exp(|`(1)(ε)|/C0)} ≤ C1, and E

{
exp

(
sup
|a|≤1

|`(j)(ε+ a)|/C0

)}
≤ C1, j = 2, 3. (23)

Furthermore, E{η} = 0 and E{η2} = σ2.

Condition (23) says that `(j)(ε) for j = 1, 2, 3 satisfies exponential tail condition. Note that for
any a ∈ R,

∫
exp(`(ε + a))dε = 1. Taking first- and second-order derivatives with respect to a, it

can be shown that∫
exp(`(ε+ a))`(1)(ε+ a)dε =

∫
exp(`(ε+ a))[`(1)(ε+ a)2 + `(2)(ε+ a)]dε = 0. (24)

11
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Setting a = 0 in (24), one gets E{η} = 0 and E{η2} = σ2. Therefore, Assumption A2 is a
reasonable one.

Similar to Theorems 3.1 and 3.4 for the Gaussian errors, we develop the following derivation
bounds for the first- and second-order approximations of the penalized likelihood estimate f̂n,λ.

Theorem 3.9 Suppose that Assumptions A1 and A2 are satisfied. For any positive M, rn, h satis-
fying Condition H in Section C, the following two results hold:

(i)
sup

f∈Hm(1)
Pf

(
‖f̂n,λ − f‖ ≥ δ′n(M)

)
≤ (2C1 + 4) exp(−Mnhr2

n),

where δ′n(M) = 2hm + 24C0cK(4C1 +M)rn.

(ii)

sup
f∈Hm(1)

Pf

(∥∥∥∥f̂n,λ − f − 1

n

n∑
i=1

ηiKXi + Pλf
∥∥∥∥ > cn(M)

)
≤ (2C1 + 6) exp(−Mnhr2

n),

where

cn(M) = c2
KC0

√
M(Mnhr2

n + log n)h−1/2δ′n(M)rnA(h) +
1

2
cKC0C1σ

−2h−1/2δ′n(M)2

+2c4
KC

2
0C1h

−2δ′n(M)2(Mnhr2
n + log n) exp(−(Mnhr2

n + log n)/2).

Here A(h) is defined in Section 3.1.

Based on Theorem 3.9, it is straightforward to extend the testing type I/II error results in Sec-
tion 3 to the general noise setting. However, we want to point out that the proof of Theorem 3.9
is more involved. The main reason is that now we need to bound higher-order derivatives of the
log-likelihood function (which is zero given the quadratic stricture of the log-likelihood function
under Gaussian error). Details are deferred to Section J in the supplement for conserving space.
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Supplementary document to
Non-asymptotic Analysis for Nonparametric Testing

In this supplement file, additional technical support is provided.

• Section A discuss the extension to the kernel ridge regression.

• Section B includes a simulation study.

• Section C provides Condition H that is used in Theorem 3.9.

• Section D summarizes the remainder terms in Section 3.

• Section E provdides the proof of Theorem 3.1 and Theorem 3.4.

• Section F provides the proof of Theorem 3.5 in the main paper.

• Section G provides the proof of Theorem 3.7 in the main paper.

• Section H provides technical proofs of the lemmas in Section F.

• Section I provides technical proofs of the lemmas in Section G.

• Section J provides the proof of Theorem 3.9.

• Section K provides the validity of the quadratic approximation of the PLRT test.

• Section L provides a set of auxiliary results such as concentration inequalities.

Appendix A. Extension to Kernel Ridge Regression

In this section, we extend from smoothing splines to the general framework of kernel ridge regres-
sion (KRR) [12; 24], where f0 is assumed to belong to a reproducing kernel Hilbert space (RKHS),
denoted asH. The corresponding KRR estimator is defined as

f̂KRR = arg min
f∈H

{ 1

n

n∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2H

}
,

where ‖ · ‖H is the norm associated with H. When H is chosen as Sm(I), f̂KRR reduces to the
smoothing spline estimate f̂n,λ.

We first present a brief review on RKHS theory. Denote L2(I) as the space of square-integrable
functions on I. A subspace of L2(I) is defined as RKHS if for each x ∈ I, the evaluation function
f 7→ f(x) is a bounded linear functional. Any RKHS is generated by a positive semidefinite kernel
function K : I× I→ R. More precisely, consider the space of all functions of the form

g(·) =
K∑
k=1

ωkK(·, vk), for some K ∈ N, vk ∈ I, ωk ∈ R, k = 1, . . . ,K,
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whose norm is defined by ‖g‖2H :=
∑K

k,l=1 ωkωlK(vk, vl). By taking the closure of this space, it
can be shown that we generate an RKHS H equipped with a norm ‖ · ‖H, and this H is uniquely
associated with the kernel K; see [1].

Our finite sample theory can be naturally extended to KRR, by replacing f̂n,λ with f̂KRR in the
test statistic T̃n,λ. After this replacement, it can be shown that the leading term in the separation
function ρKRRn (M,L, λ) for testing the simple hypothesis H0 : f = f0 becomes

ρKRRn (M,L, λ) ≈
√
ζKλ︸ ︷︷ ︸

L1(λ)

+

√
4
(
E[K2(X1, X2)]

)1/2
n

√
M︸ ︷︷ ︸

L2(λ)

, (25)

where X1, X2
iid∼ X . By direct examinations, it can be shown that

E(K2(X1, X2)) =

∞∑
ν=1

1

(1 + λρν)2
,

where ρν are the eigenvalues defined in Section 2. Note that in (25), L1(λ) is increasing in λ while
L2(λ) is decreasing in λ. To minimize the above leading term, we can select λ = λ∗,KRR by
equating L1(λ) and L2(λ), i.e., solving the equation

λ−2
∞∑
ν=1

1

(1 + λρν)2
=
ζ2
K n

2

16M
. (26)

Below is a list of solutions to (26) in three concrete situations:

• For polynomial kernel with ρν � ν2m, the solution of equation (26) is

λ∗ �
(√M
ζK n

) 4m
4m+1

,

which recovers our previous result (16) by noting the relation that h = λ1/(2m).

• For finite rank kernel with ρ−1
ν � I(ν ≤ k) for a rank k > 0, the solution of equation (26) is

λ∗ �
√
kM

ζK n
.

• For Gaussian kernel with ρν � exp(ν2), the solution of equation (26) becomes

λ∗ �
√
M
√

log n

ζK n
.

Appendix B. Simulation Study

Simulation results are provided for examining our theory. Consider the following two types of
hypotheses:

(Simple hypothesis) H0 : f = f0 versus H1 : f 6= f0;

(Composite hypothesis) H0 : f is linear versus H1 : f is not linear,

where f0 = 5(x2 − x+ 1
6). Set Type I and II errors as α = β = 0.05.
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• For simple hypothesis testing, data were generated as follows

Yi = fc(Xi) + εi, εi
iid∼ N(0, 1), Xi

iid∼ Unif(0, 1), and fc(x) =
1

2
c x2 + f0(x).

(27)

• For composite hypothesis testing, data were generated as follows

Yi = 5Xi+fc(Xi)+εi, εi
iid∼ N(0, 1), Xi

iid∼ Unif(0, 1), and fc(x) = c (x2−x+
1

6
).

(28)

Note that the function fc in model (28) lies in the orthogonal complement of the subspace of linear
functions in the sense that E{fc(X)} = E{Xfc(X)} = 0 for any scaling constant c.

We first consider simple hypothesis testing. In some cases, the cutoff value dn(log(15/α), h)
(see Corollary 3.6) provided in (13) can be quite conservative due to the use of some loose con-
centration inequalities. In practice, we suggest choosing an “exact” cutoff value d′n(log(15/α), h)
by Monte Carlo simulation. Specifically, by conditioning on X , we simulate a number of synthetic
datasets {Y(k)}Nk=1 from the null model Y(k)

i = f0(Xi) +N(0, 1), each of which yields a new test
statistic T̃ (k)

n,λ. Set d′n(log(15/α), h) as the (1− α)-th sample quantile of {T̃ (k)
n,λ}

N
k=1.

In simulations, we chose h by directly minimizing ρn(log(15/α), log(30/β), h). Note that we
did not replace dn by d′n in the above minimization to save computational cost. Such a choice of
h is supported by our simulations, and denoted as hFS . Then, d′n(log(15/α), hFS) is used as the
cutoff value for the testing procedure. Note that all constants in ρn(M,L, h) such as ρK , ζK and
cK only depend on h and the eigenvalues of the reproducing kernel operator, which can be well
approximated by the empirical eigenvalues of the reproducing kernel matrix.

For simple hypothesis, we compare four testing procedures:

(S1) The proposed T̃n,λ with the smoothing parameter hFS ;

(S2) PLRT statistic PLRT (f0) as described in Remark 3.2 with the same hFS ;

(S3) The proposed T̃n,λ with h selected by GCV2, denoted as hGCV ;

(S4) PLRT statistic PLRT (f0) with the same hGCV .

The cut-off value for PLRT in S2 and S4 is obtained from Monte Carlo simulation and the null limit
distribution given in [23], respectively. Simulation results are reported in Table 1. The rejection
proportion (RP) under c = 0 reflects the Type I error, while under c 6= 0, RP reflects the power.

Overall, all four procedures have comparable type I errors, i.e., c = 0, for any sample size. As
for power performances, we note that (i) the test using hFS is always more powerful than that using
hGCV ; (ii) T̂n,λ is always more powerful than PLRT given the same choice of h. In other words,
S1 is always the most powerful one. The observation (i) justifies the finite sample advantage of the
non-asymptotic formula in selecting h, while (ii) supports the need of removing estimation bias in
nonparametric testing; see Remark 3.2. The third observation is that as c increases, hGCV continues
decreasing and becomes closer to hFS , but never reaches hFS . This is consistent with their different
asymptotic orders (recall hFS � n−1/(2m+1/2) and hGCV � n−1/(2m+1)).

For composite hypothesis, we compare two testing procedures:

2. The hGCV is obtained by using the ssr function in the R package assist
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n c hFS RPFS RPPLRT
hGCV RPGCV RP ′GCV

50

0

0.126

0.046 0.052 0.142(0.008) 0.052 0.054
1 0.100 0.092 0.138(0.009) 0.088 0.084
2 0.396 0.340 0.134(0.009) 0.323 0.310
3 0.822 0.764 0.128(0.009) 0.752 0.748

100

0

0.108

0.048 0.048 0.122(0.007) 0.053 0.052
1 0.264 0.170 0.117(0.008) 0.167 0.144
2 0.650 0.558 0.112(0.007) 0.493 0.474
3 0.976 0.934 0.110(0.003) 0.924 0.918

200

0

0.092

0.050 0.048 0.104(0.006) 0.051 0.050
1 0.368 0.334 0.102(0.007) 0.325 0.290
2 0.896 0.862 0.098(0.006) 0.832 0.816
3 1.00 1.00 0.094(0.003) 1.00 1.00

300

0

0.084

0.046 0.048 0.096(0.006) 0.048 0.048
1 0.426 0.404 0.094(0.006) 0.397 0.394
2 0.968 0.946 0.092(0.005) 0.930 0.914
3 1.00 1.00 0.090(0.005) 1.00 1.00

400

0

0.079

0.052 0.050 0.091(0.004) 0.049 0.054
1 0.668 0.640 0.087(0.005) 0.631 0.618
2 1.00 1.00 0.085(0.004) 1.00 1.00
3 1.00 1.00 0.084(0.003) 1.00 1.00

Table 1: Simulation results for simple hypothesis testing. hGCV is an average value over 500 repli-
cates (that varies as c). RPFS , RPPLRT , RPGCV and RP ′GCV are average rejection pro-
portions by T̃n,λ with hFS , PLRT with hFS , T̃n,λ with hGCV and PLRT with hGCV re-
spectively, over 500 replicates.
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n c hcomFS RP comFS hcomGCV RP comGCV

50

0

0.247

0.060 0.310(0.023) 0.082
1 0.126 0.296(0.020) 0.084
2 0.210 0.282(0.020) 0.122
3 0.348 0.270(0.021) 0.274

100

0

0.214

0.054 0.283(0.020) 0.064
1 0.156 0.275(0.019) 0.104
2 0.234 0.265(0.019) 0.174
3 0.512 0.252(0.016) 0.380

200

0

0.145

0.046 0.224(0.018) 0.044
1 0.220 0.208(0.016) 0.166
2 0.636 0.188(0.015) 0.536
3 0.932 0.176(0.015) 0.822

300

0

0.102

0.054 0.184(0.017) 0.046
1 0.254 0.175(0.013) 0.190
2 0.714 0.165(0.015) 0.656
3 0.976 0.153(0.014) 0.882

400

0

0.096

0.054 0.164(0.013) 0.050
1 0.290 0.156(0.014) 0.256
2 0.862 0.146(0.013) 0.788
3 1.00 0.138(0.012) 0.946

Table 2: Simulation results for composite hypothesis testing. hcomGCV is an average value over 500

replicates (that varies as c). RP comFS andRP comGCV are average rejection proportions by T̃ comn,λ

with hcomFS and PLRT with hcomGCV , respectively, over 500 replicates.
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(C1) The proposed T̃ comn,λ with hcomFS , selected by numerically minimizing the separation function
in Theorem 3.7;

(C2) PLRT statistics PLRT (f0) with h selected by GCV, denoted as hGCV ;.

Simulation results are reported in Table 2. We observe similar phenomena as in the simple testing
case. In particular, C1 is uniformly more powerful than C2 due to the use of hcomFS .

Appendix C. Condition H in Theorem 3.9

Condition H consists of:

(i) hm−1/2 < min{1/(6cK), 1/(4cKe)};

(ii) hm+1/2 ≤ 8cK/5;

(iii) h1/2rn ≤ 1;

(iv) 72c2
K(4e+M)rnh

−1/2 ≤ 1;

(v) 288c4
K(4e+M)(Mnhr2

n + log n)h−3/2rn ≤ 1;

(vi) c2
K(Mnhr2

n+log n)
√
Mh−1r2

nA(h)+(48e2)1/4 exp(−(Mnhr2
n+log n)/4)cKh

−1/2 ≤ 1/6,

where A(h) = A(h, 2) is a known function of h given in Remark 3.1.

Appendix D. Remainder terms

In this subsection, we summarize the remainder terms appeared in Section 3.

Simple hypothesis testing:

R0,n(M) =
( c2

K√
2n3/2h

+
cK√

2n3/2
√
h

+
6
√

2c2
K

n5/2

)√
M

+
( 4
√

2 cK

n7/4
√
h

+
8cK

4
√

2n5/4
√
h

)
M3/4 +

( 4

n
+R2

3,n(M) +
8c2
K

n3/2h
+

4c2
K

2n2h

)
M,

R1,n(M) = R0,n(M) + 2R3,n(M)

(( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M +R0,n(M)

)
,

R2,n(M) =
2

n
(M3/4 +M) +R0,n(M) +R4,n(M),

R3,n(M) = c2
K

√
Mn−1/2h−1A(h) δn(M, (nh)−1/2),

R4,n(M) = R2
3,n(M) + 2R3,n(M)

(
1 +

( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M +R0,n(M)

)
.
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Composite hypothesis testing:

Rc0,n(M) =
( c2

K√
2n3/2h

+
cK√

2n3/2
√
h

+
6
√

2c2
K

n5/2

)√
M

+
( 4
√

2 cK

n7/4
√
h

+
8cK

4
√

2n5/4
√
h

)
M3/4 +

( 4

n
+

8c2
K

n3/2h
+

4c2
K

2n2h

)
M,

Rc1,n(M) = Rc0,n(M) +Rc4,n(M) +R2
3,n(M) + 2R3,n(M)

(( 1

n

∑
ν≥1

1

1 + λρν

)1/2

+
4ρK

n
√
h

√
M +R0,n(M) +Rc3,n

)
,

Rc2,n(M) =
2

n
(M3/4 +M) +R0,n(M) +

(
(R3,n(M) +Rc3,n(M)

)2
+ 2
(
R3,n(M) +Rc3,n(M)

)(
1 +

( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M +R0,n(M)

)
,

Rc3,n(M) =
2√
n

(
1 + 2

√
2M +M

)1/2(
1− 1

n
−
√
M

n
− M

n

)−1/2
+

4
√

2√
n

√
M
(

1− 1

n
−
√
M

n
− M

n

)−1
,

Rc4,n(M) = 4
( 1

n
+

√
2M

n
+
M

n

)(
1 +

(
1− 1

n
−
√
M

n
− M

n

)−1)
.

Appendix E. Proof of large deviation bounds for smoothing spline estimates

E.0.1. PRELIMINARIES FOR PENALIZED LIKELIHOOD ESTIMATION

Before formal proofs, let us introduce some preliminaries. Considering model (1) parametrized by
the unknown regression function f ∈ Hm(1). The Fréchet derivative of the penalized loss function
`n,λ at g ∈ Sm(I) can be identified as

D`n,λ(g)g1 =
1

n

n∑
i=1

`(1)(Yi − g(Xi))g1(Xi)− 〈Pλg, g1〉 ≡ 〈Sn,λ(g), g1〉,

when operated on arbitrary function g1 in Sm(I). Let Sλ(g) = Ef{Sn,λ(g)} be expectation of
Sn,λ(g), for any g ∈ Sm(I). We denote the second- and third-order Fréchet derivatives of Sλ by
DSλ and D2Sλ. By the optimality of the smoothing spline estimator f̂nλ, we have Sn,λ(f̂n,λ) = 0.
Therefore, Sn,λ(f) can be expressed as

Sn,λ(f) =
1

n

n∑
i=1

εiKXi − Pλf. (29)

The Fréchet derivatives of Sn,λ andDSn,λ are denotedDSn,λ(g)g1g2 andD2Sn,λ(g)g1g2g3. These
derivatives can be explicitly written as

D2`n,λ(g)g1g2 ≡ DSn,λ(g)g1g2 = n−1
n∑
i=1

`(2)(Yi − g(Xi))g1(Xi)g2(Xi)− 〈Pλg1, g2〉,
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D3`n,λ(g)g1g2g3 ≡ D2Sn,λ(g)g1g2g3 = n−1
n∑
i=1

`(3)(Yi − g(Xi))g1(Xi)g2(Xi)g3(Xi).

We have the following concentration inequality for sum of iid elements {KXi : i = 1, . . . , n},
which plays a critical role in proving our large deviation bounds for the smoothing spline estimator.
A proof is deferred to Section E.0.3. Recall that G := {g ∈ Sm(I) : ‖g‖sup ≤ 1, J(g, g) ≤
c−2
K h−2m+1}.

Lemma E.1 Suppose that ψn,f (z; g) is a measurable function defined upon z = (y, x) ∈ Y × I
and g ∈ G satisfying ψn,f (z; 0) = 0 and the following Lipschitz continuity condition: for any
f ∈ Hm(1), i = 1, . . . , n and any g1, g2 ∈ G,

|ψn,f (Zi; g1)− ψn,f (Zi; g2)| ≤ c−1
K h1/2‖g1 − g2‖sup. (30)

Then for any constant t ≥ 0 and n ≥ 1,

sup
f∈Hm(1)

Pf

(
sup
g∈G
‖Zn,f (g)‖ > t

)
≤ 2 exp

(
− t2

A(h)2

)
,

where recall A(h) = A(h, 2) and

Zn,f (g) =
1√
n

n∑
i=1

[ψn,f (Zi; g)KXi − Ef{ψn,f (Zi; g)KXi}].

E.0.2. PROOFS OF THEOREM 3.1 AND THEOREM 3.4

Given the development in the previous part, we are now ready to prove the two large deviation
bounds in Theorem 3.1 and Theorem 3.4.

Proof of Theorem 3.1 For any g, g1 ∈ Sm(I), we have the following sequence of identities,

`n,λ(g) = − 1

2n

n∑
i=1

(Yi − g(Xi))
2 − λ

2
J(g, g),

Sn,λ(g) =
1

n

n∑
i=1

(Yi − g(Xi))KXi − Pλg,

DSn,λ(g)g1 = − 1

n

n∑
i=1

g1(Xi)KXi − Pλg1, and D2Sn,λ(g) = 0.

For any f ∈ Sm(I), define fλ = f+Sλ(f). It follows from [23, Proposition 2.3] thatDSλ(f) =
−id, where id denotes the identity operator. Then

Sλ(fλ)− Sλ(f) = DSλ(f)(fλ − f) = −(fλ − f) = −Sλ(f),

hence, Sλ(fλ) = 0. Meanwhile,

‖fλ − f‖ = ‖Sλ(f)‖ = ‖Pλf‖ ≤
√
λJ(f) ≤ hm.
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By using the property Sλ(fλ) = 0, we have the following bound

‖Sn,λ(fλ)‖ = ‖Sn,λ(fλ)− Sλ(fλ)‖

≤ ‖ 1

n

n∑
i=1

[(f − fλ)(Xi)KXi − E{(f − fλ)(X)KX}]‖+ ‖ 1

n

n∑
i=1

εiKXi‖.

Now we bound the two terms on the right hand side, respectively.
To bound the first term, we apply Lemma E.1, withψn,f (Z; g) = g/(cKh

−1/2) = c−1
K h1/2g(X),

to obtain

P

(
sup
ḡ∈G
‖ 1

n

n∑
i=1

[ḡ(Xi)KXi − E{ḡ(X)KX}]‖ > cK(nh)−1/2t

)
≤ exp(−t2/A(h)2), t > 0.

(31)
If we let the event

En : =

{
sup
ḡ∈G
‖ 1

n

n∑
i=1

[ḡ(Xi)KXi − E{ḡ(X)KX}]‖ ≤ cKM1/2rA(h)

}
,

then (31) implies P (Ecn) ≤ exp(−Mnhr2). Since we have f̄ = (f −fλ)/(cKh
−1/2‖f −fλ‖) ∈ G,

we obtain that on En,

‖ 1

n

n∑
i=1

[f̄(Xi)KXi − E{f̄(X)KX}]‖ ≤ cKM1/2rA(h),

leading to the following bound for the first term

‖ 1

n

n∑
i=1

[(f − fλ)(Xi)KXi − E{(f − fλ)(X)KX}]‖ ≤ c2
KM

1/2hm−1/2rA(h).

To bound the second term, let Σ = [K(Xi, Xj)]1≤i,j≤n and ε = (ε1, . . . , εn)T . By the Hanson-
Wright inequality (see, for example, [13]), we have

P (εTΣε > tr(Σ) + 2
√
tr(Σ2)Mnhr2 + 2‖Σ‖FMnhr2) ≤ exp(−Mnhr2),

where ‖ · ‖F is the Frobenius norm. Since

tr(Σ) =

n∑
i=1

K(Xi, Xi) ≤ c2
Knh

−1,

tr(Σ2) =
n∑

i,j=1

K(Xi, Xj)
2 ≤ c4

Kn
2h−2,

‖Σ‖F ≤
√
tr(Σ2) ≤ c2

Knh
−1,

we get that

P

(
‖ 1

n

n∑
i=1

εiKXi‖ > cK(
√

2Mr + (nh)−1/2)

)
≤ exp(−Mnhr2).
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Now if we let event

E ′n = {‖ 1

n

n∑
i=1

εiKXi‖ ≤ cK(
√

2Mr + (nh)−1/2)},

then we have P (E ′n) ≥ 1− exp(−Mnhr2), and on E ′n, the second term can be bounded as

‖ 1

n

n∑
i=1

εiKXi‖ ≤ cK(
√

2Mr + (nh)−1/2).

Putting pieces together, we obtain that with probability at leastP (En∩E ′n) ≥ 1−2 exp(−Mnhr2),

‖Sn,λ(fλ)‖ ≤ c2
KM

1/2hm−1/2rA(h) + cK(
√

2Mr + (nh)−1/2) : = r′/2. (32)

Now let us consider the following class of operators, indexed by functions f in Sm(I), as

Tf (g) = g + Sn,λ(fλ + g), for all g ∈ Sm(I).

By adding and subtracting the same term, we can express Tf as

Tf (g) = −DSλ(fλ)−1[DSn,λ(fλ)g −DSλ(fλ)g]

−DSλ(fλ)−1[Sn,λ(fλ + g)− Sn,λ(fλ)−DSn,λ(fλ)g]

−DSλ(fλ)−1Sn,λ(fλ)

= DSn,λ(fλ)g −DSλ(fλ)g + Sn,λ(fλ)

= − 1

n

n∑
i=1

[g(Xi)KXi − E{g(X)KX}] + Sn,λ(fλ).

By (32), we obtain that with probability at least 1− 2 exp(−Mnhr2), for any g ∈ Sm(I),

‖Tf (g)‖ ≤ ‖ 1

n

n∑
i=1

[g(Xi)KXi − E{g(X)KX}]‖+ r′/2 (33)

≤ c2
KM

1/2rh−1/2A(h)‖g‖+ r′/2 ≤ r′, (34)

where the last inequality follows by the condition c2
KM

1/2rh−1/2A(h) ≤ 1/2. Since for any
g1, g2 ∈ Sm(I),

‖Tf (g1)− Tf (g2)‖

= ‖ 1

n

n∑
i=1

[(g1 − g2)(Xi)KXi − E{(g1 − g2)(X)KX}]‖

≤ c2
KM

1/2rh−1/2A(h)‖g1 − g2‖ ≤ (1/2)‖g1 − g2‖,

Tf is a contraction mapping on B(r′). Therefore, by the contraction mapping theorem [22], there
exists g ∈ B(r′) such that Sn,λ(fλ + g) = 0. Since the smoothing spline estimate f̂n,λ also satisfies
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Snλ(f̂n,λ) = 0, and the solution is unique, we must have f̂n,λ = fλ + g. Hence, inequality (33)
yields ‖f̂n,λ − f‖ = ‖g‖ ≤ hm + r′. Consequently, we obtain

sup
f∈Hm(1)

Pf

(
‖f̂n,λ − f‖ ≥ δn(M, r)

)
≤ 2 exp(−Mnhr2),

where δn(M, r) = 2hm+cK(
√

2Mr+(nh)−1/2). This expression of δn follows from c2
KM

1/2rh−1/2A(h) ≤
1/2, leading to r′ = 2c2

KM
1/2hm−1/2rA(h) + 2cK(

√
2Mr + (nh)−1/2) ≤ hm + 2cK(

√
2Mr +

(nh)−1/2).

Proof of Theorem 3.4 Given the development in the proof of Theorem 3.1, the proof for this
theorem is easy. Let us define gn = f̂n,λ − f . Note that on En ∩ E ′n

‖Sn,λ(f + gn)− Sn,λ(f)− (Sλ(f + gn)− Sλ(f))‖

= ‖ 1

n

n∑
i=1

[gn(Xi)KXi − E{gn(X)KX}]‖

≤ c2
KM

1/2rh−1/2A(h)‖gn‖
≤ c2

KM
1/2rh−1/2A(h)δn(M, r).

Moreover, by recalling that DSλ(f) = −id, we have the identity

Sn,λ(f + gn)− Sn,λ(f)− (Sλ(f + gn)− Sλ(f))

= 0− Sn,λ(f)−DSλ(f)gn = gn − Sn,λ(f).

Therefore, we have

sup
f∈Hm(1)

Pf

(
‖f̂n,λ − f − Sn,λ(f)‖ ≥ c2

KM
1/2rh−1/2A(h)δn(M, r)

)
≤ 2 exp(−Mnhr2).

E.0.3. PROOF OF LEMMA E.1

For any f ∈ Hm(1) and n ≥ 1, and any functions g1, g2 ∈ G, we have the following bound for
each additive component in the sum,

‖(ψn,f (Zi; g1)− ψn,f (Zi; g2))KXi‖ ≤ c
−1
K h1/2‖g1 − g2‖supcKh

−1/2 = ‖g1 − g2‖sup.

For fixed g1, g2, we apply the bounded difference inequality (see, for example, Theorem 3.5 of [21])
to obtain the following concentration inequality for the sum,

Pf (‖Zn,f (g1)− Zn,f (g2)‖ ≥ t) ≤ 2 exp

(
− t2

8‖g1 − g2‖2sup

)
, for any t > 0. (35)

Due to the equivalence between the sub-Gaussian tail of a random variable and its Orlicz norm
(Lemma 8.1 in [15]), we obtain∥∥∥‖Zn,f (g1)− Zn,f (g2)‖

∥∥∥
ψ2

≤
√

24 ‖g1 − g2‖sup,

where ‖ · ‖ψ2 denotes the Orlicz norm associated with ψ2(s) ≡ exp(s2) − 1. Let τ =
√

log 1.5 ≈
0.6368 and φ(M) = ψ2(τx). Then it is easy to check that φ(1) ≤ 1/2, and for any x, y ≥ 1,
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φ(M)φ(y) ≤ φ(xy). By applying Lemma 8.2 in [15], we have the following relationship between
the Orlicz norm of the max of l (l ∈ N) random variables and the max of their individual Orlicz
norms,

‖ max
1≤i≤l

ξi‖ψ2 ≤
2

τ
ψ−1

2 (l) max
1≤i≤l

‖ξi‖ψ2 , (36)

for any random variables ξ1, . . . , ξl.
Next we apply a “chaining” argument to prove the desired concentration inequality based on

(35). Let T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ T∞ ≡ G be a sequence of finite nested sets satisfying the
following properties:

1. for any Tj and any s, t ∈ Tj , ‖s − t‖sup ≥ ε2−j ; each Tj is “maximal” in the sense that if
one adds any point in Tj , then the inequality will fail;

2. the cardinality of Tj is upper bounded by

log |Tj | ≤ logN(ε2−j ,G, ‖ · ‖sup) ≤ c0c
−1/m
K h−(2m−1)/(2m)(ε2−j)−1/m,

where c0 > 0 is absolute constant; Here we used the fact that the covering entropy of an
R-ball in Sm(I) relative to the sup-norm is of order R−1/m.

3. each element tj+1 ∈ Tj+1 is uniquely linked to an element tj ∈ Tj which satisfies ‖tj −
tj+1‖sup ≤ ε2−j .

Based on this sequence {Tk : k ≥ 0}, for arbitrary sk+1, tk+1 ∈ Tk+1 with ‖sk+1−tk+1‖sup ≤
ε we can choose two chains (both of length k + 2) {tj : 0 ≤ j ≤ k + 1} and {sj : 0 ≤ j ≤ k + 1}
with tj , sj ∈ Tj for 0 ≤ j ≤ k + 1, such that the end points s0 and t0 satisfy

‖s0 − t0‖sup ≤
k∑
j=0

[‖sj − sj+1‖sup + ‖tj − tj+1‖sup] + ‖sk+1 − tk+1‖sup ≤ 2
k∑
j=0

ε2−j + ε ≤ 5ε,
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implying
∥∥‖Zn,f (s0)−Zn,f (t0)‖

∥∥
ψ2
≤ 5
√

24 ε. Recall that function Ψ(r) =
∫ r

0

√
log(1 + exp(x−1/m)) dx.

Now, it follows from (36) that∥∥∥∥ max
sk+1,tk+1∈Tk+1

‖Zn,f (sk+1)− Zn,f (tk+1)− (Zn,f (s0)− Zn,f (t0))‖
∥∥∥∥
ψ2

≤ 2
k∑
j=0

∥∥∥∥ max
u∈Tj+1,v∈Tj

u, v link each other

‖Zn,f (u)− Zn,f (v)‖
∥∥∥∥
ψ2

≤ 4

τ

k∑
j=0

ψ−1
2 (N(2−j−1ε,G, ‖ · ‖sup)) max

u∈Tj+1,v∈Tj
u, v link each other

∥∥∥‖Zn,f (u)− Zn,f (v)‖
∥∥∥
ψ2

≤ 4
√

24

τ

k∑
j=0

√
log (1 +N(ε2−j−1,G, ‖ · ‖sup)) ε 2−j

≤ 8
√

24

τ

k+1∑
j=1

√
log
(

1 + exp
(
c0c
−1/m
K h−(2m−1)/(2m)(ε2−j)−1/m

))
ε 2−j

≤ 32
√

6

τ

∫ ε/2

0

√
log
(

1 + exp
(
c0c
−1/m
K h−(2m−1)/(2m)M−1/m

))
dx

=
32
√

6

τ
c−1
K cm0 h

−(2m−1)/2 Ψ

(
1

2
cKc

−m
0 h(2m−1)/2ε

)
.

On the other hand, we have∥∥∥∥ max
u,v∈T0

‖u−v‖sup≤5ε

‖Zn,f (u)− Zn,f (v)‖
∥∥∥∥
ψ2

≤ 2

τ
ψ2(|T0|2) max

u,v∈T0
‖u−v‖sup≤5ε

‖‖Zn,f (u)− Zn,f (v)‖‖ψ2
≤ 2

τ
ψ−1

2 (N(ε,G, ‖ · ‖sup)2)(5
√

24ε).
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Combining these two bounds together, we obtain∥∥∥∥ max
s,t∈Tk+1

‖s−t‖sup≤ε

‖Zn,f (s)− Zn,f (t)‖
∥∥∥∥
ψ2

≤
∥∥∥∥ max
sk+1,tk+1∈Tk+1

‖Zn,f (sk+1)− Zn,f (tk+1)− (Zn,f (s0)− Zn,f (t0))‖
∥∥∥∥
ψ2

+

∥∥∥∥ max
u,v∈T0

‖u−v‖sup≤5ε

‖Zn,f (u)− Zn,f (v)‖
∥∥∥∥
ψ2

≤ 32
√

6

τ
c−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
cKc

−m
0 h(2m−1)/2ε

)
+

2

τ
ψ−1

2 (N(ε,G, ‖ · ‖sup)2)(5
√

24ε)

≤ 32
√

6

τ
c−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
cKc

−m
0 h(2m−1)/2ε

)
+

10
√

24ε

τ

√
log
(
1 + exp

(
2c0(cKh(2m−1)/2ε)−1/m

))
= A(h, ε),

where in the last step we used the definition of A(h, ε).
Now consider any two functions g1, g2 ∈ G with ‖g1 − g2‖sup ≤ ε/2. For any k ≥ 2, since

Tk is “maximal” due to our construction, there must exist (sk, tk) ∈ T 2
k such that max{‖g1 −

sk‖sup, ‖g2− tk‖sup} ≤ ε2−k, which also implies ‖sk− tk‖sup ≤ ε. Therefore, we can decompose
the difference between Zn,f (g1) and Zn,f (g2) by

‖Zn,f (g1)− Zn,f (g2)‖
≤ ‖Zn,f (g1)− Zn,f (sk)‖+ ‖Zn,f (g2)− Zn,f (tk)‖+ ‖Zn,f (sk)− Zn,f (tk)‖
≤ 4

√
n ε 2−k + max

u,v∈Tk
‖u−v‖sup≤ε

‖Zn,f (u)− Zn,f (v)‖.

Now we can obtain ∥∥∥∥ sup
g1,g2∈G

‖g1−g2‖sup≤ε/2

‖Zn,f (g1)− Zn,f (g2)‖
∥∥∥∥
ψ2

≤ 4
√
nε2−k/

√
log 2 +

∥∥∥∥ max
u,v∈Tk

‖u−v‖sup≤ε

‖Zn,f (u)− Zn,f (v)‖
∥∥∥∥
ψ2

≤ 4
√
nε2−k/

√
log 2 +A(h, ε)→ A(h, ε), by letting k →∞.

Taking ε = 2 in the above inequality, we obtain∥∥∥∥ sup
g1,g2∈G

‖g1−g2‖sup≤1

‖Zn,f (g1)− Zn,f (g2)‖
∥∥∥∥
ψ2

≤ A(h, 2) = A(h).

Consequently, by choosing g2 = 0 and using the equivalence between sub-Gaussian tails and the
Orlicz norm (Lemma 8.1 in [15]), we obtain

Pf

(
sup
g∈G
‖Zn,f (g)‖ ≥ t

)
≤ 2 exp

(
− t2

A(h)2

)
.
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This completes the proof.

Appendix F. Proof of Theorem 3.5

We will make use of the following two lemmas that control the type I and type II errors of the test.
Their proofs are provided in the supplement.

Lemma F.1 (Type I error) For any M ≥ 0 satisfying the conditions of Theorem 3.4, it holds that

Pf0

(∣∣T̃n,λ∣∣ ≥ 4ρK

n
√
h

√
M +R1,n(M)

)
≤ 15 exp(−M), (37)

where ρ2
K = hE[K2(X1, X2)] with X1, X2

iid∼ X , and the explicit form of the remainder term
R1,n(M) is provided in Section D.

Lemma F.2 (Type II error) For any L > 0 satisfying the conditions of Theorem 3.4, we have

sup
f−f0∈Hm(1)

Pf

(∣∣T̃n,λ − ‖(I − Pλ)(f − f0)‖2
∣∣ ≥ (2

√
2 ‖(I − Pλ)(f − f0)‖√

n
+

4ρK

n
√
h

)
√
L

+R2,n(L)) ≤ 30 exp(−L), (38)

where the explicit form of the remainder term R2,n(L) is provided in Section D.

Now, we will prove the theorem. By applying Lemma F.1, if we set M = log(15α−1), then

Pf0(|T̃n,λ| > dn(M,h)) ≤ α.

By using Lemma F.2, we obtain

sup
‖f−f0‖≥ρn(M,L,h)

Pf (|T̃n,λ| < dn(M,h))

= sup
‖f−f0‖≥ρn(M,L,h)

Pf

(
‖(I − Pλ)(f − f0)‖2 − |T̃n,λ| ≥ −dn(M,h) +

(
‖(I − Pλ)(f − f0)‖ −

√
2L

n

)2

+
2
√

2 ‖(I − Pλ)(f − f0)‖√
n

√
L− 2L

n

)
≤ sup
‖f−f0‖≥ρn(M,L,h)

Pf

(∣∣|T̃n,λ| − ‖(I − Pλ)(f − f0)‖2
∣∣ ≥ 2

√
2 ‖(I − Pλ)(f − f0)‖√

n

√
L

+
(
ρn(M,L, h)−

√
ζKλ−

√
2L

n

)2
− dn(M,h)− 2L

n

)
≤ 30 exp(−L),

where ζK = supg∈Hm(1) λ
−1‖Pλg‖2 and ρn(M,L, h) is the solution to the equation:(

ρn(M,L, h)−
√
ζKλ−

√
2L

n

)2
− dn(M,h)− 2L

n
= R2,n(L),

i.e. ρn(M,L, h) =
√
ζKλ+

√
2L

n
+

√
dn(M) +

2L

n
+R2,n(L).
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Appendix G. Proof of Theorem 3.7

Similar to the simple hypothesis testing case, we make use of the following two lemmas that control
the type I and type II errors of the composite test. Their proofs are provided in the supplement.

Lemma G.1 (Type I error) If f0 is a linear function and M ∈ (0, n/4] satisfies the conditions of
Theorem 3.4, then it holds that

Pf0

(∣∣T̃ comn,λ

∣∣ ≥ 4ρK

n
√
h

√
M +Rc1,n(M)

)
≤ 24 exp(−M),

where the form of Rc1,n(M) is provided in Section D.

Lemma G.2 (Type II error) For any L > 0 satisfying the conditions of Theorem 3.4, it holds that

sup
f∈Hm(1)

Pf

(∣∣T̃ comn,λ −‖f⊥ − Pλf⊥‖2
∣∣ ≥ (2

√
2 ‖f⊥ − Pλf⊥‖√

n
+

4ρK

n
√
h

)√
L

+Rc2,n(L)
)
≤ 60 exp(−L),

where the form of Rc2,n(L) is provided in Section D.

Now we prove the theorem. By applying Lemma G.1, if we set M = log(24α−1), then

sup
f0 is linear

Pf0(|T̃ comn,λ | > dcomn (M,h)) ≤ α.

By using Lemma G.2, we obtain

sup
f∈Hm(1)

‖f⊥‖≥ρcomn (M,L,h)

Pf (|T̃ comn,λ | < dcomn (M,h))

= sup
f∈Hm(1)

‖f⊥‖≥ρcomn (M,L,h)

Pf

(
‖f⊥ − Pλf⊥‖2 − |T̃ comn,λ | ≥ −dn(M,h) +

(
‖f⊥ − Pλf⊥‖ −

√
2L

n

)2

+
2
√

2 ‖f⊥ − Pλf⊥‖√
n

√
L− 2L

n

)
≤ sup

f∈Hm(1)

‖f⊥‖≥ρcomn (M,L,h)

Pf

(∣∣|T̃ comn,λ | − ‖f⊥ − Pλf⊥‖
∣∣ ≥ 2

√
2 ‖f⊥ − Pλf⊥‖√

n

√
L

+
(
ρcomn (M,L, h)−

√
ζKλ−

√
2L

n

)2
− dcomn (M,h)− 2L

n

)
≤ (2e+ 26) exp(−L),

where ζK = supg∈Hm(1) λ
−1‖Pλg‖2 and ρcomn (M,L, h) is the solution to the equation:(

ρcomn (M,L, h)−
√
ζKλ−

√
2L

n

)2
− dcomn (M,h)− 2L

n
= Rc2,n(L),

i.e. ρcomn (M,L, h) =
√
ζKλ+

√
2L

n
+

√
dcomn (M,h) +

2L

n
+Rc2,n(L).
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Appendix H. Proof of the lemmas in Section F

We first prove some relevant large deviation inequalities, which are needed in the proofs of these
lemmas.

H.0.1. SOME LARGE DEVIATION INEQUALITIES

First, we consider the quadratic form

Qn : =
1

n2

n∑
i,j=1

εiεjK(Xi, Xj) =
1

n2

n∑
i=1

ε2iK(Xi, Xi)︸ ︷︷ ︸
Vn

+
2

n2

∑
1≤i<j≤n

εiεjK(Xi, Xj)︸ ︷︷ ︸
Un

,

where Vn collects all diagonal terms and Un collects non-diagonal terms. We provide concentration
inequalities for Vn and Un separately. Here, we may assume that εi are iid 1-sub-Gaussian random
variables.

Lemma H.1 For any x ≥ 0, it holds that

P
(∣∣∣Vn − 1

n

∑
ν≥1

1

1 + λρν

∣∣∣ ≥ (2c2
K

nh
+

cK

n
√
h

)√M

2n
+

2cK

n
√
h

(M
2n

)3/4
+

4c2
K

nh

M

2n

)
≤ 5 exp(−M),

where cK = supx∈I h
1/2‖Kx‖ = supx∈I h

1/2K1/2(x, x).

Lemma H.2 For any M ≥ 0, it holds that

P
(
|Un| ≥

( 4ρK

n
√
h

+
6
√

2c2
K

n5/2

)√
M +

8cK
4
√

2n5/4
√
h
M3/4 +

( 4

n
+

8c2
K

n3/2h

)
M
)
≤ 8 exp(−M),

where ρ2
K = hE[K2(X1, X2)].

The following lemma provides large deviation bound for n−1
∑n

i=1 εif(Xi) over f ∈ Sm(I).

Lemma H.3 For any M ≥ 0, it holds that

sup
f∈Sm(I)

P
(∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣ ≥ ‖f‖√

n

√
2M +

2‖f‖1/2

n
M3/4 +

2‖f‖1/2sup

n
M
)
≤ 2 exp(−M).

H.0.2. PROOF OF LEMMA F.1

Direct calculations yield that under H0, the remainder term in equation (12) is

‖f̂n,λ − f0 − Sn,λ(f0)‖2 + 2〈f̂n,λ − f0 − Sn,λ(f0), Sn,λ(0)〉.

Then the claimed bound follows by applying Lemma H.1 and Lemma H.2 to the first term in equa-
tion (12) and using the bound in (40) with f = f0 for the above remainder term (see the proof of
Lemma F.2 below).
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H.0.3. PROOF OF LEMMA F.2

Direct calculations gives

T̃n,λ = ‖f̂n,λ − f − Sn,λ(f) + f + Sn,λ(f)− (I − Pλ)f0‖2 −
1

n

∑
ν≥1

1

1 + λρν

= ‖f + Sn,λ(f)− (I − Pλ)f0‖2 −
1

n

∑
ν≥1

1

1 + λρν︸ ︷︷ ︸
In

+ ‖f̂n,λ − f − Sn,λ(f)‖2 + 2〈f̂n,λ − f − Sn,λ(f), f − (I − Pλ)f0 + Sn,λf〉︸ ︷︷ ︸
Rn

.

First, we provide a non-asymptotic bound for the remainder term Rn. By Theorem 3.4 (choose
r2 = (nh)−1), for any M > 0

sup
f∈Sm(I)

Pf

(
‖f̂n,λ − f − Sn,λ(f)‖ > R3,n(M)

)
≤ 2 exp(−M), (39)

where remainder term

R3,n(M) = c2
K

√
Mn−1/2h−1A(h) δn(M, (nh)−1/2),

with δn(M, r) = 2hm+ cK(
√

2Mr+(nh)−1/2) the “effective” estimation convergence rate. From
an asymptotic perspective, this remainder term R3,n(M) corresponds to the higher-order error—
converging to zero faster than the estimation convergence rate δn(M, (nh)−1/2).

Combining Lemma H.1, Lemma H.2 and inequality (39), we obtain the following large devia-
tion bound for the remainder term Rn,

P
(
|Rn| ≥ R4,n(M)

)
≤ 15 exp(−M), (40)

where the remainder term

R4,n(M) = R2
3,n(M) + 2R3,n(M)

(
1 +

( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M +R0,n(M)

)
.

Next, we consider the leading term In. Simple calculation suggests

In = ‖(I − Pλ)(f − f0)‖2 + 2〈(I − Pλ)(f − f0), Sn,λ(0)〉+ ‖Sn,λ(0)‖2 − 1

n

∑
ν≥1

1

1 + λρν

= ‖(I − Pλ)(f − f0)‖2 + 2〈 1
n

n∑
i=1

εiKXi , (I − Pλ)(f − f0)〉+ ‖Sn,λ(0)‖2 − E‖Sn,λ(0)‖2︸ ︷︷ ︸
Wn

.

The first and the second terms in the stochastic component Wn (EWn = 0) can be bounded by
Lemma H.3 and Lemma F.1, respectively, yielding

P
(
|Wn| ≥

(2
√

2 ‖(I − Pλ)(f − f0)‖√
n

+
4ρK

n
√
h

)√
M +R0,n(M) +

2

n
(M3/4 +M)

)
≤ 15 exp(−M),

(41)
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where we have used the fact that ‖f − f0‖, ‖f − f0‖sup ≤ 1 for f − f0 ∈ Hm(1).
Combining (40) and (41), we obtain

sup
f∈Hm(1)

Pf

(∣∣T̃n,λ−‖f − f0 + Pλf‖2
∣∣ ≥ (2

√
2 ‖(I − Pλ)(f − f0)‖√

n
+

4ρK

n
√
h

)√
M

+
2

n
(M3/4 +M) +R0,n(M) +R4,n(M)

)
≤ 30 exp(−M),

which yields the claimed result.

Appendix I. Proof of the lemmas in Section G

In this subsection, we prove the two lemmas in Section G . We use PX to denote the marginal
probability measure of the covariate {Xi}ni=1.

I.0.1. PROOF OF LEMMA G.1

By Cauchy-Schwarz inequality, we have

‖fε‖22 = α̂2 + α̂β̂ +
1

3
β̂2 ≤ 2α̂2 + 2β̂2.

Since (α̂, β̂)T = (DT
XDX)−1DT

Xε, we can further derive that

‖fε‖22 ≤ 2εTDX(DT
XDX)−2DT

Xε. (42)

After simple calculations, it is easy to show that the largest eigenvalue λX of matrix (DT
XDX)−1 is

n+
∑n

i=1X
2
i +

√(∑n
i=1X

2
i − n

)2
+ 4

(∑n
i=1Xi

)2

2
(
n
∑n

i=1X
2
i −

(∑n
i=1Xi

)2) : =
Nn

Dn
.

By Hanson-Wright inequality, the denominator Dn satisfies

PX
(
Dn ≤ 2n(n− 1)− 2n

√
(n− 1)M − 2nM

)
≤ exp(−M)

for all M > 0. By Cauchy-Schwarz inequality and 0 ≤ Xi ≤ 1, the numerator Nn satisfies

Nn ≤ 2n+ 2
n∑
i=1

X2
i ≤ 4n.

Combining the last two displays, we obtain

PX

(
λX ≥

2

n

(
1− 1

n
−
√
M

n
− M

n

)−1)
≤ exp(−M)

for all M ≤ n/4.
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Combining the above display with inequality (42), we obtain that it holds with probability at
least 1− exp(−M) that

‖fε‖22 ≤
2

n
εTDX(DT

XDX)−1DT
Xε
(

1− 1

n
−
√
M

n
− M

n

)−1
.

Moreover, since DX(DT
XDX)−1DT

X is a projection matrix with rank 2, we have, by Hanson-
Wright inequality, that for any M > 0

P
( 1

n
εTDX(DT

XDX)−1DT
Xε ≥

2

n
+

2
√

2M

n
+

2M

n

)
≤ exp(−M).

Combining the last two displays, we obtain that for all M ≤ n/4

P
{
‖fε‖22 +

2

n
εTDX(DT

XDX)−1DT
Xε ≥ 4

( 1

n
+

√
2M

n
+
M

n

)(
1+
(

1− 1

n
−
√
M

n
− M

n

)−1)}
≤ 2 exp(−M). (43)

Finally, the claimed result is a direct sequence by applying Lemma H.1, Lemma H.2, equa-
tion (21) and equation (43) to the first four terms, and the bound (46) in the proof of Lemma G.2 to
the remainder term in decomposition (21).

I.0.2. PROOF OF LEMMA G.2

Write f(x) = fL(x) + f⊥(x), where fL(x) = α + β x is the linear part of f and function f⊥

satisfies
∫ 1

0 f
⊥(x) dP (x) =

∫ 1
0 (f⊥)′(x) dP (x) = 0. Direct calculation gives f̂H0

n = fL + f⊥X + fε,
and

T̃ comn,λ = ‖f̂n,λ − f − Sn,λ(f) + f + Sn,λ(f)− fL − f⊥X − fε‖2 −
1

n

∑
ν≥1

1

1 + λρν

= ‖f⊥ + Sn,λ(0)− Pλf − f⊥X − fε‖2 − E‖Sn,λ(0)‖2

+ ‖f̂n,λ − f − Sn,λ(f)‖2 + 2〈f̂n,λ − f − Sn,λ(f), f + Sn,λf − fL − f⊥X − fε〉,

where f⊥X (x) = (1, x)T (DT
XDX)−1DT

Xf
⊥(Xn

1 ) and f⊥(Xn
1 ) = (f⊥(X1), . . . , f⊥(Xn))T . Use

the property that Pλg = 0 for all linear functions g, we further obtain

T̃ comn,λ = ‖f⊥ − Pλf⊥ + Sn,λ(0)− f⊥X − fε‖2 − E‖Sn,λ(0)‖2︸ ︷︷ ︸
Icn

+ ‖f̂n,λ − f − Sn,λ(f)‖2 + 2〈f̂n,λ − f − Sn,λ(f), f⊥ − Pλf⊥ + Sn,λ(0)− f⊥X − fε〉︸ ︷︷ ︸
Rcn

.

We first provide a non-asymptotic bound for the remainder term Rcn. Similar to the proof of
Lemma F.2, by Theorem 3.4 (choose r2 = (nh)−1), we have for any M > 0

sup
f∈Sm(I)

Pf

(
‖f̂n,λ − f − Sn,λ(f)‖ > R3,n(M)

)
≤ 2 exp(−M). (44)
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According to the proof of Lemma F.2, we have

P
{
‖fε‖22 ≥ 4

( 1

n
+

√
2M

n
+
M

n

)(
1− 1

n
−
√
M

n
− M

n

)−1}
≤ 2 exp(−M), (45)

for all M ≤ n/4. The following lemma provides non-asymptotic bounds for ‖f⊥X‖, whose proof is
provided in Appedix L.0.4.

Lemma I.1 For any M ∈ (0, n/4), we have

P
{
‖f⊥X‖2 ≥

32

n
M
(

1− 1

n
−
√
M

n
− M

n

)−2}
≤ 5 exp(−M).

Combining (44), (45), Lemma I.1 and Lemma F.1, we obtain the following tail bound for the
remainder term Rcn,

P
(
|Rcn| ≥ Rc5,n(M)

)
≤ 24 exp(−M), (46)

where the remainder term

Rc5,n(M) = R2
3,n(M)+2R3,n(M)

(
‖f⊥−Pλf⊥‖+

( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M+R0,n(M)+Rc3,n

)
,

with

Rc3,n = 2
( 1

n
+

√
2M

n
+
M

n

)1/2(
1− 1

n
−
√
M

n
−M
n

)−1/2
+

4
√

2√
n

√
M
(

1− 1

n
−
√
M

n
−M
n

)−1
.

Next, we consider the leading term Icn. Simple calculation suggests

In = ‖f⊥ − Pλf⊥‖2 + 2〈f⊥ − Pλf⊥, Sn,λ(0)〉+ ‖Sn,λ(0)‖2 − E‖Sn,λ(0)‖2

+ ‖f⊥X + fε‖2 − 2〈f⊥X + fε, f
⊥ − Pλf⊥ + Sn,λ(0)〉

= ‖f⊥ − Pλf⊥‖2 + 2〈 1
n

n∑
i=1

εiKXi , f
⊥ − Pλf⊥〉+ ‖Sn,λ(0)‖2 − E‖Sn,λ(0)‖2︸ ︷︷ ︸

W c
1,n

+ ‖f⊥X + fε‖2 − 2〈f⊥X + fε, f
⊥ − Pλf⊥ + Sn,λ(0)〉︸ ︷︷ ︸

W c
2,n

.

Similar to the proof of Lemma F.2, we have the following tail bound for W c
1,n,

P
(
|W c

1,n| ≥
(2
√

2 ‖f⊥ − Pλf⊥‖√
n

+
4ρK

n
√
h

)√
M +R0,n(M) +

2

n
(M3/4 +M)

)
≤ 15 exp(−M).

(47)

Combining (45), Lemma I.1 and Lemma F.1, we obtain the following tail bound for W c
2,n,

P
(
|W c

2,n| ≥ R2
5,n + 2Rc3,n

(
‖f⊥ − Pλf⊥‖+

( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M +R0,n(M)

))
≤ 20 exp(−M).

(48)
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Combining (40) and (41), we obtain that for all M ∈ (0, n/4],

sup
f∈Hm(1)

Pf

(∣∣T̃ comn,λ −‖f⊥ − Pλf⊥‖2
∣∣ ≥ (2

√
2 ‖f⊥ − Pλf⊥‖√

n
+

4ρK

n
√
h

)√
M

+R2
5,n + 2Rc3,n

(
‖f⊥ − Pλf⊥‖+

( 1

n

∑
ν≥1

1

1 + λρν

)1/2
+

4ρK

n
√
h

√
M +R0,n(M)

)
+

2

n
(M3/4 +M) +R0,n(M) +Rc4,n(M)

)
≤ 60 exp(−M),

which yields the claimed result.

Appendix J. Proof of Theorem 3.9

The proof of (i) is finished in two parts.
Part I: Let f ∈ Hm(1) be the parameter based on which the data are drawn. Define an operator

mapping Sm(I) to Sm(I):

T1f (g) = g + Sλ(f + g), g ∈ Sm(I).

First observe that

‖Sλ(f)‖ = ‖Pλf‖ = sup
‖g‖=1

|〈Pλf, g〉| ≤
√
λb2 = bhm.

Let r1n = 2hm. Let B(r1n) = {g ∈ Sm(I) : ‖g‖ ≤ r1n} be the r1n-ball. For any g ∈ B(r1n),
using DSλ(f) = −id (see [23]) and ‖g‖sup ≤ cKh

−1/2r1n = 2cKh
m−1/2 ≤ 1, it is easy to see

that

‖T1f (g)‖ ≤ ‖g + Sλ(f + g)− Sλ(f)‖+ ‖Sλ(f)‖

= ‖g +DSλ(f)g +

∫ 1

0

∫ 1

0
sD2Sλ(f + ss′g)ggdsds′‖+ ‖Sλ(f)‖

= ‖
∫ 1

0

∫ 1

0
sD2Sλ(f + ss′g)ggdsds′‖+ ‖Sλ(f)‖

= ‖
∫ 1

0

∫ 1

0
sE{`(3)(Y − f(X)− ss′g(X))g(X)2KX}dsds′‖+ r1n/2

≤ cKh
−1/2

∫ 1

0

∫ 1

0
sE{ sup

|a|≤1
|`(3)(η − a)| · g(X)2}+ r1n/2

≤ cKC0C1σ
−2h−1/2‖g‖2/2 + r1n/2

≤ cKC0C1σ
−2h−1/2r2

1n/2 + r1n/2

= cKC0C1σ
−2hm−1/2r1n + r1n/2 ≤ 3r1n/4,

where the last step follows from the assumption cKC0C1σ
−2hm−1/2 < 1/4. Therefore, T1f maps

B(r1n) to itself.
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For any g1, g2 ∈ B(r1n), denote g = g1 − g2. Note that for any 0 ≤ s ≤ 1, ‖g2 + sg‖sup ≤
cKh

−1/2‖g2 + sg‖ ≤ 2cKh
−1/2r1n = 4cKh

−1/2hm ≤ 2/3. According to [23], we have that for
any f ∈ Sm(I), ‖f‖sup ≤ cKh−1/2‖f‖. Therefore,

‖T1f (g1)− T1f (g2)‖
= ‖g1 − g2 + Sλ(f + g1)− Sλ(f + g2)‖

= ‖g1 − g2 +

∫ 1

0
DSλ(f + g2 + sg)gds‖

= ‖
∫ 1

0
[DSλ(f + g2 + sg)−DSλ(f)]gds‖

= ‖
∫ 1

0

∫ 1

0
D2Sλ(f + s′(g2 + sg))(g2 + sg)gdsds′‖

≤
∫ 1

0

∫ 1

0
‖E{`(3)(Y − f(X)− s′(g2(X) + sg(X)))(g2(X) + sg(X))g(X)KX}‖

≤ cKh
−1/2

∫ 1

0
E{ sup
|a|≤1

|`(3)(η − a)| · |g2(X) + sg(X)| · |g(X)|}

≤ cKh
−1/2σ−2C0C1

∫ 1

0
‖g2 + sg‖ds‖g‖

≤ 2cKσ
−2C0C1h

−1/2r1n‖g‖
= 4cKC0C1σ

−2hm−1/2‖g‖ = 4cKC0C1σ
−2hm−1/2‖g1 − g2‖.

Since 4cKC0C1σ
−2hm−1/2 < 1, this shows that T1f is a contraction mapping which maps B(r1n)

into B(r1n). By contraction mapping theorem (see [22]), T1f has a unique fixed point g′ ∈ B(r1n)
satisfying T1f (g′) = g′. Let fλ = f + g′. Then Sλ(fλ) = 0 and ‖fλ − f‖ ≤ r1n.

Part II: For any f ∈ Hm(1), under (1) with f being the truth, let fλ be the fucntion obtained
in Part I. Obviously, ‖fλ − f‖sup ≤ cKh−1/2r1n = 2cKh

m−1/2 ≤ 1/3. Then it can be shown that
for all g1, g2 ∈ Sm(I),

|[DSλ(fλ)−DSλ(f)]g1g2|
= |E{(`(2)(Y − fλ(X))− `(2)(Y − f(X)))g1(X)g2(X)}|
≤ |E{ sup

|a|≤1
|`(3)(η + a)| · |fλ(X)− f(X)| · |g1(X)g2(X)|}|

≤ C0C1cKh
−1/2r1nσ

−2‖g1‖ · ‖g2‖ ≤ ‖g1‖ · ‖g2‖/2,

where the last inequality follows by C0C1cKh
−1/2r1nσ

−2 = 2C0C1cKσ
−2hm−1/2 ≤ 1/2. To-

gether with the fact DSλ(f) = −id, we get that the operator norm ‖DSλ(fλ) + id‖operator ≤
1/2. This implies that DSλ(fλ) is invertible with operator norm within [1/2, 3/2], and hence,
‖DSλ(fλ)−1‖operator ≤ 2.

Define an operator T2f (g) = g − [DSλ(fλ)]−1Sn,λ(fλ + g), g ∈ Sm(I) and rewrite it as

T2f (g) = −DSλ(fλ)−1[DSn,λ(fλ)g −DSλ(fλ)g]

−DSλ(fλ)−1[Sn,λ(fλ + g)− Sn,λ(fλ)−DSn,λ(fλ)g]

−DSλ(fλ)−1Sn,λ(fλ).
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Denote the above three terms by I1f , I2f , I3f , respectively.
For i = 1, . . . , n, let Ri = `(1)(Yi − fλ(Xi))KXi − Ef{`(1)(Y − fλ(X))KX}. By direct

calculations, it can be shown that

‖Ef{`(1)(Y − fλ(X))KX}‖
= sup

‖g‖=1
|〈Ef{`(1)(Y − fλ(X))KX}, g〉|

= sup
‖g‖=1

|Ef{`(1)(Y − fλ(X))g(X)}|

= sup
‖g‖=1

∣∣∣∣Ef {(`(1)(η) + `(2)(η)(f(X)− fλ(X)) +
1

2
`(3)(η + s(f(X)− fλ(X)))(f(X)− fλ(X))2)g(X)

}∣∣∣∣
= sup

‖g‖=1

∣∣∣∣Ef {`(2)(η)(f(X)− fλ(X))g(X)
}

+
1

2
Ef

{
`(3)(η + s(f(X)− fλ(X)))(f(X)− fλ(X))2g(X)

}∣∣∣∣
= sup

‖g‖=1

∣∣∣∣−σ2Ef {(f(X)− fλ(X))g(X)}+
1

2
Ef

{
`(3)(η + s(f(X)− fλ(X)))(f(X)− fλ(X))2g(X)

}∣∣∣∣
≤ ‖fλ − f‖+

1

2
cKh

−1/2Ef{ sup
|a|≤1

|`(3)(η + a)| · (fλ(X)− f(X))2}

≤ r1n +
1

2
cKh

−1/2C0C1σ
−2r2

1n ≤ 5r1n/4,

where the second last inequality follows by Assumption A2, i.e.,E{sup|a|≤1 |`(3)(η+a)|} ≤ C0C1,
and the last inequality follows by condition hm−1/2 < σ2/(4cKC0C1). Therefore, it can be shown
by ‖fλ − f‖sup ≤ 1/3 that

‖Ri‖ ≤ ‖`(1)(Yi − fλ(Xi))KXi‖+ 5r1n/4

≤

(
|`(1)(η)|+ 1

3
|`(2)(η)|+ 1

18
sup
|a|≤1

|`(3)(η + a)|

)
cKh

−1/2 + 5r1n/4

≤ cKh
−1/2|`(1)(η)|+ 1

3
|`(2)(η)|+ 1

18
sup
|a|≤1

|`(3)(η + a)|+ 5r1n/4.

Using Cauchy-Schwarz inequality,

E

{
exp

(
‖Ri‖

2C0cKh−1/2

)}
≤ C1 exp

(
5hm+1/2

4C0cK

)
≤ C1 exp(2).

Let δ = hrn/(4C0cK). Recall that h1/2rn ≤ 1 which implies δ ≤ (4C0cKh
−1/2)−1. Therefore,

E{exp(δ‖Ri‖)} ≤ C1 exp(2). Moreover, for x ≥ 0 and any constant c > 0, exp(M) − 1 −
M ≤ M2 exp(M) and M−2 exp(cx) ≥ c2 exp(2)/4. Let c = (2C0cKh

−1/2)−1 − δ. Clearly,
c ≥ (4C0cKh

−1/2)−1. So, we have

Ef{exp(δ‖Ri‖)− 1− δ‖Ri‖}
≤ Ef{(δ‖Ri‖)2 exp(δ‖Ri‖)}

≤ δ2 4 exp(−2)

c2
Ef{exp(c‖Ri‖) exp(δ‖Ri‖)}

≤ δ24 exp(−2)(16C2
0c

2
Kh
−1)C1 exp(2) ≤ 64C2

0C1c
2
Kh
−1δ2.
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It follows by Theorem 3.2 of [21] that, for L(M) ≡ 4C0cK(4C1 +M),

Pf

(
‖

n∑
i=1

Ri‖ ≥ L(M)nrn

)
≤ 2 exp

(
−L(M)δnrn + 64C2

0C1c
2
Knh

−1δ2
)

= 2 exp(−Mnhr2
n).

We note that the right hand side in the above inequality does not depend on f . It is easy to see that
Sn,λ(fλ) = Sn,λ(fλ)− Sλ(fλ) = 1

n

∑n
i=1Ri. Let

En,1 = {‖Sn,λ(fλ)‖ ≤ L(M)rn},

then supf∈Hm(1) Pf (Ecn,1) ≤ 2 exp(−Mnhr2
n).

It follows by Assumption A2 that supf∈Hm(1) Pf (Ecn,2) ≤ 2C1 exp(−Mnhr2
n), where En,2 =

∩ni=1Ai, and Ai =
{

sup|a|≤1 |`(j)(ηi + a)| ≤ C0(Mnhr2
n + log n), j = 2, 3

}
. Define

ψ
(1)
n,f (Zi; g) =

`(2)(Yi − fλ(Xi))

C0(Mnhr2
n + log n)

IAic
−1
K h1/2g(Xi)

and Z(1)
n,f (g) = 1√

n

∑n
i=1[ψ

(1)
n,f (Zi; g)KXi − Ef{ψ

(1)
n,f (Zi; g)KXi}]. It follows by Lemma E.1 that

supf∈Hm(1) Pf (Ecn,3) ≤ 2 exp(−Mnhr2
n), where En,3 = {supg∈G ‖Z

(1)
n,f (g)‖ ≤

√
Mnhr2

nA(h)}.
For any g ∈ Sm(I)\{0}, let ḡ = g/d′n, where d′n = cKh

−1/2‖g‖. It is easy to see that

‖ḡ‖sup ≤ cKh−1/2‖ḡ‖ = cKh
−1/2‖g‖/d′n = 1, and (49)

J(ḡ, ḡ) = d′−2
n J(g, g) = h−2m λJ(g, g)

c2
Kh
−1‖g‖2

≤ c−2
K h−2m+1. (50)

Therefore, ḡ ∈ G. Consequently, on En,3, for any g ∈ Sm(I)\{0}, we get ‖Z(1)
n,f (ḡ)‖ ≤

√
Mnhr2

nA(h),
which leads to that

1

n
‖

n∑
i=1

[`(2)(Yi − fλ(Xi))g(Xi)KXiIAi − Ef{`(2)(Yi − fλ(Xi))g(Xi)KXiIAi}]‖

≤ c2
KC0(Mnhr2

n + log n)
√
Mh−1r2

nA(h)‖g‖.

Note that the above inequality also holds for g = 0.
On the other hand, for any f, g ∈ Sm(I), by Cauchy-Schwartz inequality,

‖Ef{`(2)(Yi − fλ(Xi))g(Xi)KXiIAci }‖

≤ Ef{ sup
|a|≤1

|`(2)(ηi + a)| · |g(Xi)|IAci }cKh
−1/2

≤ Ef{( sup
|a|≤1

|`(2)(ηi + a)|)2IAci }
1/2E{g(X)2}1/2cKh−1/2

≤ Ef{( sup
|a|≤1

|`(2)(ηi + a)|)4}1/4Pf (Aci )
1/4E{g(X)2}1/2cKh−1/2

≤ σ−1(48C4
0C

2
1 )1/4 exp(−(Mnhr2

n + log n)/4)cKh
−1/2‖g‖,
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where in the last inequality we have used the fact

Pf (Aci ) ≤ 2C1 exp(−(Mnhr2
n + log n)). (51)

In summary, we have shown that for any f ∈ Hm(1), on En,2 ∩ En,3, uniformly for g ∈ Sm(I),

‖DSn,λ(fλ)g −DSλ(fλ)g‖

=
1

n
‖

n∑
i=1

[`(2)(Yi − fλ(Xi))g(Xi)KXi − Ef{`(2)(Yi − fλ(Xi))g(Xi)KXi}]‖

=
1

n
‖

n∑
i=1

[`(2)(Yi − fλ(Xi))g(Xi)KXiIAi − Ef{`(2)(Yi − fλ(Xi))g(Xi)KXi}]‖

≤ 1

n
‖

n∑
i=1

[`(2)(Yi − fλ(Xi))g(Xi)KXiIAi − Ef{`(2)(Yi − fλ(Xi))g(Xi)KXiIAi}]‖

+‖Ef{`(2)(Yi − fλ(Xi))g(Xi)KXiIAci }‖

≤ (c2
KC0(Mnhr2

n + log n)
√
Mh−1r2

nA(h)

+σ−1(48C4
0C

2
1 )1/4 exp(−(Mnhr2

n + log n)/4)cKh
−1/2)‖g‖ ≤ ‖g‖/6. (52)

Define T3f (g) = Sn,λ(fλ+g)−Sn,λ(fλ)−DSn,λ(fλ)g. Let r2n = 6L(M)rn. For any g1, g2 ∈
B(r2n), and s ∈ I, let g = g1 − g2, then ‖g2 + sg‖sup ≤ ‖g1‖sup + ‖g2‖sup ≤ 2cKh

−1/2r2n =
48C0c

2
K(4C1 +M)rnh

−1/2 < 2/3. On En,2∩En,3, for any g1, g2 ∈ B(r2n) and letting g = g1−g2,
we have

‖T3f (g1)− T3f (g2)‖
= ‖Sn,λ(fλ + g1)− Sn,λ(fλ + g2)−DSn,λ(fλ)g‖

= ‖
∫ 1

0

∫ 1

0
D2Sn,λ(fλ + s′(g2 + sg))(g2 + sg)gdsds′‖

≤
∫ 1

0

∫ 1

0
‖D2Sn,λ(fλ + s′(g2 + sg))(g2 + sg)g‖dsds′

≤
∫ 1

0

∫ 1

0
‖ 1

n

n∑
i=1

`(3)(Yi − fλ(Xi)− s′(g2(Xi) + sg(Xi)))(g2(Xi) + sg(Xi))g(Xi)KXi‖dsds′

≤
∫ 1

0

∫ 1

0

1

n

n∑
i=1

sup
|a|≤1

|`(3)(ηi + a)| · ‖g2 + sg‖sup · ‖g‖sup‖KXi‖dsds′

≤ 2C0(Mnhr2
n + log n)(cKh

−1/2)3r2n‖g‖
= 48C2

0c
4
K(4C1 +M)(Mnhr2

n + log n)h−3/2rn‖g‖ ≤ ‖g1 − g2‖/6. (53)

Taking g2 = 0 in (53) we get that ‖T3f (g1)‖ ≤ ‖g1‖/6 for any g1 ∈ B(r2n). Therefore, it follows
by (52) and (53) that, for any f ∈ Hm(1), on En ≡ En,1 ∩ En,2 ∩ En,3 and for any g ∈ B(r2n),

‖T2f (g)‖ ≤ 2(‖g‖/6 + ‖g‖/6 + r2n/6) ≤ 2(r2n/6 + r2n/6 + r2n/6) = r2n,

meanwhile, for any g1, g2 ∈ B(r2n), replacing g by g1 − g2 in (52) we get that

‖T2f (g1)− T2f (g2)‖ ≤ 2(‖g1 − g2‖/6 + ‖g1 − g2‖/6) = 2‖g1 − g2‖/3.
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Therefore, for any f ∈ Hm(1), on En, T2f is a contraction mapping from B(r2n) to itself. By
contraction mapping theorem, there exists uniquely an element g′′ ∈ B(r2n) s.t. T2f (g′′) = g′′. Let
f̂n,λ = fλ+g′′. Then on En, ‖f̂n,λ−f‖ ≤ ‖fλ−f‖+‖f̂n,λ−fλ‖ ≤ r1n+r2n = 2bhm+6L(M)rn.
The desired conclusion follows by the trivial fact: supf∈Hm(1) Pf (Ecn) ≤ (2C1+4) exp(−Mnhr2

n).
Proof of (i) is completed.

Next we show (ii).
For any f ∈ Hm(1), let f̂n,λ be the penalized MLE of f . Let gn = f̂n,λ − f , δ′n(M) =

2hm + 6L(M)rn, d′n = cKh
−1/2δ′n(M), and for g ∈ G define

ψ
(2)
n,f (Zi; g) =

`(1)(ηi − d′ng(Xi))− `(1)(ηi)

C0(Mnhr2
n + log n)(cKh−1/2)2δ′n(M)

IAi ,

where Ai is the event defined in (i). Under the imposed conditions, we get that

cKh
−1/2δ′n(M) = 2cKh

m−1/2 + 6L(M)cKh
−1/2rn ≤ 2/3. (54)

Then for any g1, g2 ∈ G,

|ψ(2)
n,f (Zi; g1)− ψ(2)

n,f (Zi; g2)|

=
1

C0(Mnhr2
n + log n)(cKh−1/2)2δ′n(M)

|`(1)(ηi − d′ng1(Xi))− `(1)(ηi − d′ng2(Xi))|IAi

=
1

C0(Mnhr2
n + log n)(cKh−1/2)2δ′n(M)

·|
∫ 1

0
`(2)(ηi − d′ng2(Xi) + sdn(g2(Xi)− g1(Xi)))d

′
n(g2(Xi)− g1(Xi))ds|IAi

≤ 1

C0(Mnhr2
n + log n)(cKh−1/2)2δ′n(M)

sup
|a|≤1

|`(2)(ηi + a)|IAid′n‖g1 − g2‖sup

= c−1
K h1/2‖g1 − g2‖sup.

Let En,4 = {supg∈G ‖Z
(2)
n,f (g)‖ ≤

√
Mnhr2

nA(h)}, where Z(2)
n,f (g) = 1√

n

∑n
i=1[ψ

(2)
n,f (Zi; g)KXi −

EZf {ψ
(2)
n,f (Zi; g)KXi}], EZf denotes the expectation with respect to Z (under Pf ). It follows by

Lemma E.1 that supf∈Hm(1) Pf (Ecn,4) ≤ 2 exp(−Mnhr2
n).

On the other hand, for any g ∈ G, using Pf (Aci ) ≤ 2C1 exp(−(Mnhr2
n + log n)) we get

‖EZf {(`(1)(ηi − d′ng(Xi))− `(1)(ηi))KXiIAci }‖

≤ EZf { sup
|a|≤1

|`(2)(ηi + a)| · d′n|g(Xi)| · ‖KXi‖IAci }

≤ dncKh
−1/2EZf { sup

|a|≤1
|`(2)(ηi + a)| · IAci }

≤ (cKh
−1/2)2δ′n(M)

√
2C2

0C1

√
2C1 exp(−(Mnhr2

n + log n)/2)

= 2c2
KC0C1h

−1δ′n(M) exp(−(Mnhr2
n + log n)/2).
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On Ẽn ≡ En ∩ En,4, we have ‖gn‖ ≤ δ′n(M). Let ḡ = gn/d
′
n. Then we get that

‖Sn,λ(f + gn)− Sn,λ(f)− (Sλ(f + gn)− Sλ(f))‖

=
1

n
‖

n∑
i=1

[(`(1)(ηi − gn(Xi))− `(1)(ηi))KXi − Ef{(`(1)(ηi − gn(Xi))− `(1)(ηi))KXi}]‖

≤ 1

n
C0(Mnhr2

n + log n)(cKh
−1/2)2δ′n(M)‖

n∑
i=1

[ψ
(2)
n,f (Zi; ḡ)KXi − EZf {ψ

(2)
n,f (Zi; ḡ)KXi}]‖

+C0(Mnhr2
n + log n)(cKh

−1/2)2δ′n(M)‖EZf {(`(1)(ηi − d′nḡ(Xi))− `(1)(ηi))KXiIAci }‖

≤ 1

n
C0(Mnhr2

n + log n)(cKh
−1/2)2δ′n(M) ·

√
n
√
Mnhr2

nA(h)

+C0(Mnhr2
n + log n)(cKh

−1/2)2δ′n(M) · 2c2
KC0C1h

−1δ′n(M) exp(−(Mnhr2
n + log n)/2)

= c2
KC0

√
M(Mnhr2

n + log n)h−1/2δ′n(M)rnA(h)

+2c4
KC

2
0C1h

−2δ′n(M)2(Mnhr2
n + log n) exp(−(Mnhr2

n + log n)/2) = αn. (55)

It is easy to show that

‖
∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖

= ‖
∫ 1

0

∫ 1

0
sEZ

f {`(3)(Y − f(X)− ss′gn(X))gn(X)2KX}dsds′‖

≤ cKh
−1/2

∫ 1

0

∫ 1

0
sEZ

f {|`(3)(η − ss′gn(X))|gn(X)2}dsds′

≤ 1

2
cKh

−1/2E{ sup
|a|≤1

|`(3)(η + a)|gn(X)2}

≤ 1

2
cKh

−1/2C0C1σ
−2‖gn‖2 ≤

1

2
cKC0C1σ

−2h−1/2δ′n(M)2 = βn. (56)

Since Sn,λ(f + gn) = 0 and DSλ(f) = −id, from (55) and (56) we have on Ẽn,

αn ≥ ‖Sn,λ(f) +DSλ(f)gn +

∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖

= ‖Sn,λ(f)− gn +

∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖

≥ ‖Sn,λ(f)− gn‖ − ‖
∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖,

which implies that
‖f̂n,λ − f − Sn,λ(f)‖ ≤ cn(M),

where cn(M) : = αn + βn. Since supf∈Hm(1) Pf (Ẽcn) ≤ (2C1 + 6) exp(−Mnhr2
n), the proof is

completed.
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Appendix K. A quadratic approximation of the PLRT test

For arbitrary f ∈ Hm(1), let f̂n,λ be the penalized MLE. From now on, we let the event ∩4
j=1En,j

hold, where En,j for j = 1, 2, 3, 4 are defined as in the proof of Theorem 3.9. Recall that these
events satisfy

sup
f∈Hm(1)

Pf
(
∪4
j=1Ecn,j

)
≤ (2C1 + 6) exp(−Mnhr2

n).

Let gn = f − f̂n,λ. Using Taylor’s expansion, we get that

PLRTn,λ(f) = `n,λ(f)− `n,λ(f̂n,λ)

= `n,λ(f̂n,λ + gn)− `n,λ(f̂n,λ)

=

∫ 1

0

∫ 1

0
sDSn,λ(f̂n,λ + ss′gn)gngndsds

′

=

∫ 1

0

∫ 1

0
s[DSn,λ(f̂n,λ + ss′gn)−DSn,λ(f)]gngndsds

′

+
1

2
[DSn,λ(f)−DSλ(f)]gngn +

1

2
DSλ(f)gngn.

For any s, s′ ∈ I, it is easy to see that ‖f−f̂n,λ−ss′gn‖sup = (1−ss′)‖gn‖sup ≤ cKh−1/2δ′n(M) ≤
2/3 (see (54)).

|[DSn,λ(f̂n,λ + ss′gn)−DSn,λ(f)]gngn|

≤ | 1
n

n∑
i=1

[`(2)(Yi − f̂n,λ − ss′gn(Xi))− `(2)(Yi − f(Xi))]gn(Xi)
2|

≤ 1

n

n∑
i=1

sup
|a|≤1

|`(3)(ηi + a)| · ‖gn‖3sup

≤ C0(Mnhr2
n + log n)(cKh

−1/2δ′n(M))3.

Define

ψ
(3)
n,f (Zi; g) =

`(2)(ηi)g(Xi)c
−1
K h1/2

C0(Mnhr2
n + log n)

IAi , g ∈ G,

where Ai is defined in (i). Then it is easy to see that for any g1, g2 ∈ G,

|ψ(3)
n,f (Zi; g1)− ψ(3)

n,f (Zi; g2)| ≤ |`(2)(ηi)|IAi
C0(Mnhr2

n + log n)
c−1
K h1/2‖g1 − g2‖sup ≤ c−1

K h1/2‖g1 − g2‖sup.

It follows by Lemma E.1 that supf∈Hm(1) Pf (Ecn,5) ≤ 2 exp(−Mnhr2
n), where En,5 = {supg∈G ‖Z

(3)
n,f (g)‖ ≤√

Mnhr2
nA(h)} and Z(3)

n,f (g) = 1√
n

∑n
i=1[ψ

(3)
n,f (Zi; g)KXi−Ef{ψ

(3)
n,f (Zi; g)KXi}]. From now on,

we assume ∩5
j=1En,j holds.

It can be seen by (51) and independence between η and X that

|EZf {`(2)(ηi)gn(Xi)
2IAci }| ≤ E{|`(2)(ηi)|IAci }E{gn(X)2}

≤ σ−2E{|`(2)(η)|2}1/2Pf (Aci )
1/2‖gn‖2

≤ σ−2
√

2C1C2
0

√
2C1 exp(−(Mnhr2

n + log n)/2)δ′n(M)2

= 2C0C1σ
−2 exp(−(Mnhr2

n + log n)/2)δ′n(M)2.
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Note that

|[DSn,λ(f)−DSλ(f)]gngn|

=
1

n
|
n∑
i=1

[`(2)(ηi)gn(Xi)
2 − EZf {`(2)(ηi)gn(Xi)

2}]|

≤ 1

n
|
n∑
i=1

[`(2)(ηi)gn(Xi)
2IAi − EZf {`(2)(ηi)gn(Xi)

2IAi}]|+ |EZf {`(2)(ηi)gn(Xi)
2IAci }|

= |〈 1
n

n∑
i=1

[`(2)(ηi)gn(Xi)IAiKXi − EZf {`(2)(ηi)gn(Xi)IAiKXi}], gn〉|+ |EZf {`(2)(ηi)gn(Xi)
2IAci }|

≤ ‖ 1

n

n∑
i=1

[`(2)(ηi)gn(Xi)IAiKXi − EZf {`(2)(ηi)gn(Xi)IAiKXi}]‖ · ‖gn‖+ |EZf {`(2)(ηi)gn(Xi)
2IAci }|.

Letting ḡ = gn/d
′
n, where d′n = cKh

−1/2δ′n(M), we get that

‖ 1

n

n∑
i=1

[`(2)(ηi)gn(Xi)IAiKXi − EZf {`(2)(ηi)gn(Xi)IAiKXi}]‖

=
d′n
n
‖

n∑
i=1

[`(2)(ηi)ḡ(Xi)IAiKXi − EZf {`(2)(ηi)ḡ(Xi)IAiKXi}]‖

=
d′n
n
C0(Mnhr2

n + log n)cKh
−1/2‖

n∑
i=1

[ψ
(3)
n,f (Zi; ḡ)KXi − EZf {ψ

(3)
n,f (Zi; ḡ)KXi}]‖

= C0(Mnhr2
n + log n)(cKh

−1/2)2n−1/2δ′n(M)‖Z(3)
n,f (ḡ)‖

≤
√
MC0c

2
K(Mnhr2

n + log n)h−1/2δ′n(M)rnA(h),

where the last inequality follows by ḡ ∈ G.
By the above analysis, it holds that

|[DSn,λ(f)−DSλ(f)]gngn|
≤
√
MC0c

2
K(Mnhr2

n + log n)h−1/2δ′n(M)2rnA(h) + 2C0C1σ
−2 exp(−(Mnhr2

n + log n)/2)δ′n(M)2.

Therefore, for any f ∈ Hm(1), on ∩5
j=1En,j , it holds that

|PLRTn,λ(f) +
1

2
‖gn‖2|

≤ 1

2
C0c

3
K(Mnhr2

n + log n)h−3/2δ′n(M)3 +
1

2

√
MC0c

2
K(Mnhr2

n + log n)h−1/2δ′n(M)2rnA(h)

+C0C1σ
−2δ′n(M)2 exp(−(Mnhr2

n + log n)/2) = Rn.

Appendix L. Proofs of the auxilliary results

L.0.1. PROOF OF LEMMA H.1

Since ε2i are independent sub-exponential random variables given (X1, . . . , Xn). Therefore, by
standard tail bounds for sub-exponential random variables [16, Lemma 1], we have that for any

44



NONPARAMETRIC TESTING

M > 0

Pε

(∣∣∣ n∑
i=1

ε2i K(Xi, Xi)−
n∑
i=1

K(Xi, Xi)
∣∣∣ ≥ 2gn

√
M + 2h−1c2

KM
)
≤ 2 exp(−M), (57)

where g2
n =

∑n
i=1K

2(Xi, Xi). Now we apply Hoeffding’s inequality to obtain

PX

(∣∣∣ n∑
i=1

K(Xi, Xi)− nE ‖KXi‖2
∣∣∣ ≥ cK√nM

2h

)
≤ 2 exp(−M), (58)

PX

( n∑
i=1

K2(Xi, Xi) ≥ nE ‖KXi‖4 +
c2
K

h

√
nM

2

)
≤ exp(−M). (59)

Since (X1, . . . , Xn) and (ε1, . . . , εn) are indepedent, we can apply inequalities (57), (58) and (59)
to obtain

P
{∣∣∣ n∑

i=1

ε2i K(Xi, Xi)− nE ‖KXi‖2
∣∣∣ ≥ c2

K

h

√
2nM + h−1/2cK

4
√

2nM3 + 2h−1c2
KM+cK

√
nM

2h

}
≤ 5 exp(−M),

where we used the fact that ‖KXi‖ ≤ h−1/2cK and the inequality
√
x+ y ≥

√
x/2 +

√
y/2 for

x, y > 0. This is equivalent to the claimed result since E{‖Sn,λ(0)‖2} = n−1E ‖KXi‖2.

L.0.2. PROOF OF LEMMA H.2

By Hanson-Wright inequality [13], given (X1, . . . , Xn) for any M > 0

Pε

(∣∣∣ ∑
1≤i<j≤n

εiεjK(Xi, Xj)
∣∣∣ ≥ 2en

√
M + 2fnM

)
≤ 2 exp(−M), (60)

where e2
n =

∑
1≤i<j≤nK

2(Xi, Xj) and fn = λmax(Kn). Here for a p.s.d. matrix A, λmax(A)
stands for its largest eigenvalue, and the kernel matrix Kn = [K(Xi, Xj)]n×n.

By the bounded differences inequality, for any M > 0

PX

( ∑
1≤i<j≤n

K2(Xi, Xj) ≥
n2ρ2

K

h
+

4n2c2
K

h

√
M

2n

)
≤ exp(−M). (61)

By Theorem 4 in [7], for any x > 0

PX

(fn
n
≥ µ+ 2

√
E ‖KXi‖4

n
+

3c2
K

h

√
x

2n

)
≤ 3 exp(−M). (62)

Here µ is the largest eigenvalue of integral operator K on Sm(I) defined as

K(u, v) =
∑
ν≥1

1

1 + λρν
φν(u)φν(v)
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so that

Kf (·) =

∫ 1

0
f(u)K(u, ·)dP (u).

It is easy to see that µ = (1 + λρ1)−1 ≤ 1, which combined with (62) implies

PX

(
fn ≥ n+ 2

√
nE ‖KXi‖4 +

3c2
K

h

√
nx

2

)
≤ 3 exp(−M). (63)

Since (X1, . . . , Xn) and (ε1, . . . , εn) are indepedent, we can combine inequalities (60), (62) and
(63), and use the fact that E ‖KXi‖4 ≤ h−2c4

K to obtain

P
(∣∣∣ ∑

1≤i<j≤n
εiεjK(Xi, Xj)

∣∣∣ ≥ 2nρK√
h

√
M +

4n3/4cK
4
√

2
√
h
M3/4 + 2nM +

4
√
nc2

K

h
M +

3c2
K√
n

√
2M
)

≤ 8 exp(−M),

which implies the claimed result.

L.0.3. PROOF OF LEMMA H.3

Since εi are 1-sub-Gaussian, we have

Pε

(∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣ ≥ ‖f‖n√2M

n

)
≤ 2 exp(−M)

given (X1, . . . , Xn) for any fixed function f in Sm(I), where ‖f‖2n = n−1
∑n

i=1 f
2(Xi). By

Bernstein’s inequality

PX

(
‖f‖2n ≥ ‖f‖2 +

2‖f‖
n

√
M +

2‖f‖sup

n
M
)
≤ exp(−M).

Combining the last two displayed results yields the claimed inequality.

L.0.4. PROOF OF LEMMA I.1

Since f⊥X is a linear function, we have J(f⊥X , f
⊥
X ) = 0 and

‖f⊥X‖2 = ‖f⊥X‖22 ≤ 2‖(DT
XDX)−1DT

Xf
⊥(Xn

1 )‖2 ≤ 2λ2
X‖DT

Xf
⊥(Xn

1 )‖2

= 2λ2
X

{( n∑
i=1

f⊥(Xi)
)2

+
( n∑
i=1

Xif
⊥(Xi)

)2}
, (64)

where λX is the largest eigenvalue of matrix (DT
XDX)−1.

According to the proof of Lemma F.2, λX has the following tail bound

PX

(
λX ≥

2

n

(
1− 1

n
−
√
M

n
− M

n

)−1)
≤ exp(−M)

for all M ≤ n/4.
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Now consider the two terms inside the curly brackets of (64). Since f ∈ Hm(1), we have
‖f⊥‖∞ ≤ 1. By definition, we know that EX [f⊥(X)] = EX [Xf⊥(X)] = 0. As a consequence,
an application of Hoeffding’s inequality yields

PX

(∣∣∣ n∑
i=1

f⊥(Xi)
∣∣∣ ≥ √2nM) ≤ 2 exp(−M), and

PX

(∣∣∣ n∑
i=1

Xif
⊥(Xi)

∣∣∣ ≥ √2nM) ≤ 2 exp(−M), for all x > 0.

Combining the last three displays and inequality (64), we obtain

P
{
‖f⊥X‖2 ≥

32

n
M
(

1− 1

n
−
√
M

n
− M

n

)−2}
≤ 5 exp(−M),

for any M ≤ n/4.
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